JP2003024765A - Catalyst-filled reaction pipe - Google Patents

Catalyst-filled reaction pipe

Info

Publication number
JP2003024765A
JP2003024765A JP2001214236A JP2001214236A JP2003024765A JP 2003024765 A JP2003024765 A JP 2003024765A JP 2001214236 A JP2001214236 A JP 2001214236A JP 2001214236 A JP2001214236 A JP 2001214236A JP 2003024765 A JP2003024765 A JP 2003024765A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
tube
filled
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001214236A
Other languages
Japanese (ja)
Inventor
Yasumasa Urushizaki
靖昌 漆崎
Masanori Kawamoto
将則 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001214236A priority Critical patent/JP2003024765A/en
Publication of JP2003024765A publication Critical patent/JP2003024765A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform the operation and shutdown of a catalyst-filled reaction pipe with high frequency, without destroying granular catalysts filled in the reaction pipe. SOLUTION: A one-through reaction pipe 10 has a double-pipe structure and the inside of a reaction pipe 11 is not completely filled with the catalysts 12. A notched inner pipe 13 has a notched part in the whole circumference, and the width of the notched part is changed according to the temperature fluctuation due to the operation and the shutdown, thereby absorbing force applied to the catalyst 12 to prevent them from being destroyed. The notched part is sealed with a seal plate 14 to prevent a raw material gas 18 from entering into the inside of the notched inner pipe from the notched part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナフサ、LPGも
しくは天然ガス等の炭化水素を原料とし、反応管内に触
媒を有する外熱式のスチームリフォーミング反応器など
の触媒充填式反応管、特に、高頻度の運転・停止を可能
とする構造に関する。
TECHNICAL FIELD The present invention relates to a catalyst-filled reaction tube such as an externally heated steam reforming reactor which uses a hydrocarbon such as naphtha, LPG or natural gas as a raw material and has a catalyst in the reaction tube, and more particularly, The present invention relates to a structure that enables high-frequency operation / stop.

【0002】[0002]

【従来の技術】従来から、都市ガスや水素ガスの製造に
は、炭化水素ガスと水蒸気とを混合した原料ガスを改質
して都市ガスや水素ガスを得る水蒸気改質反応が利用さ
れている。水蒸気改質反応は、粒状の触媒が充填された
触媒充填式反応管を用いて行われる。
2. Description of the Related Art Conventionally, in the production of city gas or hydrogen gas, a steam reforming reaction has been used in which a raw material gas obtained by mixing a hydrocarbon gas and steam is reformed to obtain city gas or hydrogen gas. . The steam reforming reaction is carried out using a catalyst-filled reaction tube filled with a granular catalyst.

【0003】図8および図9は、典型的な触媒充填式反
応管であるワンスルー式反応管および二重管式反応管の
概略的な構成をそれぞれ示す。図8(a)および図9
(a)は、軸線方向に垂直な断面構成を示し、図8
(b)および図9(b)は軸線を含む断面構成を示す。
図8に示すワンスルー式反応管では、円筒状の反応管1
内の全部に粒状の触媒2充填されている。図9に示す二
重管式反応管では、円筒状の反応管1内に、反応管1よ
り径が小さい円筒状の内管3が中心軸を共通にして収納
され、粒状の触媒2は、反応管1と内管3との間に充填
される。図8のワンスルー式反応管では、軸線方向の一
方から原料ガス8を導入し、軸線方向の他方から反応ガ
ス9を取出す。図9の二重管式反応管では、反応管1と
内管3との間の隙間に、軸線方向の一方から原料ガス8
を導入し、反応ガス9を軸線方向の他方から取出した
後、軸線方向の他方で折返して、内管3に導入し、内管
3の軸線方向の一方側から反応ガス9を取出す。
FIG. 8 and FIG. 9 show schematic configurations of a typical catalyst-filled reaction tube, which is a one-through reaction tube and a double-tube reaction tube, respectively. 8 (a) and 9
FIG. 8A shows a sectional configuration perpendicular to the axial direction, and FIG.
FIG. 9B and FIG. 9B show a sectional configuration including the axis.
In the one-through type reaction tube shown in FIG. 8, a cylindrical reaction tube 1
All of the inside is filled with granular catalyst 2. In the double-tube reaction tube shown in FIG. 9, a cylindrical inner tube 3 having a diameter smaller than that of the reaction tube 1 is housed in the cylindrical reaction tube 1 with a common central axis, and the granular catalyst 2 is It is filled between the reaction tube 1 and the inner tube 3. In the one-through type reaction tube of FIG. 8, the source gas 8 is introduced from one side in the axial direction and the reaction gas 9 is taken out from the other side in the axial direction. In the double-tube reaction tube shown in FIG. 9, the raw material gas 8 is provided in the gap between the reaction tube 1 and the inner tube 3 from one side in the axial direction.
Is introduced and the reaction gas 9 is taken out from the other side in the axial direction, is folded back at the other side in the axial direction, is introduced into the inner pipe 3, and the reaction gas 9 is taken out from one side in the axial direction of the inner pipe 3.

【0004】触媒充填式反応管に関する先行技術とし
て、二重管式反応管で熱効率を高める提案が、特開昭6
1−83602号公報、特開平06−219704号公
報、および特開平06−263401号公報などに開示
されている。
As a prior art relating to a catalyst-filled reaction tube, a proposal for increasing the thermal efficiency with a double-tube reaction tube is disclosed in Japanese Patent Laid-Open No.
1-83602, JP-A 06-219704, JP-A 06-263401 and the like.

【0005】[0005]

【発明が解決しようとする課題】前述の先行技術などで
の熱効率の改善は、連続運転を前提として提案されてい
る。反応が不要なときには、運転を停止させる方が、総
合的な効率を改善することができる場合がある。しか
し、現状の触媒充填式反応管での高頻度の運転・停止を
行うには、次のような問題を解決しなければならない。
The improvement of thermal efficiency in the above-mentioned prior art and the like has been proposed on the premise of continuous operation. It may be possible to improve the overall efficiency by shutting down the operation when the reaction is not needed. However, the following problems must be solved in order to perform high-frequency operation / stop of the current catalyst-filled reaction tube.

