JP2003021467A - Continuous heat treatment furnace - Google Patents

Continuous heat treatment furnace

Info

Publication number
JP2003021467A
JP2003021467A JP2001203107A JP2001203107A JP2003021467A JP 2003021467 A JP2003021467 A JP 2003021467A JP 2001203107 A JP2001203107 A JP 2001203107A JP 2001203107 A JP2001203107 A JP 2001203107A JP 2003021467 A JP2003021467 A JP 2003021467A
Authority
JP
Japan
Prior art keywords
heat treatment
fluidized bed
workpiece
treatment furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001203107A
Other languages
Japanese (ja)
Inventor
Takayuki Sakai
崇之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corp filed Critical Asahi Tec Corp
Priority to JP2001203107A priority Critical patent/JP2003021467A/en
Publication of JP2003021467A publication Critical patent/JP2003021467A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous heat treatment furnace comprising a fluidized bed in which the temperature of a workpiece can be raised more quickly by preventing temperature drop in the fluidized bed at the inlet of the furnace when a workpiece is thrown in and temperature distribution in the fluidized bed can be made more uniform. SOLUTION: The continuous heat treatment furnace 10 comprising a fluidized bed 20 where powder and granular material 24 is heated by blowing hot air and fluidized heat treats a metallic workpiece 26 while moving it through the fluidized bed 20 from the inlet 12 to the outlet 16. Heaters 18a and 18b exist in the fluidized bed 20 at the inlet 12 of the continuous heat treatment furnace 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、Al合金、Mg
合金などの金属を連続的に熱処理する連続式熱処理炉に
関し、詳細には、金属製品、例えばAl合金からなる自
動車用ホイールの、機械的強度を向上するために行う熱
処理に好適に用いる連続式熱処理炉に関する。
TECHNICAL FIELD The present invention relates to an Al alloy, Mg
TECHNICAL FIELD The present invention relates to a continuous heat treatment furnace for continuously heat treating a metal such as an alloy, and more specifically, a continuous heat treatment suitably used for heat treatment for improving mechanical strength of a metal product, for example, an automobile wheel made of an Al alloy. Regarding the furnace.

【0002】[0002]

【従来の技術】 従来から、自動車等の軽量化材料とし
て、アルミニウム合金、マグネシウム合金、セラミック
ス、金属複合材料、FRP等樹脂材料等が知られてい
る。このうち、例えば、アルミニウム合金は、鉄の1/
3の密度で、既に自動車等のエンジンシリンダヘッド、
エンジンシリンダブロック等に、高速射出成形、所謂ダ
イカスト法によって製造された鋳造品が多く用いられて
いる。
2. Description of the Related Art Aluminum alloys, magnesium alloys, ceramics, metal composite materials, resin materials such as FRP, etc. have been conventionally known as lightweight materials for automobiles and the like. Of these, for example, aluminum alloy is
With a density of 3, already engine cylinder heads of cars,
High-speed injection molding, that is, casting products manufactured by a so-called die casting method are often used for engine cylinder blocks and the like.

【0003】 また、より軽量化が要請される自動車な
どの足廻り部品に対し、例えば、アルミニウム合金やマ
グネシウム合金等の軽合金について、高速射出ダイカス
ト製法や、スクイズ鋳造法、半溶融加工法などが適用さ
れている。これらダイカスト法やスクイズ鋳造法などで
得られる軽合金の鋳造品は、製造法の改善により、その
引張強度、耐力、伸び等の機械的性質をさらに向上させ
ることができれば、部材の厚さ、寸法、重量を薄く、小
さく、軽くすることが可能となり、ひいては、自動車の
燃費改善、さらに環境的にも待望されるものである。
Further, for underbody parts of automobiles and the like that are required to be lighter, for example, for light alloys such as aluminum alloys and magnesium alloys, high-speed injection die casting manufacturing method, squeeze casting method, semi-melt processing method, etc. Has been applied. The light alloy cast products obtained by these die casting method and squeeze casting method, if the mechanical properties such as tensile strength, proof stress and elongation can be further improved by improving the manufacturing method, the thickness and dimension of the member In addition, it is possible to make the weight thin, small and light, which in turn improves the fuel efficiency of automobiles and is also environmentally long-awaited.

