JP2003027959A - Device for collecting water from exhaust gas - Google Patents

Device for collecting water from exhaust gas

Info

Publication number
JP2003027959A
JP2003027959A JP2001211528A JP2001211528A JP2003027959A JP 2003027959 A JP2003027959 A JP 2003027959A JP 2001211528 A JP2001211528 A JP 2001211528A JP 2001211528 A JP2001211528 A JP 2001211528A JP 2003027959 A JP2003027959 A JP 2003027959A
Authority
JP
Japan
Prior art keywords
water
exhaust gas
recovery
spraying
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001211528A
Other languages
Japanese (ja)
Inventor
Osamu Yokota
修 横田
Shigeo Hatamiya
重雄 幡宮
Shohei Numata
祥平 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001211528A priority Critical patent/JP2003027959A/en
Publication of JP2003027959A publication Critical patent/JP2003027959A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for collecting water from exhaust gas capable of restricting a drift of exhaust gas, and improving heat recovering efficiency. SOLUTION: This device is provided with a collecting chamber to which exhaust gas discharged from a heat source flows in, plural sprinkling parts to sprinkle water respectively for plural layers parted in the collecting chamber, and plural collecting parts to collect sprinkled water and condensed water corresponding to the sprinkling parts. The sprinkling part in each layer is disposed in such a way that sprinkled water directly exchange heat with exhaust gas flow. A flow passage is formed in such a way that a part or all of water collected from the collecting parts returns to a part or all of the sprinkling parts as sprinkled water. A flow passage is also formed to take water collected from the collecting part positioned on the inflow side of exhaust gas to the external of the device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガスから水
分を回収する水回収装置に関する。
TECHNICAL FIELD The present invention relates to a water recovery device for recovering water from combustion exhaust gas.

【0002】[0002]

【従来の技術】水分を多く含んだ排ガスから水を回収す
る方法についてはガスタービンの排ガスからの水回収な
どHAT(Humid Air Turbine)サイクルの分野の技術、
例えば、特開昭56−12006号公報には、排ガスを
冷却塔に供給し、噴霧状の冷却水と交流接触させて排ガ
スに含有する水蒸気を凝縮分離させ、湿度を低下した排
ガスとして大気へ排出する記載があり、特開平11−1
17764号公報には、排ガスから水分を回収する際に
複数の水回収部に分け、燃焼排ガスの温度が低い出口側
の液回収部回収水の一部を、燃焼排ガスの温度の高い入
口側の冷却水散布部に供給し、その領域で得られた回収
水を更に、燃焼排ガスの温度の高い入口側に位置する冷
却水散布部に供給する記載がある。
2. Description of the Related Art Regarding the method of recovering water from exhaust gas containing a large amount of water, technology in the field of HAT (Humid Air Turbine) cycle such as water recovery from exhaust gas of a gas turbine,
For example, in Japanese Unexamined Patent Publication No. 56-12006, exhaust gas is supplied to a cooling tower and is brought into alternating current contact with atomized cooling water to condense and separate water vapor contained in the exhaust gas, and then exhausted to the atmosphere as exhaust gas with reduced humidity. Japanese Patent Application Laid-Open No. 11-1
No. 17764 gazette discloses that when water is recovered from exhaust gas, it is divided into a plurality of water recovery parts, and a part of the liquid recovery part recovery water on the outlet side where the temperature of the combustion exhaust gas is low is partially separated on the inlet side where the temperature of the combustion exhaust gas is high. There is a description that the cooling water is supplied to the cooling water spraying part, and the recovered water obtained in that region is further supplied to the cooling water spraying part located on the inlet side where the temperature of the combustion exhaust gas is high.

【0003】[0003]

【発明が解決しようとする課題】湿分を多く含んだ排ガ
スは、その温度を露点以下に下げると水蒸気が凝縮して
水を回収することができる。従来の水回収装置において
は、一般的に排ガスに偏流が生じたり、これによって熱
交換損失が増加する場合がある。また、熱交換領域の不
足等により、十分な熱交換が行われず排ガスの保有する
熱エネルギーが十分に回収されず大気に放出する場合が
あった。
Exhaust gas containing a large amount of moisture can collect water by condensing water vapor when the temperature is lowered below the dew point. In the conventional water recovery device, the exhaust gas generally causes a nonuniform flow, which may increase the heat exchange loss. In addition, due to lack of a heat exchange area, there is a case where sufficient heat exchange is not performed and the thermal energy of the exhaust gas is not sufficiently recovered and is released to the atmosphere.

【0004】本発明は、前記した課題に鑑みなされたも
のであり、排ガスの偏流を抑制し、熱回収効率を向上さ
せた水回収装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a water recovery apparatus that suppresses uneven flow of exhaust gas and improves heat recovery efficiency.

