JP2003027051A - Composite phosphor and fluorescent lamp using the same - Google Patents

Composite phosphor and fluorescent lamp using the same

Info

Publication number
JP2003027051A
JP2003027051A JP2001210532A JP2001210532A JP2003027051A JP 2003027051 A JP2003027051 A JP 2003027051A JP 2001210532 A JP2001210532 A JP 2001210532A JP 2001210532 A JP2001210532 A JP 2001210532A JP 2003027051 A JP2003027051 A JP 2003027051A
Authority
JP
Japan
Prior art keywords
phosphor
particles
composite
rare earth
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001210532A
Other languages
Japanese (ja)
Other versions
JP3695744B2 (en
Inventor
Fumihiro Inagaki
文拓 稲垣
Toshio Mori
利雄 森
Hiromi Tanaka
裕美 田中
Toru Azuma
亨 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001210532A priority Critical patent/JP3695744B2/en
Publication of JP2003027051A publication Critical patent/JP2003027051A/en
Application granted granted Critical
Publication of JP3695744B2 publication Critical patent/JP3695744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel phosphor and to provide a fluorescent lamp using the same capable of saving the amount of rare earth elements to be used. SOLUTION: There are provided a composite phosphor prepared by adhering rare earth phosphor particles of a particle diameter of 0.05-1.0 μm to the surfaces of inorganic compound particles and a fluorescent lamp coated with a layer comprising the composite phosphor on the inside surface of a bulb. The inorganic compound particles desirably have a particle diameter of 5-15 μm. The inorganic compound is desirably the one containing at least one element selected from silicon, aluminum, yttrium, cerium, germanium, titanium, zinc, calcium, and barium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な蛍光体及び
それを用いた蛍光ランプに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel phosphor and a fluorescent lamp using the same.

【0002】[0002]

【従来の技術】近年の蛍光ランプの開発は、希土類蛍光
体を使して三波長の可視光による、光束の向上、色の見
え、明るさ感の改善が主流となっており、今後もその傾
向にある。そのため、蛍光体の開発により、従来より一
層高効率に改善されたり、劣化に強い材質の研究が進ん
でいる。例えば、第259回蛍光体同学会誌第23頁に
報告されているように、BAMといわれる青色蛍光体は
効率が悪く、劣化しやすいという欠点があったが、希土
類添加物の組成比を検討することによって、その他の蛍
光体と遜色ないものとなった。また、Journal
of The Electrochemical Soc
iety,146(1)392−399(1999)に
示すように、近年、蛍光体の表面積を極力減らし、ラン
プ中における紫外線やイオンスパッタの影響を受け難く
する技術も開発され、従来の蛍光ランプに導入されつつ
ある。
2. Description of the Related Art In recent years, fluorescent lamps have been developed mainly by improving the luminous flux, the appearance of colors and the feeling of brightness by using visible light of three wavelengths by using a rare earth phosphor. There is a tendency. Therefore, the development of phosphors has led to research on materials that are more efficiently improved than before and that are resistant to deterioration. For example, as reported on page 23 of the 259th Fluorescent Material Society of Japan, the blue fluorescent material called BAM had the drawbacks of poor efficiency and easy deterioration, but the composition ratio of the rare earth additive is examined. As a result, it was comparable to other phosphors. Also, Journal
of the Electrochemical Soc
IETY, 146 (1) 392-399 (1999), in recent years, a technique has been developed to reduce the surface area of the phosphor as much as possible to make it less susceptible to ultraviolet rays and ion sputtering in the lamp. It is being introduced.

【0003】また、蛍光体の表面を特殊な方法でイット
リア等の金属酸化物で被覆し、水銀の付着を防止するこ
とにより、ランプの高い光束維持率を実現する方法も報
告されている。
It has also been reported that the surface of the phosphor is coated with a metal oxide such as yttria by a special method to prevent mercury from adhering to achieve a high luminous flux maintenance factor of the lamp.

【0004】[0004]

【発明が解決しようとする課題】このように、希土類蛍
光体を用いた蛍光ランプの需給が盛んになればなるほ
ど、使用する希土類元素が多量に必要になってくる。し
かし、希土類元素は埋蔵量が少なく、単位重量当りの単
価が高いという問題がある。また、自然環境保護の観点
から、貴重な資源を保護する必要もある。更に、蛍光体
の中の希土類元素の使用量は増える一方であり、蛍光体
の廃棄物から希土類元素を回収するにしても、莫大なエ
ネルギーが必要になるため実現されていない。
As described above, as the demand and supply of fluorescent lamps using rare earth phosphors increases, the amount of rare earth elements to be used increases. However, there is a problem that the rare earth element has a small reserve and the unit price per unit weight is high. It is also necessary to protect valuable resources from the perspective of protecting the natural environment. Furthermore, the amount of rare earth element used in the phosphor is increasing, and even if the rare earth element is recovered from the waste of the phosphor, enormous energy is required, which has not been realized.

【0005】そこで、本発明は前記従来の問題を解決す
るためになされたものであり、新規な蛍光体を使用する
ことにより、希土類元素の使用量を減少できる蛍光ラン
プを提供することを目的とする。
Therefore, the present invention has been made to solve the above conventional problems, and an object of the present invention is to provide a fluorescent lamp which can reduce the amount of rare earth elements used by using a novel phosphor. To do.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の複合蛍光体は、粒子径が0.05μm以
上、1.0μm以下の希土類蛍光体の粒子を無機化合物
の粒子の表面に被着したことを特徴とする。これによ
り、一般に使用される希土類蛍光体の量を削減すること
が可能となる。
In order to achieve the above object, the composite phosphor of the present invention comprises a rare earth phosphor particle having a particle size of 0.05 μm or more and 1.0 μm or less on the surface of an inorganic compound particle. It is characterized by being attached. This makes it possible to reduce the amount of commonly used rare earth phosphor.

