JP2003027508A - Position measuring device of immersed tube - Google Patents

Position measuring device of immersed tube

Info

Publication number
JP2003027508A
JP2003027508A JP2001212472A JP2001212472A JP2003027508A JP 2003027508 A JP2003027508 A JP 2003027508A JP 2001212472 A JP2001212472 A JP 2001212472A JP 2001212472 A JP2001212472 A JP 2001212472A JP 2003027508 A JP2003027508 A JP 2003027508A
Authority
JP
Japan
Prior art keywords
box
sensor
buried
buried box
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001212472A
Other languages
Japanese (ja)
Inventor
Masatoshi Kimura
木村政俊
Itsuo Hirano
平野逸雄
Kenichi Kaneko
金子研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2001212472A priority Critical patent/JP2003027508A/en
Publication of JP2003027508A publication Critical patent/JP2003027508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position measuring device of an immersed tube caisson capable of eliminating installation error of a pedestal for mounting a sensor and improving immersed precision of the immersed tube. SOLUTION: A storage case 4 is provided in the axial direction of the immersed tube by passing through a bulkhead 3 of the immersed tube 1. A watertight coupler 5 is attached to the storage case to slidably support a sensor support shaft 6 on the watertight coupler. The sensor 2 is attached to a tip of the sensor support shaft and is pushed out in the direction of the opposing immersed tube from the inside of the tube to protrude to the outside of the tube by the sensor support shaft.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、沈埋函の位置計測
装置に関するもので、特に既設沈埋函の接合端部に、新
設沈埋函の接合端部を正確に合わせるために、これらの
位置関係を常時計測する沈埋函の位置計測装置に関する
ものである。 【0002】 【従来の技術】運河、海峡など、水路下にトンネルを構
築する方法として、沈埋トンネル工法がある。沈埋トン
ネル工法において、既に沈設した沈埋函の接合端面に、
新たに沈設する沈埋函の接合端面を正確に合わせながら
降下することが沈設時の重要なポイントになる。しか
し、沈埋函は目視で確認しながら誘導することができな
いために、既設沈埋函と新設沈埋函との相対位置関係を
常時把握する設備が必要である。この際、ゴムガスケッ
トなどに損傷を与えずに沈埋函を誘導することが最優先
されるため、沈埋函相互の接合端部の間隔を10メート
ル以下に接近させてからの位置関係の把握は特に重要と
なる。従来は、沈埋函の外側(端部鋼殻上)に位置計測
センサー(超音波発信・受信装置)を設置して沈埋函相
互の位置関係を計測していた。正確な位置関係を計測す
るには、10個程度の位置計測センサーを設置する必要
があり、位置計測センサーを固定する架台を必要とし、
ダイバーがこれら架台を取り付けている。図3に示すよ
うに既設沈埋函a1にセンサー(超音波発信器)b1を
固定し、新設沈埋函a2にセンサー(超音波受信器)b
2を固定する。各々のセンサーb1、b2と沈埋函セン
ターc1、c2との相対位置関係をオフセットし、各セ
ンサーb1、b2の測定値から沈埋函a1、a2のセン
ターc1、c2間の位置関係を水中三次元位置計測装置
dで演算し、センターc1、c2を合わせることで新設
沈埋函a2の沈設を行っていた。なお、吊下げワイヤe
を繰り出しながら新設沈埋函a2を降下する。 【0003】 【発明が解決しようとする課題】しかしながら、前記し
た従来の沈埋函相互の位置関係の計測方法には、次のよ
うな問題点がある。 <イ>センサー取付用架台の設置誤差が沈埋函の沈設誤
差に大きく影響する。 <ロ>また、ダイバーとクレーン船によりセンサー取付
用架台を設置するため、資機材が大掛かりであり、多く
の潜水作業を要する。 <ハ>大深度、急潮流になるほど危険作業が多くなると
ともに作業時間を費やすばかりでなく、設置誤差が大き
くなりやすい。 【0004】 【発明の目的】本発明は上記したような従来の問題点に
鑑みて考えられたもので、センサー取付用架台の設置誤
差を無くし、沈埋函の沈設精度の向上をはかるようにし
た沈埋函の位置計測装置を提供することを目的とする。