【0004】 上記のような観点から、軽合金の鋳造品
については、従来からその機械的性質を改善するため
に、鋳造品を更に熱処理することが行われている。これ
は、熱処理を行うことにより、例えばAl−Si系合金
にMgを添加したアルミニウム合金の場合には、Mg2
Siの中間相による析出硬化が生じ、強度等を向上させ
ているものである。
From the above viewpoints, light alloy castings have conventionally been subjected to further heat treatment in order to improve their mechanical properties. For example, in the case of an aluminum alloy obtained by adding Mg to an Al-Si-based alloy, Mg 2
Precipitation hardening occurs due to the intermediate phase of Si, and the strength and the like are improved.

【0005】 上記のように、例えば、Al合金の高強
度化は、他元素の添加とそれによる中間相の時効析出に
よって得られるものであり、時効析出のための熱処理
は、溶体化処理及び時効処理からなる。
As described above, for example, the strengthening of an Al alloy is obtained by adding another element and thereby aging precipitation of an intermediate phase. The heat treatment for aging precipitation includes solution treatment and aging. Consists of processing.

【0006】 溶体化処理は、凝固時に晶出した非平衡
相を高温で固溶化させ、その後水冷することによって常
温で組成が均一な固溶体を得る熱処理である。溶体化処
理に引き続く時効処理は、比較的低い温度で保持するこ
とによって、中間析出相による析出硬化を起こさせるも
のであり、これらの熱処理により金属、例えばAl合金
において、機械的特性の向上を図ることが出来る。
The solution treatment is a heat treatment for solidifying the non-equilibrium phase crystallized during solidification at high temperature and then water cooling to obtain a solid solution having a uniform composition at room temperature. The aging treatment subsequent to the solution treatment causes precipitation hardening due to an intermediate precipitation phase by holding at a relatively low temperature, and these heat treatments aim to improve mechanical properties of a metal, for example, an Al alloy. You can

【0007】 従来、このような溶体化処理及び時効処
理としては、空気を熱媒体としたトンネル炉等の雰囲気
炉が用いられているが、溶体化温度までの昇温速度が遅
く昇温に時間がかかり、しかも、温度の振れが約±5℃
と大きく、そのため、より高い温度での溶体化処理及び
時効処理ができないという問題があった。
Conventionally, an atmosphere furnace such as a tunnel furnace using air as a heat medium has been used for such solution heat treatment and aging treatment. However, the temperature rising rate up to the solution heat treatment temperature is slow and it takes time to raise the temperature. In addition, the temperature fluctuation is about ± 5 ℃
Therefore, there is a problem that the solution treatment and the aging treatment cannot be performed at a higher temperature.

【0008】[0008]

【発明が解決しようとする課題】 本発明は、上記した
従来の課題に鑑みてなされたものであり、その目的とす
るところは、昇温速度を速く、かつ温度の振れを小さく
し、しかも、より高い温度で溶体化処理や時効処理を連
続的に行うことができる連続式熱処理炉を提供すること
にある。また、本発明の他の目的は、流動層からなる連
続式熱処理炉において、ワークピース投入時の炉入口部
流動層内の温度降下を防止し、ワークピースをより速く
昇温することができ、かつ流動層中の温度分布をより均
一にすることができる連続式熱処理炉を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to increase the temperature rising rate and reduce the temperature fluctuation, and An object of the present invention is to provide a continuous heat treatment furnace capable of continuously performing solution treatment and aging treatment at a higher temperature. Further, another object of the present invention, in a continuous heat treatment furnace consisting of a fluidized bed, it is possible to prevent a temperature drop in the furnace inlet part fluidized bed at the time of loading the workpiece, and to raise the temperature of the workpiece faster, Another object of the present invention is to provide a continuous heat treatment furnace which can make the temperature distribution in the fluidized bed more uniform.

