JP2003026837A - Method for producing biodegradable peelable film - Google Patents

Method for producing biodegradable peelable film

Info

Publication number
JP2003026837A
JP2003026837A JP2001219582A JP2001219582A JP2003026837A JP 2003026837 A JP2003026837 A JP 2003026837A JP 2001219582 A JP2001219582 A JP 2001219582A JP 2001219582 A JP2001219582 A JP 2001219582A JP 2003026837 A JP2003026837 A JP 2003026837A
Authority
JP
Japan
Prior art keywords
film
silicone resin
biodegradable
producing
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001219582A
Other languages
Japanese (ja)
Inventor
Tadashi Kawashima
糺 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001219582A priority Critical patent/JP2003026837A/en
Publication of JP2003026837A publication Critical patent/JP2003026837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a method for producing a biodegradable peelable film, not having defects such as crease or loss of flexibility. SOLUTION: This method for producing the biodegradable peelable film comprises a step for producing the film by applying a silicone resin to a biodegradable film of a fatty acid polyester. (a) The silicone resin curable at <100 deg.C low temperature is used and (b) the silicone resin is applied while controlling the amount of the silicone resin to the minimum amount of forming peeling layer and (c) the silicone resin is cured without stretching while keeping the film at <100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粘着テープ、粘着
ラベル等に用いられる剥離フィルムに関し、更に詳細に
は、当該剥離フィルムに生分解性フィルムを用いると同
時に、その製造工程においてフィルム物性の劣化を防止
つつ、経済性に優れた製造方法の開発に関する。
TECHNICAL FIELD The present invention relates to a release film used for pressure-sensitive adhesive tapes, pressure-sensitive adhesive labels, etc. More specifically, a biodegradable film is used as the release film, and at the same time, physical properties of the film are deteriorated in the production process. The present invention relates to the development of a manufacturing method which is excellent in economic efficiency while preventing the above.

【0002】[0002]

【従来の技術】従来、上記剥離フィルムの素材には、ポ
リエチレンテレフタレートやポリエチレンナフタレート
等のポリエステル樹脂が利用されるのが一般的で、その
表面に離型性に富んだシリコーン被膜を形成させて成る
ものであるが、その製造方法は、概ね、ポリエステルフ
ィルムに安定化させたシリコーンをグラビアコーター等
の塗布機で塗布し、それを120℃程度の高温に晒して
シリコーンの硬化反応を促し、フィルムに定着させて剥
離フィルムを得るという方法によっている。
2. Description of the Related Art Conventionally, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate has generally been used as a material for the above-mentioned release film, and a silicone film rich in releasability is formed on the surface thereof. However, the production method is generally applied by coating stabilized polyester on a polyester film with a coating machine such as a gravure coater and exposing it to a high temperature of about 120 ° C. to accelerate the curing reaction of the silicone. The fixing film is fixed on the surface to obtain a release film.

【0003】しかし、上記ポリエチレンテレフタレート
やポリエチレンナフタレート素材は生分解性に欠けるた
め、廃棄時には焼却処分しなければならず、焼却場の不
足や、環境汚染等の問題から、今日そのまま放置しても
微生物の作用で分解する生分解性フィルムが検討される
に至っており、その生分解性フィルムには、例えば、ポ
リ乳酸フィルム等の脂肪族ポリエステルを主成分とした
フィルムが知られている。
However, since the above polyethylene terephthalate and polyethylene naphthalate materials lack biodegradability, they must be incinerated at the time of disposal, and even if they are left as they are today, due to problems such as lack of an incinerator and environmental pollution. A biodegradable film that is decomposed by the action of microorganisms has been studied, and as the biodegradable film, for example, a film containing an aliphatic polyester as a main component such as a polylactic acid film is known.