また本発明は、潜水作業をなくし、大深度に沈設する場
合でも安全性が確保できる沈埋函の位置計測装置を提供
することを目的とする。本発明は、上記目的のうち少な
くとも一つを達成するようにしたものである。 【0005】 【課題を解決するための手段】上記のような目的を達成
するために、本発明に係る沈埋函の位置計測装置は、既
設沈埋函と新設沈埋函との相対位置関係を計測する沈埋
函の位置計測装置であって、前記沈埋函のバルクヘッド
を貫通して沈埋函の軸方向に設置した収容ケースと、前
記収容ケースの沈埋函内部に位置する側の端部に取り付
けた水密カプラと、前記水密カプラに軸支され、前記収
容ケース内を移動可能に構成されたセンサー支持シャフ
トと、前記センサー支持シャフト先端に取り付けたセン
サーと、からなり、前記センサー支持シャフトによって
前記センサーを沈埋函内部から対向する沈埋函方向へ押
し出し、沈埋函外部に突出するように構成したことを特
徴とするものである。 【0006】また本発明に係る沈埋函の位置計測装置
は、センサー装置を沈埋函の内部に設けてあるから、沈
埋函の製作時にセンサー装置を正確な位置に設置するこ
とができる。 【0007】 【発明の実施の形態】以下図面を参照しながら、本発明
に係る実施の形態について説明する。 【0008】<イ>全体の構成 既設沈埋函(既に水底の所定の場所に沈設された沈埋
函)1aの内部にセンサー(超音波発信器)2aを設置
しておく。新設沈埋函(既設沈埋函1aに接合するため
に新たに沈設する沈埋函)1bの内部にもセンサー(超
音波受信器)2bを設置する。計測時には、各センサー
2a、2bをそれぞれ対向する沈埋函方向へ突出するよ
うに沈埋函1の内部から外部前面へ押し出す。センサー
2aから発信する超音波パルス信号をセンサー2bが受
信して新設沈埋函1bの函体センター8bを既設沈埋函
1aの函体センター8aに合わせながら降下し、新設沈
埋函1bの沈設を行うものである。 【0009】<ロ>沈埋函 沈埋函1は、RC(鉄筋コンクリート)構造、鋼殻構造
など各種の構造を採用することができる。沈埋函1は、
例えばドライドックなどで製作し、沈埋函1の接合端部
をバルクヘッド3で閉鎖する。既設沈埋函1aとの接合
部の止水性を確保するために、図示していないが、従来
と同様に沈埋函1端面周縁部に加硫ゴムなどの弾性材料
で形成したゴムガスケットを取り付ける。バルクヘッド
3を貫通して沈埋函1の軸方向に収容ケース4を設置す
る(図2参照)。この収容ケース4には、後述するセン
サー2を収容する。 【0010】<ハ>収容ケース バルクヘッド3を貫通して設置されている収容ケース4
は、両端を開放した筒状に形成し、バルクヘッド3を境
に沈埋函1内部に内側バルブ4aを設け、沈埋函1外部
に外側バルブ4bを設ける。収容ケース4の沈埋函1内
部側の開放端に水密性を維持した水密カプラ5を取り付
ける。水密カプラ5にセンサー支持シャフト6を摺動自
在に軸支し、このセンサー支持シャフト6の先端付近に
円盤7を取り付ける。円盤7が収容ケース4の内周面に
沿って摺接しながら移動できるように、円盤7の外径を
収容ケース4の内径とほぼ一致して形成し、円盤7がセ
ンサー支持シャフト6先端部を軸支する構成となってい
る。センサー支持シャフト6の先端にセンサー2を取り
付け、センサー支持シャフト6の後方を水密カプラ5か
ら延長し、その後端を図示していないが、シリンダ装置
などの駆動手段に接続している。したがって、シリンダ
装置などを駆動してセンサー支持シャフト6を移動する
ことによって、センサー2は収容ケース4内を移動し、
沈埋函1内部から外部前面へ突出する。即ち、沈埋函1
内部に設置したセンサー2を押し出しながら沈埋函1の
前面に突出するようにした構成である。センサー支持シ
ャフト6の先端付近が円盤7によって軸支されているの
で、センサー支持シャフト6が撓むことがなく、センサ
ー2が沈埋函1外部前面へ突出した場合でも、センサー
2はセンサー支持シャフト6の中心軸から偏倚すること
がない。センサー2の移動時は内側バルブ4a及び外側
バルブ4bを開放する。 【0011】沈設準備状態では、円盤7とともにセンサ
ー2が収容ケース4内に収容されている(図2(a)参
照)。沈設作業中(位置計測時)は、内側バルブ4a及
び外側バルブ4bを開放し、センサー支持シャフト6を
移動して、円盤7とともにセンサー2を収容ケース開放
端4cまで前進させて沈埋函1外部前面へ突出させる
(図2(b)参照)。 【0012】<ニ>センサー 上記のごとくセンサー2を収容ケース4内に収容してい
るので、沈埋函1の製作時にセンサー2を沈埋函1内部
の所定の場所に設置しておくことができる。センサー2
は、例えば超音波センサーなどである。既設沈埋函1a
の収容ケース4内に超音波発信器2aを取り付け、新設
沈埋函1bの収容ケース4内に超音波受信器2bを取り
付け、超音波発信器2aから新設沈埋函1bに向けて超
音波パルスを発信し、発信された超音波パルスを超音波
受信器2bで受信する。超音波発信器2aは、既設沈埋
函1aの内部に配線された送波信号ケーブル13へ接続
し、この送波信号ケーブル13は立坑12内部を通って
立坑12上部に突出しており、後述する送波信号送信用
アンテナ11からの電波送信を受信するようになってい
る。超音波受信器2bは、新設沈埋函1bの内部に配線
された受波データケーブル14に接続し、この受波デー
タケーブル14は水中を通って沈設作業船10のコント
ロール室などに接続している。 【0013】<ホ>沈設作業船 沈設作業船10上に送波信号送信用アンテナ11を取り
付ける。受波データケーブル14からのデータをコント
ロール室の三次元計測処理装置(図示せず)で演算処理
し、これを送波信号送信用アンテナ11によって送波信
号ケーブル13へ電波送信する。2隻の沈設作業船1
0,10の甲板上には、吊ワイヤ15を巻回した吊下用
ウインチ(図示せず)を搭載し、4本の吊ワイヤ15を
沈埋函1bに接続して沈埋函1bを垂下する。吊下用ウ
インチによる吊ワイヤ15の巻き取り及び繰り出し操作
によって、沈埋函1bの沈設位置を修正しながら降下す