【0009】[0009]

【課題を解決するための手段】 即ち、本発明によれ
ば、金属からなるワークピースの熱処理に用いられ、炉
体内に、熱風の吹き込みにより粉粒体が熱せられ流動し
ている流動層を有し、該ワークピースを入口部から出口
部まで該流動層中を移動させながら熱処理する連続式熱
処理炉であって、該熱処理炉における該入口部の流動層
中に加熱ヒーターを存在させることを特徴とする連続式
熱処理炉が提供される。
That is, according to the present invention, a fluidized bed that is used for heat treatment of a workpiece made of metal and has a fluidized bed in which powder particles are heated by the blowing of hot air and is flowing is provided. A continuous heat treatment furnace for performing heat treatment while moving the workpiece from the inlet to the outlet in the fluidized bed, wherein a heater is present in the fluidized bed at the inlet of the heat treatment furnace. A continuous heat treatment furnace is provided.

【0010】 本発明においては、熱処理炉における入
口部の流動層が所定以上に大きく形成されることによ
り、ワークピースの熱処理温度までの昇温時間を所定以
下に短くすることが好ましい。また、本発明の連続式熱
処理炉は、Al合金、Mg合金などの軽合金からなるワ
ークピースの溶体化処理を行う場合に、好ましく用いら
れる。
In the present invention, it is preferable that the temperature rise time to the heat treatment temperature of the workpiece be shortened to a predetermined value or less by forming the fluidized bed at the inlet portion of the heat treatment furnace larger than a predetermined value. Further, the continuous heat treatment furnace of the present invention is preferably used when performing solution treatment on a workpiece made of a light alloy such as an Al alloy or a Mg alloy.

【0011】[0011]

【発明の実施の形態】 以下、本発明を詳しく説明す
る。本発明は、アルミニウム合金、マグネシウム合金な
どの金属を連続的に熱処理する連続式熱処理炉であり、
炉体内に、熱風の吹き込みにより粉粒体が熱せられ流動
している流動層を有し、ワークピースを入口部から出口
部まで流動層中を移動させながら熱処理するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. The present invention is a continuous heat treatment furnace for continuously heat treating a metal such as an aluminum alloy and a magnesium alloy,
The furnace has a fluidized bed in which powder particles are heated by the blowing of hot air and is flowing, and heat treatment is performed while moving the workpiece from the inlet to the outlet in the fluidized bed.

【0012】 このように、粉粒体が熱せられ流動して
いる流動層中にワークピースを存在させて熱処理するこ
とにより、ワークピースをより速く昇温することができ
るとともに、流動層中の温度分布がより均一になり(温
度の振れも小さくなり)、かつより高い温度で溶体化処
理や時効処理を連続的に行うことができるのであるが、
本発明では、特に、上記熱処理炉において、その入口部
の流動層中に加熱ヒーターを存在させることにその特徴
を有するものである。このように熱処理炉における入口
部の流動層中に加熱ヒーターを存在させることにより、
非加熱状態(低温)のワークピースが入口部の流動層へ
投入される際に生じる入口部の流動層の温度降下を防止
或いは最小限にすることができ、その結果、ワークピー
スのより速い昇温、および流動層中の温度分布のさらな
る均一化を達成することができる。
As described above, by allowing the workpiece to exist in the fluidized bed in which the granular material is heated and fluidized, and heat-treating the workpiece, the temperature of the workpiece can be raised more quickly and the temperature in the fluidized bed can be increased. The distribution becomes more uniform (temperature fluctuation becomes smaller), and solution treatment and aging treatment can be performed continuously at higher temperature.
In particular, the present invention is characterized in that a heater is provided in the fluidized bed at the inlet of the heat treatment furnace. In this way, by providing a heater in the fluidized bed at the inlet of the heat treatment furnace,
It is possible to prevent or minimize the temperature drop in the fluidized bed at the inlet when a non-heated (low temperature) workpiece is thrown into the fluidized bed at the inlet, resulting in a faster rise of the workpiece. Further homogenization of temperature and temperature distribution in the fluidized bed can be achieved.

