JP2003027259A - Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus - Google Patents

Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus

Info

Publication number
JP2003027259A
JP2003027259A JP2001218929A JP2001218929A JP2003027259A JP 2003027259 A JP2003027259 A JP 2003027259A JP 2001218929 A JP2001218929 A JP 2001218929A JP 2001218929 A JP2001218929 A JP 2001218929A JP 2003027259 A JP2003027259 A JP 2003027259A
Authority
JP
Japan
Prior art keywords
supercritical water
corrosion resistance
coating layer
metallic
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218929A
Other languages
Japanese (ja)
Inventor
Onei B
B.オネイ
Masahiko Arai
将彦 新井
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001218929A priority Critical patent/JP2003027259A/en
Publication of JP2003027259A publication Critical patent/JP2003027259A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance of an apparatus member used in supercritical water environment. SOLUTION: A metallic coating layer consisting of one kind selected from Cr, Al, Si, Ti, Mo, Zr, Ir and Pt, or a combination thereof is formed on the surface of the apparatus member used in supercritical water environment. Alternatively, after that, previous oxidation is performed at 300 to 850 deg.C in an atmosphere under low oxygen partial pressure consisting of a gaseous mixture containing water vapor, pure water, supercritical water or oxygen. Thus, its corrosion resistance is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン系,硫黄
系,リン系あるいは金属系の化合物を含む固体,液体あ
るいは気体の有機物質或いは無機物質を、超臨界水環境
下で処理する装置に係る。本発明は、前記装置部材の耐
食性を高めるための表面改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating a solid, liquid or gaseous organic substance or inorganic substance containing a halogen-based, sulfur-based, phosphorus-based or metal-based compound in a supercritical water environment. . The present invention relates to a surface modification method for increasing the corrosion resistance of the device member.

【0002】[0002]

【従来の技術】現在、超臨界水環境を利用して有機物質
あるいは無機物質を処理する装置部位用材料(以下、装
置部材という)としてNi基合金,純Ti,Ti基合金
あるいは貴金属(白金など)が使われている。また、非
金属性(セラミックス)材料も部材として適用されてい
る。
2. Description of the Related Art At present, Ni-based alloys, pure Ti, Ti-based alloys or precious metals (such as platinum) are used as materials for equipment parts (hereinafter referred to as equipment members) for treating organic substances or inorganic substances by utilizing a supercritical water environment. ) Is used. In addition, non-metallic (ceramics) materials are also applied as members.

【0003】「まてりあ」第39巻第4号(2000)
第320頁ないし第324頁には、超臨界環境における
金属材料の腐食について記載されている。
"Materia" Vol. 39, No. 4 (2000)
Pages 320 to 324 describe corrosion of metallic materials in a supercritical environment.

【0004】[0004]

【発明が解決しようとする課題】超臨界水は、有害かつ
難分解性多種有機物質あるいは無機物質の処理プロセス
環境として注目を集めている。
Supercritical water has been attracting attention as a treatment process environment for harmful and hardly decomposable multi-organic substances or inorganic substances.

【0005】しかし、そういう物質を超臨界水環境下で
処理するときに発生する固体,液体あるいは気体反応生
成物は、処理装置部材に対して厳しい腐食環境である。
高温高圧のこの環境では、多くの金属材料は十分な耐食
性を示さない。非金属性(セラミックス)材料は金属材
料より耐食性に優れているが、機械的性質及び加工性に
制約があるため、装置部位をセラミックス材料で作製す
ることは困難である。
However, the solid, liquid or gas reaction product generated when such a substance is processed in a supercritical water environment is a severe corrosive environment for processing equipment members.
In this environment of high temperature and high pressure, many metallic materials do not show sufficient corrosion resistance. Although non-metallic (ceramics) materials have better corrosion resistance than metallic materials, it is difficult to fabricate device parts with ceramics materials because of limitations in mechanical properties and workability.