る。従来同様に各沈設作業船10の甲板上には、沈埋函
1bをその長手方向(トンネル軸方向)に移動するため
の軸方向操作用ウインチ(図示せず)と、横方向操作用
ウインチ(図示せず)をそれぞれ搭載する。図示してい
ないが、各操作用ウインチに巻回された操作用ワイヤ
は、沈埋函1b上面のシーブ群や水底に設けた固定アン
カーなどに索取りして巻掛ける。 【0014】次に本発明の沈埋函の位置計測装置を使用
して、既設沈埋函と新設沈埋函との相対位置関係を計測
する場合について説明する。 【0015】<イ>沈埋函の曳航 ドライドックなどで製作した沈埋函1b(収容ケース4
内にセンサー2bを収容し、内側バルブ4aと外側バル
ブ4bを閉塞しておく)を既設沈埋函1aが設置されて
いる沈設現場まで、2隻の沈設作業船10,10と共に
タグボートによって曳航する。なお、沈埋トンネルは、
沈埋函1を次々と接合して構築するので、沈埋函1bの
両端のバルクヘッド3、3にそれぞれ収容ケース4、4
を設置し、既設沈埋函1aと対向する側にセンサー2b
を取り付け、反対側にセンサー2aを取り付けておく。
沈設現場に到着したら、従来と同様に吊下用ウインチの
吊ワイヤ15を沈埋函1bに接続し、各操作用ウインチ
の操作用ワイヤを沈埋函1b上面のシーブ群や水底に設
けた固定アンカーなどに索取りして巻掛ける。 【0016】<ロ>沈埋函の降下 沈埋函1bに注水し、吊下用ウインチの吊ワイヤ15を
繰り出しながら沈埋函1bを降下する。 【0017】<ハ>沈設作業(位置計測) 既設沈埋函1aと新設沈埋函1bとの相対位置関係を計
測しなければならない沈設作業中(位置計測時)は、既
設沈埋函1aと新設沈埋函1bそれぞれの内側バルブ4
a及び外側バルブ4bを開放し、それぞれのセンサー支
持シャフト6を移動してセンサー2を収容ケース開放端
4cまで前進させて沈埋函1外部前面へ突出する(図2
(b)参照)。即ち、超音波発信器2aを既設沈埋函1
aの収容ケース開放端4cに突出させ、超音波受信器2
bを新設沈埋函1bの収容ケース開放端4cに突出させ
て、超音波発信器2aからの超音波パルスを超音波受信
器2bで受信できるようにする。従来と同様に超音波発
信器2a、超音波受信器2bと函体センター8a、8b
との相対位置関係をオフセットする。送波信号送信用ア
ンテナ11によって送波信号ケーブル13へ電波送信さ
れた送波信号により、超音波発信器2aから新設沈埋函
1bに向けて超音波パルスが発信される。この超音波パ
ルスを超音波受信器2bで受信する。受信した超音波パ
ルスを受波データケーブル14を介して三次元計測処理
装置(図示せず)で演算処理する。このように超音波パ
ルスを送受信しながら既設沈埋函1aの函体センター8
aと新設沈埋函1bの函体センター8b間の相対位置関
係を三次元で求め、函体センター8a、8bを合わせる
ことで沈埋函1bの沈設を行う。 【0018】計測結果に基づいて、沈埋函1bが例えば
着底予定位置(函体センター8a、8bが一致する位
置)よりトンネル軸方向にずれている場合は、軸方向操
作用ウインチを操作して沈埋函1bを所定の距離だけト
ンネル軸方向に移動する。また、沈埋函1bが着底予定
位置から横方向にずれている場合には、横方向操作用ウ
インチの運転操作によって正確な位置に修正する。沈埋
函1bを正確な位置に修正し、函体センター8a、8b
を合わせた後、沈埋函1a、1b内部からセンサー支持
シャフト6を引き込んで、センサー2を収容ケース4内
に収容し、内側バルブ4aと外側バルブ4bを閉塞す
る。 【0019】<ニ>沈埋函の接合 上記のごとく函体センター8a、8bを合わせて沈埋函
1bの沈設を行った後に、既設沈埋函1a側から沈埋函
1bを引き込んで、水圧を利用して沈埋函1a、1b相
互の接合を行う。既設沈埋函1aと新設沈埋函1bの各
バルクヘッド3間に残っている水を排除し、それぞれの
バルクヘッド3を撤去して内部から恒久的な継手を施工
する。 【0020】 【本発明の効果】本発明の沈埋函の位置計測装置は、以
上説明したようになるから次のような効果を得ることが
できる。 <イ>センサーを沈埋函内部の収容ケース内に収容し、
計測時にセンサーを沈埋函内部から対向する沈埋函方向
へ押し出し、沈埋函外部に突出するように構成したた
め、潜水作業を無くし、大深度に沈設する場合でも安全
性を確保した沈埋函の位置計測装置を提供することがで
きる。 <ロ>沈埋函の製作時点でセンサーの設置位置を正確に
定めることができるので、センサー取付用架台の設置誤
差を無くし、沈埋函の沈設精度の向上をはかることがで
きる。 <ハ>さらに、センサーを沈埋函の製作時点で沈埋函の
内部に設置することができるので、従来のようにセンサ
ー取付用架台をダイバーとクレーン船により設置する必
要がなく、これまで必要とした大掛かりな資機材を不要
とし、作業時間も必要としない。特に大深度、急潮流に
なるほど危険作業が多くなるとともに作業時間を費やす
が、これらの問題をすべて解消することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the position of a buried box. The present invention relates to an apparatus for measuring the position of a buried box, which constantly measures these positional relationships in order to adjust the position. 2. Description of the Related Art As a method of constructing a tunnel under a waterway such as a canal or a strait, there is a submerged tunnel construction method. In the submerged tunnel method, on the joint end face of the submerged