【0004】ところで、当該ポリ乳酸等の脂肪族ポリエ
ステルを剥離フィルムとして用いた場合には、次のよう
な問題が起こることが判明した。 (a)脂肪族ポリエステルの生分解性フィルムは、熱に
対する耐性に乏しい為、上記剥離フィルムの製造工程に
おいて、シリコーンの硬化を促す為の120℃以上の高
温を加えると、平滑面のフィルムに凹凸状の皺が発生す
ると共に、フィルムの剛性が強まり、柔軟性のないゴワ
ゴワした感じのフィルムとなってしまう。 (b)その皺を平滑化する為には、後工程で2軸延伸機
に掛けて、フィルムを引き延ばして皺を取り除く方法が
あるが、該2軸延伸機は極めて高価な装置であって、製
造コストを上げて経済性を損なうことになる。
By the way, it has been found that the following problems occur when the aliphatic polyester such as polylactic acid is used as a release film. (A) Since the biodegradable film of the aliphatic polyester has poor resistance to heat, when a high temperature of 120 ° C. or higher is applied in the manufacturing process of the release film to accelerate the curing of the silicone, the film having a smooth surface becomes uneven. Wrinkles are generated and the rigidity of the film is increased, resulting in a film with a stiff and inflexible feeling. (B) In order to smooth the wrinkles, there is a method of removing the wrinkles by stretching the film by applying a biaxial stretching machine in a post-process, but the biaxial stretching machine is an extremely expensive device. This will increase manufacturing costs and impair economic efficiency.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記実状に
鑑みてなされたもので、剥離フィルムに生分解性フィル
ムを用いることを前提とし、その際生じる上記問題点を
検討し、これらを一掃し得る製造方法の開発を試みたも
のである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and on the premise that a biodegradable film is used as a release film, the above-mentioned problems occurring at that time are examined and the problems are eliminated. This is an attempt to develop a possible manufacturing method.

【0006】[0006]

【課題を解決するための手段】請求項1記載の生分解性
剥離フィルムの製造方法は、脂肪酸ポリエステルの生分
解性フィルムにシリコーン樹脂を塗布する剥離フィルム
の製造工程にあって、(a)該シリコーン樹脂に、10
0℃未満の低温で硬化するタイプの樹脂を用い、(b)
触媒抑制剤の添加を無とするか或いは添加量を少量に抑
えつつ、硬化剤を混合させた該シリコーン樹脂を剥離層
を形成するに可及的に必要最小限に近い量に調整して剥
離フィルムに塗布し、(c)該剥離フィルムを100℃
未満の低温に保持しつつ、延伸工程を加えることなくシ
リコーンを硬化させることを特徴として構成される。
The method for producing a biodegradable release film according to claim 1 is the step of producing a release film in which a silicone resin is applied to a biodegradable film of a fatty acid polyester. 10 for silicone resin
Using a resin that cures at a low temperature of less than 0 ° C., (b)
Peeling by adjusting the amount of the silicone resin mixed with the curing agent to the minimum necessary amount to form the peeling layer without adding the catalyst inhibitor or suppressing the addition amount to a small amount. (C) The release film is applied to a film at 100 ° C.
It is characterized in that the silicone is cured without adding a stretching step while being kept at a low temperature of less than.

【0007】請求項2記載の生分解性剥離フィルムの製
造方法は、脂肪酸ポリエステルをポリ乳酸として構成さ
れる。
In the method for producing a biodegradable release film according to claim 2, the fatty acid polyester is constituted by polylactic acid.

【0008】請求項3記載の生分解性剥離フィルムの製
造方法は、シリコーン樹脂を信越シリコーンKS830
として構成される。
In the method for producing a biodegradable release film according to claim 3, the silicone resin is Shin-Etsu Silicone KS830.
Configured as.

【0009】請求項4記載の生分解性剥離フィルムの製
造方法は、シリコーン樹脂を定量供給装置を用いて必要
最小限に近い量を供給することで構成される。
The method for producing a biodegradable release film according to a fourth aspect of the present invention is configured by supplying a silicone resin in an amount close to a necessary minimum amount using a constant amount supply device.

【0010】[0010]

