JP2003021096A - Low loss centrifugal pump - Google Patents

Low loss centrifugal pump

Info

Publication number
JP2003021096A
JP2003021096A JP2001207312A JP2001207312A JP2003021096A JP 2003021096 A JP2003021096 A JP 2003021096A JP 2001207312 A JP2001207312 A JP 2001207312A JP 2001207312 A JP2001207312 A JP 2001207312A JP 2003021096 A JP2003021096 A JP 2003021096A
Authority
JP
Japan
Prior art keywords
centrifugal pump
casing
impeller
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001207312A
Other languages
Japanese (ja)
Other versions
JP4807542B2 (en
Inventor
Akitoshi Masuda
精鋭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001207312A priority Critical patent/JP4807542B2/en
Publication of JP2003021096A publication Critical patent/JP2003021096A/en
Application granted granted Critical
Publication of JP4807542B2 publication Critical patent/JP4807542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low loss centrifugal pump that can reduce loss by disk abrasion and thus can suppress temperature increase of fluid even at low flow rate. SOLUTION: This centrifugal pump pressurizes liquid fuel and has a low specific speed. A floating member 20 freely rotatable in the same direction as an impeller rotatable at high speed is disposed between a shroud 12 of the impeller 11 and a casing 13 surrounding the impeller. The floating member 20 comprises non-contactly rotatable floating disks 21 and 22 between the shroud 12 and the casing 13 and seal members 21a, 21b, 22a, and 22b for liquid-tightly sealing clearances between the floating disks and the casing 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、円板摩擦による損
失が少なく、低流量で使用しても流体の温度上昇が少な
い低損失遠心ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss centrifugal pump which has a small loss due to disc friction and a small temperature rise of fluid even when used at a low flow rate.

【0002】[0002]

【従来の技術】図3は、ジェットエンジンの燃焼器に燃
料を噴射するための従来の燃料流量制御装置の構成図で
ある。この図において、1は燃料ポンプ、2は計量バル
ブ、3はドレインバルブ、4はノズルであり、燃料ポン
プ1で加圧した液体燃料(ジェット燃料)を、計量バル
ブ2で計量(流量調節)し、ドレインバルブ3を開き、
ノズル4から燃焼器(図示せず)に噴射するようになっ
ている。
2. Description of the Related Art FIG. 3 is a block diagram of a conventional fuel flow rate control device for injecting fuel into a combustor of a jet engine. In this figure, 1 is a fuel pump, 2 is a metering valve, 3 is a drain valve, 4 is a nozzle, and liquid fuel (jet fuel) pressurized by the fuel pump 1 is metered (flow rate adjusted) by the metering valve 2. , Open the drain valve 3,
It is designed to inject from a nozzle 4 to a combustor (not shown).

【0003】また、余分な燃料を燃料ポンプ1の上流側
に戻すためのバイパスバルブ5と、このバイパスバルブ
5を制御して、計量バルブ2の上流側圧力P1と下流側
圧力P2の差圧ΔPを一定に制御する差圧センサーバル
ブ6とを備えている。
Further, a bypass valve 5 for returning excess fuel to the upstream side of the fuel pump 1, and a control of the bypass valve 5, the difference between the upstream pressure P 1 and the downstream pressure P 2 of the metering valve 2 is controlled. The differential pressure sensor valve 6 controls the pressure ΔP to be constant.

【0004】計量バルブ2は、計量スプール2aとノズ
ルフラッパ2bを有し、ノズルフラッパ2bを電気的又
は機械的に移動(図で左右に)させることにより、計量
スプール2aの左端に作用する流体圧が変化し、計量ス
プール2aを左右に移動させて通過流量を制御する。例
えば、この図でノズルフラッパ2bを右に移動させる
と、計量スプール2aの左端圧力が上昇し、計量スプー
ル2aが右に移動して流量を絞り、逆にノズルフラッパ
2bを左に移動させると、計量スプール2aの左端圧力
が低下し、計量スプール2aが左に移動して流量が増加
する。
The metering valve 2 has a metering spool 2a and a nozzle flapper 2b. By moving the nozzle flapper 2b electrically or mechanically (left and right in the figure), the fluid pressure acting on the left end of the metering spool 2a is changed. Then, the measuring spool 2a is moved to the left and right to control the passing flow rate. For example, when the nozzle flapper 2b is moved to the right in this figure, the left end pressure of the measuring spool 2a rises, the measuring spool 2a moves to the right and throttles the flow rate, and conversely, when the nozzle flapper 2b is moved to the left, The pressure at the left end of 2a decreases, the metering spool 2a moves to the left, and the flow rate increases.

【0005】計量バルブ2は、上流側圧力P1と下流側
圧力P2の差圧ΔPを一定に保持することにより、ノズ
ルフラッパ2bの変位に通過流量が比例する。そのた
め、差圧センサーバルブ6のスプール6aをバネ6で図
で左側に付勢し、スプール6aの左端に上流側圧力
1、右端に下流側圧力P2をそれぞれパイロットライン
7a,7bで導いている。
The metering valve 2 maintains a constant differential pressure ΔP between the upstream pressure P 1 and the downstream pressure P 2 , so that the flow rate of passage is proportional to the displacement of the nozzle flapper 2b. Therefore, the spool 6a of the differential pressure sensor valve 6 is biased to the left side in the drawing by the spring 6, and the upstream pressure P 1 is introduced to the left end of the spool 6a and the downstream pressure P 2 is introduced to the right end of the spool 6a by the pilot lines 7a and 7b, respectively. There is.