It is an important point at the time of subsidence to descend while accurately aligning the joint end faces of the newly submerged submerged box. However, since the immersion box cannot be guided visually, it is necessary to have equipment that constantly grasps the relative positional relationship between the existing immersion box and the new immersion box. At this time, since the top priority is to guide the buried box without damaging the rubber gasket, etc., it is particularly important to grasp the positional relationship after bringing the distance between the joint ends of the buried boxes closer to 10 meters or less. It becomes important. Conventionally, a position measuring sensor (ultrasonic transmission / reception device) was installed outside the immersion box (on the end steel shell) to measure the positional relationship between the immersion boxes. In order to measure the accurate positional relationship, it is necessary to install about 10 position measurement sensors, and a mount for fixing the position measurement sensors is required,
Divers attach these stands. As shown in FIG. 3, a sensor (ultrasonic transmitter) b1 is fixed to an existing immersion box a1, and a sensor (ultrasonic receiver) b is attached to a newly immersed box a2.
Fix 2 The relative positional relationship between each sensor b1, b2 and the buried center c1, c2 is offset, and the positional relationship between the centers c1, c2 of the buried a1, a2 is determined from the measured values of the sensors b1, b2. The calculation was performed by the measuring device d, and the center c1 and c2 were put together to settle the newly installed submerged box a2. The suspension wire e
And descend the newly buried box a2. [0003] However, the conventional method for measuring the positional relationship between the submerged boxes has the following problems. <B> The installation error of the sensor mounting base greatly affects the installation error of the buried box. <B> In addition, since a diver and a crane ship will be used to install the sensor mounting base, the equipment and equipment will be large, and many diving operations will be required. <C> The greater the depth and the rapid current, the more dangerous work is performed, and not only the work time is spent, but also the installation error tends to increase. SUMMARY OF THE INVENTION [0004] The present invention has been made in view of the above-mentioned conventional problems, and has been made to eliminate the installation error of the sensor mounting base and to improve the accuracy of submerging the submerged box. An object of the present invention is to provide a position measuring device for a buried box.