【発明の実施の形態】本発明剥離フィルムには、所期の
目的に沿って生分解性フィルムを用いるが、該生分解性
フィルムには、脂肪族ポリエステルのフィルムを採択す
る。該脂肪族ポリエステルのフィルムは、一般式〔−O
−CHR−CO−〕(Rは炭素数1〜3のアルキル基)
の繰り返し単位を有するポリマーで、ポリ乳酸、ポリグ
リコール、ポリオキシ酪酸等が挙げられる。例えば、ポ
リ乳酸は、加水分解でオリゴ乳酸に変化し、酵素分解を
受けた後、微生物による分解でCOとHOに還元さ
れる特徴を備え、優れた生分解性フィルムとして機能す
るものである。しかし、本発明者の試験では、該ポリ乳
酸フィルムを100℃以上に加熱すると、フィルムに熱
収縮が起こると共に、フィルムとしての柔軟性を失い、
剛性の強い、ゴワゴワとした状態のフィルムとなること
が確認された。この傾向は、従来のPETフィルムにも
若干は見られるが、その傾向はポリ乳酸フィルムの方が
はるかに大きく、例えば、後工程のシリコーン硬化反応
のために120℃以上の高温を加えると仮定すると、大
きな物性の劣化が避けられない。その理由は、−CO基
等を含んで親水性に富んだ皮膜の表面が高温に晒される
と、軟化剤的に機能していた水分の一部が失われ、フィ
ルムが収縮すると共に、柔軟性、粘弾性を失って、硬質
化するものと推察される。因みに、PETフィルムとポ
リ乳酸フィルムとの、熱収縮率、融点の違いを文献より
調べると、下表の如くである。
BEST MODE FOR CARRYING OUT THE INVENTION For the release film of the present invention, a biodegradable film is used for the intended purpose, and an aliphatic polyester film is adopted as the biodegradable film. The film of the aliphatic polyester has the general formula [-O
-CHR-CO-] (R is an alkyl group having 1 to 3 carbon atoms)
Examples of the polymer having a repeating unit of are polylactic acid, polyglycol, polyoxybutyric acid, and the like. For example, polylactic acid is characterized by being converted into oligolactic acid by hydrolysis, undergoing enzymatic decomposition, and then being reduced by microorganisms into CO 2 and H 2 O, which functions as an excellent biodegradable film. Is. However, in the test of the present inventor, when the polylactic acid film was heated to 100 ° C. or higher, heat shrinkage occurred in the film and the flexibility as the film was lost.
It was confirmed that the film was stiff and stiff. Although this tendency is slightly observed in the conventional PET film, the tendency is much larger in the polylactic acid film. For example, assuming that a high temperature of 120 ° C. or higher is applied for the post-process silicone curing reaction. However, large deterioration of physical properties is inevitable. The reason for this is that when the surface of a film rich in hydrophilicity containing -CO groups and the like is exposed to high temperatures, some of the water that had functioned as a softening agent is lost, and the film shrinks, and the flexibility increases. It is presumed that it loses viscoelasticity and becomes hard. By the way, when the difference in the heat shrinkage rate and the melting point between the PET film and the polylactic acid film is examined from the literature, it is as shown in the table below.

【0011】[0011]

【表1】 [Table 1]

【0012】次いで、剥離層には、硬化性のシリコーン
樹脂を用いるが、従来該シリコーン樹脂には硬化温度が
100℃以上で硬化時間が20秒以上のもの、即ち、1
00℃未満では容易に硬化せず、硬化時間も遅いタイプ
のシリコーン樹脂が用いられるのが一般的であった。そ
の理由は、後述するグラビアコート法、リバースコート
法等のロールコート法、その他工法で剥離剤を塗布する
際に、低温で速乾性にすると、塗布の途中で硬化反応が
始まってしまい、均一で充分な塗布が困難となるからで
ある。而して、本発明では、当該シリコーン樹脂には、
100℃未満(望ましくは80℃程度)で速やかに反応
の開始されるタイプのシリコーン樹脂を用いる。そのシ
リコーン樹脂には、例えば、信越シリコーンKS830
を挙げることができる。即ち、本発明者は、上記脂肪酸
ポリエステルフィルムの高温における劣化現象を解消し
ようと試行錯誤するうち、当該フィルムを120℃以上
の高温とするのは、塗布工程におけるシリコーン樹脂の
硬化反応を遅らせて、後工程で一挙に高温として硬化反
応を促進させようとするからで、この観点からは高温劣
化の問題が解消されない矛盾に気付いた。そこで、後述
する塗布工程との相対的関係にあって、先ず、当該シリ
コーンを約80℃程度で硬化反応が促されるタイプのシ
リコーン樹脂を選択することとした。約80℃の低温で
の硬化反応なら、上記脂肪酸ポリエステル樹脂に劣化現
象は起こらず、硬化速度が工程の遅延をもたらさないか
らである。このシリコーン樹脂には、上記反応遅延の目
的で触媒の反応を抑える為の触媒抑制剤(反応遅延剤)
が添加されている場合が多く、この場合には、当該触媒
抑制剤の添加を無とするか、或いは、その添加量を少量
に調整することで、上記低温で硬化するタイプのシリコ
ーン樹脂を得ることができる。
Next, a curable silicone resin is used for the release layer. Conventionally, the silicone resin has a curing temperature of 100 ° C. or higher and a curing time of 20 seconds or longer, that is, 1
It is common to use a type of silicone resin that does not cure easily at a temperature below 00 ° C. and has a slow curing time. The reason is that when the release agent is applied by a roll coating method such as a gravure coating method, a reverse coating method, etc., which will be described later, or when the release agent is quickly dried at a low temperature, a curing reaction starts in the middle of the application, and the coating composition is uniform. This is because it becomes difficult to apply the coating sufficiently. Thus, in the present invention, the silicone resin is
A silicone resin of the type in which the reaction starts rapidly at a temperature of less than 100 ° C. (preferably about 80 ° C.) is used. Examples of the silicone resin include Shin-Etsu Silicone KS830.
Can be mentioned. That is, the present inventor makes trial and error to eliminate the deterioration phenomenon of the fatty acid polyester film at high temperature, and setting the temperature of the film to 120 ° C. or higher delays the curing reaction of the silicone resin in the coating step, Since we tried to accelerate the curing reaction all at once in the subsequent process, we noticed a contradiction that the problem of high temperature deterioration could not be solved from this viewpoint. Therefore, in consideration of the relative relationship with the coating step to be described later, first, it was decided to select a silicone resin of a type in which the curing reaction of the silicone is promoted at about 80 ° C. This is because if the curing reaction is performed at a low temperature of about 80 ° C., the fatty acid polyester resin does not deteriorate and the curing speed does not delay the process. This silicone resin contains a catalyst inhibitor (reaction retarder) for suppressing the reaction of the catalyst for the purpose of delaying the above reaction.
Is added in many cases, and in this case, the catalyst inhibitor is not added or the addition amount is adjusted to a small amount to obtain a silicone resin of the type that cures at low temperatures. be able to.