【0006】1)問題点 ナフサ、LPGもしくは天然ガス等の炭化水素を原料ガ
ス8として、反応管1内に触媒2を有する外熱式のスチ
ームリフォーミング反応用の触媒充填式反応管におい
て、図8および図9に見られるこれまでの反応管1で
は、高頻度の運転・停止は、たとえその運転が必要であ
っても、触媒2に割れが発生するために行なわれていな
い。
1) Problems In a catalyst-filled reaction tube for an externally heated steam reforming reaction having a catalyst 2 in a reaction tube 1 using a hydrocarbon such as naphtha, LPG or natural gas as a raw material gas 8, 8 and FIG. 9, the reaction tube 1 so far is not operated / stopped at high frequency because the catalyst 2 is cracked even if the operation is required.

【0007】すなわち、初期冷間時に反応管1に充填さ
れた触媒2は、運転時には反応管1とともに高温になり
膨張する。その後、停止するとそれらは常温になり収縮
する。この運転・停止が高頻度に繰り返されると、触媒
2がその変化に抗しきれず最終的に破壊する。
That is, the catalyst 2 filled in the reaction tube 1 at the initial cold time becomes hot and expands together with the reaction tube 1 during operation. Then, when they stop, they reach normal temperature and contract. If this operation / stop is repeated frequently, the catalyst 2 cannot withstand the change and is eventually destroyed.

【0008】そのためこれまでは、ひとたび運転状態に
入ると、製品とする反応ガスが不要のときには、完全な
停止状態(冷間状態)とせず、原料ガスを投入しないで
燃料を若干量燃焼させて、触媒燃焼式反応管を運転状態
もしくはそれより若干低い温度に保持することにより、
運転・停止に伴なう上述の触媒2の膨張・収縮をさせな
いで、触媒2の割れの発生を防止している。この後は、
図8のワンスルー式反応管を例にとり説明する。
Therefore, until now, once the operating state was entered, when the reaction gas to be the product was not needed, it was not brought to a complete stop state (cold state) and a slight amount of fuel was burned without introducing the raw material gas. By maintaining the catalytic combustion type reaction tube at the operating state or at a temperature slightly lower than that,
The catalyst 2 is prevented from cracking without expanding or contracting the catalyst 2 due to the operation / stop. After this,
The one-through type reaction tube of FIG. 8 will be described as an example.

【0009】2)割れ発生機構の説明 (1)初期冷間時 図10(1)に見られるように、直径Dの反応管1の内
部に触媒2が隙間なく充填されている。
2) Description of crack generation mechanism (1) Initial cold state As shown in FIG. 10 (1), the reaction tube 1 having the diameter D is filled with the catalyst 2 without any gap.

【0010】(2)運転時の初め 運転状態の温度になると、反応管1の温度は触媒2の温
度より高く、また、反応管1の温度線膨張係数は触媒2
のそれよりも大きい。そのため、反応管1の直径はD+
ΔDになるのに対し、触媒2のそれはより小さい。その
結果、反応管1と触媒2の間には全円周に亘って図10
(2)のように隙間が生ずる。
(2) When the temperature reaches the initial operating state during operation, the temperature of the reaction tube 1 is higher than the temperature of the catalyst 2, and the temperature linear expansion coefficient of the reaction tube 1 is the catalyst 2
Bigger than that. Therefore, the diameter of the reaction tube 1 is D +
It becomes ΔD, whereas that of catalyst 2 is smaller. As a result, the entire circumference between the reaction tube 1 and the catalyst 2 is shown in FIG.
A gap is created as in (2).

【0011】(3)運転時の終わり (2)項の状態で運転を継続すると、反応管1内の触媒
2は反応管1の軸方向への動きが生じ、図10(3)に
示すように隙間がなくなる。このとき触媒2は、(1)
項の初期冷間時より隙間を埋めた分、圧密された状態に
変化している。
(3) End of operation When the operation is continued in the state of the item (2), the catalyst 2 in the reaction tube 1 moves in the axial direction of the reaction tube 1, and as shown in FIG. 10 (3). There is no gap in. At this time, the catalyst 2 is (1)
Since the initial cold of item, the gap has been filled, the state has changed to a consolidated state.

【0012】(4)再冷間時 運転状態から冷間状態にすると、反応管1と触媒2の温
度変化および収縮量は(1)から(2)への状態変化時
と同じように、反応管1の収縮量は触媒2の収縮量より
大きい。そのため、図10(4)に示すように、触媒2
には反応管1と触媒2の収縮量の違いに相当した圧縮力
が反応管1から加わる。
(4) During re-cooling When the operating state is changed to the cold state, the temperature change and shrinkage of the reaction tube 1 and the catalyst 2 are the same as when changing the state from (1) to (2). The contraction amount of the tube 1 is larger than that of the catalyst 2. Therefore, as shown in FIG.
A compressive force corresponding to the difference in contraction amount between the reaction tube 1 and the catalyst 2 is applied from the reaction tube 1.

【0013】(5)触媒の破壊 運転・停止を繰り返すと、上記(1)から(4)の変化
が繰り返され、(3)の状態時に生じた隙間に触媒2の
圧密が進み、(3)から(4)への変化時に圧密が進ん
だ分触媒2に加わる圧縮力が大きくなり、それが触媒2
の破壊強度以上になった時に破壊することになる。
(5) When the destruction operation / stop of the catalyst is repeated, the changes of the above (1) to (4) are repeated, and the consolidation of the catalyst 2 progresses in the gap generated in the state of (3), and (3) From the change from (4) to (4), the compression force applied to the catalyst 2 increases due to the progress of consolidation, which is the catalyst 2
It will be destroyed when it exceeds the destruction strength of.

【0014】本発明の目的は、粒状の触媒を破壊させな
いで、高頻度の運転・停止を可能とする触媒充填式反応
管を提供することである。
An object of the present invention is to provide a catalyst-filled reaction tube which can be operated and stopped at high frequency without destroying the granular catalyst.