【0006】本発明の目的は、表面改質によって超臨界
水利用装置用金属材料の耐食性を向上することにある。
An object of the present invention is to improve the corrosion resistance of metallic materials for supercritical water utilization devices by surface modification.

【0007】[0007]

【課題を解決するための手段】本発明は、腐食性のハロ
ゲン系,硫黄系,リン系あるいは金属系化合物を含む超
臨界水環境に使用する前に、Fe,NiあるいはCo基
金属材料からなる処理装置部材の表面にCr,Al,S
i,Ti,Mo,Zr,IrあるいはPtの1種、ある
いはそれらの組合せ主体の金属性コーティング層を形成
し、耐食性を高めることを特徴とする。
The present invention comprises a Fe, Ni or Co based metallic material prior to use in a supercritical water environment containing corrosive halogen-based, sulfur-based, phosphorus-based or metal-based compounds. Cr, Al, S on the surface of the processing equipment member
One of i, Ti, Mo, Zr, Ir, or Pt, or a metallic coating layer mainly composed of a combination thereof is formed to enhance corrosion resistance.

【0008】この金属性コーティング層は、拡散処理法
(パック コーティング),高温ディップコーティング
法,CVD法,溶射法,肉盛溶接法あるいは塗布法を適
用することによって作製することが好ましい。
This metallic coating layer is preferably produced by applying a diffusion treatment method (pack coating), a high temperature dip coating method, a CVD method, a thermal spraying method, a overlay welding method or a coating method.

【0009】そうした金属材料をそのままあるいはさら
に耐食性を向上するために金属性コーティング層を低酸
素分圧雰囲気中で、300〜850℃の温度で予備酸化
しても良い。
The metallic coating layer may be pre-oxidized at a temperature of 300 to 850 ° C. in a low oxygen partial pressure atmosphere as it is or in order to further improve the corrosion resistance.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を腐食試験
の結果を用いて説明する。表1に試験供試材として用い
たSUS304鋼の化学成分を示す。この鋼から寸法1
5×10×3mmの三つの試験片(#1,#2及び#3)
を加工し、アセトン洗浄の後、試験片全面に機械研磨し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below by using results of a corrosion test. Table 1 shows the chemical composition of SUS304 steel used as a test sample material. Dimension 1 from this steel
Three test pieces of 5 × 10 × 3 mm (# 1, # 2 and # 3)
Was processed, washed with acetone, and mechanically polished on the entire surface of the test piece.

【0011】[0011]

【表1】 [Table 1]

【0012】機械研磨した二つの試験片(#2及び#
3)の表面に、図1に模式図を示す拡散処理法(パック
コーティング)によってAl主体のコーティング層を
作製した。拡散処理は800℃以上,50時間で行い、
拡散パック原料としてAl粉末,AlF3 粉末及びAl
23粉末を使用した。試験片1をパック原料粉末中に挿
入して、前記した条件で処理した。
Two mechanically polished specimens (# 2 and #
On the surface of 3), an Al-based coating layer was prepared by a diffusion treatment method (pack coating) whose schematic diagram is shown in FIG. Diffusion treatment is performed at 800 ℃ or more for 50 hours,
Al powder, AlF 3 powder and Al as diffusion pack raw material
2 O 3 powder was used. The test piece 1 was inserted into the pack raw material powder and treated under the above-mentioned conditions.

【0013】表面にAl主体のコーティング層を作製し
た二つの試験片のうち一つの試験片(#3)を、750
℃,H2 −H2O(酸素分圧〜10-40Pa)混合ガス中
で3時間予備酸化した。
One of the two test pieces (# 3) having the Al-based coating layer formed on the surface was replaced with 750
Preoxidation was performed in a mixed gas of H 2 —H 2 O (oxygen partial pressure: 10 −40 Pa) for 3 hours.