【0013】 以下、本発明の連続式熱処理炉を図面に
基づいて更に詳細に説明する。図1(a)(b)(c)
は、本発明に係る連続式熱処理炉の一例を示すもので、
図1(a)は平面図、図1(b)は図1(a)のX−X
断面図、図1(c)は図1(b)のY−Y断面図であ
る。図1(a)(b)(c)において、10は本発明に
係る連続式熱処理炉を示しており、連続式熱処理炉10
は、入口部12、該入口部12に続く熱処理帯部14、
及び該熱処理帯部14に続く取出部(出口部)16から
構成されている。これらの入口部12、熱処理帯部14
及び取出部16はいずれも内部において、熱風が分散パ
イプ30から吹き込まれ粉粒体24が熱せられ流動化さ
れてなる流動層20を形成している。
Hereinafter, the continuous heat treatment furnace of the present invention will be described in more detail with reference to the drawings. 1 (a) (b) (c)
Is an example of a continuous heat treatment furnace according to the present invention,
1A is a plan view, and FIG. 1B is XX of FIG.
A sectional view and FIG. 1C are sectional views taken along the line YY of FIG. 1 (a), (b) and (c), 10 indicates a continuous heat treatment furnace according to the present invention.
Is an inlet portion 12, a heat treatment strip portion 14 following the inlet portion 12,
And a take-out portion (outlet portion) 16 following the heat treatment strip portion 14. These inlet portion 12, heat treatment belt portion 14
Inside of each of the extraction units 16 forms a fluidized bed 20 in which hot air is blown from the dispersion pipe 30 to heat and fluidize the granular material 24.

【0014】 入口部12は、図1(a)の平面図から
わかるように、他の熱処理帯部14及び取出部16に比
して移動方向に対する断面積が大きく、容積的に大きく
形成されており、また、入口部12における両側張出部
12a、12bにはそれぞれ加熱ヒーター18a、18
bが配置されている。入口部12から熱処理帯部14、
取出部16に至る流動層20中にはコンベア22が配設
されており、コンベア22上にワークピース26が載置
され、ワークピース26が熱処理炉の入口部12から取
出部16まで流動層20中を移動しながら熱処理される
ようになっている。
As can be seen from the plan view of FIG. 1A, the inlet portion 12 has a larger cross-sectional area with respect to the moving direction and a larger volume than the other heat treatment strip portions 14 and the take-out portion 16. In addition, heaters 18a, 18 are provided on both sides of the inlet portion 12 at the protruding portions 12a, 12b, respectively.
b is arranged. From the inlet portion 12 to the heat treatment strip portion 14,
A conveyor 22 is arranged in the fluidized bed 20 reaching the take-out section 16, a work piece 26 is placed on the conveyer 22, and the work piece 26 flows from the inlet section 12 of the heat treatment furnace to the take-out section 16 in the fluidized bed 20. It is designed to be heat-treated while moving inside.

【0015】 ワークピース26は、入口部12におい
て、ワークピース搬入機28により入口部12の流動層
20中に投入され、コンベア22上に載せられる。ここ
で、上記したように、入口部12は、熱処理帯部14及
び取出部16に比して容積的に大きく形成され、しかも
入口部12の両側張出部12a、12bには加熱ヒータ
ー18a、18bが配置されて流動層20内の粉粒体2
4及び熱風をさらに加熱、保温している。このように、
入口部12の流動層20の容積が大きく粉粒体24も多
量となって入口部12の熱保有量が大きくなるため、低
温のワークピース26が入口部12の流動層20内へ投
入されても流動層20の温度降下が防止され、ワークピ
ース26のより速い昇温が達成される。
The work piece 26 is loaded into the fluidized bed 20 of the entrance portion 12 by the work piece carry-in device 28 at the entrance portion 12 and placed on the conveyor 22. Here, as described above, the inlet portion 12 is formed to be larger in volume than the heat treatment belt portion 14 and the take-out portion 16, and the heaters 18a, 18b is arranged and the granular material 2 in the fluidized bed 20
4 and hot air are further heated and kept warm. in this way,
Since the volume of the fluidized bed 20 of the inlet portion 12 is large and the amount of the granular material 24 is large and the heat retention amount of the inlet portion 12 is large, the low temperature workpiece 26 is thrown into the fluidized bed 20 of the inlet portion 12. Also, the temperature drop of the fluidized bed 20 is prevented, and a faster temperature rise of the workpiece 26 is achieved.