【0015】[0015]

【課題を解決するための手段】本発明は、反応管内に粒
状の触媒が充填され、原料が軸線方向の一方から導入さ
れ、反応生成物が軸線方向の他方から導出されるワンス
ルー式の触媒充填式反応管において、(a)反応管内
に、反応管と中心軸を同じくする円筒状の内管が挿入さ
れ、(b)内管の全円周の一部が切り欠かれており、
(c)内管の全円周の切り欠かれた部分に、伸縮の容易
なシール板が取り付けられ、(d)切り欠き内管の軸方
向の原料入り側の端部に、内管を塞ぐ平板が取り付けら
れ、(e)触媒は反応管と内管との間の隙間に充填され
る、構造であることを特徴とする触媒充填式反応管であ
る。
According to the present invention, a one-through type catalyst packing in which a granular catalyst is packed in a reaction tube, a raw material is introduced from one side in the axial direction, and a reaction product is discharged from the other side in the axial direction. In the reaction tube, (a) a cylindrical inner tube having the same central axis as the reaction tube is inserted into the reaction tube, and (b) a part of the entire circumference of the inner tube is cut out.
(C) A seal plate that is easily expandable and contractable is attached to the notched portion of the entire circumference of the inner pipe, and (d) the inner pipe is closed at the end of the notched inner pipe on the side where the raw material enters in the axial direction. A catalyst-filled reaction tube having a structure in which a flat plate is attached, and (e) the catalyst is filled in the gap between the reaction tube and the inner tube.

【0016】本発明に従えば、ワンスルー式の触媒充填
式反応管の反応管内には、反応管と中心軸を同じくする
円筒状の内管が挿入され、反応管と内管との隙間に粒状
の触媒が充填される。内管は全内周の一部が切り欠かれ
ているので、温度変化による膨張や収縮を切り欠き幅の
変化で吸収し、触媒を破壊するような力の発生を防ぐこ
とができる。これによって、粒状の触媒を破壊させない
で、高頻度の運転・停止が可能となる。切り欠かれた部
分には伸縮の容易なシール板が取付けられているので、
原料が切り欠かれた部分から内管内部に侵入しないよう
に防止することができる。内管の原料入側には、内管を
塞ぐ平板が取り付けられているので、原料が触媒を充填
していない内管内には入らないようにすることができ
る。
According to the present invention, a cylindrical inner tube having the same central axis as that of the reaction tube is inserted into the reaction tube of the one-through type catalyst-filled reaction tube, and a granular material is formed in the gap between the reaction tube and the inner tube. Of the catalyst. Since a part of the entire inner circumference of the inner pipe is cut out, expansion and contraction due to temperature change are absorbed by the change in cutout width, and it is possible to prevent the generation of force that destroys the catalyst. This enables high-frequency operation / stop without destroying the granular catalyst. Since a seal plate that can easily expand and contract is attached to the notched part,
It is possible to prevent the raw material from entering the inside of the inner pipe through the notched portion. Since a flat plate that closes the inner pipe is attached to the raw material inlet side of the inner pipe, it is possible to prevent the raw material from entering the inner pipe that is not filled with the catalyst.

【0017】さらに本発明は、反応管内に、反応管と中
心軸を同じくする円筒状の内管が挿入され、粒状の触媒
が反応管と内管との間の隙間に充填され、反応管と内管
との隙間に、原料が軸線方向の一方から導入され、反応
生成物が軸線方向の他方から導出され、さらに反応生成
物が内管に、軸線方向の他方から導入されて軸線方向の
一方から導出される二重管式反応管において、(a)内
管の全円周の一部が切り欠かれており、(b)内管の全
円周の切り欠かれた部分に、伸縮の容易なシール板が取
り付けられる、構造であることを特徴とする触媒充填式
反応管である。
Further, according to the present invention, a cylindrical inner tube having the same central axis as the reaction tube is inserted into the reaction tube, and a granular catalyst is filled in a gap between the reaction tube and the inner tube, Into the gap with the inner pipe, the raw material is introduced from one side in the axial direction, the reaction product is led out from the other side in the axial direction, and the reaction product is further introduced into the inner pipe from the other side in the axial direction so that one side in the axial direction. In the double-tube reaction tube derived from (a), a part of the entire circumference of the inner tube is cut out, and (b) a part of the entire circumference of the inner tube is expanded and contracted. It is a catalyst-filled reaction tube having a structure in which an easy seal plate is attached.

【0018】本発明に従えば、二重管式の触媒充填式反
応管の外側の反応管内には、反応管と中心軸を同じくす
る円筒状の内管が挿入され、反応管と内管との隙間に粒
状の触媒が充填される。内管は全内周の一部が切り欠か
れているので、温度変化による膨張や収縮を切り欠き幅
の変化で吸収し、触媒を破壊するような力の発生を防ぐ
ことができる。これによって、粒状の触媒を破壊させな
いで、高頻度の運転・停止が可能となる。切り欠かれた
部分には伸縮の容易なシール板が取付けられているの
で、内管内外での原料などの流通を防止することができ
る。
According to the present invention, a cylindrical inner tube having the same central axis as the reaction tube is inserted into the reaction tube outside the double-tube catalyst-filled reaction tube, and the reaction tube and the inner tube are connected to each other. The granular catalyst is filled in the gap. Since a part of the entire inner circumference of the inner pipe is cut out, expansion and contraction due to temperature change are absorbed by the change in cutout width, and it is possible to prevent the generation of force that destroys the catalyst. This enables high-frequency operation / stop without destroying the granular catalyst. Since a seal plate that can be easily expanded and contracted is attached to the notched portion, it is possible to prevent the raw material and the like from flowing inside and outside the inner pipe.

【0019】また本発明で、前記シール板は、(a)前
記軸線方向に垂直な断面形状がコの字型となるように屈
曲しており、(b)該コの字型断面形状の凹部側が径方
向の内方に延びて、開口側が前記内管の全円周の切り欠
かれた部分の両端間に接合され、該シール板のコの字型
断面形状の凹部側に触媒が侵入するのを防止するよう
に、該開口側を覆う触媒侵入防止板を有することを特徴
とする。
Further, in the present invention, the seal plate is bent so that (a) the cross-sectional shape perpendicular to the axial direction has a U-shape, and (b) the concave portion having the U-shape cross-section. The side extends inward in the radial direction, the opening side is joined between both ends of the notched portion of the entire circumference of the inner pipe, and the catalyst enters the concave side of the U-shaped cross section of the seal plate. In order to prevent this, a catalyst intrusion prevention plate covering the opening side is provided.