Another object of the present invention is to provide an apparatus for measuring the position of an immersed box that eliminates diving work and ensures safety even when immersed at a large depth. The present invention achieves at least one of the above objects. [0005] In order to achieve the above object, a position measuring apparatus for a buried box according to the present invention measures a relative positional relationship between an existing buried box and a newly buried box. A position measuring device for a buried box, comprising: a storage case penetrating through a bulk head of the buried box and installed in an axial direction of the buried box; and a watertightness attached to an end of the storage case on a side located inside the buried box. A sensor support shaft pivotally supported by the watertight coupler and configured to be movable in the housing case; and a sensor attached to a tip of the sensor support shaft, wherein the sensor is buried by the sensor support shaft. It is characterized in that it is configured to be pushed out from the inside of the box in the opposite direction of the buried box and to protrude outside the buried box. Further, in the apparatus for measuring the position of a buried box according to the present invention, since the sensor device is provided inside the buried box, the sensor device can be installed at an accurate position when the buried box is manufactured. An embodiment according to the present invention will be described below with reference to the drawings. <A> Entire Configuration A sensor (ultrasonic transmitter) 2a is installed inside an existing submerged box (submerged box already submerged at a predetermined location on the water floor) 1a. A sensor (ultrasonic receiver) 2b is also installed inside a new buried box (a buried box newly laid to be joined to the existing buried box 1a) 1b. At the time of measurement, the sensors 2a and 2b are pushed out from the inside of the immersion box 1 to the outside front surface so as to protrude in the opposite immersion box direction. The sensor 2b receives the ultrasonic pulse signal transmitted from the sensor 2a, and descends while aligning the box center 8b of the newly buried box 1b with the box center 8a of the existing buried box 1a, and laying down the newly buried box 1b. It is. <B> Sinking Box Sinking box 1 can adopt various structures such as RC (reinforced concrete) structure and steel shell structure. Submerged box 1
For example, it is manufactured by a dry dock or the like, and the joint end of the immersion box 1 is closed by the bulkhead 3. Although not shown, a rubber gasket made of an elastic material such as vulcanized rubber is attached to the periphery of the end surface of the immersion box 1 in the same manner as in the prior art, in order to ensure the waterproofness of the joint with the existing immersion box 1a. The storage case 4 is set in the axial direction of the immersion box 1 through the bulkhead 3 (see FIG. 2). The accommodation case 4 accommodates a sensor 2 described later. <C> Storage case 4 installed through storage case bulkhead 3
Is formed in a cylindrical shape with both ends open, and an inner valve 4a is provided inside the immersion box 1 with the bulkhead 3 as a boundary, and an outer valve 4b is provided outside the immersion box 1. A watertight coupler 5 that maintains watertightness is attached to the open end inside the immersion box 1 of the storage case 4. A sensor support shaft 6 is slidably supported on the watertight coupler 5, and a disk 7 is attached near the tip of the sensor support shaft 6. The outer diameter of the disk 7 is formed substantially coincident with the inner diameter of the storage case 4 so that the disk 7 can move while sliding along the inner peripheral surface of the storage case 4. It is configured to be pivotally supported. The sensor 2 is attached to the tip of the sensor support shaft 6, the rear of the sensor support shaft 6 is extended from the watertight coupler 5, and the rear end is connected to driving means such as a cylinder device (not shown). Therefore, by driving the cylinder device or the like to move the sensor support shaft 6, the sensor 2 moves in the housing case 4,
Project from the inside of the immersion box 1 to the outside front. That is, buried box 1
This is a configuration in which the sensor 2 installed inside is protruded to the front of the immersion box 1 while being pushed out. Since the vicinity of the tip of the sensor support shaft 6 is pivotally supported by the disk 7, the sensor support shaft 6 does not bend, and even if the sensor 2 projects to the outside front surface of the submerged box 1, the sensor 2 is still supported by the sensor support shaft 6. Does not deviate from the central axis of When the sensor 2 moves, the inner valve 4a and the outer valve 4b are opened. In a preparation state for submerging, the sensor 2 is housed in the housing case 4 together with the disk 7 (see FIG. 2A). During the submerging operation (at the time of position measurement), the inner valve 4a and the outer valve 4b are opened, the sensor support shaft 6 is moved, and the sensor 2 is moved forward together with the disk 7 to the housing case open end 4c, and the outer front surface of the submerged box 1 (See FIG. 2B). <D> Sensor Since the sensor 2 is housed in the housing case 4 as described above, the sensor 2 can be installed at a predetermined place inside the immersion box 1 when the immersion box 1 is manufactured. Sensor 2