【0014】バッチ式超臨界水試験装置を利用し機械研
磨したままの試験片(#1)及び表面改質した試験片
(#2及び #3)の腐食試験を実施した。試験は50
0℃,25MPaの超臨界水環境下で10時間行った。
超臨界水試験では添加剤としてハロゲン化合物(NaC
l)を使用した。
A batch type supercritical water test apparatus was used to carry out a corrosion test on the test pieces as they were mechanically polished (# 1) and the surface-modified test pieces (# 2 and # 3). 50 tests
It was carried out for 10 hours in a supercritical water environment of 0 ° C. and 25 MPa.
In the supercritical water test, halogen compounds (NaC
1) was used.

【0015】腐食試験中には研磨したままの試験片(#
1)の表面にCr23を含む酸化皮膜が生成したが、S
US304鋼のCr含有量は低い(20mass%以下)た
め酸化皮膜は不連続の形態であり母材(SUS304
鋼)に対して保護性ではなかった。
During the corrosion test, the as-polished test piece (#
An oxide film containing Cr 2 O 3 was formed on the surface of 1), but S
Since the Cr content of US304 steel is low (20 mass% or less), the oxide film has a discontinuous form, and the base material (SUS304
It was not protective against steel).

【0016】そして、表面にAl主体のコーティング層
を作製したままの試験片(#2)の場合、表面にAl2
3を含む酸化皮膜が生成した。この皮膜は母材の腐食
を抑制したが酸化皮膜の保護性は必ずしも十分ではなか
った。これの原因としてコーティング層のAl成分と添
加剤からなるHClガスとの高温化学反応が指摘され
る。この反応によってコーティング層のAl濃度が減
り、試験片(#2)表面に成長したAl23酸化皮膜の
機能が低下したものと推測される。
Then, in the case of the test piece (# 2) in which the coating layer mainly composed of Al was formed on the surface, Al 2 was formed on the surface.
An oxide film containing O 3 was formed. This film suppressed the corrosion of the base material, but the protective property of the oxide film was not always sufficient. It is pointed out that the high temperature chemical reaction between the Al component of the coating layer and the HCl gas composed of the additive is the cause of this. It is presumed that this reaction reduced the Al concentration in the coating layer and reduced the function of the Al 2 O 3 oxide film grown on the surface of the test piece (# 2).

【0017】この腐食試験では、表面にAl主体のコー
ティング層を作製した後750℃,H2 −H2O混合ガ
ス中で予備酸化した試験片(#3)が最も耐食性に優れ
た。これの理由として予備酸化による試験片(#3)表
面に成長したAl23主体の酸化皮膜は腐食性のHCl
ガスに対して保護性であることが考えられる。
In this corrosion test, the test piece (# 3), which was prepared by forming a coating layer mainly composed of Al on the surface and then pre-oxidized in a H 2 —H 2 O mixed gas at 750 ° C., had the best corrosion resistance. The reason for this is that the oxide film mainly composed of Al 2 O 3 grown on the surface of the test piece (# 3) by pre-oxidation is corrosive HCl.
It is considered to be protective against gas.

【0018】表2ではコーティング層のAl成分とHC
lガス及びAl23予備酸化皮膜とHClガスとの化学
反応式を示す。
In Table 2, Al component and HC of the coating layer
1 shows the chemical reaction formulas of 1 gas and Al 2 O 3 pre-oxidized film and HCl gas.

【0019】[0019]

【表2】 [Table 2]

【0020】Al−Al23−HClシステムの熱力学
データを利用して、これらの反応で発生するAl塩化物
ガスの平衡濃度(分圧)を計算した。表3に示すように
試験片の表面にAl23皮膜がある場合(試験片#
3)、Al塩化物の分圧は非常に低い。
Using the thermodynamic data of the Al-Al 2 O 3 -HCl system, the equilibrium concentration (partial pressure) of Al chloride gas generated in these reactions was calculated. As shown in Table 3, when there is an Al 2 O 3 film on the surface of the test piece (test piece #
3), the partial pressure of Al chloride is very low.