【0013】次いで、前記相関する塗布工程にあって、
従来のシリコーン樹脂の塗布方法は、グラビアコート
法、又はリバースコート法等を用いて余剰のシリコーン
樹脂を液溜部に貯留させていたが、本発明におけるシリ
コーン樹脂の塗布にあっては、該シリコーン樹脂を剥離
層を形成するに可及的に必要最小限に近い量に調整し、
必要な硬化剤と混合させた後に剥離フィルムに塗布する
ものとした。即ち、従来法は上述の如く、シリコーン樹
脂の反応を遅延させることで安定化を図り、その安定化
したシリコーン樹脂を多量の余剰分を見込んで液溜部に
貯留させていたが、これでは、触媒抑制剤(反応遅延
剤)の使用等が避けられない。そこで、本発明では、当
該塗布機に脂肪酸ポリエステルフィルムの剥離層の形成
に必要最小限のシリコーン樹脂を供給し、且つ、供給さ
れた樹脂は循環させることなく使い切りの状態とするも
のとし、具体的には、シリコーン樹脂の供給タンクから
塗布機にシリコーン樹脂を送る過程に、上記必要最低限
度のシリコーンの量を調整可能な精度を備えた定量供給
装置を介在させるものとした。即ち、従来のシリコーン
の反応を遅らせるという発想を捨てて、必要最小限の量
を供給して余剰分を可及的に零状態に近づけ、その結
果、滞留する余剰分の招来する粘度上昇や塗工の不安定
等の弊害を一掃し、粘度上昇等の起こらない短時間のう
ちにシリコーン被膜の形成を促すことを狙いとするもの
である。詳細には、従来回転ロールの底部には、シリコ
ーンを貯留させて置く液溜部があり、この液溜部に余剰
シリコーンが溜められると共に終了後に余剰分を戻す為
の循環パイプが備えられていたが、本発明では、当該液
溜部に、剥離層形成に必要とされる量と可及的に一致さ
せた量のシリコーン樹脂を触媒抑制剤を含ませることな
く硬化剤と混合させて供給するものとした。しかし完全
な一致はあり得ないので、極く少量分だけを加えた量と
し、且つ、これを循環させることなく使い切り状態に供
給するものとした。当該定量供給装置には、例えば、
0.1gの精度で供給量が調整可能な既設の二液混合装
置が利用できる。上記塗布機の液溜部に、シリコーン樹
脂が一定精度を保って供給されると、回転ロールから繰
り出されたフィルムとシリコーン樹脂が接触した際、予
め剥離層の形成に必要な最低限度の値に近づけられた量
のシリコーン樹脂が付着し、そのまま硬化工程へと送ら
れる。
Next, in the correlating coating steps,
Conventional silicone resin coating methods have used a gravure coating method, a reverse coating method, or the like to store excess silicone resin in a liquid reservoir, but in coating the silicone resin according to the present invention, the silicone resin is used. Adjust the resin to the minimum amount necessary to form the release layer,
It was applied to the release film after being mixed with the required curing agent. That is, in the conventional method, as described above, the reaction of the silicone resin is delayed to achieve stabilization, and the stabilized silicone resin is stored in the liquid reservoir part in anticipation of a large excess amount. The use of catalyst inhibitors (reaction delay agents) is unavoidable. Therefore, in the present invention, the minimum amount of silicone resin necessary for forming the release layer of the fatty acid polyester film is supplied to the coating machine, and the supplied resin is used up without being circulated. In this case, in the process of feeding the silicone resin from the silicone resin supply tank to the applicator, a constant amount supply device having an accuracy capable of adjusting the minimum required amount of silicone is interposed. That is, the conventional idea of delaying the reaction of silicone is abandoned, and the minimum necessary amount is supplied to bring the surplus to as close to zero as possible. The purpose of the present invention is to eliminate the adverse effects such as instability of the work and promote the formation of the silicone coating within a short time in which the increase in viscosity does not occur. In detail, conventionally, there is a liquid reservoir for storing silicone at the bottom of the rotating roll, and excess silicone is stored in this liquid reservoir, and a circulation pipe for returning the excess after completion is provided. However, in the present invention, an amount of silicone resin that is as close as possible to the amount required for forming the release layer is supplied to the liquid reservoir portion without being mixed with the catalyst inhibitor and mixed with the curing agent. I decided. However, there is no perfect agreement, so only a very small amount was added, and this was supplied in a used-up state without being circulated. The quantitative supply device, for example,
An existing two-liquid mixing device whose supply amount can be adjusted with an accuracy of 0.1 g can be used. When the silicone resin is supplied to the liquid reservoir of the coating machine with constant accuracy, when the film fed from the rotating roll and the silicone resin come into contact with each other, the minimum value necessary for forming the release layer is obtained in advance. The approached amount of silicone resin adheres and is sent directly to the curing process.