Is, for example, an ultrasonic sensor. Existing buried box 1a
The ultrasonic transmitter 2a is mounted in the housing case 4 of the above, the ultrasonic receiver 2b is mounted in the housing case 4 of the newly buried box 1b, and the ultrasonic pulse is transmitted from the ultrasonic transmitter 2a to the newly buried box 1b. Then, the transmitted ultrasonic pulse is received by the ultrasonic receiver 2b. The ultrasonic transmitter 2a is connected to a transmission signal cable 13 wired inside the existing immersion box 1a. The transmission signal cable 13 protrudes above the shaft 12 through the inside of the shaft 12, and is connected to a transmission The radio wave transmission from the wave signal transmitting antenna 11 is received. The ultrasonic receiver 2b is connected to a receiving data cable 14 wired inside the newly installed submersible box 1b, and the receiving data cable 14 is connected to a control room or the like of the submerged work boat 10 through the water. . <E> Sinking Work Vessel A transmission signal transmitting antenna 11 is mounted on a sunk work boat 10. Data from the reception data cable 14 is subjected to arithmetic processing by a three-dimensional measurement processing device (not shown) in the control room, and this is transmitted to the transmission signal cable 13 by the transmission signal transmission antenna 11 by radio waves. Two submersible workboats 1
On the decks 0 and 10, a suspension winch (not shown) around which the suspension wire 15 is wound is mounted, and the four suspension wires 15 are connected to the immersion box 1b to hang down the immersion box 1b. The winding and unwinding operation of the hanging wire 15 by the hanging winch lowers the sinking box 1b while correcting the sinking position of the sinking box 1b. As before, on the deck of each submerged work boat 10, an axial operation winch (not shown) for moving the buried box 1b in the longitudinal direction (tunnel axial direction) and a lateral operation winch (FIG. (Not shown). Although not shown, the operation wire wound around each operation winch is laid out and wound around a group of sheaves on the upper surface of the immersion box 1b or fixed anchors provided on the water bottom. Next, a description will be given of a case where the relative position relationship between the existing buried box and the newly buried box is measured using the buried box position measuring apparatus of the present invention. <A> Submerged Box 1b (Container Case 4)
The inner valve 4a and the outer valve 4b are closed, and the inner valve 4a and the outer valve 4b are closed), and the tug boat is towed together with the two submerging work boats 10 and 10 to the submerging site where the existing submerged box 1a is installed. The sinking tunnel is
Since the buried boxes 1 are successively joined and constructed, the bulkheads 3 and 3 at both ends of the buried box 1b are accommodated in the storage cases 4, 4 respectively.
Is installed, and the sensor 2b is installed on the side facing the existing
And the sensor 2a is attached to the other side.
Upon arrival at the submersion site, the suspending wires 15 of the suspending winch are connected to the submerged box 1b, and the operating wires of each operating winch are connected to the sheave group on the upper surface of the submerged box 1b or fixed anchors provided on the water bottom as in the past. And wrap it around. <B> Dropping of the immersion box The water is poured into the immersion box 1b, and the hanging wire 1b of the hanging winch is pulled out while descending the immersion box 1b. <C> Submerging work (position measurement) During the submerging work in which the relative positional relationship between the existing submerged box 1a and the new submerged box 1b must be measured (at the time of position measurement), the existing submerged box 1a and the new submerged box are used. 1b each inner valve 4
a and the outer valve 4b are opened, and the respective sensor support shafts 6 are moved to advance the sensor 2 to the housing case open end 4c and protrude to the outside front surface of the immersion case 1 (FIG. 2).
(B)). That is, the ultrasonic transmitter 2a is connected to the existing
a of the receiving case open end 4c and the ultrasonic receiver 2
b is protruded from the open end 4c of the housing case of the newly buried box 1b so that the ultrasonic pulse from the ultrasonic transmitter 2a can be received by the ultrasonic receiver 2b. As before, the ultrasonic transmitter 2a, the ultrasonic receiver 2b and the box centers 8a, 8b
Offset the relative positional relationship with. An ultrasonic pulse is transmitted from the ultrasonic transmitter 2a to the newly buried box 1b by a transmission signal transmitted to the transmission signal cable 13 by the transmission signal transmission antenna 11. The ultrasonic pulse is received by the ultrasonic receiver 2b. The received ultrasonic pulse is processed by a three-dimensional measurement processing device (not shown) via the reception data cable 14. As described above, while transmitting and receiving the ultrasonic pulse, the box center 8 of the existing immersion box 1a.