【0016】 次に、入口部12に投入されたワークピ
ース26は、コンベア22の移動に伴って入口部12か
ら熱処理帯部14を通過し、取出部16まで流動層20
中を移動するが、ワークピース26は、入口部12から
熱処理帯部14を経由し取出部16に至る間に所望の熱
処理がなされることになる。従って、入口部12から熱
処理帯部14を経由し取出部16に至る熱処理炉の長さ
及び寸法、及び処理時間は、対象とする熱処理の種類、
ワークピースである金属の種類、大きさに依存して決定
される。
Next, the workpiece 26 introduced into the inlet section 12 passes through the heat treatment strip section 14 from the inlet section 12 as the conveyor 22 moves, and reaches the take-out section 16 in the fluidized bed 20.
Although moving inside, the workpiece 26 is subjected to a desired heat treatment from the inlet portion 12 through the heat treatment strip portion 14 to the take-out portion 16. Therefore, the length and size of the heat treatment furnace from the inlet portion 12 to the extraction portion 16 via the heat treatment zone portion 14 and the treatment time are determined by the type of heat treatment to be treated,
It is determined depending on the type and size of the metal that is the work piece.

【0017】 所定の熱処理がなされ、取出部(出口
部)16まで到達したワークピース26は、ワークピー
ス搬出機32により炉外に搬出され、製品とされるか、
或いは次の処理工程に付されることになる。このように
して、本発明の連続式熱処理炉10によれば、非加熱状
態(低温)のワークピース26が入口部12の流動層2
0内へ投入される際の流動層20の温度降下を効果的に
防止或いは最小限にして、ワークピース26のより迅速
な昇温とともに、入口部12から熱処理帯部14及び取
出部16に至る流動層20中の温度分布のさらなる均一
化を達成することができる。
The workpiece 26, which has been subjected to a predetermined heat treatment and has reached the take-out portion (exit portion) 16, is carried out of the furnace by the work piece carry-out device 32 to be a product,
Alternatively, it will be subjected to the next processing step. In this way, according to the continuous heat treatment furnace 10 of the present invention, the workpiece 26 in the non-heated state (low temperature) is the fluidized bed 2 of the inlet portion 12.
The temperature drop of the fluidized bed 20 when being charged into 0 is effectively prevented or minimized, and the workpiece 26 is heated more quickly, and the inlet portion 12 reaches the heat treatment zone 14 and the take-out portion 16. Further homogenization of the temperature distribution in the fluidized bed 20 can be achieved.

【0018】 なお、本発明で対象とする金属としては
特に限定されず、熱処理を必要とする金属全般に適用す
ることができるが、Al合金、Mg合金などの軽合金が
好ましい。
The metal to be used in the present invention is not particularly limited, and it can be applied to all metals requiring heat treatment, but light alloys such as Al alloy and Mg alloy are preferable.

【0019】 また、本発明のように、熱処理炉として
流動層炉を用いることにより、流動層内部の温度均一化
(約±2〜3℃)により、より高い温度において熱処理
を行うことができ、例えば、Al合金のより高温での溶
体化処理が可能となり、また伝熱効率が良いことから、
溶体化処理温度までの昇温時間を短縮することができ
る。
Further, as in the present invention, by using a fluidized bed furnace as a heat treatment furnace, it is possible to perform heat treatment at a higher temperature by homogenizing the temperature inside the fluidized bed (about ± 2 to 3 ° C.), For example, it is possible to perform solution treatment of Al alloy at a higher temperature, and since heat transfer efficiency is good,
It is possible to shorten the temperature rising time to the solution heat treatment temperature.