【0020】本発明に従えば、内管の全円周の切り欠か
れた部分には、軸線方向に垂直な断面形状がコの字型と
なるように屈曲しているシール板が、断面形状の凹部側
が径方向の内方に伸び、開口側が内管の切り欠かれた部
分の両端管に接合されて取り付けられる。シール板は屈
曲しているので、内管の熱による膨張や収縮による切り
欠かれた部分の長さ変化に追従し、切り欠かれた部分を
塞ぐことができる。シール板の開口側は、触媒侵入板防
止板によって覆われるので、屈曲したシール板の凹部内
に粒状の触媒が侵入するのを防ぐことができる。
According to the invention, in the notched portion of the entire circumference of the inner pipe, a seal plate bent so that the cross-sectional shape perpendicular to the axial direction has a U-shape, The recess side extends inward in the radial direction, and the opening side is joined and attached to both end pipes of the notched portion of the inner pipe. Since the seal plate is bent, it is possible to follow the change in the length of the cutout portion due to the expansion and contraction of the inner tube due to heat, and close the cutout portion. Since the opening side of the seal plate is covered with the catalyst intrusion plate prevention plate, it is possible to prevent the granular catalyst from invading the concave portion of the bent seal plate.

【0021】[0021]

【発明の実施の形態】図1は、本発明の実施の一形態で
ある触媒充填式反応管として、ワンスルー式反応管10
の概略的な構成を示す。図1(a)は軸線方向に垂直な
断面構成、図1(b)は軸線を含む断面構成をそれぞれ
示す。図1に示すワンスルー式反応管10では、円筒状
の反応管11内に粒状の触媒12充填されている。ただ
し、図8に示す従来のワンスルー式反応管とは異なり、
反応管11内部の全体に触媒12が充填されているので
はなく、反応管11と切り欠き内管13との間の隙間に
触媒12が充填されている。図1(a)に示すように、
切り欠き内管13の全外周には、1箇所だけ切り欠きが
設けられている。切り欠き部分には、伸縮の容易なシー
ル板14が取り付けられ、粒状の触媒12が切り欠き内
管13の内部に侵入しないように塞いでいる。図1
(b)に示すように、切り欠き内管13の軸線方向の一
方側は、平板15を取り付けて塞いでいる。原料ガス1
8は平板15が取り付けられている軸線方向の一方か
ら、反応管11と切り欠き内管13との間の隙間に導入
され、軸線方向の他方から反応ガス19として取出され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a one-through type reaction tube 10 as a catalyst-filled type reaction tube which is an embodiment of the present invention.
2 shows a schematic configuration of. 1A shows a sectional structure perpendicular to the axial direction, and FIG. 1B shows a sectional structure including the axial line. In the one-through type reaction tube 10 shown in FIG. 1, a granular catalyst 12 is filled in a cylindrical reaction tube 11. However, unlike the conventional one-through type reaction tube shown in FIG.
The entire interior of the reaction tube 11 is not filled with the catalyst 12, but the catalyst 12 is filled in the gap between the reaction tube 11 and the notched inner tube 13. As shown in FIG.
The cutout inner tube 13 is provided with a cutout at only one location on the entire outer circumference thereof. A seal plate 14 which can be easily expanded and contracted is attached to the cutout portion so as to block the granular catalyst 12 so as not to enter the inside of the cutout inner tube 13. Figure 1
As shown in (b), a flat plate 15 is attached to close one side of the notched inner tube 13 in the axial direction. Raw material gas 1
8 is introduced into the gap between the reaction tube 11 and the notched inner tube 13 from one axial direction where the flat plate 15 is attached, and is taken out as a reaction gas 19 from the other axial direction.

【0022】図2は、本発明の実施の他の形態である触
媒充填式反応管として、二重管式反応管20の概略的な
構成を示す。図2(a)は軸線方向に垂直な断面構成、
図2(b)は軸線を含む断面構成をそれぞれ示す。本実
施形態で、図1に示す実施形態に対応する部分には同一
の参照符を付し、重複する説明を省略する。図2に示す
二重管式反応管20は、図9に示す従来の二重管式反応
管とは異なり、図2(a)に示すように、切り欠き内管
13の全外周には、1箇所だけ切り欠きが設けられてい
る。切り欠き部分には、伸縮の容易なシール板14が取
り付けられ、粒状の触媒12が切り欠き内管13の内部
に侵入しないように塞いでいる。
FIG. 2 shows a schematic structure of a double-tube reaction tube 20 as a catalyst-filled reaction tube which is another embodiment of the present invention. FIG. 2A shows a cross-sectional structure perpendicular to the axial direction,
FIG. 2B shows a sectional configuration including the axis. In the present embodiment, parts corresponding to those of the embodiment shown in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted. The double-tube reaction tube 20 shown in FIG. 2 is different from the conventional double-tube reaction tube shown in FIG. 9 in that, as shown in FIG. There is a notch only in one place. A seal plate 14 which can be easily expanded and contracted is attached to the cutout portion so as to block the granular catalyst 12 so as not to enter the inside of the cutout inner tube 13.