【0014】そして、該硬化工程においては、従来の如
く、120℃程度の高温にすることなく、100℃未満
の温度(望ましくは80℃程度)で、且つ、2軸延伸の
工程を加えることなく、塗布したシリコーン樹脂の硬化
による定着を促す。
In the curing step, unlike the conventional case, the temperature is not higher than about 120 ° C., the temperature is lower than 100 ° C. (preferably about 80 ° C.), and the biaxial stretching step is not added. , Promotes fixing by curing the applied silicone resin.

【0015】上記発明に則って得られる本発明フィルム
の、高温加熱した場合のフィルムの物性の変化を調べる
ため、先ず、下記の条件で引っ張り試験を行った。 〈試験条件〉 フィルム:実施例1で得た本発明フィルム 温度条件:80℃、100℃、120℃、140℃の各
温度にフィルムを5分間放置 試験方法:JISK7161、7162の規定に基づく
引っ張り試験 引っ張り速度:100mm/min 〈結果〉その結果は、表2の通りで、それをグラフ化し
たのが図1,図2及び図3である。図1に示される如
く、初ピーク時強度は、処理温度が高い程高くなる傾向
にあり、図2に示される如く、破断時強度は、処理温度
が変わってもそれ程変化が見られない。しかし、破断時
伸びは、処理温度が高い程、伸びが低くなり、特に縦方
向には低下が顕著で、柔軟性が失われていることが判明
した。
In order to examine changes in the physical properties of the film of the present invention obtained according to the above invention when heated at high temperature, first, a tensile test was conducted under the following conditions. <Test Conditions> Film: Film of the present invention obtained in Example 1 Temperature conditions: Film left at each temperature of 80 ° C., 100 ° C., 120 ° C., 140 ° C. for 5 minutes Test method: Tensile test based on JISK7161 and 7162 Tensile speed: 100 mm / min <Results> The results are shown in Table 2, and graphs thereof are shown in FIGS. 1, 2 and 3. As shown in FIG. 1, the strength at the initial peak tends to increase as the treatment temperature increases, and as shown in FIG. 2, the strength at break does not change so much even when the treatment temperature changes. However, it was found that the elongation at break becomes lower as the treatment temperature is higher, and the elongation is particularly remarkable in the longitudinal direction, and the flexibility is lost.

【0016】[0016]

【表2】 [Table 2]

【0017】次いで、テープ状にしたフィルムの強度変
化を見るため、下記の条件でループ反発試験を行った。 〈試験条件〉 フィルム:実施例1で得た本発明フィルム 試験片:縦方向100mm×横方向50mmのテープ状
に裁断 試験機:テンシロン 試験方法:上記試験片をループ状とし、そのループの頭
部から下方に向けてテンシロンの当片を押し下げ、その
ときの強度をテンシロンで測定する。 押し下げ速度:100mm/min 〈結果〉その結果は、表3の通りで、それをグラフ化し
たのが図4である。図4に示される如く、高温になるほ
ど反発力が高く、剛性の値が高まっているのに対し、8
0℃では低い剛性値に維持されることが判明した。
Next, a loop repulsion test was conducted under the following conditions in order to see the change in strength of the tape-shaped film. <Test conditions> Film: Film of the present invention obtained in Example 1 Test piece: Cut into a tape shape having a length of 100 mm and a width of 50 mm Tester: Tensilon Test method: The above test piece was formed into a loop, and the head of the loop was formed. From here, push the piece of Tensilon downward, and measure the strength at that time with Tensilon. Push-down speed: 100 mm / min <Results> The results are shown in Table 3, and FIG. 4 is a graph thereof. As shown in FIG. 4, the higher the temperature, the higher the repulsive force and the higher the rigidity value.
It was found that at 0 ° C a low stiffness value was maintained.