The relative positional relationship between a and the center 8b of the newly buried box 1b is determined in three dimensions, and the buried box 1b is laid down by combining the box centers 8a and 8b. Based on the measurement result, when the immersion box 1b is displaced in the axial direction of the tunnel from, for example, the expected landing position (the position where the container centers 8a and 8b coincide), the axial operation winch is operated. The submerged box 1b is moved in the axial direction of the tunnel by a predetermined distance. In addition, when the submerged box 1b is shifted laterally from the expected landing position, the correct position is corrected by operating the winch for lateral operation. Correct the submerged box 1b to the correct position and set the box centers 8a, 8b
After that, the sensor support shaft 6 is pulled in from the inside of the submerged boxes 1a and 1b, the sensor 2 is housed in the housing case 4, and the inner valve 4a and the outer valve 4b are closed. <D> Joining of the buried box As described above, after the buried box 1b is laid down by combining the box centers 8a and 8b, the buried box 1b is pulled in from the existing buried box 1a side, and the water pressure is used. The submerged boxes 1a and 1b are joined together. The water remaining between the bulkheads 3 of the existing immersion box 1a and the new immersion box 1b is eliminated, and the respective bulkheads 3 are removed and permanent joints are constructed from inside. According to the present invention, the following effects can be obtained. <B> The sensor is stored in the storage case inside the buried box,
During measurement, the sensor is pushed out from the inside of the immersion box to the opposite immersion box and protrudes to the outside of the immersion box, eliminating diving work and ensuring the safety of the immersion box position measurement device even when sunk at a large depth Can be provided. <B> Since the installation position of the sensor can be accurately determined at the time of production of the immersion box, the installation error of the mounting frame for the sensor can be eliminated, and the immersion box can be installed with improved accuracy. <C> In addition, since the sensor can be installed inside the buried box at the time of making the buried box, there is no need to install a sensor mounting base with a diver and a crane ship as in the past. Eliminates the need for large-scale equipment and does not require any working time. In particular, the greater the depth and the rapid current, the more dangerous work and the longer the work time, but all these problems can be solved.

【図面の簡単な説明】 【図1】本発明の沈設函の位置計測装置を示す説明図。 【図2】センサーの説明図で、(a)は沈設準備状態で
のセンサーを示す図。(b)は沈設作業中でのセンサー
を示す図。 【図3】従来の位置計測装置を示す説明図。 【符号の説明】 1・・・沈埋函 2・・・センサー 3・・・バルクヘッド 4・・・収容ケース 5・・・水密カプラ 6・・・センサー支持シャフト 7・・・円盤 8・・・函体センター 10・・沈設作業船
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a position measuring device for a sinking box according to the present invention. FIGS. 2A and 2B are explanatory diagrams of a sensor, and FIG. 2A is a diagram showing the sensor in a preparation state for submerging. (B) is a diagram showing the sensor during the laying operation. FIG. 3 is an explanatory view showing a conventional position measuring device. [Description of Signs] 1 ... Sinking box 2 ... Sensor 3 ... Bulk head 4 ... Storage case 5 ... Watertight coupler 6 ... Sensor support shaft 7 ... Disc 8 ... Hakodate Center 10 ・ Sinking work boat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子研一 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 2D055 AA09 BB03 EA03 LA13    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kenichi Kaneko             1-25-1, Nishi Shinjuku, Shinjuku-ku, Tokyo Taisei             Construction Co., Ltd. F term (reference) 2D055 AA09 BB03 EA03 LA13

Claims (1)

【特許請求の範囲】 【請求項1】既設沈埋函と新設沈埋函との相対位置関係
を計測する沈埋函の位置計測装置であって、 前記沈埋函のバルクヘッドを貫通して沈埋函の軸方向に
設置した収容ケースと、 前記収容ケースの沈埋函内部
に位置する側の端部に取り付けた水密カプラと、 前記水密カプラに軸支され、前記収容ケース内を移動可
能に構成されたセンサー支持シャフトと、 前記センサー支持シャフト先端に取り付けたセンサー
と、からなり、 前記センサー支持シャフトによって前記センサーを沈埋
函内部から対向する沈埋函方向へ押し出し、沈埋函外部
に突出するように構成したことを特徴とする、沈埋函の
位置計測装置。
Claims 1. An apparatus for measuring the relative positional relationship between an existing buried box and a new buried box, comprising: a shaft of the buried box penetrating through a bulkhead of the buried box. A storage case installed in a direction, a watertight coupler attached to an end of the storage case located inside the buried box, a sensor support rotatably supported by the watertight coupler and configured to be movable in the storage case. A shaft, and a sensor attached to a tip of the sensor support shaft. The sensor support shaft pushes the sensor from the inside of the sunk box to the opposite sunk box direction, and is configured to protrude to the outside of the sunk box. The position measurement device for the buried box.