【0007】また、本発明の複合蛍光体は、前記無機化
合物の粒子の粒子径が5μm以上、15μm以下である
ことが好ましい。
Further, in the composite phosphor of the present invention, it is preferable that the particles of the inorganic compound have a particle size of 5 μm or more and 15 μm or less.

【0008】また、本発明の複合蛍光体は、前記無機化
合物が、シリコン、アルミニウム、イットリウム、セリ
ウム、ゲルマニウム、チタン、亜鉛、カルシウム及びバ
リウムからなる群から選択された少なくとも一種の元素
を含んでいることが好ましい。これにより、長期間の放
電に耐え、且つ蛍光体の励起発光を妨げなく行うことが
可能となる。
In the composite phosphor of the present invention, the inorganic compound contains at least one element selected from the group consisting of silicon, aluminum, yttrium, cerium, germanium, titanium, zinc, calcium and barium. It is preferable. As a result, it becomes possible to endure discharge for a long period of time and to perform excitation and light emission of the phosphor without hindrance.

【0009】また、本発明の複合蛍光体は、前記希土類
蛍光体の粒子が、2種類以上の蛍光体からなることが好
ましい。これにより、蛍光体粒子一粒で、赤、青、緑等
の単波長の光を組み合わせて放出することが可能とな
る。
Further, in the composite phosphor of the present invention, it is preferable that the rare earth phosphor particles are composed of two or more kinds of phosphors. This makes it possible to combine and emit single-wavelength light such as red, blue, and green with one phosphor particle.

【0010】更に、本発明の複合蛍光体を用いた蛍光ラ
ンプは、バルブ内に放電ガスを充満した放電空間を有
し、前記放電空間に電流を通電して発光する蛍光ランプ
において、前記バルブ内面に、前記本発明の複合蛍光体
からなる層を形成したことを特徴とする。これにより、
希土類元素の使用量を減少できる蛍光ランプが可能とな
る。
Further, a fluorescent lamp using the composite phosphor of the present invention has a discharge space filled with a discharge gas in the bulb, and a current is passed through the discharge space to emit light. In addition, a layer comprising the composite phosphor of the present invention is formed. This allows
A fluorescent lamp capable of reducing the amount of rare earth elements used becomes possible.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0012】本発明で用いる希土類蛍光体は、従来使用
されている希土類蛍光体をすべて使用可能である。具体
的に工業化されている希土類蛍光体としては、Sr
14(PO 46Cl2:Eu2+、(Sr,Ca)10(P
46Cl2:Eu2+、(Sr,Ca)10(PO46
2・nB23:Eu2+、(Sr,Ca,Mg)10(P
46Cl2:Eu2+、LaPO4:Ce3+,Tb3+、L
23・0.2SiO2・0.9P25:Ce3+,Tb
3+、Sr2Si2Oα・2SrCl2:Eu2+、Ba3Mg
Si2Oα:Eu2+、(Sr,Ba)Al2Si2Oα:
Eu2+、Y2SiO5:Ce3+,Tb3+、BaAl
n13:Eu2+、CeMgAl1119:Tb3+、BaM
gAl1017:Eu2+、BaMgAl1017:Eu2+
Mn2+、Sr4Al142 5:Eu2+、SrMgAl10
17:Eu2+、Y23:Eu3+、YVO4:Dy3+,Y
(P,V)O4:Eu3+、SrB47F:Mn2+、Gd
MgB510:Ce3+,Tb3+、YVO4:Eu3+、3.
5MgO・0.5MgF2・CeO2:Mn4+、Y2Si
5:Ce3+,Tb3+、Y23・Al23:Tb3+、Y3
Al512:Ce 3+、Sr2Si29・2SrCl2:E
2+、Sr10(PO46Cl2:Eu2+等が使用されて
おり、本発明においても好適に使用できる。
The rare earth phosphor used in the present invention has been conventionally used.
It is possible to use all of the rare earth phosphors that have been used. Concrete
As a rare earth phosphor that has been industrialized, Sr
14(PO Four)6Cl2: Eu2+, (Sr, Ca)Ten(P
OFour)6Cl2: Eu2+, (Sr, Ca)Ten(POFour)6C
l2・ NB2O3: Eu2+, (Sr, Ca, Mg)Ten(P
OFour)6Cl2: Eu2+, LaPOFour: Ce3+, Tb3+, L
a2O3・ 0.2SiO2・ 0.9P2OFive: Ce3+, Tb
3+, Sr2Si2Oα ・ 2SrCl2: Eu2+, Ba3Mg
Si2Oα: Eu2+, (Sr, Ba) Al2Si2Oα:
Eu2+, Y2SiOFive: Ce3+, Tb3+, BaAl
nO13: Eu2+, CeMgAl11O19: Tb3+, BaM
gAlTenO17: Eu2+, BaMgAlTenO17: Eu2+
Mn2+, SrFourAl14O2 Five: Eu2+, SrMgAlTenO
17: Eu2+, Y2O3: Eu3+, YVOFour: Dy3+, Y
(P, V) OFour: Eu3+, SrBFourO7F: Mn2+, Gd
MgBFiveOTen: Ce3+, Tb3+, YVOFour: Eu3+3.
5MgO / 0.5MgF2・ CeO2: Mn4+, Y2Si
OFive: Ce3+, Tb3+, Y2O3・ Al2O3: Tb3+, Y3
AlFiveO12: Ce 3+, Sr2Si2O9・ 2SrCl2: E
u2+, SrTen(POFour)6Cl2: Eu2+Etc are used
Therefore, it can be preferably used in the present invention.