【0018】[0018]

【表3】 [Table 3]

【0019】更に、本発明フィルムの高温加熱した場合
の収縮率の変化を見るため、下記の条件で収縮率測定試
験を行った。 〈試験条件〉 フィルム:実施例1で得た本発明フィルム 試験片:実施例1と同じ 試験方法:上記試験片を80〜160℃の各温度に5分
間放置し、その後の収縮した寸法を測定した。 〈結果〉その結果は、表4の通りで、それをグラフ化し
たのが図5である。図5に示される如く、処理温度が高
くなるほど収縮率が上昇し、120℃以上では6〜18
%の収縮率に至るのに対し、80℃では収縮率は2%以
下であることが証明された。
Further, in order to see the change in shrinkage of the film of the present invention when heated at a high temperature, a shrinkage measurement test was conducted under the following conditions. <Test Conditions> Film: Film of the present invention obtained in Example 1 Test piece: Same as in Example 1 Test method: The test piece was left at each temperature of 80 to 160 ° C. for 5 minutes, and the shrinked dimension was measured thereafter. did. <Results> The results are shown in Table 4, and a graph of them is shown in FIG. As shown in FIG. 5, the shrinkage rate increases as the treatment temperature increases, and is 6 to 18 at 120 ° C. or higher.
It was proved that the shrinkage rate was 80% or less, but the shrinkage rate was 2% or less.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【実施例1】フィルムにユニチカポリ乳酸フィルム(ユ
ニチカ社製)を用い、これにシリコーン樹脂信越シリコ
ーンKS830を硬化剤と混合して塗布した(触媒抑制
剤は含ませない)。塗布機には、グラビアコート式の塗
布機を用い、該塗布機の液溜部への供給過程に既設の二
液混合装置の定量供給装置を介設した。塗布後、フィル
ムを80℃に1分保ったところ、そのまま硬化した。も
ちろん、延伸機に掛けることはなかった。その結果、剥
離剤膜厚は0.1μmで、剥離力が100g/5cm、
残留接着率は100%と高い値を示し、硬化がほぼ完全
であることが裏付けられた。
Example 1 A unitika polylactic acid film (manufactured by Unitika) was used as a film, and a silicone resin Shin-Etsu Silicone KS830 was mixed with a curing agent and applied (catalyst inhibitor is not included). A gravure coat type applicator was used as the applicator, and a fixed-quantity supply device of an existing two-liquid mixing device was interposed in the supply process to the liquid reservoir of the applicator. After coating, the film was kept at 80 ° C. for 1 minute, and it was cured as it was. Of course, it was not hung on a stretching machine. As a result, the release agent film thickness is 0.1 μm, the release force is 100 g / 5 cm,
The residual adhesion rate was as high as 100%, which proves that the curing is almost complete.

【0022】[0022]

【比較例】比較例として、信越シリコーンKS847を
取り上げた。上記と同様フィルムにユニチカポリ乳酸フ
ィルム(ユニチカ社製)を用い、これにシリコーン樹脂
信越シリコーンKS847を硬化剤と混合して塗布した
(触媒抑制剤は含ませない)。塗布機には、グラビアコ
ート式の塗布機を用い、該塗布機の液溜部への供給過程
に既設の二液混合装置の定量供給装置を介設した。塗布
後、フィルムを80℃に1分保ったところ、そのまま硬
化した。もちろん、延伸機に掛けることはなかった。そ
の結果、剥離剤膜厚は0.1μmで、剥離力が10g/
5cmと低く、残留接着率は50%であり、信越シリコ
ーンKS830に比べ低温硬化性に劣る信越シリコーン
KS847では、相当量の未硬化の剥離剤が転着するも
のとなった。
Comparative Example Shin-Etsu Silicone KS847 was taken as a comparative example. A Unitika polylactic acid film (manufactured by Unitika Ltd.) was used as the film as above, and a silicone resin Shin-Etsu Silicone KS847 was mixed with a curing agent and applied (catalyst inhibitor is not included). A gravure coat type applicator was used as the applicator, and a fixed-quantity supply device of an existing two-liquid mixing device was interposed in the supply process to the liquid reservoir of the applicator. After coating, the film was kept at 80 ° C. for 1 minute, and it was cured as it was. Of course, it was not hung on a stretching machine. As a result, the release agent film thickness was 0.1 μm and the release force was 10 g /
Shin-Etsu Silicone KS847, which is as low as 5 cm and has a residual adhesion ratio of 50%, and which is inferior in low-temperature curing property to Shin-Etsu Silicone KS830, transferred a considerable amount of uncured release agent.