【0023】図3は、本発明の実施のさらに他の形態と
して、図1および図2に示す切り欠き内管13の切り欠
き部分を塞ぐ軸線方向に垂直な断面構成を示す。本実施
形態では、断面形状がコの字型となるように屈曲された
シール板24で切り欠き部分を塞ぐ。コの字型断面形状
の凹部側は、切り欠き内管13の径方向方に延び、開口
側の両端が切り欠き部分の両端に接合される。シール板
24の開口側の表面には、触媒侵入防止板26を取り付
けて、触媒12がコの字型断面形状の内部に侵入しない
ようにしている。
FIG. 3 shows, as a further embodiment of the present invention, a sectional structure perpendicular to the axial direction which closes the notched portion of the notched inner tube 13 shown in FIGS. 1 and 2. In the present embodiment, the cutout portion is closed by the seal plate 24 that is bent so that the cross-sectional shape is U-shaped. The concave side of the U-shaped cross section extends in the radial direction of the notched inner tube 13, and both ends on the opening side are joined to both ends of the notched portion. A catalyst intrusion prevention plate 26 is attached to the surface of the seal plate 24 on the opening side so that the catalyst 12 does not enter the U-shaped cross section.

【0024】図1に示すワンスルー式反応管10および
図2に示す二重管式反応管20は、ワンスルー式反応管
10で切り欠き内管13を軸線方向の一方で塞ぐ平板1
5を除いて、基本的に同等であり、図4(1)に示すよ
うな構造となるように製作する。
The one-through type reaction tube 10 shown in FIG. 1 and the double-tube type reaction tube 20 shown in FIG. 2 are flat plates 1 in which the notched inner tube 13 is closed by the one-through type reaction tube 10 in the axial direction.
Except for No. 5, the structure is basically the same, and the structure as shown in FIG.

【0025】1)反応管11の構造 (1)図4(2)に示すように、反応管11の内部に設
置出来るように径が小さく、円周の一部を切り欠いた切
り欠き内管13を製作する。厚さは、2〜15mmとす
る。望ましくは、3〜7mmの厚さの範囲とする。
1) Structure of the reaction tube 11 (1) As shown in FIG. 4 (2), a notched inner tube having a small diameter so that it can be installed inside the reaction tube 11 Produce 13. The thickness is 2 to 15 mm. Desirably, the thickness is in the range of 3 to 7 mm.

【0026】(2)図4(3)に示すように、切り欠き
内管13の外周面の切り欠かれた部分の両端間に、変形
することが容易な厚みの薄い板であるシール板14でセ
ットする。シール板14の厚さは、0.2〜1.5m
m、望ましくは0.5〜1.0mmとする。
(2) As shown in FIG. 4C, a seal plate 14 which is a thin plate which is easily deformed is formed between both ends of the notched portion of the outer peripheral surface of the notched inner tube 13. Set with. The thickness of the seal plate 14 is 0.2 to 1.5 m
m, preferably 0.5 to 1.0 mm.

【0027】(3)セットされたシール板14の両端部
を、切り欠き内管13の外周面に、反応管11の軸線方
向の全長に亘り溶接等により取り付ける。
(3) Both ends of the set seal plate 14 are attached to the outer peripheral surface of the notched inner tube 13 by welding or the like over the entire length of the reaction tube 11 in the axial direction.

【0028】(4)切り欠き内管13の軸線方向の一方
の原料入り側の端部に平板15を取り付ける。これは、
(6)項で後述するように、切り欠き内管13の内部で
触媒12を充填しない空洞部に原料ガス18が侵入し、
それがそのまま切り欠き内管13内を流れて製品とする
反応ガス19に混合することを防止するためである。
(4) The flat plate 15 is attached to one end of the notched inner tube 13 on the raw material entering side in the axial direction. this is,
As will be described later in (6), the raw material gas 18 enters the cavity inside the cutout inner tube 13 that is not filled with the catalyst 12,
This is to prevent it from flowing through the notch inner tube 13 as it is and mixing with the reaction gas 19 as a product.

【0029】(5)図4(1)に示しているように、シ
ール板14を(3)項のように取り付け、(4)項のよ
うに平板15を取り付けた切り欠き内管13を、反応管
11の内部に設置する。
(5) As shown in FIG. 4 (1), the seal plate 14 is attached as shown in item (3), and the notched inner tube 13 with the flat plate 15 attached as shown in item (4) is It is installed inside the reaction tube 11.

【0030】(6)反応管11と、シール板14および
平板15の取り付いた切り欠き内管13との間に触媒1
2を充填し、一方、切り欠き内管13の内部には触媒1
2を充填せず空洞のままとする。
(6) The catalyst 1 is provided between the reaction tube 11 and the notched inner tube 13 to which the seal plate 14 and the flat plate 15 are attached.
2 while filling the inside of the cutout inner tube 13 with the catalyst 1
It is not filled with 2 and remains a cavity.

【0031】2)反応管11の実施例 (1)条件:次の表1に示す。2) Example of the reaction tube 11 (1) Conditions: Shown in Table 1 below.

【表1】 [Table 1]

【0032】以下、図5を参照しながら、最も対応の厳
しい反応管表面温度最高部について実施例の対応を示
す。
Hereinafter, with reference to FIG. 5, the correspondence of the embodiment for the most severe reaction tube surface temperature maximum part will be shown.

【0033】(2)採用する切り欠き内管13の仕様:
次の表2に示す。
(2) Specifications of the notched inner tube 13 to be adopted:
The results are shown in Table 2 below.

【表2】 [Table 2]

【0034】(3)初期冷間時から運転時に変わる時の
反応管11と切り欠き内管13の隙間の変化 初期冷間時12mmであった反応管11と切り欠き内管
13の隙間は、図5(1)に示すように、運転時 1
2.43mmに変化する。充填されている触媒12は、
初期冷間時も運転時も反応管11と切り欠き内管13の
隙間を埋るものと思われるから、隙間の大きくなった分
0.43mmが、初期冷間時から運転時に変わることに
より、充填されている触媒12は圧密されることにな
る。
(3) Change in the gap between the reaction tube 11 and the notched inner tube 13 when changing from the initial cold state to the operating state The gap between the reaction tube 11 and the notched inner tube 13 which was 12 mm in the initial cold state is As shown in Fig. 5 (1),
Change to 2.43 mm. The packed catalyst 12 is
Since it seems that the gap between the reaction tube 11 and the notch inner tube 13 is filled during both the initial cold and operation, 0.43 mm of the increased gap changes from the initial cold to the operation, The filled catalyst 12 will be consolidated.