【0013】前記希土類蛍光体は、通常1〜10μmの
粒子径の粉体が使用されている。しかし、1μm以下の
蛍光体粒子は見かけの表面積が小さいことから、前記希
土類蛍光体の励起波長の吸収効率が低下し、見かけ上量
子効率が低下するため、一般に使用されていない。しか
しながら、このような1μm以下の蛍光体微粒子は効果
的に励起波長を照射すれば発光効率は低下しない。
As the rare earth phosphor, powder having a particle size of 1 to 10 μm is usually used. However, since the phosphor particles having a particle size of 1 μm or less have a small apparent surface area, the absorption efficiency of the excitation wavelength of the rare earth phosphor is lowered, and the quantum efficiency is apparently lowered. Therefore, it is not generally used. However, such a phosphor fine particle having a size of 1 μm or less does not lower the luminous efficiency if it is effectively irradiated with the excitation wavelength.

【0014】図1及び図2は、本発明の複合蛍光体の模
式図である。図1は1種類の希土類蛍光体1を使用した
場合である。図2は2種類以上の希土類蛍光体3を使用
した場合である。本発明の複合蛍光体は、無機化合物の
粒子2の表面に、希土類蛍光体の粒子1又は3を被着せ
しめたものである。このため、効率よく励起光を蛍光体
表面に受けることが可能なだけでなく、蛍光体に照射さ
れなかった紫外線を前記無機化合物の粒子が反射し、前
記蛍光体微粒子に照射できる。このことにより、見かけ
の蛍光体の発光効率は向上し、従来使用されている蛍光
体と遜色無く発光することができる。したがって、本発
明の複合蛍光体は、従来使用していた希土類元素の使用
量を低減できるとともに、少ない量で従来以上に発光効
率を高めることが可能である。
1 and 2 are schematic views of the composite phosphor of the present invention. FIG. 1 shows the case where one kind of rare earth phosphor 1 is used. FIG. 2 shows the case where two or more kinds of rare earth phosphors 3 are used. The composite phosphor of the present invention is obtained by coating the surface of an inorganic compound particle 2 with a rare earth phosphor particle 1 or 3. For this reason, not only can the excitation light be efficiently received on the phosphor surface, but also the ultraviolet rays that have not been irradiated to the phosphor can be reflected by the particles of the inorganic compound, and the phosphor particles can be irradiated. As a result, the luminous efficiency of the apparent phosphor is improved, and the phosphor can emit light in the same manner as the conventionally used phosphor. Therefore, the composite phosphor of the present invention can reduce the amount of rare earth element used conventionally, and can increase the luminous efficiency more than ever with a small amount.

【0015】本発明における前記無機化合物の粒子は、
平均粒子径5μm以上、15μm以下の粒子が好まし
い。5μm未満の粒子は、紫外線の照射による反射効率
が低下するため、表面に被着した蛍光体の発光効率が低
下するので好ましくない。また、15μmを超える粒子
は、従来の蛍光体サスペンジョンを使用して均一に塗布
することは不可能であり、実用的ではない。しかし、無
機化合物粉体中に、全体の20%以下で、5μm未満の
粒子及び15μmを超える粒子が含まれているならば、
発光効率を低下させず、塗布膜の形成にも影響はない。
The particles of the inorganic compound in the present invention are
Particles having an average particle diameter of 5 μm or more and 15 μm or less are preferable. Particles having a size of less than 5 μm are not preferable because the efficiency of reflection by irradiation with ultraviolet rays is reduced, and the efficiency of light emission of the phosphor adhered to the surface is reduced. Further, particles exceeding 15 μm cannot be applied uniformly using a conventional phosphor suspension, which is not practical. However, if the inorganic compound powder contains particles of less than 5 μm and particles of more than 15 μm in less than 20% of the whole,
It does not reduce the luminous efficiency and does not affect the formation of the coating film.

【0016】前記無機化合物は、シリコン、アルミニウ
ム、イットリウム、セリウム、ゲルマニウム、チタン、
亜鉛の酸化物であることが好ましい。前記無機酸化物の
粒子は、紫外線に対して結晶形態や粒子構造が容易に変
化せず、紫外線を外部へ反射する効率も高いため、本発
明の希土類蛍光体の微粒子を被覆する粒子として最適だ
からである。
The inorganic compounds are silicon, aluminum, yttrium, cerium, germanium, titanium,
It is preferably an oxide of zinc. Since the particles of the inorganic oxide do not easily change the crystal form or particle structure with respect to ultraviolet rays and have a high efficiency of reflecting ultraviolet rays to the outside, they are optimal as particles for coating the fine particles of the rare earth phosphor of the present invention. Is.

【0017】また、紫外線が硝子バルブへ直接照射され
ないように、無機化合物の被膜をバルブ内面に塗布する
ことも好ましい。この無機化合物は、シリコン、アルミ
ニウム、イットリウム、セリウム、ゲルマニウム、チタ
ン、亜鉛の酸化物であると、上記複合蛍光体の無機酸化
物粒子と同じ理由で、好ましい構成となる。
It is also preferable to apply a coating of an inorganic compound to the inner surface of the bulb so that the glass bulb is not directly irradiated with ultraviolet rays. This inorganic compound is an oxide of silicon, aluminum, yttrium, cerium, germanium, titanium, or zinc, and has a preferable structure for the same reason as the inorganic oxide particles of the above composite phosphor.