【0020】 更に、流動層方式は、一般に、流動層容
器の外部から加熱する容器加熱方式やラジアントチュー
ブを流動層中に内蔵するラジアントチューブ方式等の間
接加熱方式のほか、熱風の直接吹込みによる直接加熱方
式が知られているが、本発明では、流動層中の温度分布
が良好になることから、熱風の直接吹込みによる直接加
熱方式を採用している。なお、本発明において、直接加
熱方式に、上記した他の方式を併用してもよい。
Further, the fluidized bed system is generally an indirect heating system such as a container heating system in which the fluidized bed container is heated from the outside or a radiant tube system in which a radiant tube is built in the fluidized bed, or a direct blowing of hot air. Although a direct heating method is known, in the present invention, the direct heating method by direct blowing of hot air is adopted because the temperature distribution in the fluidized bed becomes good. In the present invention, the above-mentioned other method may be used in combination with the direct heating method.

【0021】[0021]

【実施例】 以下、本発明を実施例に基づき、更に具体
的に説明する。 (実施例)図1に示す連続式熱処理炉を用いてAl合金
の溶体化処理及び時効処理を行った。用いた熱処理炉
は、図2に示す平面寸法を有しており、入口部12の横
幅3m、長さ1.5mで、入口部12から熱処理帯部1
4、取出部(出口部)16に至る全長は7.5mであ
り、熱処理帯部14及び取出部(出口部)16の横幅は
1mであった。また、熱処理炉の高さは1.5mであっ
た。炉内部は、分散パイプ30より吹き出される熱風に
より、平均粒径50〜500μmの砂(粒状物)が流動
されて流動層20が形成されている。入口部12の両側
張出部12a、12bにはそれぞれラジアントチューブ
型の加熱ヒーター18a、18bが配置され、入口部1
2から熱処理帯部14、取出部16に至る流動層20中
に配設されたコンベア22上にワークピース26が載置
されて、熱処理炉の入口部12から取出部16まで流動
層20中を移動しながら熱処理された。なお、500m
mピッチ送りでコンベア22を運転し、ワークピース2
6は1時間に15本の割合で処理された。また、熱処理
炉の入口部12における温度分布を測定したところ、溶
体化処理時において、±2℃の範囲内であることを確認
した。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. (Example) Using the continuous heat treatment furnace shown in FIG. 1, solution treatment and aging treatment of an Al alloy were performed. The heat treatment furnace used has the plane dimensions shown in FIG. 2, the width of the inlet portion 12 is 3 m, and the length is 1.5 m.
4. The total length up to the take-out portion (exit portion) 16 was 7.5 m, and the lateral width of the heat treatment strip portion 14 and the take-out portion (exit portion) 16 was 1 m. The height of the heat treatment furnace was 1.5 m. Inside the furnace, sand (granular material) having an average particle size of 50 to 500 μm is fluidized by the hot air blown from the dispersion pipe 30 to form the fluidized bed 20. Radiant tube type heaters 18a and 18b are arranged on both sides of the inlet portion 12a and 12b, respectively.
The workpiece 26 is placed on the conveyor 22 which is disposed in the fluidized bed 20 from 2 to the heat treatment zone 14 and the takeout section 16 so that the fluidized bed 20 extends from the inlet section 12 to the takeout section 16 of the heat treatment furnace. Heat treated while moving. In addition, 500m
Operate the conveyor 22 with m pitch feed, and work piece 2
6 was processed at a rate of 15 per hour. Further, the temperature distribution in the inlet portion 12 of the heat treatment furnace was measured, and it was confirmed that it was within a range of ± 2 ° C during the solution treatment.