【0023】[0023]

【発明の効果】上記構成及び作用に基づいて、本発明
は、下記の如き優れた効果を奏する。
The present invention has the following excellent effects based on the above-mentioned constitution and operation.

【0024】脂肪族ポリエステルの生分解性フィルムの
欠点であった熱に対する劣化の問題を解消し、フィルム
表面にシリコーン層を形成した後も、2%以下の収縮率
を保って、凹凸のない平滑面のフィルムが得られ、且
つ、ゴワゴワ感のない柔軟性を保持した優れたフィルム
が得られる。
The problem of deterioration due to heat, which was a defect of the biodegradable film of the aliphatic polyester, was solved, and even after the silicone layer was formed on the film surface, the shrinkage rate was kept at 2% or less, and the surface was smooth without unevenness. It is possible to obtain a film having a flat surface and to obtain an excellent film that retains flexibility without a stiff feeling.

【0025】且つ、そのフィルムの残留接着率は極めて
高く、剥離剤の転着のない剥離フィルムが得られる。
Further, the residual adhesion rate of the film is extremely high, and a release film without transfer of release agent can be obtained.

【0026】又、そのままで皺のない平滑なフィルムが
得られるので、後工程で2軸延伸機に掛ける必要がなく
なり、極めて高価な2軸延伸機を省いて、製造コストを
頗る引き下げることができる。
Further, since a smooth film without wrinkles can be obtained as it is, it is not necessary to apply it to a biaxial stretching machine in a subsequent step, and an extremely expensive biaxial stretching machine can be omitted, and the manufacturing cost can be significantly reduced. .

【0027】更に、物性的劣化のない生分解性フィルム
が得られたので、真の意味で生分解性フィルムの特性が
活かされ、環境問題に貢献するものとなる。
Furthermore, since a biodegradable film having no physical property deterioration was obtained, the characteristics of the biodegradable film can be utilized in the true sense, which contributes to environmental problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】 表2の初ピークの部をグラフとして表した
図。
FIG. 1 is a graph showing the part of the first peak in Table 2.

【図2】 表2の破断時強度をグラフとして表した図。FIG. 2 is a graph showing the strength at break in Table 2.

【図3】 表2の破断時伸びをグラフとして表した図。FIG. 3 is a graph showing elongation at break in Table 2.

【図4】 表3をグラフとして表した図。FIG. 4 is a diagram showing Table 3 as a graph.

【図5】 表4をグラフとして表した図。FIG. 5 is a diagram showing Table 4 as a graph.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 脂肪酸ポリエステルの生分解性フィルム
にシリコーン樹脂を塗布する剥離フィルムの製造工程に
あって、 (a)該シリコーン樹脂に、100℃未満の低温で硬化
するタイプの樹脂を用い、 (b)触媒抑制剤の添加を無とするか或いは添加量を少
量に抑えつつ、硬化剤を混合させた該シリコーン樹脂を
剥離層を形成するに可及的に必要最小限に近い量に調整
して剥離フィルムに塗布し、 (c)該剥離フィルムを100℃未満の低温に保持しつ
つ、延伸工程を加えることなくシリコーンを硬化させる
ことを特徴とする生分解性剥離フィルムの製造方法。
1. A process for producing a release film, which comprises coating a biodegradable film of a fatty acid polyester with a silicone resin, comprising: (a) using a resin of a type curable at a low temperature of less than 100 ° C. as the silicone resin; b) The addition of the catalyst inhibitor may be eliminated or the amount thereof may be suppressed to a small amount, and the silicone resin mixed with the curing agent may be adjusted to the minimum amount necessary for forming the release layer. And (c) curing the silicone without adding a stretching step while maintaining the release film at a low temperature of less than 100 ° C. (c) A method for producing a biodegradable release film.
【請求項2】 脂肪酸ポリエステルをポリ乳酸とした請
求項1記載の生分解性剥離フィルムの製造方法。
2. The method for producing a biodegradable release film according to claim 1, wherein the fatty acid polyester is polylactic acid.
【請求項3】 シリコーン樹脂を信越シリコーンKS8
30とした請求項1、2項いずれか記載の生分解性剥離
フィルムの製造方法。
3. The Shin-Etsu Silicone KS8 is a silicone resin.
The method for producing a biodegradable release film according to any one of claims 1 and 2, which is 30.
【請求項4】 シリコーン樹脂を、定量供給装置を用い
て必要最小限に近い量を供給する請求項1〜3のうちい
ずれか1項記載の生分解性剥離フィルムの製造方法。
4. The method for producing a biodegradable release film according to any one of claims 1 to 3, wherein the silicone resin is supplied in an amount close to the minimum required by using a constant amount supply device.
【請求項5】 塗布後のシリコーン樹脂を80℃で硬化
させる請求項1〜4のうちいずれか1項記載の生分解性
剥離フィルムの製造方法。
5. The method for producing a biodegradable release film according to claim 1, wherein the applied silicone resin is cured at 80 ° C.
JP2001219582A 2001-07-19 2001-07-19 Method for producing biodegradable peelable film Pending JP2003026837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001219582A JP2003026837A (en) 2001-07-19 2001-07-19 Method for producing biodegradable peelable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001219582A JP2003026837A (en) 2001-07-19 2001-07-19 Method for producing biodegradable peelable film