【0018】本発明の蛍光ランプは、前記複合蛍光体を
使用して、従来の蛍光ランプと同様な方法で作製可能で
ある。また、蛍光ランプの作製工程であるシンター工
程、排気工程においても従来と同様な条件でランプの作
製が可能である。
The fluorescent lamp of the present invention can be manufactured by using the above composite fluorescent material in the same manner as a conventional fluorescent lamp. In addition, in the sintering process and the exhaust process, which are the manufacturing steps of the fluorescent lamp, the lamp can be manufactured under the same conditions as conventional ones.

【0019】[0019]

【実施例】以下、実施例に基づき本発明を説明する。EXAMPLES The present invention will be described below based on examples.

【0020】(実施例1)一般に蛍光ランプに使用され
る青色蛍光体は、BaMgAl1017:Eu2+(以下、
BAMという)で、発光波長は約450nmである。前
記蛍光体の粉体に254nmの励起光を照射し、発光す
る450nmの強度を粒子径別に測定した。
Example 1 A blue phosphor generally used in a fluorescent lamp is BaMgAl 10 O 17 : Eu 2+ (hereinafter, referred to as
The emission wavelength is about 450 nm. The phosphor powder was irradiated with excitation light of 254 nm, and the intensity of emitted light at 450 nm was measured for each particle size.

【0021】図4は本発明の複合蛍光体と従来の蛍光体
の輝度特性を示した図である。従来の蛍光体は、図4の
カーブ7に示すように粒子径が2〜5μm程度のものの
輝度が最も高く、それより粒子径が小さくなると極端に
輝度が低下する。このことから、1μm以下の蛍光体
は、実用上発光効率が悪いので使用できないことがわか
る。このため、従来の蛍光ランプでは、1μm以下の粒
子径の蛍光体は全く使用されていない。
FIG. 4 is a diagram showing the luminance characteristics of the composite phosphor of the present invention and the conventional phosphor. The conventional phosphor has the highest brightness when the particle size is about 2 to 5 μm, as shown by the curve 7 in FIG. 4, and the brightness is extremely reduced when the particle size is smaller than that. From this, it can be seen that the phosphor of 1 μm or less cannot be used because the luminous efficiency is practically poor. Therefore, conventional fluorescent lamps do not use phosphors having a particle diameter of 1 μm or less.

【0022】しかしながら、本発明において、粒子径5
μmのアルミナを担持体として粒子径の異なる蛍光体を
被着したものと粒子径15μmのアルミナを担持体とし
て粒子径の異なる蛍光体を被着したものとを用いて発光
輝度を測定したところ、図4のカーブ8、9に示すよう
に、粒子径が1μm以下の蛍光体でも高い発光輝度が得
られることがわかった。用いる蛍光体担持用の粒子の粒
子径により若干異なり、担持粒子の粒子径が大きいほど
輝度のピークは蛍光体の粒子径が小さいほうへ移動す
る。なお、8は本発明の5μmの担持粒子を用いた複合
蛍光体の輝度特性カーブ、9は本発明の15μmの担持
粒子を用いた複合蛍光体の輝度特性カーブである。
However, in the present invention, the particle size is 5
The emission brightness was measured using a phosphor having different particle diameters deposited on alumina having a particle diameter of μm and a phosphor having different particle diameters deposited on alumina having a particle diameter of 15 μm. As shown by the curves 8 and 9 in FIG. 4, it was found that even a phosphor having a particle diameter of 1 μm or less can obtain high emission brightness. It slightly differs depending on the particle size of the phosphor-supporting particles to be used, and the larger the particle size of the carrier particles is, the more the peak of the brightness shifts toward the smaller particle size of the phosphor. In addition, 8 is a brightness characteristic curve of the composite phosphor using the supporting particles of 5 μm of the present invention, and 9 is a brightness characteristic curve of the composite phosphor using the supporting particles of 15 μm of the present invention.

【0023】次に、本発明の複合蛍光体の調製方法を説
明する。アルミナ粉体1kgと各目的の粒子径の蛍光体
粉末300gとを乾式ミキサーで一昼夜混合した。その
後、電子顕微鏡で粒子形状を確認したところ、1.0μ
m以下の蛍光体では、アルミナ粉体の表面に隙間なくB
AM粒子が被着した複合蛍光体粒子となっていた。
Next, a method for preparing the composite phosphor of the present invention will be described. 1 kg of alumina powder and 300 g of phosphor powder having each desired particle size were mixed with a dry mixer all day and night. After that, when the particle shape was confirmed with an electron microscope, it was 1.0 μm.
For phosphors of m or less, there is no gap on the surface of the alumina powder B
The composite phosphor particles were coated with AM particles.

【0024】このように、従来使用されていない1.0
μm以下の粒子径の蛍光体を、担持粒子5〜15μmの
アルミナに被着することにより、従来の蛍光体と同様十
分使用可能なものとすることができる。
As described above, 1.0 that has not been used conventionally
By depositing a phosphor having a particle size of less than or equal to μm on alumina having carrier particles of 5 to 15 μm, it can be made sufficiently usable like a conventional phosphor.