JP2001212472A 2001-07-12 2001-07-12 Position measuring device of immersed tube Pending JP2003027508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212472A JP2003027508A (en) 2001-07-12 2001-07-12 Position measuring device of immersed tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212472A JP2003027508A (en) 2001-07-12 2001-07-12 Position measuring device of immersed tube

Publications (1)

Publication Number Publication Date
JP2003027508A true JP2003027508A (en) 2003-01-29

Family

ID=19047627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212472A Pending JP2003027508A (en) 2001-07-12 2001-07-12 Position measuring device of immersed tube

Country Status (1)

Country Link
JP (1) JP2003027508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156637A1 (en) * 2013-03-29 2014-10-02 あおみ建設株式会社 Method for submerging and guiding structures
CN105625484A (en) * 2015-12-31 2016-06-01 中交第一航务工程局有限公司 Deep-water measurement and control system and method for large-size objects
CN107916678A (en) * 2017-11-15 2018-04-17 中交航局第二工程有限公司 Immersed tunnel system and method based on BIM
CN108385727A (en) * 2018-02-05 2018-08-10 山东大学 Immersed tunnelling method builds seabed tunnel Rational Depth computational methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156637A1 (en) * 2013-03-29 2014-10-02 あおみ建設株式会社 Method for submerging and guiding structures
JP2014198931A (en) * 2013-03-29 2014-10-23 あおみ建設株式会社 Construction installation guide method
CN104870718A (en) * 2013-03-29 2015-08-26 Aomi建设株式会社 Method for submerging and guiding structures
KR20150138195A (en) * 2013-03-29 2015-12-09 아오미 켄세츠 가부시키가이샤 Method for submerging and guiding structures
KR102162159B1 (en) 2013-03-29 2020-10-06 아오미 켄세츠 가부시키가이샤 Method for submerging and guiding structures
CN105625484A (en) * 2015-12-31 2016-06-01 中交第一航务工程局有限公司 Deep-water measurement and control system and method for large-size objects
CN107916678A (en) * 2017-11-15 2018-04-17 中交航局第二工程有限公司 Immersed tunnel system and method based on BIM
CN107916678B (en) * 2017-11-15 2021-04-06 中交一航局第二工程有限公司 Immersed tube construction system and method based on BIM
CN108385727A (en) * 2018-02-05 2018-08-10 山东大学 Immersed tunnelling method builds seabed tunnel Rational Depth computational methods

Similar Documents

Publication Publication Date Title
CN108216492B (en) High-precision submerged buoy array system for realizing marine data area monitoring
CN108189969B (en) Deep sea anchor system subsurface buoy system based on satellite communication data real-time transmission
US5507596A (en) Underwater work platform support system
US3760875A (en) Floating structure with rotatable templet for connecting guide lines thereto
RU2201374C2 (en) Device and method for deploying object or cargo on sea bottom
US8282316B2 (en) Method and assembly for installing oilfield equipment at the water bottom
JPS61501017A (en) remote controlled submersible
US3214921A (en) Pipe laying apparatus
RU2419574C1 (en) Towed submarine apparatus
KR20190043523A (en) Apparatus for performing marine underwater surveying
JP2008525251A (en) Apparatus and method for submarine tracking
CN107554694B (en) A kind of unmanned surface vehicle underwater three dimensional terrain detection system
CN106965905B (en) Marine acoustics measures buoyage
JP2003027508A (en) Position measuring device of immersed tube
SU646895A3 (en) Floating platform for conducting underwater work
JPH0149849B2 (en)
RU2404081C1 (en) Method for installation of submerged oceanologic float
US3405558A (en) Oceanographic instrumentation
JP2520659B2 (en) SENSOR-STANDARD BOTTOM SEATING METHOD AND DEVICE
JPS60255595A (en) Method of installing marker buoy, and marker buoy device
JP6047054B2 (en) How to guide the settling of structures
JP2019196624A (en) Underwater work support method and underwater work support system
JP2001201346A (en) Surveying method and surveying device for object suspended in water
RU2714336C1 (en) Underwater positioning system of &#34;dome&#34; type device for liquidation of underwater oil spills
JPH06321181A (en) Non-oscillating type sea depth direction multipoint measuring device