Publications (1)

Publication Number Publication Date
JP2003026837A true JP2003026837A (en) 2003-01-29

Family

ID=19053560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001219582A Pending JP2003026837A (en) 2001-07-19 2001-07-19 Method for producing biodegradable peelable film

Country Status (1)

Country Link
JP (1) JP2003026837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320979A (en) * 2006-05-30 2007-12-13 Dainippon Printing Co Ltd Self-adhesive laminate
US20100129582A1 (en) * 2007-05-07 2010-05-27 Sony Chemical & Information Device Corporation Anisotropic electrically conductive adhesive film and method for manufacturing same
WO2012128042A1 (en) 2011-03-24 2012-09-27 日東電工株式会社 Method for producing release liner
US9090771B2 (en) 2009-01-30 2015-07-28 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
JP6041978B2 (en) * 2013-03-21 2016-12-14 株式会社村田製作所 Displacement sensor, push-in amount detection sensor, and touch input device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320979A (en) * 2006-05-30 2007-12-13 Dainippon Printing Co Ltd Self-adhesive laminate
US20100129582A1 (en) * 2007-05-07 2010-05-27 Sony Chemical & Information Device Corporation Anisotropic electrically conductive adhesive film and method for manufacturing same
US9090771B2 (en) 2009-01-30 2015-07-28 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
US9527972B2 (en) 2009-01-30 2016-12-27 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
WO2012128042A1 (en) 2011-03-24 2012-09-27 日東電工株式会社 Method for producing release liner
US9394467B2 (en) 2011-03-24 2016-07-19 Nitto Denko Corporation Method for producing release liner
JP6041978B2 (en) * 2013-03-21 2016-12-14 株式会社村田製作所 Displacement sensor, push-in amount detection sensor, and touch input device
JPWO2014148521A1 (en) * 2013-03-21 2017-02-16 株式会社村田製作所 Displacement sensor, push-in amount detection sensor, and touch input device

Similar Documents

Publication Publication Date Title
CN102470603B (en) Adhesive sheet for fixing mold, and adhesive tape for fixing mold, and process for producing fine structure
JPH09216963A (en) Polyester film coated with silicone release layer and method for coating
JP2007528910A (en) Silicone release coating containing fine particles with improved anti-sticking and release properties
JP2003026837A (en) Method for producing biodegradable peelable film
KR100733661B1 (en) Process for inline producing biaxially oriented releasing film
CN103459050B (en) Method for producing release liner
AU615241B2 (en) Production of polymeric films
JP2015193171A (en) Release sheet and method of manufacturing release sheet
JP2001088138A (en) Method for treating mold made of resin and mold made of resin
JP6077327B2 (en) Release coating composition and silicone release polyester film comprising the same
JP5305062B2 (en) Heat release type adhesive sheet
JP5735278B2 (en) Release film
JPH039944B2 (en)
JP4838921B2 (en) Silicone easy-adhesive polyester film
KR100412245B1 (en) Method for manufacturing double-faced water-soluble silicon paper
JPS58173179A (en) Foamed sheet material with adhesive
JPH0978041A (en) Double-sided adhesive tape
JPH02173080A (en) Manufacture of peelable layer and release surface, and separator and self-adhesive member
JP4071562B2 (en) Silicone easy-adhesive polyester film
JP2002293056A (en) Method for manufacturing blanket for printing
JPH04248820A (en) Photopolymerizable composition and production of viscoelastic product
JP4600622B2 (en) Biodegradable release agent composition and biodegradable release tape
KR20110010941A (en) Gasket tape for lens mold and method for the same
JP5031246B2 (en) Release treatment agent, release agent, release treatment layer, production method of release treatment layer, release sheet, adhesive tape and adhesive sheet
JP2011042114A (en) Printing method and solvent absorber for use in the same