【0022】 熱処理の対象物たるワークピースとして
は、鋳造された車両用アルミホイール(14kg)を用
い、テストピースの採取位置は、アウターリム・フラン
ジとした。上記アルミホイールの組成は、Siを7.0
質量%、Mgを0.34質量%、Srを50ppm含有
し、残部がAlであった。熱処理条件としては、図3の
スケジュールに示すように、溶体化処理温度を550
℃、時効処理温度を170℃とし、溶体化処理温度での
保持時間を60分、及び時効処理の保持時間を60分と
した。
A cast aluminum wheel for a vehicle (14 kg) was used as a workpiece to be heat-treated, and a test piece was sampled at an outer rim flange. The composition of the aluminum wheel is 7.0 for Si.
%, Mg was 0.34% by mass, Sr was 50 ppm, and the balance was Al. As the heat treatment conditions, as shown in the schedule of FIG.
C., the aging treatment temperature was 170.degree. C., the solution treatment temperature was kept for 60 minutes, and the aging treatment was kept for 60 minutes.

【0023】 上記のようにして熱処理された車両用ア
ルミホイールからテストピースを採取し、引張試験(引
張強さ、0.2%耐力、伸び)を行った結果、引張強さ
が270MPa以上、0.2%耐力が170MPa以
上、伸びが7%以上であった。
A test piece was taken from the vehicle aluminum wheel heat-treated as described above and subjected to a tensile test (tensile strength, 0.2% proof stress, elongation). As a result, the tensile strength was 270 MPa or more and 0. The 2% proof stress was 170 MPa or more and the elongation was 7% or more.

【0024】[0024]

【発明の効果】 以上説明したように、本発明の連続式
熱処理炉によれば、入口部の流動層中に加熱ヒーターを
存在させているので、非加熱状態のワークピースが入口
部の流動層へ投入される際に生じる入口部の流動層の温
度降下を効果的に防止或いは最小限にすることができ、
その結果、ワークピースのより速い昇温、および流動層
中の温度分布のさらなる均一化を達成することができる
という効果を奏する。
As described above, according to the continuous heat treatment furnace of the present invention, since the heating heater is present in the fluidized bed of the inlet portion, the workpiece in the unheated state is the fluidized bed of the inlet portion. It is possible to effectively prevent or minimize the temperature drop of the fluidized bed at the inlet when it is charged into
As a result, it is possible to achieve a faster temperature rise of the workpiece and a more uniform temperature distribution in the fluidized bed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る連続式熱処理炉の一例を示すも
ので、(a)は平面図、(b)は(a)のX−X断面
図、(c)は(b)のY−Y断面図である。
FIG. 1 shows an example of a continuous heat treatment furnace according to the present invention, in which (a) is a plan view, (b) is a sectional view taken along line XX of (a), and (c) is taken along line Y- of (b). It is a Y sectional view.

【図2】 実施例で用いた連続式熱処理炉の平面寸法を
示す説明図である。
FIG. 2 is an explanatory diagram showing plane dimensions of a continuous heat treatment furnace used in Examples.

【図3】 実施例のヒートスケジュールを示すグラフで
ある。
FIG. 3 is a graph showing a heat schedule of an example.

【符号の説明】[Explanation of symbols]