【0005】[0005]

【課題を解決するための手段】本発明の前記目的を達成
するために、熱源から放出された排ガスが流入する回収
室と、回収室を複数層に分割し、分割された各層ごとに
水を散布する複数の散布部と、散布部に対応して散布水
及び凝縮水を回収する複数の回収部とを備え、各層の散
布部を、散布水と排ガス流とが直接熱交換するように配
置する。この回収部から回収された水の一部又は全部が
散布水として散布部の一部又は全部に戻る流路を形成す
るとともに、排ガス流入側に位置する回収部から回収さ
れる水がこの装置の外部へ取り出される流路も形成する
ことにより達成できる。尚、本発明において、回収室
は、複数の回収室に分割する場合と、回収室を1単位と
して集合して構成する場合とを含むものとする。
In order to achieve the above object of the present invention, a recovery chamber into which exhaust gas discharged from a heat source flows and a recovery chamber are divided into a plurality of layers, and water is supplied to each of the divided layers. Equipped with a plurality of spraying parts for spraying and a plurality of collecting parts for collecting sprayed water and condensed water corresponding to the spraying parts, and the spraying parts of each layer are arranged so that the sprayed water and the exhaust gas flow directly exchange heat. To do. A part or all of the water recovered from this recovery part forms a flow path as sprayed water that returns to part or all of the spray part, and the water recovered from the recovery part located on the exhaust gas inflow side is This can be achieved by forming a flow path that is taken out to the outside. In the present invention, the collection chamber includes a case where the collection chamber is divided into a plurality of collection chambers and a case where the collection chambers are assembled as one unit.

【0006】[0006]

【発明の実施の形態】図1は、本発明の一実施例の水回
収装置7及びガスタービンプラントの概要図である。空
気吸入管21より吸入され空気圧縮機2で圧縮された空
気は空気吐出管22を経由して燃焼器4に送られる。燃
焼器4に導かれた空気は、燃料管20によって供給され
る燃料と、蒸気供給管25から供給される蒸気発生器5
で発生した蒸気とともに燃焼する。燃焼器4で発生した
高温の燃焼ガスは、排気管23を経由してガスタービン
1に送られ、ガスタービン1と軸を介して接続された発
電機3を駆動する。ガスタービン1を駆動した排ガスは
高温排気管24によって導かれ、蒸気発生器5で熱回収
されたあと、排ガス流入管27,熱交換器6,排ガス流
入管28を経由して本実施例の排ガスからの水回収装置
7に導かれる。水蒸気を多く含んだ燃焼後の排ガスは、
熱交換器6で冷却された後、排ガス流入管28,分岐路
51,52,53を経由して水回収装置7へ流入し、こ
こで冷却水と直接接触して冷却されて湿り蒸気となり、
一部は凝縮し回収される。残りの排ガスはミスト除去装
置11,ガス流出管29を経て熱交換器6で加熱された
後、排気管30を経由して煙突(図示せず)によって大
気に放出される。
1 is a schematic diagram of a water recovery system 7 and a gas turbine plant according to an embodiment of the present invention. The air sucked through the air suction pipe 21 and compressed by the air compressor 2 is sent to the combustor 4 through the air discharge pipe 22. The air introduced to the combustor 4 is supplied with fuel by the fuel pipe 20 and the steam generator 5 supplied by the steam supply pipe 25.
It burns with the steam generated in. The high temperature combustion gas generated in the combustor 4 is sent to the gas turbine 1 via the exhaust pipe 23 and drives the generator 3 connected to the gas turbine 1 via a shaft. The exhaust gas that has driven the gas turbine 1 is guided by the high temperature exhaust pipe 24, and after the heat is recovered by the steam generator 5, the exhaust gas of the present embodiment is passed through the exhaust gas inflow pipe 27, the heat exchanger 6, and the exhaust gas inflow pipe 28. To the water recovery device 7. Exhaust gas after combustion, which contains a large amount of water vapor,
After being cooled by the heat exchanger 6, it flows into the water recovery device 7 via the exhaust gas inflow pipe 28 and the branch passages 51, 52, 53, where it comes into direct contact with the cooling water and is cooled to become wet steam.
A part is condensed and collected. The remaining exhaust gas is heated by the heat exchanger 6 through the mist removing device 11 and the gas outflow pipe 29, and is then discharged to the atmosphere by a chimney (not shown) via the exhaust pipe 30.

【0007】水回収装置7は、回収室13を複数に分割
し、本実施例では例えば回収室31,32,33のよう
に構成する。この回収室31内において、冷却水管41
を経た冷却水は、散布水として散布部71aから排ガス
の流れと交叉(例えば直交)して散布され、散布水と凝
縮水は水回収部71bに回収される。同様に、回収室3
2,33内においても冷却水管41を経た冷却水は、散
布水として回収室32,33内で、夫々対応する散布部
71aから排ガスの流れと交叉して散布され、散布水と
凝縮水は対応する水回収部71bに回収される。ここ
で、回収室31,32,33内の夫々の水回収部71b
同士は、回収水管42に流路を介して接続され、回収水
は回収水管42,切替バルブ80a,流量制御装置9を
経由して、戻り水管43に導かれ、冷却水冷却器8で冷
却された後、冷却水管41を通って冷却水として循環し
て再利用される。
The water recovery device 7 divides the recovery chamber 13 into a plurality of parts, and in the present embodiment, is constituted as recovery chambers 31, 32 and 33, for example. In the recovery chamber 31, the cooling water pipe 41
The cooling water that has passed through is sprayed as sprayed water from the spraying section 71a so as to intersect (for example, orthogonally) the flow of the exhaust gas, and the sprayed water and the condensed water are recovered by the water recovery section 71b. Similarly, collection room 3
The cooling water that has passed through the cooling water pipe 41 in 2 and 33 is also sprayed as sprayed water in the recovery chambers 32 and 33 from the corresponding spraying portions 71a so as to intersect the flow of the exhaust gas, and the sprayed water and the condensed water correspond to each other. The water is recovered by the water recovery unit 71b. Here, the respective water recovery parts 71b in the recovery chambers 31, 32, 33
The two are connected to the recovered water pipe 42 via a flow path, and the recovered water is guided to the return water pipe 43 via the recovered water pipe 42, the switching valve 80a and the flow rate control device 9 and cooled by the cooling water cooler 8. Then, it is circulated as cooling water through the cooling water pipe 41 and reused.