【0035】(4)運転時から再冷却時に変わる時の変
化 反応管11の直径は、運転時D+ΔDであるが、図5
(2)に示す再冷却時には初期冷却時のDに変化する。
この時、切り欠き内管13は、運転時の反応管11との
隙間12.43mmを保持したまま再冷却状態に至る。
すなわち切り欠き内管13は、反応管11の直径の減少
分 ΔDだけ直径が小さくなり、これは切り欠き幅を減
少することにより対応している。このようにして、運転
時から再冷却時へ移る時には、切り欠き内管13はその
直径、言い換えると切り欠き幅を変化させることによ
り、触媒12の充填幅を一定に保っている。
(4) Change from the time of operation to the time of recooling The diameter of the reaction tube 11 is D + ΔD during operation.
At the time of recooling shown in (2), it changes to D at the time of initial cooling.
At this time, the notched inner tube 13 reaches a recooling state while maintaining a gap of 12.43 mm with the reaction tube 11 during operation.
That is, the notch inner tube 13 is reduced in diameter by the amount ΔD of decrease in the diameter of the reaction tube 11, which corresponds by reducing the notch width. In this way, when shifting from the time of operation to the time of recooling, the notch inner tube 13 keeps the filling width of the catalyst 12 constant by changing its diameter, in other words, the notch width.

【0036】(5)その後の運転時、冷却時の変化 その後、運転、停止が繰り返されると、運転時には図5
(1)の状態、冷却時には図5(2)の状態となり、切
り欠き内管13の切り欠き幅をδ、δ’と変えることに
より、触媒幅12.43mmを保ち、触媒12に力を加
えることなく、その結果触媒12の破壊が防止されるこ
ととなる。
(5) Changes in subsequent operation and cooling When the operation and stop are repeated thereafter, the operation of FIG.
The state of (1), the state of FIG. 5 (2) during cooling, changes the cutout width of the cutout inner tube 13 to δ and δ ′, thereby keeping the catalyst width of 12.43 mm and applying force to the catalyst 12. As a result, destruction of the catalyst 12 is prevented.

【0037】(6)シール板の形状と耐久性 (5)項より、運転・停止が繰り返されると、シール板
14,24は膨張・収縮を繰り返されることになるた
め、それらがスムーズに行われるように、その形状が図
6に示されるコの字型のシール板24を使用することが
好ましい。ここで、図6(a)は切り欠き内管13にシ
ール板24を溶接部27を形成して取り付けている状態
について、軸線方向に垂直な断面構造を示し、図6
(b)はシール板24についての詳細な断面形状を示
す。
(6) Seal Plate Shape and Durability From the item (5), when the operation and stop are repeated, the seal plates 14 and 24 are repeatedly expanded and contracted, so that they are smoothly performed. Thus, it is preferable to use the U-shaped seal plate 24 whose shape is shown in FIG. Here, FIG. 6A shows a sectional structure perpendicular to the axial direction in a state in which the seal plate 24 is attached to the notched inner tube 13 by forming the welded portion 27, and FIG.
(B) shows a detailed sectional shape of the seal plate 24.

【0038】コの字型のシール板24の幅が運転・停止
により変化するとその耐久性が問題となる。いま、コの
字型のシール板24の仕様を以下の表3の通りとする。
If the width of the U-shaped seal plate 24 changes due to operation / stop, its durability becomes a problem. Table 3 below shows the specifications of the U-shaped seal plate 24.

【表3】 [Table 3]

【0039】別途計算より、繰り返し可能な回数は2,
6000回となる。これは、例えば毎日運転・停止を行
うとしたときに、7年強となり、所期の目的は充分に達
することになる。
According to a separate calculation, the number of repeatable times is 2,
It will be 6000 times. This means that, for example, if the vehicle is to be operated / stopped every day, it will be a little over 7 years, and the intended purpose will be fully achieved.

【0040】(7)コの字型シール板24の凹部への触
媒侵入防止策 図7(a)に示すように、コの字型のシール板24のま
ま使用すると、シール板24のコの字型の凹部に触媒1
2が入り、シール板24が自由に変形出来なくなってし
まう。
(7) Measures to prevent catalyst from entering the concave portion of the U-shaped seal plate 24. As shown in FIG. 7A, when the U-shaped seal plate 24 is used as it is, Catalyst 1 in the V-shaped recess
2, the seal plate 24 cannot be freely deformed.

【0041】そのため、図7(b)に示すように、触媒
侵入防止板26を、コの字型断面形状の凹部に相対する
ように設置する。触媒侵入防止板26は、厚み2〜10
mmで、望ましくは2〜5mmである。このとき触媒侵
入防止板26の片側について、切り欠き内筒13の外周
面に、反応管11の軸線方向に断続もしくは連続溶接部
27により取り付ける。
Therefore, as shown in FIG. 7B, the catalyst intrusion prevention plate 26 is installed so as to face the concave portion having a U-shaped cross section. The catalyst intrusion prevention plate 26 has a thickness of 2 to 10
mm, preferably 2-5 mm. At this time, one side of the catalyst intrusion prevention plate 26 is attached to the outer peripheral surface of the notched inner cylinder 13 by the intermittent or continuous welding portion 27 in the axial direction of the reaction tube 11.

【0042】3)適用範囲 本発明は、触媒12を充填した反応管11を使用する反
応器すべてに採用することが可能であり、利用できる一
例を挙げると以下の通りである。 都市ガス製造装置 高純度水素発生装置 高純度一酸化炭素発生装置 燃料電池用水素発生装置 アンモニア製造装置
3) Scope of application The present invention can be applied to all reactors using the reaction tube 11 filled with the catalyst 12, and one available example is as follows. City gas production equipment High-purity hydrogen generation equipment High-purity carbon monoxide generation equipment Hydrogen generation equipment for fuel cells Ammonia production equipment

【0043】特に、今後水素の需要が増え、家庭用や水
素自動車に水素を供給するスタンドなどに、触媒充填式
反応管を含む水素発生装置を設置することが予想され
る。そのような水素発生装置は、需要に応じて運転・停
止を高頻度で繰返すことが要望されるので、本発明の有
用性は高まるものと期待される。
In particular, the demand for hydrogen will increase in the future, and it is expected to install a hydrogen generator including a catalyst-filled reaction tube in a home or a stand for supplying hydrogen to a hydrogen automobile. Since such a hydrogen generator is required to be repeatedly operated and stopped frequently according to demand, the utility of the present invention is expected to increase.