【0025】同じく、平均粒子径10μmのアルミナ粉
体と、緑色発光する蛍光体LaPO 4:Ce3+,Tb3+
(以下、LAPという)を乾式ミキサーで一昼夜混合し
て、緑色発光の複合蛍光体粒子が得られた。この発光輝
度も図4のBAM蛍光体と同様に、粒子径が0.05〜
1.0μmの範囲でLAP蛍光体の輝度向上効果を示
し、相対比90%以上の高い輝度が得られた。
Similarly, an alumina powder having an average particle diameter of 10 μm
Body and phosphor LaPO that emits green light Four: Ce3+, Tb3+
(Hereinafter referred to as LAP) is mixed with a dry mixer all day and night.
As a result, green-emitting composite phosphor particles were obtained. This luminescence
As for the BAM phosphor of FIG. 4, the particle size is 0.05 to
Shows the brightness enhancement effect of LAP phosphor in the range of 1.0 μm
However, high brightness with a relative ratio of 90% or more was obtained.

【0026】また、同じく、平均粒子径10μmのアル
ミナ粉体と、赤色発光する蛍光体Y 23:Eu3+(以
下、YOXという)を乾式ミキサーで一昼夜混合して調
製した複合蛍光体も同じように粒子径が0.05〜1.
0μmの範囲で輝度向上が認められた。
Similarly, an average particle diameter of 10 μm
Mina powder and phosphor Y that emits red light 2O3: Eu3+(Below
(Below, YOX) is mixed with a dry mixer all day and night to prepare
The produced composite phosphor also has a particle size of 0.05 to 1.
An improvement in brightness was recognized in the range of 0 μm.

【0027】更に、前記BAM、LAP、YOXの各々
平均粒子径0.3μmの粉体を、それぞれ15g、50
g、35gとり混ぜて、乾式ミキサーで一昼夜混合し
た。その後更に、平均粒子径10μmのアルミナ粉体を
500g加え、乾式ミキサーで一昼夜混合した。その後
取り出した粉体を、電子顕微鏡、レーザ顕微鏡で観察し
たところ、前記アルミナ粒子の表面に、BAM、LA
P、YOXのそれぞれの蛍光体がランダムで被着してい
る複合蛍光体粒子となっていることが観察された。更
に、粉体に254nmの励起光を照射したところ、前記
三種類の分光分布が観察され、各発光波長のピーク比率
は、ほぼ3:10:7であり、最初に混合した比率どう
りの発光波長の分布が得られた。このように、単一担持
粒子の上に、任意の組成の3種類の蛍光体を担持するこ
とができ、その組成比にしたがって発光する輝度の高い
複合蛍光体が得られた。
Further, 15 g and 50 g of the powders of BAM, LAP and YOX each having an average particle diameter of 0.3 μm are added.
g and 35 g were mixed and mixed with a dry mixer all day and night. Thereafter, 500 g of alumina powder having an average particle diameter of 10 μm was further added, and the mixture was mixed with a dry mixer all day and night. Then, the powder taken out was observed with an electron microscope and a laser microscope. As a result, BAM and LA were observed on the surface of the alumina particles.
It was observed that the respective phosphors of P and YOX were composite phosphor particles in which they were randomly deposited. Further, when the powder was irradiated with excitation light of 254 nm, the above-mentioned three types of spectral distributions were observed, and the peak ratio of each emission wavelength was approximately 3: 10: 7. The wavelength distribution was obtained. In this way, three kinds of phosphors having arbitrary compositions can be supported on the single supported particles, and a composite phosphor with high brightness which emits light according to the composition ratio was obtained.

【0028】(実施例2)実施例1に示した複合蛍光体
を使用して蛍光ランプを作製し、従来の蛍光体を使用し
た蛍光ランプと光束を比較した。実験には、図3に示す
ように、ガラスバルブ4(内径26mm、厚さ1.0m
m、長さ1200mm)の両端にコイル5を設け、バル
ブ内表面に蛍光体を塗布し、水銀とアルゴン、ネオンガ
スを400Pa封入した蛍光ランプを使用した。なお、
6は口金である。
(Example 2) A fluorescent lamp was manufactured using the composite fluorescent material shown in Example 1, and the luminous flux was compared with that of a fluorescent lamp using a conventional fluorescent material. In the experiment, as shown in FIG. 3, the glass bulb 4 (inner diameter 26 mm, thickness 1.0 m
m, length 1200 mm) was provided with coils 5 at both ends, a fluorescent material was applied to the inner surface of the bulb, and a fluorescent lamp in which mercury, argon, and neon gas were sealed at 400 Pa was used. In addition,
6 is a base.

【0029】先ず、目的の複合蛍光体1000gと、ニ
トロセルロースを2質量%溶解した酢酸ブチル溶液1d
3とを混合攪拌し、均一なスラリーを作製した。これ
を洗浄したガラスバルブ内面に塗付量2.5g、3.5
g、4.5g、5.5g、6.5gになるように塗布
し、乾燥した。その後、この塗布したバルブを530℃
で10分間焼成して冷却後、両端にコイルを取付けた。
排気管から真空排気を行い、水銀とアルゴン・ネオン混
合ガスを目的量封入し、密栓した。そして、口金を取付
けてランプを完成した。比較したランプの種類を下記に
示す。
First, 1000 g of the target composite phosphor and 2% by weight of nitrocellulose dissolved in butyl acetate solution 1d.
m 3 was mixed and stirred to prepare a uniform slurry. The amount of coating on the inner surface of the cleaned glass bulb is 2.5 g, 3.5
g, 4.5 g, 5.5 g and 6.5 g were applied and dried. Then, apply this coated valve at 530 ° C.
After firing for 10 minutes and cooling, coils were attached to both ends.
Vacuum exhaust was performed from the exhaust pipe, the target amount of mercury and argon / neon mixed gas was enclosed, and the container was sealed. Then, the base was attached to complete the lamp. The types of lamps compared are shown below.