【0008】ここに、前記水回収部71bで回収された
回収水の一部又は全部が冷却水管41を経由して再度上
流の冷却水散布部72aに送られ冷却水散布部72aの
散布水として使用される。また、回収室31,32,33
の水回収部71b,72b,73b同士が各層間で夫々連
結されており、回収水は夫々回収水管42,44,46
へ流れる。尚、回収水管42,44,46を経た夫々の
回収水は、切替バルブ80b,80cを閉じると交じり
合わない構成となっている。
Here, a part or all of the recovered water recovered by the water recovery section 71b is sent again to the upstream cooling water spraying section 72a via the cooling water pipe 41 to serve as sprayed water for the cooling water spraying section 72a. used. In addition, the recovery chamber 31, 32, 33
Of the water collecting units 71b, 72b, 73b are connected between the layers, and the collected water is collected by the collected water pipes 42, 44, 46, respectively.
Flows to. The collected water that has passed through the collected water pipes 42, 44 and 46 does not mix when the switching valves 80b and 80c are closed.

【0009】最上流側の冷却水散布部73aに送られた
散布水は、水回収部71b,72bを経て排ガスの凝縮
潜熱を吸収しているので、71aの散布水より温度が高
くなっている。この高温の回収水は、切替バルブ80c
を閉じ、切替バルブ80dを開くことで、回収水管46
を経て低温の回収水と混合されることなく水処理装置1
0,回収水タンク12,補給水供給管26を経由して、
蒸気発生器5に供給され、補給水として利用され、圧縮
機2の吐出空気に蒸気として混入される。なお、熱交換
器6は水回収した後の排ガスを加熱するための一例であ
り、別に熱源が得られる場合はこれを利用しても良い。
The sprayed water sent to the cooling water sprayer 73a on the most upstream side absorbs the latent heat of condensation of the exhaust gas through the water recovery parts 71b and 72b, and therefore has a higher temperature than the sprayed water of 71a. . This high-temperature recovered water is supplied to the switching valve 80c.
Closed and the switching valve 80d opened, the recovery water pipe 46
Water treatment device 1 without being mixed with low temperature recovered water
0, the recovered water tank 12, the makeup water supply pipe 26,
It is supplied to the steam generator 5, is used as make-up water, and is mixed in the discharge air of the compressor 2 as steam. The heat exchanger 6 is an example for heating the exhaust gas after water recovery, and if a separate heat source is available, this may be used.

【0010】次に噴霧された液滴の挙動を図2及び図3
に示す。図2は液滴を空気中で自然落下させた場合の終
端速度の試算例である。終端速度は液滴に働く重力と空
気抵抗の釣り合いで決まり、例えば直径が3mmの液滴の
終端速度は2.5m/s になっている。このことは、吹
上げ流速が2.5m/s より大きな空気の流れがある条
件では直径が0.3mm の液滴は落下できずに、気流に同
伴されて飛散する可能性のあることを示している。
Next, the behavior of the sprayed droplets is shown in FIGS. 2 and 3.
Shown in. FIG. 2 is an example of a trial calculation of the terminal velocity when the droplet is allowed to naturally drop in the air. The terminal velocity is determined by the balance between the gravity acting on the droplet and the air resistance. For example, the terminal velocity of a droplet having a diameter of 3 mm is 2.5 m / s. This means that droplets with a diameter of 0.3 mm may not fall under the condition that there is an air flow with a blowing velocity of more than 2.5 m / s, and may be entrained in the air stream and scattered. ing.

【0011】冷却水散布部72aから吐出される液滴
は、ノズル(図示せず)の種類と吐出圧に応じた液滴径
と初速度を有しており、ノズルの吐出圧(圧力差)が
0.1 〜0.3MPa のとき例えば、噴霧された液滴径
は0.3mm 、初速度15〜25m/sの組み合わせがあ
り得る。
The droplets discharged from the cooling water sprinkling portion 72a have a droplet diameter and an initial velocity according to the type of nozzle (not shown) and the discharge pressure, and the discharge pressure (pressure difference) of the nozzle. Is 0.1 to 0.3 MPa, for example, there may be a combination of a sprayed droplet diameter of 0.3 mm and an initial velocity of 15 to 25 m / s.