【0021】[0021]

【表3】 [Table 3]

【0022】従って、供試材表面にAl主体のコーティ
ング層を作製した後、この層の予備酸化により表面に成
長するAl23皮膜は、供試材の超臨界水環境下での耐
食性を向上した。
Therefore, the Al 2 O 3 film that grows on the surface of the test material after the Al-based coating layer is formed on the surface of the test material by the pre-oxidation of this layer has a corrosion resistance in the supercritical water environment. Improved.

【0023】[0023]

【発明の効果】本発明によれば、超臨界水環境におい
て、装置部材を腐食環境から保護することができる。
According to the present invention, the device member can be protected from the corrosive environment in the supercritical water environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】拡散処理法の模式図。FIG. 1 is a schematic diagram of a diffusion processing method.

【符号の説明】[Explanation of symbols]

1…試験片。 1 ... Test piece.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 10/50 C23C 10/50 (72)発明者 土井 裕之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4K044 AA02 AA06 BA02 BA08 BA10 BA12 BA19 BB03 BC02 CA11 CA12 CA14 CA62 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C23C 10/50 C23C 10/50 (72) Inventor Hiroyuki Doi 7-1 Omika-cho, Hitachi-shi, Ibaraki Stock company Hitachi, Ltd. Hitachi Research Laboratory F-term (reference) 4K044 AA02 AA06 BA02 BA08 BA10 BA12 BA19 BB03 BC02 CA11 CA12 CA14 CA62

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン系,硫黄系,リン系あるいは金属
系の化合物を含む固体,液体あるいは気体の有機物質或
いは無機物質を超臨界水環境下で処理する装置におい
て、前記装置部料に使用されるFe基,Ni基或いはC
o基金属材料の表面に該金属材料よりも耐食性の高い表
面層を形成することを特徴とする超臨界水処理装置部材
の耐食性表面改質方法。
1. An apparatus for treating a solid, liquid or gaseous organic substance or inorganic substance containing a halogen-based, sulfur-based, phosphorus-based or metal-based compound in a supercritical water environment, which is used as the above-mentioned apparatus component. Fe group, Ni group or C
A method of modifying the surface of a supercritical water treatment device for corrosion resistance, which comprises forming a surface layer having higher corrosion resistance than the metal material on the surface of the o-based metal material.
【請求項2】請求項1において、前記金属材料を前記環
境下で使用する前に前記金属材料の表面にCr,Al,
Si,Ti,Mo,Zr,IrあるいはPtの1種、あ
るいはそれらの組合せ主体の金属性コーティング層を形
成することを特徴とする超臨界水処理装置部材の耐食性
表面改質方法。
2. The method according to claim 1, wherein before the metallic material is used in the environment, Cr, Al,
A method for modifying the corrosion-resistant surface of a supercritical water treatment device member, which comprises forming a metallic coating layer mainly composed of one of Si, Ti, Mo, Zr, Ir or Pt, or a combination thereof.
【請求項3】請求項2において、前記金属材料の表面に
前記金属性コーティング層を形成した後、水蒸気,純
水,超臨界水あるいは酸素を含む混合ガスからなる低酸
素分圧の雰囲気中で、300〜850℃の温度で予備酸
化することを特徴とする超臨界水処理装置部材の耐食性
表面改質方法。
3. The low oxygen partial pressure atmosphere according to claim 2, wherein the metallic coating layer is formed on the surface of the metallic material, and the mixed gas contains water vapor, pure water, supercritical water or oxygen. , Pre-oxidizing at a temperature of 300 to 850 [deg.] C., a method for modifying the surface of a supercritical water treatment device having corrosion resistance.
【請求項4】請求項2において、前記金属材料の表面に
前記金属性コーティング層を形成するために、拡散処理
法(パック コーティング),高温ディップコーティン
グ法,CVD法,溶射法,肉盛溶接法あるいは塗布法か
ら選ばれた方法を適用することを特徴とする超臨界水装
置部材の耐食性表面改質方法。
4. The diffusion treatment method (pack coating), high temperature dip coating method, CVD method, thermal spraying method, build-up welding method according to claim 2, for forming the metallic coating layer on the surface of the metallic material. Alternatively, a method of modifying the corrosion resistance surface of a supercritical water device member, characterized by applying a method selected from coating methods.
JP2001218929A 2001-07-19 2001-07-19 Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus Pending JP2003027259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218929A JP2003027259A (en) 2001-07-19 2001-07-19 Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218929A JP2003027259A (en) 2001-07-19 2001-07-19 Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2003027259A true JP2003027259A (en) 2003-01-29