【0030】本発明のサンプル1は、粒子径0.3μm
のBAMを粒子径10μmのアルミナに被着した複合蛍
光体と、粒子径0.3μmのLAPを粒子径10μmの
アルミナに被着した複合蛍光体と、粒子径0.3μmの
YOXを粒子径10μmのアルミナに被着した複合蛍光
体の三種類の複合蛍光体を質量組成比15対50対35
でスラリー中に混合したものをバルブに塗布したもので
ある。
Sample 1 of the present invention has a particle size of 0.3 μm.
Of BAM adhered to alumina having a particle size of 10 μm, LAP having a particle size of 0.3 μm to alumina having a particle size of 10 μm, and YOX having a particle size of 0.3 μm having a particle size of 10 μm Of the three types of composite phosphors adhered to the alumina of 15:50:35
The mixture is mixed with the slurry in 1. and applied to a valve.

【0031】本発明のサンプル2は、粒子径0.3μm
のBAMと粒子径0.3μmのLAPと粒子径0.3μ
mのYOXを質量組成比15対50対35の割合で混合
後、この混合物を粒子径10μmのアルミナに被着した
複合蛍光体を調製し、その複合蛍光体で上記スラリーを
作製してバルブに塗布したものである。
Sample 2 of the present invention has a particle size of 0.3 μm.
BAM and LAP with particle size 0.3μm and particle size 0.3μ
m YOX is mixed at a mass composition ratio of 15:50:35, and then the mixture is applied to alumina having a particle diameter of 10 μm to prepare a composite phosphor, and the slurry is prepared with the composite phosphor to prepare a bulb. It is applied.

【0032】従来のサンプル3は、粒子径5μmのBA
M、粒子径5μmのLAP、粒子径5μmのYOXを質
量組成比15対50対35でスラリー中に混合したもの
をバルブに塗布した従来品である。
The conventional sample 3 is a BA having a particle size of 5 μm.
It is a conventional product in which M, LAP having a particle diameter of 5 μm, and YOX having a particle diameter of 5 μm are mixed in a slurry at a mass composition ratio of 15:50:35 and applied to a valve.

【0033】次に、前記3種の蛍光ランプの光束比較を
行った。表1にその結果を示す。なお、同色温度での光
束を比較するために、調合比の微調整を行っている。
Next, the luminous fluxes of the three types of fluorescent lamps were compared. The results are shown in Table 1. The mixing ratio is finely adjusted in order to compare the light fluxes at the same color temperature.

【0034】[0034]

【表1】 [Table 1]

【0035】表1において、従来のサンプル3の光束
は、塗付量4.5gにおける3635lmが最高値であ
り、それより塗付量が少なくても多くても光束は低下し
た。それに比較して、本発明のサンプル1、サンプル2
は、同じ塗付量4.5gの場合には、従来より0.4%
程度光束が低いが、塗付量が多くなると光束はそれを上
回り、塗付量6.5gで、従来サンプルより2%以上高
い光束値を示した。本発明のサンプル1、サンプル2に
おける実際に使用する蛍光体の量は、担持したアルミナ
の質量がほとんどであって、塗付量6.5gで真の蛍光
体含有量は1.3gである。このことから、本発明の複
合蛍光体を使用することにより、従来の蛍光体を使用す
るよりも、蛍光ランプの光束が数%向上でき、なお且つ
蛍光体の使用量を従来の1/3以下に抑えることができ
た。サンプル1とサンプル2の光束に違いがないことか
ら、複合蛍光体の調整方法を変えても光束には影響がな
いことがわかる。
In Table 1, the maximum value of the luminous flux of the conventional sample 3 was 3635 lm when the coating amount was 4.5 g, and the luminous flux decreased when the coating amount was smaller or larger than that. In comparison, sample 1 and sample 2 of the present invention
Is 0.4% more than before when the same amount of coating is 4.5g.
Although the luminous flux was low to some extent, the luminous flux exceeded it when the coating amount increased, and the coating amount was 6.5 g, which was 2% or more higher than the conventional sample. The amounts of the phosphors actually used in Samples 1 and 2 of the present invention are mostly the mass of the supported alumina, and the true phosphor content is 1.3 g at a coating amount of 6.5 g. From this, by using the composite phosphor of the present invention, the luminous flux of the fluorescent lamp can be improved by several% as compared with the use of the conventional phosphor, and the amount of the phosphor used is ⅓ or less of the conventional amount. I was able to suppress it. Since there is no difference in the luminous flux between sample 1 and sample 2, it can be seen that the luminous flux is not affected even if the method of adjusting the composite phosphor is changed.

【0036】[0036]

【発明の効果】本発明の複合蛍光体及びこれを用いた蛍
光ランプは、従来よりも使用する蛍光体の量を低減で
き、なお且つ高い光束を示す蛍光ランプを提供できるも
のである。これにより、蛍光体中に含まれる希土類元素
の量を低減することができる。そして、蛍光ランプに本
発明の蛍光体を導入することにより、従来品より発光効
率が高まるため、エネルギー消費量を減らすことも可能
である。
Industrial Applicability The composite phosphor of the present invention and the fluorescent lamp using the same can provide a fluorescent lamp which can reduce the amount of phosphor to be used as compared with the prior art and which has a high luminous flux. As a result, the amount of rare earth element contained in the phosphor can be reduced. Further, by introducing the phosphor of the present invention into a fluorescent lamp, the luminous efficiency is improved as compared with the conventional product, and thus the energy consumption can be reduced.