【0012】図3は空気が2m/sの吹き上げ速度を有
している場合に、ノズルから噴出された液滴がノズル下
方のどの位置まで到達できるかを試算したものである。
図2を参照すれば明らかなように、0.2mm 以下の液滴
は終端速度が2m/sより小さいので、図3のグラフに
示した範囲の液滴は最終的に全て飛散するが、初速度を
有しているので空気抵抗に抗して運動エネルギを使い尽
くすまで下方に進むことができる。したがって、これら
の微小液滴は図3に示す範囲内で捕獲するならば、液滴
の飛散を受ける前に回収することができる。直径が0.
3mm の液滴に対しては1.0mの距離を取るならば、ノ
ズルの吐出圧(圧力差)が0.1MPaの場合に回収可
能になる。また、冷却水散布部72aから噴出された高
速の噴流は空気との剪断力により微細化されていくの
で、冷却水散布部72a液滴が形成されるのに十分な距
離として0.2mと考えられ、冷却水散布部72aから
0.2m〜1.0m の範囲に液滴回収部を設けることに
より、より多くの液滴を回収することが期待できる。
FIG. 3 is a trial calculation of the position below the nozzle where the droplet ejected from the nozzle can reach when the air has a blowing velocity of 2 m / s.
As apparent from FIG. 2, since the terminal velocity of the droplets of 0.2 mm or less is smaller than 2 m / s, all the droplets in the range shown in the graph of FIG. Due to its speed, it can proceed downwards until it has exhausted its kinetic energy against air resistance. Therefore, if these minute droplets are captured within the range shown in FIG. 3, they can be collected before the droplets are scattered. The diameter is 0.
If a distance of 1.0 m is taken for a droplet of 3 mm, it becomes possible to recover when the discharge pressure (pressure difference) of the nozzle is 0.1 MPa. In addition, since the high-speed jet flow ejected from the cooling water sprinkling portion 72a is atomized by the shearing force with the air, it is considered that the distance is 0.2 m as a sufficient distance for forming the cooling water sprinkling portion 72a droplets. Therefore, it is expected that more droplets can be collected by providing the droplet collecting unit in the range of 0.2 m to 1.0 m from the cooling water spraying unit 72a.

【0013】図10,図11に、整流作用の働きを示す
概念図を示す。
10 and 11 are conceptual diagrams showing the function of the rectifying action.

【0014】図10(a)は、従来の水回収装置7の概
念斜視図、図10(b)は図10(a)における偏流状
況を示す図である。図11(a)は本実施例の水回収装
置7の概念斜視図、図11(b)は、図11(a)にお
ける排ガスの流れを示す図である。
FIG. 10 (a) is a conceptual perspective view of a conventional water recovery device 7, and FIG. 10 (b) is a view showing a drift condition in FIG. 10 (a). FIG. 11A is a conceptual perspective view of the water recovery device 7 of this embodiment, and FIG. 11B is a diagram showing the flow of exhaust gas in FIG. 11A.

【0015】図10(a),(b)の従来の水回収装置
7入口部は一般的に、設置スペースの制約から排ガス流
入管28の拡管や曲げにより排ガスを取入れる構造が多
く、これによって流れの内側に剥離領域28cを発生
し、回収室13内で偏流28bができ、熱交換を阻害し
ていた。しかし、図11(a),(b)に示す本実施例
の多層構造によって、一層当りの流路面積を小さくし、
流れの整流作用を促進し、偏流28bが発生してもその
領域は従来の構造に比べて小さく、熱交換損失を抑制で
きる。
The inlet portion of the conventional water recovery device 7 shown in FIGS. 10 (a) and 10 (b) generally has a structure in which the exhaust gas is taken in by expanding or bending the exhaust gas inflow pipe 28 due to the limitation of the installation space. A separation region 28c was generated inside the flow, and a nonuniform flow 28b was formed in the recovery chamber 13, hindering heat exchange. However, with the multi-layer structure of this embodiment shown in FIGS. 11A and 11B, the flow passage area per layer is reduced,
The flow rectifying action is promoted, and even if the uneven flow 28b is generated, the area thereof is smaller than that of the conventional structure, and the heat exchange loss can be suppressed.

【0016】図11(a),(b)に示す本実施例によ
れば、回収室13を複数多層に分割し、3次元に配列す
ることによって、排ガス流方向の回収室13の断面積の
総和が同一の場合、多層に構成することによって一層当
りの流路断面積が小さくなる一方、単位流路断面に対す
る熱伝達領域が増大するとともに流れの整流作用が促進
し、剥離領域28cが減少し、熱交換が各回収室断面に
亘ってより均一化でき、熱交換損失を抑制できる。ま
た、散布水が飛散する距離も短縮されることから、散布
水が排ガスに同伴される前に水回収部71bに達し、排
ガスと同時に排出される散布水が減少し、水回収量が増
加する。従って、水回収能力が増加して高効率の水回収
ができ、小型化が可能となり、設置スペースが小さくで
きる他、製造コストも低減できる。また、排ガスから異
なる温度レベルの水を回収できるため、温水を外部仕事
としてエネルギーの活用を図ることができる。
According to this embodiment shown in FIGS. 11 (a) and 11 (b), the recovery chamber 13 is divided into a plurality of layers and arranged three-dimensionally so that the cross-sectional area of the recovery chamber 13 in the exhaust gas flow direction can be reduced. When the total sum is the same, the flow passage cross-sectional area per one layer becomes smaller due to the multilayer structure, while the heat transfer region per unit flow passage cross-section increases and the flow rectifying action is promoted, and the separation region 28c decreases. The heat exchange can be made more uniform over each recovery chamber cross section, and the heat exchange loss can be suppressed. Further, since the distance over which the sprayed water scatters is also shortened, the sprayed water reaches the water recovery part 71b before being entrained by the exhaust gas, the sprayed water discharged at the same time as the exhaust gas is reduced, and the water recovery amount is increased. . Therefore, the water recovery capacity is increased, highly efficient water recovery can be performed, the size can be reduced, the installation space can be reduced, and the manufacturing cost can be reduced. Further, since water of different temperature levels can be recovered from the exhaust gas, it is possible to utilize energy by using hot water as external work.