【0044】[0044]

【発明の効果】以上のように本発明によれば、ワンスル
ー式の触媒充填式反応管の反応管内には、反応管と中心
軸を同じくし、全内周の一部が切り欠かれている円筒状
の内管が挿入され、反応管と内管との隙間に粒状の触媒
が充填される。温度変化による膨張や収縮を内管の切り
欠き幅の変化で吸収し、粒状の触媒にかかる力を緩和す
るので、触媒を破壊させることなく、高頻度の運転・停
止が可能となる。
As described above, according to the present invention, the reaction tube of the one-through type catalyst-filled reaction tube has the same central axis as the reaction tube and a part of the entire inner circumference is cut away. A cylindrical inner tube is inserted, and a granular catalyst is filled in the gap between the reaction tube and the inner tube. Expansion and contraction due to temperature changes are absorbed by changes in the notch width of the inner tube, and the force applied to the granular catalyst is mitigated, so high-frequency operation / stop is possible without destroying the catalyst.

【0045】さらに本発明によれば、二重管式の触媒充
填式反応管の外側の反応管内には、反応管と中心軸を同
じくし、全内周の一部が切り欠かれている円筒状の内管
が挿入され、反応管と内管との隙間に粒状の触媒が充填
される。温度変化による膨張や収縮を内管の切り欠き幅
の変化で吸収し、粒状の触媒にかかる力を緩和するの
で、触媒を破壊させることなく、高頻度の運転・停止が
可能となる。
Further, according to the present invention, in the reaction tube outside the double-tube catalyst-filled reaction tube, a cylinder having the same central axis as the reaction tube and a part of the entire inner circumference is cut out A cylindrical inner tube is inserted, and a granular catalyst is filled in the gap between the reaction tube and the inner tube. Expansion and contraction due to temperature changes are absorbed by changes in the notch width of the inner tube, and the force applied to the granular catalyst is mitigated, so high-frequency operation / stop is possible without destroying the catalyst.

【0046】また本発明によれば、内管の全円周の切り
欠かれた部分を、軸線方向に垂直な断面形状がコの字型
となるように屈曲しているシール板で塞ぐので、熱によ
る膨張や収縮による切り欠かれた部分の長さ変化に追従
することができる。シール板の開口側は、触媒侵入板防
止板によって覆われるので、屈曲したシール板の凹部内
に粒状の触媒が侵入するのを防ぐことができる。
Further, according to the present invention, the notched portion of the entire circumference of the inner pipe is closed with the sealing plate which is bent so that the sectional shape perpendicular to the axial direction is U-shaped. It is possible to follow the change in the length of the cutout portion due to expansion and contraction due to heat. Since the opening side of the seal plate is covered with the catalyst intrusion plate prevention plate, it is possible to prevent the granular catalyst from invading the concave portion of the bent seal plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態であるワンスルー式反応
管10の概略的な構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a one-through type reaction tube 10 which is an embodiment of the present invention.

【図2】本発明の実施の他の形態である二重管式反応管
20の概略的な構成を示す断面図である。
FIG. 2 is a sectional view showing a schematic configuration of a double-tube reaction tube 20 which is another embodiment of the present invention.

【図3】本発明の実施のさらに他の形態として、コの字
型のシール板24を用いる場合の断面図である。
FIG. 3 is a cross-sectional view when a U-shaped seal plate 24 is used as still another embodiment of the present invention.

【図4】各実施形態で、反応管11と切り欠き内管13
とを組立て、触媒12を充填する過程を示す断面図であ
る。
FIG. 4 shows a reaction tube 11 and a notched inner tube 13 in each embodiment.
FIG. 6 is a cross-sectional view showing a process of assembling and filling the catalyst 12.

【図5】各実施形態で、切り欠き内管13によって、触
媒12の破壊を防ぐ状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which destruction of the catalyst 12 is prevented by the notch inner tube 13 in each embodiment.

【図6】図3に示すコの字型のシール板24の切り欠き
内管13への取り付け構造を示す断面図である。
FIG. 6 is a cross-sectional view showing a mounting structure of the U-shaped seal plate 24 shown in FIG. 3 to the notched inner tube 13.

【図7】図6に示すコの字型のシール板24に、触媒侵
入防止板26を取り付ける効果を示す断面図である。
7 is a cross-sectional view showing the effect of attaching a catalyst intrusion prevention plate 26 to the U-shaped seal plate 24 shown in FIG.

【図8】従来からのワンスルー式反応管の概略的な構成
を示す断面図である。
FIG. 8 is a cross-sectional view showing a schematic configuration of a conventional one-through type reaction tube.

【図9】従来からの二重管式反応管の概略的な構成を示
す断面図である。
FIG. 9 is a sectional view showing a schematic configuration of a conventional double-tube reaction tube.

【図10】図8のワンスルー式反応管について、運転状
態の変化を示す断面図である。
FIG. 10 is a cross-sectional view showing changes in the operating state of the one-through type reaction tube of FIG.