【0037】また、本発明の複合蛍光体の粒子が細かい
ことにより、蛍光体の製造コストの低減、ランプ製造時
の色ずれ、色合わせの工程削減が可能であり、結果とし
てランプ製造コストの低減が可能である。
Further, since the particles of the composite phosphor of the present invention are fine, it is possible to reduce the manufacturing cost of the phosphor, the color shift at the time of manufacturing the lamp, and the number of steps for color matching, and as a result, the manufacturing cost of the lamp is reduced. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】1種類の希土類蛍光体を使用した本発明の複合
蛍光体の模式図である。
FIG. 1 is a schematic view of a composite phosphor of the present invention using one kind of rare earth phosphor.

【図2】2種類以上の希土類蛍光体を使用した本発明の
複合蛍光体の模式図である。
FIG. 2 is a schematic view of a composite phosphor of the present invention using two or more kinds of rare earth phosphors.

【図3】本発明の複合蛍光体を使用した蛍光ランプの要
部断面図である。
FIG. 3 is a cross-sectional view of a main part of a fluorescent lamp using the composite phosphor of the present invention.

【図4】本発明の複合蛍光体と従来の蛍光体の輝度特性
を示した図である。
FIG. 4 is a diagram showing luminance characteristics of a composite phosphor of the present invention and a conventional phosphor.

【符号の説明】[Explanation of symbols]

1 希土類蛍光体 2 無機化合物(蛍光体を担持する粒子) 3 異なる2種類以上の希土類蛍光体 4 ガラスバルブ 5 コイル 6 口金 7 従来の蛍光体の粒子径に対する輝度特性カーブ 8 本発明の5μmの担持粒子を用いた複合蛍光体の輝
度特性カーブ 9 本発明の15μmの担持粒子を用いた複合蛍光体の
輝度特性カーブ
DESCRIPTION OF SYMBOLS 1 Rare earth phosphor 2 Inorganic compound (particles carrying phosphor) 3 Two or more different rare earth phosphors 4 Glass bulb 5 Coil 6 Base 7 Luminance characteristic curve with respect to particle diameter of conventional phosphor 8 Supporting 5 μm of the present invention Luminance characteristic curve 9 of composite phosphor using particles 9 Luminance characteristic curve of composite phosphor using 15 μm-supported particles of the present invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 裕美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 東 亨 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4H001 CA02 CA07 XA08 XA12 XA13 XA15 XA39 XA56 XA57 YA58 YA63 YA65    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromi Tanaka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Higashi Toru             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4H001 CA02 CA07 XA08 XA12 XA13                       XA15 XA39 XA56 XA57 YA58                       YA63 YA65

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒子径が0.05μm以上、1.0μm
以下の希土類蛍光体の粒子を無機化合物の粒子の表面に
被着したことを特徴とする複合蛍光体。
1. A particle size of 0.05 μm or more and 1.0 μm
A composite phosphor obtained by depositing the following rare earth phosphor particles on the surface of an inorganic compound particle.
【請求項2】 前記無機化合物の粒子の粒子径が、5μ
m以上、15μm以下である請求項1に記載の複合蛍光
体。
2. The particle size of the inorganic compound particles is 5 μm.
The composite phosphor according to claim 1, having a size of not less than m and not more than 15 μm.
【請求項3】 前記無機化合物が、シリコン、アルミニ
ウム、イットリウム、セリウム、ゲルマニウム、チタ
ン、亜鉛、カルシウム及びバリウムからなる群から選択
された少なくとも一種の元素を含んでいる請求項1又は
2に記載の複合蛍光体。
3. The method according to claim 1, wherein the inorganic compound contains at least one element selected from the group consisting of silicon, aluminum, yttrium, cerium, germanium, titanium, zinc, calcium and barium. Composite phosphor.
【請求項4】 前記希土類蛍光体の粒子が、2種類以上
の蛍光体からなる請求項1〜3のいずれかに記載の複合
蛍光体。
4. The composite phosphor according to claim 1, wherein the particles of the rare earth phosphor are composed of two or more kinds of phosphors.
【請求項5】 バルブ内に放電ガスを充満した放電空間
を有し、前記放電空間に電流を通電して発光する蛍光ラ
ンプにおいて、前記バルブ内面に、請求項1〜4のいず
れかに記載した複合蛍光体からなる層を形成したことを
特徴とする蛍光ランプ。
5. A fluorescent lamp having a discharge space filled with a discharge gas in a bulb, wherein a current is passed through the discharge space to emit light, the inner surface of the bulb being described in any one of claims 1 to 4. A fluorescent lamp having a layer formed of a composite phosphor.
JP2001210532A 2001-07-11 2001-07-11 Composite phosphor and fluorescent lamp using the same Expired - Lifetime JP3695744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210532A JP3695744B2 (en) 2001-07-11 2001-07-11 Composite phosphor and fluorescent lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210532A JP3695744B2 (en) 2001-07-11 2001-07-11 Composite phosphor and fluorescent lamp using the same

Publications (2)

Publication Number Publication Date
JP2003027051A true JP2003027051A (en) 2003-01-29
JP3695744B2 JP3695744B2 (en) 2005-09-14

Family

ID=19045990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210532A Expired - Lifetime JP3695744B2 (en) 2001-07-11 2001-07-11 Composite phosphor and fluorescent lamp using the same

Country Status (1)