【0017】図4は、他の実施例の水回収装置7及びガ
スタービンプラントを示しており、図1の構成におい
て、排ガス流の方向を散布水の散布方向に対して対向す
るよう下から上向きとし、冷却水散布部71aと水回収
部71bとの距離を0.2 〜1mの範囲とする。各機器
の働きは図1と同様である。
FIG. 4 shows a water recovery device 7 and a gas turbine plant according to another embodiment. In the configuration of FIG. 1, the exhaust gas flow is directed from the bottom to the top so that the direction of the exhaust gas flow is opposite to the spray direction of the spray water. The distance between the cooling water sprinkling portion 71a and the water collecting portion 71b is set in the range of 0.2 to 1 m. The function of each device is the same as in FIG.

【0018】図5は、他の実施例の水回収装置7及びガ
スタービンプラントを示しており、図1の構成におい
て、排ガス流の方向を散布水の散布する方向とし、冷却
水散布部71aと水回収部71bとの距離を0.2〜1
m の範囲とする。各機器の働きは図1と同様である。
FIG. 5 shows a water recovery device 7 and a gas turbine plant of another embodiment. In the configuration of FIG. 1, the direction of the exhaust gas flow is the direction of the sprayed water, and the cooling water sprayer 71a is used. The distance to the water recovery part 71b is 0.2 to 1
The range is m 2. The function of each device is the same as in FIG.

【0019】図6は、他の実施例の水回収装置7及びガ
スタービンプラントを示しており、図4に基づくもので
あるが、高温側と低温側の回収水を混合して回収する実
施例である。
FIG. 6 shows a water recovery device 7 and a gas turbine plant of another embodiment, which is based on FIG. 4, but an embodiment in which the recovered water on the high temperature side and the recovered water on the low temperature side are mixed and recovered. Is.

【0020】図7は、図1の水回収装置7の他の実施例
を示しており、排ガス流の方向を上方(重力方向の反対
方向)とし、散布水をこれに交叉(例えば直交)して散
布し、冷却水散布部71aと水回収部71bとの距離を
0.2〜1m の範囲とする。各機器の働きは図1と同様
である。
FIG. 7 shows another embodiment of the water recovery device 7 of FIG. 1, in which the direction of the exhaust gas flow is upward (opposite to the direction of gravity) and the sprayed water is crossed (eg orthogonal) thereto. And the distance between the cooling water sprinkling portion 71a and the water collecting portion 71b is set in the range of 0.2 to 1 m 2. The function of each device is the same as in FIG.

【0021】図8は、他の実施例の水回収装置7を示し
ており、図7に基づくものであるが、各層の冷却水散布
部と散布部の回収部の配列を交互に配置し、隣接する散
布部の散布方向を逆向きとする。例えば冷却水散布部7
1a,73aの散布水を同じ向きとし、冷却水散布部7
2aの散布水の向きをこれと逆向きとし、水回収部71
b,72b,73bの位置を冷却水散布部71a,72
a,73aと相対して設置する。排ガスは、夫々の散布
水に対して交叉(例えば直交)するように流し、冷却水
散布部71aと水回収部71bとの距離を0.2〜1m
の範囲とする実施例である。
FIG. 8 shows a water recovery device 7 of another embodiment, which is based on FIG. 7, but the arrangement of the cooling water sprinkling parts and the collecting part of the sprinkling parts of each layer are alternately arranged. The spraying directions of the adjacent spraying parts are opposite. For example, the cooling water sprinkling unit 7
1a and 73a are sprayed in the same direction, and the cooling water sprayer 7
The spray water of 2a is directed in the opposite direction, and the water recovery unit 71
The positions of b, 72b, 73b are set to the cooling water sprinkling portions 71a, 72.
It is installed opposite to a and 73a. The exhaust gas is caused to flow so as to intersect (for example, at right angles) with each spray water, and the distance between the cooling water spray section 71a and the water recovery section 71b is set to 0.2-1 m.
It is an example of the range.

【0022】図9は、水回収装置7の他の実施例を示し
ており、図4の構成において、排ガスを散布水に対して
対向して上向き(重力方向の反対方向)に流し、かつ隣
接する水回収部71b間に開口部を形成し、この開口部
から局所吹出し流速4〜6m/sを有する排ガスを吹出
す構成により、散布水は排ガスの圧力を受けて水回収部
71bの開口部を避けて、水回収部71bで効率よく回
収水を回収する。冷却水散布部71aと水回収部71b
との距離を0.2〜1m の範囲とする実施例である。
FIG. 9 shows another embodiment of the water recovery device 7. In the configuration of FIG. 4, the exhaust gas is directed upwards (opposite the direction of gravity) to the sprayed water, and is adjacent to the sprayed water. Due to the configuration in which an opening is formed between the water collecting parts 71b that discharges the exhaust gas having a local blowing velocity of 4 to 6 m / s, the sprayed water receives the pressure of the exhaust gas and the opening of the water collecting part 71b. By avoiding this, the recovered water is efficiently recovered by the water recovery unit 71b. Cooling water spraying unit 71a and water recovery unit 71b
This is an example in which the distance between and is within the range of 0.2 to 1 m.