【符号の説明】[Explanation of symbols]

10 ワンスルー式反応管 11 反応管 12 触媒 13 切り欠き内管 14,24 シール板 15 平板 18 原料ガス 19 反応ガス 20 二重管式反応管 26 触媒侵入防止板 27 連続溶接部 10 One-through type reaction tube 11 reaction tubes 12 catalyst 13 Notched inner tube 14,24 Seal plate 15 flat plate 18 Raw material gas 19 Reaction gas 20 Double-tube reaction tube 26 Catalyst intrusion prevention plate 27 Continuous weld

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応管内に粒状の触媒が充填され、原料
が軸線方向の一方から導入され、反応生成物が軸線方向
の他方から導出されるワンスルー式の触媒充填式反応管
において、 (a)反応管内に、反応管と中心軸を同じくする円筒状
の内管が挿入され、 (b)内管の全円周の一部が切り欠かれており、 (c)内管の全円周の切り欠かれた部分に、伸縮の容易
なシール板が取り付けられ、 (d)切り欠き内管の軸方向の原料入り側の端部に、内
管を塞ぐ平板が取り付けられ、 (e)触媒は反応管と内管との間の隙間に充填される、
構造であることを特徴とする触媒充填式反応管。
1. A one-through type catalyst-filled reaction tube in which a granular catalyst is filled in a reaction tube, a raw material is introduced from one side in the axial direction, and a reaction product is led out from the other side in the axial direction, wherein: A cylindrical inner tube having the same central axis as that of the reaction tube is inserted into the reaction tube, and (b) a part of the entire circumference of the inner tube is cut away, and (c) the entire circumference of the inner tube. A seal plate that is easily expandable and contractible is attached to the notched portion, (d) a flat plate that closes the inner pipe is attached to the end of the notched inner pipe on the raw material entering side in the axial direction, and (e) the catalyst is Filled in the gap between the reaction tube and the inner tube,
A catalyst-filled reaction tube having a structure.
【請求項2】 反応管内に、反応管と中心軸を同じくす
る円筒状の内管が挿入され、粒状の触媒が反応管と内管
との間の隙間に充填され、反応管と内管との隙間に、原
料が軸線方向の一方から導入され、反応生成物が軸線方
向の他方から導出され、さらに反応生成物が内管に、軸
線方向の他方から導入されて軸線方向の一方から導出さ
れる二重管式反応管において、 (a)内管の全円周の一部が切り欠かれており、 (b)内管の全円周の切り欠かれた部分に、伸縮の容易
なシール板が取り付けられる、構造であることを特徴と
する触媒充填式反応管。
2. A cylindrical inner tube having the same central axis as that of the reaction tube is inserted into the reaction tube, and a granular catalyst is filled in a gap between the reaction tube and the inner tube to form the reaction tube and the inner tube. Into the gap of, the raw material is introduced from one side in the axial direction, the reaction product is led out from the other side in the axial direction, and the reaction product is further introduced into the inner tube from the other side in the axial direction and is led out from the one side in the axial direction. In the double-tube type reaction tube, which is (a) a part of the entire circumference of the inner tube is cut out, and (b) a seal that is easily expanded and contracted in the notched part of the entire circumference of the inner tube. A catalyst-filled reaction tube having a structure to which a plate is attached.
【請求項3】 前記シール板は、 (a)前記軸線方向に垂直な断面形状がコの字型となる
ように屈曲しており、 (b)該コの字型断面形状の凹部側が径方向の内方に延
びて、開口側が前記内管の全円周の切り欠かれた部分の
両端間に接合され、 該シール板のコの字型断面形状の凹部側に触媒が侵入す
るのを防止するように、該開口側を覆う触媒侵入防止板
を有することを特徴とする請求項1または2記載の触媒
充填式反応管。
3. The seal plate is bent so that (a) the cross-sectional shape perpendicular to the axial direction has a U-shape, and (b) the concave side of the U-shaped cross-section has a radial direction. Of the inner pipe is joined to both ends of the notched portion of the entire circumference of the inner tube to prevent the catalyst from entering the concave side of the U-shaped cross section of the seal plate. The catalyst-filled reaction tube according to claim 1 or 2, further comprising a catalyst intrusion prevention plate that covers the opening side.
JP2001214236A 2001-07-13 2001-07-13 Catalyst-filled reaction pipe Pending JP2003024765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214236A JP2003024765A (en) 2001-07-13 2001-07-13 Catalyst-filled reaction pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214236A JP2003024765A (en) 2001-07-13 2001-07-13 Catalyst-filled reaction pipe

Publications (1)

Publication Number Publication Date
JP2003024765A true JP2003024765A (en) 2003-01-28

Family

ID=19049090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214236A Pending JP2003024765A (en) 2001-07-13 2001-07-13 Catalyst-filled reaction pipe

Country Status (1)

Country Link
JP (1) JP2003024765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415357C (en) * 2006-01-16 2008-09-03 华东理工大学 Double-pipe reactor
WO2021193657A1 (en) * 2020-03-26 2021-09-30 大阪瓦斯株式会社 Reaction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415357C (en) * 2006-01-16 2008-09-03 华东理工大学 Double-pipe reactor
WO2021193657A1 (en) * 2020-03-26 2021-09-30 大阪瓦斯株式会社 Reaction device
JP7407635B2 (en) 2020-03-26 2024-01-04 大阪瓦斯株式会社 reactor

Similar Documents

Publication Publication Date Title
EP0703823B1 (en) Endothermic reaction apparatus
US5226928A (en) Reforming apparatus for hydrocarbon
EP2049626B1 (en) Low pressure drop reforming reactor
US6497856B1 (en) System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US5565009A (en) Endothermic reaction process
JP2714242B2 (en) Gas reformer
US6096106A (en) Endothermic reaction apparatus
JP2004501759A (en) System for improved hydrogen generation by steam reforming of hydrocarbons and integrated chemical reactor for producing hydrogen from hydrocarbons
CA1090101A (en) Tubular reactor for performing endothermal gas reactions
US6153152A (en) Endothermic reaction apparatus and method
US20030034152A1 (en) Heat exchange reactor having integral housing assembly
JP2003024765A (en) Catalyst-filled reaction pipe
RU2134154C1 (en) Apparatus for performing endothermic reaction
JP2007239537A (en) Exhaust pipe flange joint structure
JPH05186201A (en) Fuel reformer
JP4069664B2 (en) Fuel cell reformer
US20040253498A1 (en) Modular fuel reformer with removable carrier
JPH10273303A (en) Heat exchange type reformer
JPH0489301A (en) Fuel reformer
JP2022117539A (en) Manufacturing method of hydrogen generator
JP2738988B2 (en) Fuel reformer
CN114929375A (en) Thermal jacket for hot wall dehydrogenation reactor
JPH10213230A (en) Gasket and manufacture thereof
JPH0826701A (en) Reformer
JPH06345402A (en) Fuel modifying device