Family

ID=19053026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218929A Pending JP2003027259A (en) 2001-07-19 2001-07-19 Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2003027259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
JP2006009094A (en) * 2004-06-25 2006-01-12 Furuya Kinzoku:Kk Corrosion-resistant material and its manufacturing method
JP2012221986A (en) * 2011-04-04 2012-11-12 Toshiba Corp Supercritical drying method and apparatus of semiconductor substrate
WO2022202740A1 (en) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 Titanium alloy for supercritical water utilization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
JP4615847B2 (en) * 2003-11-25 2011-01-19 株式会社フルヤ金属 Corrosion resistant material and method for producing the same
JP2006009094A (en) * 2004-06-25 2006-01-12 Furuya Kinzoku:Kk Corrosion-resistant material and its manufacturing method
JP4615909B2 (en) * 2004-06-25 2011-01-19 株式会社フルヤ金属 Corrosion resistant material and method for producing the same
JP2012221986A (en) * 2011-04-04 2012-11-12 Toshiba Corp Supercritical drying method and apparatus of semiconductor substrate
WO2022202740A1 (en) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 Titanium alloy for supercritical water utilization device

Similar Documents

Publication Publication Date Title
Houngninou et al. Synthesis and characterisation of pack cemented aluminide coatings on metals
Mahobia et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718
Priyantha et al. Corrosion-resistant metallic coatings for applications in highly aggressive environments
Shu et al. Synergistic effect of NaCl and water vapor on the corrosion of 1Cr-11Ni-2W-2Mo-V steel at 500-700 C
JP2010168661A (en) Selective case hardening process at low temperature
Della Rovere et al. Influence of alloying elements on the corrosion properties of shape memory stainless steels
JPH11505293A (en) Processing to form protective coatings on nitrides, carbides, and oxides
Olzon-Dionysio et al. Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel
Loto Effect of SO42− and Cl− anionic attack on the localized corrosion resistance and morphology of 409 ferritic stainless steel
JP5641453B2 (en) High temperature alloy material with excellent oxidation resistance and method for producing the same
TW434326B (en) A method for enhancing the protection of high temperature alloys containing iron, nickel and chromium against high temperature corrosion by carburization or metal dusting
JP2003027259A (en) Surface modification method for imparting corrosion resistance to member of supercritical water treatment apparatus
Gobbi et al. Improvement of mechanical properties and corrosion resistance of 316L and 304 stainless steel by low temperature plasma cementation
Geers et al. Investigation of the effect of the alloy 600 substrate for the stability of a Ni3Sn2 coating for metal dusting protection at 620° C
Liu et al. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al–Si coated 430 stainless steels in air–NaCl (g) atmosphere
Kim et al. Simultaneous chromizing and aluminizing using chromium oxide and aluminum:(I) on low alloy steel
Bahadur Structural studies of calorized coatings on mild steel
JP4744145B2 (en) Melt coating apparatus and steel strip coating method
JPH08158035A (en) Carburizing treatment for austenitic metal and austenitic metal product using the same
JP3064909B2 (en) Carburized hardware and its manufacturing method
JP3446520B2 (en) Method of forming oxide passivation film on ferritic stainless steel
JPS5844739B2 (en) Steel that withstands aluminum attack
JPH1018017A (en) Treatment for carburizing austenitic metal and austenitic metal product obtained thereby
Rao et al. Low cycle fatigue behavior of salt coated and pre-exposed IN-617 alloy
Öksüzoğlu et al. Effect of Low-Temperature Aluminizing on 904L Stainless Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822