【0023】図12は、他の実施例の水回収装置7およ
びガスタービンプラントを示しており、図1の構成にお
いて、排ガス流の方向を散布水の散布方向に対して対向
するような横向きとし、冷却水散布部71aと水回収部
71bとの距離を0.2 〜1mの範囲とする。
FIG. 12 shows a water recovery system 7 and a gas turbine plant according to another embodiment. In the configuration of FIG. 1, the exhaust gas flow is directed laterally so as to oppose the spray water spray direction. The distance between the cooling water sprinkling portion 71a and the water collecting portion 71b is in the range of 0.2 to 1 m.

【0024】[0024]

【発明の効果】本発明によれば、排ガスの偏流を抑制
し、整流して排ガスの熱交換効率を向上させた水回収装
置を提供できる効果を奏する。
According to the present invention, there is an effect that it is possible to provide a water recovery apparatus that suppresses uneven flow of exhaust gas and rectifies it to improve heat exchange efficiency of exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概要図。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】液滴を空気中で自然落下させた場合の終端速度
の試算例。
FIG. 2 is an example of trial calculation of a terminal velocity when a droplet naturally drops in air.

【図3】吹上げ流速2m/s時の液滴到達距離の試算
例。
FIG. 3 is an example of trial calculation of a droplet reaching distance at a blowing velocity of 2 m / s.

【図4】本発明の他の実施例を示す概要図。FIG. 4 is a schematic diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す概要図。FIG. 5 is a schematic diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す概要図。FIG. 6 is a schematic diagram showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す概要図。FIG. 7 is a schematic diagram showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す概要図。FIG. 8 is a schematic diagram showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す概要図。FIG. 9 is a schematic diagram showing another embodiment of the present invention.

【図10】従来の排ガスからの水回収装置の概観斜視
図。
FIG. 10 is a schematic perspective view of a conventional water recovery device from exhaust gas.

【図11】本発明の排ガスからの水回収装置の概観斜視
図。
FIG. 11 is a schematic perspective view of an apparatus for recovering water from exhaust gas according to the present invention.

【図12】本発明の他の実施例を示す概要図。FIG. 12 is a schematic diagram showing another embodiment of the present invention.