Country Link
JP (1) JP3695744B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710289A1 (en) * 2005-03-31 2006-10-11 General Electric Company Method for making phosphors
KR100691908B1 (en) * 2005-09-08 2007-03-09 한화석유화학 주식회사 Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
WO2009063551A1 (en) * 2007-11-13 2009-05-22 Hitachi, Ltd. Phosphor mixture, display device using the phosphor mixture, plasma display panel, and process for producing the same
WO2009075034A1 (en) * 2007-12-13 2009-06-18 Hitachi, Ltd. Fluorescent material, displays made by using the same, plasma display panels, and process for production tehreof
WO2009118806A1 (en) * 2008-03-24 2009-10-01 株式会社 日立製作所 Phosphor mixture and plasma display panel using the phosphor mixture
JP2009544783A (en) * 2006-07-28 2009-12-17 ロデイア・オペラシヨン Luminescent body and core-shell luminous body precursor
JP2010209314A (en) * 2009-03-06 2010-09-24 Korea Inst Of Science & Technology Nanoparticle-porous composite bead and method for producing the same
US8294352B2 (en) 2004-11-15 2012-10-23 Tohoku University Fluorescent lamp
JP2014506266A (en) * 2010-12-14 2014-03-13 ロデイア・オペラシヨン Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production
JP2014194019A (en) * 2007-12-14 2014-10-09 Osram Gmbh Lighting system
WO2015132030A1 (en) * 2014-03-06 2015-09-11 Osram Gmbh Low-pressure discharge lamp with fluorescent particles having a small particle size

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294352B2 (en) 2004-11-15 2012-10-23 Tohoku University Fluorescent lamp
EP1710289A1 (en) * 2005-03-31 2006-10-11 General Electric Company Method for making phosphors
KR100691908B1 (en) * 2005-09-08 2007-03-09 한화석유화학 주식회사 Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
WO2007029933A1 (en) * 2005-09-08 2007-03-15 Hanwha Chemical Corporation Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
JP2009507751A (en) * 2005-09-08 2009-02-26 ハンファ ケミカル コーポレーション Method for coating metal oxide surface with metal oxide ultrafine particles, and coated body produced therefrom
JP2009544783A (en) * 2006-07-28 2009-12-17 ロデイア・オペラシヨン Luminescent body and core-shell luminous body precursor
JP2014015617A (en) * 2006-07-28 2014-01-30 Rhodia Operations Luminophors and core-shell luminophor precursors
WO2009063551A1 (en) * 2007-11-13 2009-05-22 Hitachi, Ltd. Phosphor mixture, display device using the phosphor mixture, plasma display panel, and process for producing the same
WO2009075034A1 (en) * 2007-12-13 2009-06-18 Hitachi, Ltd. Fluorescent material, displays made by using the same, plasma display panels, and process for production tehreof
JP2014194019A (en) * 2007-12-14 2014-10-09 Osram Gmbh Lighting system
WO2009118806A1 (en) * 2008-03-24 2009-10-01 株式会社 日立製作所 Phosphor mixture and plasma display panel using the phosphor mixture
JP2010209314A (en) * 2009-03-06 2010-09-24 Korea Inst Of Science & Technology Nanoparticle-porous composite bead and method for producing the same
JP2014506266A (en) * 2010-12-14 2014-03-13 ロデイア・オペラシヨン Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production
US9290693B2 (en) 2010-12-14 2016-03-22 Rhodia Operations Composition containing a core-shell aluminate, phosphor obtained from said composition, and preparation methods
WO2015132030A1 (en) * 2014-03-06 2015-09-11 Osram Gmbh Low-pressure discharge lamp with fluorescent particles having a small particle size
CN106104748A (en) * 2014-03-06 2016-11-09 欧司朗有限公司 There is the low-pressure discharge lamp of the fluorescent material particle of low particle size
US9865450B2 (en) 2014-03-06 2018-01-09 Ledvance Gmbh Low-pressure discharge lamp with fluorescent particles having a small particle size

Also Published As

Publication number Publication date
JP3695744B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
WO1982003726A1 (en) Fluorescent discharge lamp
EP0229428B1 (en) Low-pressure mercury vapour discharge lamp
JPH0774333B2 (en) Luminescent composition
US5614783A (en) Fluorescent lamp including fired non-luminescent material
JP3695744B2 (en) Composite phosphor and fluorescent lamp using the same
JP2002080843A (en) Light-emitting fluorescent substance by vacuum ultraviolet radiation excitation
EP0318578A4 (en) Silicon dioxide selectively reflecting layer for mercury vapor discharge lamps.
US6489716B1 (en) Compact, energy-saving lamp
JP2001172626A (en) Display and light emitting device
EP0331738B1 (en) Green light emitting rare gas discharge lamp
JP3721811B2 (en) Phosphor and gas discharge device using the same
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
JP3856356B2 (en) Phosphor paste composition and vacuum ultraviolet light-excited light emitting device
WO2008129489A2 (en) Fluorescent mercury vapor discharge lamp comprising trichromatic phosphor blend
JPH1173138A (en) Red light emitting phosphor, and plasma display device and noble gas discharging light emitting device using it
JPH03177491A (en) Fluorescent substance and fluorescent lamp
JP2902795B2 (en) Blue light emitting phosphor and fluorescent lamp
KR101139542B1 (en) Multi-coated Phosphors and Manufacturing Method thereof
JPS6049553A (en) Fluorescent lamp
KR100748832B1 (en) Zinc silicate green phosphor and method for preparing thereof
JPH09291280A (en) Fluorescent substance and fluorescent lamp
JPH02228390A (en) Highly color rendering fluorescent lamp
JP4205487B2 (en) Luminescent composition, fluorescent lamp, and phosphor coating solution for fluorescent lamp
JPH10204429A (en) Fluorescent substance particle and fluorescent lamp
JPH08188774A (en) Fluorescent substance, production of fluorescent substance, fluorescent lamp and lighting system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041206

A521 Written amendment

Effective date: 20050202

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050627

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100708