10…連続式熱処理炉、12…入口部、12a,12b
…両側張出部、14…熱処理帯部、16…取出部(出口
部)、18a,18b…加熱ヒーター、20…流動層、
22…コンベア、24…粉粒体、26…ワークピース、
28…ワークピース搬入機、30…分散パイプ、32…
ワークピース搬出機。
10 ... Continuous heat treatment furnace, 12 ... Inlet, 12a, 12b
... both-side overhanging part, 14 ... heat treatment zone part, 16 ... take-out part (outlet part), 18a, 18b ... heater, 20 ... fluidized bed,
22 ... conveyor, 24 ... powder, 26 ... workpiece,
28 ... Workpiece loading machine, 30 ... Dispersion pipe, 32 ...
Workpiece unloader.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属からなるワークピースの熱処理に用
いられ、炉体内に、熱風の吹き込みにより粉粒体が熱せ
られ流動している流動層を有し、該ワークピースを入口
部から出口部まで該流動層中を移動させながら熱処理す
る連続式熱処理炉であって、 該熱処理炉における該入口部の流動層中に加熱ヒーター
を存在させることを特徴とする連続式熱処理炉。
1. A heat treatment for a workpiece made of metal, wherein the furnace has a fluidized bed in which powder particles are heated by blowing hot air and is flowing, and the workpiece is provided from an inlet portion to an outlet portion. A continuous heat treatment furnace for performing heat treatment while moving in the fluidized bed, wherein a heater is present in the fluidized bed at the inlet of the heat treatment furnace.
【請求項2】 該連続式熱処理炉における入口部の流動
層が所定以上に大きく形成されることにより、該ワーク
ピースの熱処理温度までの昇温時間が所定以下に短くさ
れている請求項1記載の連続式熱処理炉。
2. The temperature rising time to the heat treatment temperature of the workpiece is shortened to a predetermined value or less by forming the fluidized bed at the inlet portion of the continuous heat treatment furnace larger than a predetermined value. Continuous heat treatment furnace.
【請求項3】 軽合金からなるワークピースの溶体化処
理を行う請求項1又は2記載の連続式熱処理炉。
3. The continuous heat treatment furnace according to claim 1, wherein the workpiece made of a light alloy is subjected to solution treatment.
JP2001203107A 2001-07-04 2001-07-04 Continuous heat treatment furnace Withdrawn JP2003021467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203107A JP2003021467A (en) 2001-07-04 2001-07-04 Continuous heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203107A JP2003021467A (en) 2001-07-04 2001-07-04 Continuous heat treatment furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003074715A Division JP2003301216A (en) 2003-03-19 2003-03-19 Continuous heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2003021467A true JP2003021467A (en) 2003-01-24

Family

ID=19039799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203107A Withdrawn JP2003021467A (en) 2001-07-04 2001-07-04 Continuous heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2003021467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101155A (en) * 2005-10-07 2007-04-19 Asahi Tec Corp Air heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101155A (en) * 2005-10-07 2007-04-19 Asahi Tec Corp Air heating furnace

Similar Documents

Publication Publication Date Title
JPS63501581A (en) Aluminum alloy vehicle parts
US7797832B2 (en) Cast aluminum wheel manufacturing and products
RU2222635C2 (en) Method of treatment of metal materials and titanium aluminide blank made by this method
US20050139299A1 (en) Method for heat treatment of precipitation hardening Al allot
US6773665B1 (en) Non-Cu-based cast Al alloy and method for heat treatment thereof
JP2003301216A (en) Continuous heat treatment furnace
JP2003021467A (en) Continuous heat treatment furnace
WO2002053787A1 (en) Multi-layer heat treating furnace, heat treating device, and heat treating method
CN107532268B (en) System and method for being heat-treated to aluminium alloy castings
JP2006226646A (en) Heat treatment furnace for deformed item, manufacturing device for deformed item, and deformed item manufacturing method
US9284636B1 (en) Impact toughness and heat treatment for cast aluminum
JP2002275567A (en) PRECIPITATION-HARDENING Al ALLOY, AND METHOD OF HEAT TREATMENT FOR PRECIPITATION-HARDENING ALLOY
JP2003239031A (en) NON-Cu BASED PRECIPITATION HARDENING Al ALLOY, THICK- WALLED CASTING OBTAINED BY USING THE SAME AND PRODUCTION METHOD THEREFOR
JP4216752B2 (en) Heat treatment method for wrought aluminum alloy
US20230278095A1 (en) Method of producing large thin-walled sand castings of high internal integrity
JPS61179858A (en) Direct heat treatment of aluminum alloy powder extruded material
JPS61199003A (en) Heat treatment of aluminum alloy powder extruded material
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JP2002363717A (en) METHOD FOR HEAT-TREATING Al ALLOY
JP2003239054A (en) HEAT TREATMENT METHOD FOR PRECIPITATION HARDENING TYPE Al ALLOY
JP2002339016A (en) Heat treatment method for cast product
JPH06246384A (en) Production of magnesium alloy member
JP5064624B2 (en) Fluidized bed heat treatment furnace
JP2661232B2 (en) Manufacturing method of aluminum-based hot forgings
JPH07236963A (en) Manufacture of molding die having heating/cooling hole and molding die

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007