【符号の説明】 1…ガスタービン、2…空気圧縮機、3…発電機、4…
燃焼器、5…蒸気発生器、6…熱交換器、7…水回収装
置、8…冷却水冷却器、9…流量制御装置、10…水処
理装置、11…ミスト除去装置、12…回収水タンク、
13,31,32,33…回収室、20…燃料管、21
…空気吸入管、22…空気吐出管、23,30…排気
管、24…高温排気管、25…蒸気供給管、26…補給
水供給管、27,28…排ガス流入管、28b…偏流、
28c…剥離領域、29…排ガス流出管、41…冷却水
管、42,44,46…回収水管、43…戻り水管、5
1,52,53…分岐路、71a,72a,73a…冷
却水散布部、71b,72b,73b…水回収部、80
a,80b,80c,80d…切替バルブ。
[Explanation of Codes] 1 ... Gas turbine, 2 ... Air compressor, 3 ... Generator, 4 ...
Combustor, 5 ... Steam generator, 6 ... Heat exchanger, 7 ... Water recovery device, 8 ... Cooling water cooler, 9 ... Flow control device, 10 ... Water treatment device, 11 ... Mist removal device, 12 ... Recovered water tank,
13, 31, 32, 33 ... Recovery chamber, 20 ... Fuel pipe, 21
... air intake pipe, 22 ... air discharge pipe, 23,30 ... exhaust pipe, 24 ... high temperature exhaust pipe, 25 ... steam supply pipe, 26 ... makeup water supply pipe, 27,28 ... exhaust gas inflow pipe, 28b ... unbalanced flow,
28c ... Separation area, 29 ... Exhaust gas outflow pipe, 41 ... Cooling water pipe, 42, 44, 46 ... Recovery water pipe, 43 ... Return water pipe, 5
1, 52, 53 ... Branch path, 71a, 72a, 73a ... Cooling water sprinkling section, 71b, 72b, 73b ... Water collecting section, 80
a, 80b, 80c, 80d ... Switching valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沼田 祥平 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shohei Numata             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】熱源から放出された排ガスが流入する回収
室と、該回収室を複数層に分割し、各層ごとに水を散布
する複数の散布部と、該散布部に対応して散布水及び凝
縮水を回収する複数の回収部とを備え、各層の前記散布
部を、散布水と前記各層の排ガス流とが直接熱交換する
ように配置し、前記回収部から回収された水の一部又は
全部が散布水として前記散布部の一部又は全部に戻る流
路を形成するとともに、排ガス流入側に位置する回収部
から回収される水がこの装置の外部へ取り出される流路
も形成することを特徴とする排ガスからの水回収装置。
1. A recovery chamber into which exhaust gas emitted from a heat source flows, a plurality of spraying units that divide the recovery chamber into a plurality of layers and spray water in each layer, and spray water corresponding to the spraying units. And a plurality of recovery parts for recovering condensed water, and the spraying part of each layer is arranged so that the sprayed water and the exhaust gas flow of each layer directly exchange heat, and one of the water recovered from the recovery part is disposed. A part or all of the sprayed water forms a flow path that returns to a part or all of the sprayed part, and also a flow path through which water recovered from the recovery part located on the exhaust gas inflow side is taken out of the device. A device for recovering water from exhaust gas, which is characterized in that
【請求項2】熱源から放出された排ガスが流入する回収
室と、該回収室は排ガス流方向に複数段に分け、各段ご
とに複数の散布部と複数の回収部とを対向するように設
け、かつ前記散布部は夫々排ガス流と散布水とが直接熱
交換するように配置するとともに、前記回収部は夫々散
布水と凝縮水とが回収される位置に配置し、後段の回収
部の回収された水の一部乃至全部を前段の散布水に流用
するようにするとともに、排ガス流入側に位置する回収
部から回収される水がこの装置の外部へ取り出される流
路も形成することを特徴とする排ガスからの水回収装
置。
2. A recovery chamber into which exhaust gas discharged from a heat source flows, and the recovery chamber is divided into a plurality of stages in the exhaust gas flow direction, and a plurality of spraying sections and a plurality of recovery sections are opposed to each other. The spraying section is provided so that the exhaust gas flow and the sprayed water directly exchange heat with each other, and the collecting section is arranged at a position where the sprayed water and the condensed water are collected respectively. A part or all of the collected water should be diverted to the sprayed water in the previous stage, and a flow path through which the water collected from the collecting part located on the exhaust gas inflow side is taken out of the device should be formed. Characteristic water recovery device from exhaust gas.
【請求項3】熱源から放出された排ガスが流入する複数
の回収室と、各回収室ごとに複数の散布部と複数の回収
部とを備え、かつ前記散布部は夫々排ガス流と散布水と
が直接熱交換するように配置するとともに、前記回収部
は夫々散布水と凝縮水とが回収される位置に配置し、前
記各回収室の後側から回収された水の一部乃至全部を前
段の散布水に流用するようにするとともに、排ガス流入
側の回収部から回収される水がこの装置の外部へ取り出
される流路も形成することを特徴とする排ガスからの水
回収装置。
3. A plurality of recovery chambers into which exhaust gas discharged from a heat source flows, a plurality of spraying units and a plurality of recovery units for each recovery chamber, and the spraying units respectively provide an exhaust gas flow and spray water. Are arranged so as to directly exchange heat with each other, and the collecting section is arranged at a position where sprayed water and condensed water are respectively collected, and a part or all of the water collected from the rear side of each collecting chamber The water recovery device from exhaust gas, wherein the water recovery device from the exhaust gas also forms a flow path through which water recovered from the recovery part on the exhaust gas inflow side is extracted to the outside of the device.
【請求項4】熱源から放出された排ガスが流入する回収
室と、該回収室は積層配置され、各回収室ごとに水を散
布する複数の散布部とこれに対応して散布水及び凝縮水
を回収する複数の回収部とを備え、各層の前記散布部
を、散布水と排ガスとが直接熱交換するように配置し、
前記各回収部は隣接する各層の同列位置同士を連通さ
せ、かつ前記回収部から回収された水が散布水として前
記散布部に戻る流路を形成するとともに、前記各層の最
上流側に位置する回収部から回収される水がこの装置の
外部へ取り出される流路も形成することを特徴とする排
ガスからの水回収装置。
4. A collection chamber into which exhaust gas emitted from a heat source flows, a plurality of collection chambers in which the collection chambers are stacked, and a plurality of spraying units for spraying water in each recovery chamber, and correspondingly sprayed water and condensed water. And a plurality of recovery parts for recovering, the spraying part of each layer is arranged so that the sprayed water and the exhaust gas directly exchange heat,
Each of the collecting sections forms a flow path in which the same row positions of adjacent layers communicate with each other, and water collected from the collecting section returns to the spraying section as sprayed water, and is located on the most upstream side of each layer. An apparatus for recovering water from exhaust gas, characterized in that it also forms a flow path through which water recovered from the recovery section is taken out of the apparatus.
【請求項5】請求項4において、排ガスの流れを冷却水
の各散布部の散布方向と対向する向きとすることを特徴
とする排ガスからの水回収装置。
5. The apparatus for recovering water from exhaust gas according to claim 4, wherein the flow of the exhaust gas is in a direction opposite to the spraying direction of each spraying section of the cooling water.
【請求項6】請求項4において、排ガスの流れ方向を冷
却水の各散布部の散布方向とすることを特徴とする排ガ
スからの水回収装置。
6. The apparatus for recovering water from exhaust gas according to claim 4, wherein the flow direction of the exhaust gas is the spray direction of each spray section of the cooling water.
【請求項7】請求項1において、冷却水散布部と水回収
部との距離を0.2〜1m としたことを特徴とする排ガ
スからの水回収装置。
7. The apparatus for recovering water from exhaust gas according to claim 1, wherein the distance between the cooling water spraying section and the water collecting section is 0.2 to 1 m.
【請求項8】請求項1において、排ガスの流れ方向を重
力方向と反対方向とし、冷却水散布部の散布方向を排ガ
スの流れと交叉する方向とすることを特徴とする排ガス
からの水回収装置。
8. A water recovery system from exhaust gas according to claim 1, wherein the flow direction of the exhaust gas is opposite to the gravity direction and the spraying direction of the cooling water spraying portion is a direction intersecting with the flow of the exhaust gas. .
【請求項9】請求項8において、各層内で、冷却水散布
部と散布部の回収部を交互に配置し、隣接する散布部の
散布方向を逆向きとすることを特徴とする排ガスからの
水回収装置。
9. The exhaust gas from the exhaust gas according to claim 8, wherein cooling water sprinkling parts and collecting parts of the sprinkling parts are alternately arranged in each layer, and the sprinkling directions of the adjacent spraying parts are opposite to each other. Water recovery device.
【請求項10】請求項5において、排ガスを、隣接する
回収部との開口部より流速4〜6m/秒の流速で、各散
布部の散布方向と対向して流すことを特徴とする排ガス
からの水回収装置。
10. The exhaust gas according to claim 5, wherein the exhaust gas is caused to flow at a flow velocity of 4 to 6 m / sec from an opening of an adjoining recovery part, facing the spraying direction of each spraying part. Water recovery device.
【請求項11】空気圧縮機と、該空気圧縮機の圧縮空気
を燃料と蒸気とともに燃焼する燃焼器と、該燃焼器の燃
焼ガスで駆動するガスタービンと、該ガスタービンから
放出された排ガスが流入する回収室と、該回収室を複数
層に分割し、各層ごとに水を散布する複数の散布部と、
該散布部に対応して散布水及び凝縮水を回収する複数の
回収部とを備え、各層の前記散布部を、散布水と前記各
層の排ガス流とが直接熱交換するように配置し、前記回
収部から回収された水の一部又は全部が散布水として前
記散布部の一部又は全部に戻る流路を形成するととも
に、排ガス流入側に位置する回収部から回収される水が
この装置の外部へ取り出される流路も形成することを特
徴とする排ガスからの水回収装置を有するガスタービン
プラント。
11. An air compressor, a combustor for combusting compressed air of the air compressor together with fuel and steam, a gas turbine driven by combustion gas of the combustor, and exhaust gas discharged from the gas turbine. An inflowing recovery chamber, and a plurality of spraying sections that divide the recovery chamber into a plurality of layers and spray water in each layer,
A plurality of collecting units for collecting sprayed water and condensed water corresponding to the spraying unit, and the spraying unit of each layer is arranged so that the sprayed water and the exhaust gas flow of each layer directly exchange heat; A part or all of the water recovered from the recovery part forms a flow path that returns to part or all of the spray part as sprayed water, and the water recovered from the recovery part located on the exhaust gas inflow side is A gas turbine plant having a water recovery device from exhaust gas, characterized in that it also forms a flow path taken out to the outside.
JP2001211528A 2001-07-12 2001-07-12 Device for collecting water from exhaust gas Withdrawn JP2003027959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211528A JP2003027959A (en) 2001-07-12 2001-07-12 Device for collecting water from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211528A JP2003027959A (en) 2001-07-12 2001-07-12 Device for collecting water from exhaust gas

Publications (1)

Publication Number Publication Date
JP2003027959A true JP2003027959A (en) 2003-01-29

Family

ID=19046827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211528A Withdrawn JP2003027959A (en) 2001-07-12 2001-07-12 Device for collecting water from exhaust gas

Country Status (1)

Country Link
JP (1) JP2003027959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025416A (en) * 2013-07-26 2015-02-05 三菱日立パワーシステムズ株式会社 Water recovery device of gas turbine utilizing air of high moisture content
JP2016014516A (en) * 2014-07-03 2016-01-28 株式会社流機エンジニアリング Exhaust gas cooling device and exhaust gas cooling method
JP2018031278A (en) * 2016-08-24 2018-03-01 株式会社東芝 Water collecting device for caloric power generating plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025416A (en) * 2013-07-26 2015-02-05 三菱日立パワーシステムズ株式会社 Water recovery device of gas turbine utilizing air of high moisture content
JP2016014516A (en) * 2014-07-03 2016-01-28 株式会社流機エンジニアリング Exhaust gas cooling device and exhaust gas cooling method
JP2018031278A (en) * 2016-08-24 2018-03-01 株式会社東芝 Water collecting device for caloric power generating plant

Similar Documents

Publication Publication Date Title
CN108700309B (en) System, method and filter for ventilation
US20210207500A1 (en) Exhaust-gas treatment device, aircraft propulsion system, and method for treating an exhaust-gas stream
US7100359B2 (en) Gas turbine installation
JP3051440B2 (en) Steam pump using countercurrent exchange between air and combustion products without intermediate fluid
JP6713261B2 (en) Media pad with integrated mist removal feature
EP1621741A1 (en) Gas turbine system
KR101153646B1 (en) Evaporation Water Recovery Type Cooling Tower
JP2013234667A (en) Combustion engine
US20070012187A1 (en) System for removing water from flue gas
KR101383616B1 (en) Plume abatement and evaporated water recovery apparatus for a cooling tower using combined heat exchanger-condensor and method thereof
CN205482430U (en) Top end double entry mechanical draft cooling tower
KR101672876B1 (en) Cooling tower for plume abatment by using condenser
CN104857820A (en) Method for eliminating white smoke of condensed flue gas and condenser for same
JP2001214757A (en) Gas turbine facility
JP2003027959A (en) Device for collecting water from exhaust gas
CN104279884B (en) A kind of direct air cooled condenser cooling system
KR200400817Y1 (en) Steam Recovery Device
JP2002322916A (en) Cooling apparatus of gas turbine suction air
JPH0545842B2 (en)
RU2294498C1 (en) Method of operation of chimney-type and mechanical-draft cooling tower
CN216062585U (en) Counter-flow wet dust-removing tower
EP3073096B1 (en) Advanced humid air turbine system and exhaust gas treatment system
JP4011546B2 (en) Equipment for collecting water from exhaust gas
RU2619970C2 (en) Hybrid condenser
KR100666685B1 (en) Steam recovery device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070514