【0006】差圧ΔPが所定の値より小さくなると、こ
の図でスプール6aが左に移動し、パイロットライン8
aから8bに高圧(上流側圧力P1)の燃料が流れ、バ
イパスバルブ5のスプール5aを右に移動してバイパス
ライン9bを閉じ、上流側圧力P1を高め計量バルブ2
の通過流量を増加させる。
When the differential pressure ΔP becomes smaller than a predetermined value, the spool 6a moves to the left in this figure, and the pilot line 8
High-pressure (upstream pressure P 1 ) fuel flows from a to 8b, the spool 5a of the bypass valve 5 is moved to the right to close the bypass line 9b, and the upstream pressure P 1 is increased to increase the metering valve 2
Increase the flow rate of

【0007】逆に、差圧ΔPが所定の値より大きくなる
と、この図でスプール6aが右に移動し、バイパスバル
ブ5のバネ5b側の圧力をパイロットライン8b,8c
を介して燃料ポンプ1の上流側(低圧部)に抜き、バイ
パスバルブ5のスプール5aを左に移動してバイパスラ
イン9bを開き、上流側圧力P1を下げ計量バルブ2の
通過流量を減少させる。
On the contrary, when the differential pressure ΔP becomes larger than a predetermined value, the spool 6a moves to the right in this figure, and the pressure on the spring 5b side of the bypass valve 5 is adjusted to the pilot lines 8b, 8c.
Via the fuel pump 1 to the upstream side (low pressure portion), the spool 5a of the bypass valve 5 is moved to the left to open the bypass line 9b, and the upstream pressure P 1 is lowered to reduce the flow rate of the metering valve 2. .

【0008】上述した構成により、差圧センサーバルブ
6により上流側圧力P1と下流側圧力P2の差圧ΔPを常
に一定に保持し、ノズルフラッパ2bの変位に比例した
燃料流量をノズル4から噴射することができるようにな
っている。
With the above-described structure, the differential pressure sensor valve 6 always maintains the differential pressure ΔP between the upstream pressure P 1 and the downstream pressure P 2 constant, and the fuel flow rate proportional to the displacement of the nozzle flapper 2b is injected from the nozzle 4. You can do it.

【0009】[0009]

【発明が解決しようとする課題】上述した航空用エンジ
ンの燃料流量制御装置では、大流量を使用するときに燃
料ポンプとして図2に例示するような、低比速度の遠心
ポンプ10を使用している。この図において、11はイ
ンペラ、12はシュラウド、13はケーシング、14は
軸受、15はシール(ラビリンスシール)、16は加圧
前の低圧流体、17は加圧後の高圧流体である。
In the fuel flow rate control device for an aeronautical engine described above, a low specific speed centrifugal pump 10 as shown in FIG. 2 is used as a fuel pump when a large flow rate is used. There is. In this figure, 11 is an impeller, 12 is a shroud, 13 is a casing, 14 is a bearing, 15 is a seal (labyrinth seal), 16 is a low pressure fluid before pressurization, and 17 is a high pressure fluid after pressurization.

【0010】低比速度の遠心ポンプとは、高回転で大流
量を吐出できるポンプであり、軽量に設計できるため航
空用の場合、その点でメリットが大きい。
The low specific speed centrifugal pump is a pump capable of discharging a large flow rate at a high rotation speed and can be designed to be lightweight, so that it has a great advantage in that respect in the case of aviation.

【0011】しかし、低比速度の遠心ポンプの場合、小
型化のため回転数を高くしているため、円板摩擦が大き
く効率が悪い問題点がある。またそのため、低流量で使
用すると流体の温度が過剰に上昇する問題がある。すな
わち、A.J.Stepanoffらの研究によれば、
比速度100程度の場合、最も大きい損失は円板摩擦で
あり、20%以上の損失となる。
However, in the case of a low specific speed centrifugal pump, since the rotational speed is increased for downsizing, there is a problem that the disk friction is large and the efficiency is low. Therefore, when used at a low flow rate, there is a problem that the temperature of the fluid rises excessively. That is, A. J. According to a study by Stepanoff et al.
When the specific speed is about 100, the largest loss is disc friction, which is 20% or more.

【0012】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、円板
摩擦による損失を低減することができ、これにより、低
流量で使用しても流体の温度上昇を抑制することができ
る低損失遠心ポンプを提供することにある。
The present invention was created to solve such problems. That is, an object of the present invention is to provide a low-loss centrifugal pump that can reduce the loss due to disc friction and can suppress the temperature rise of the fluid even when used at a low flow rate. .

【0013】[0013]

【課題を解決するための手段】本発明によれば、液体燃
料を加圧する低比速度の遠心ポンプであって、高速回転
可能なインペラ(11)のシュラウド(12)とインペ
ラを囲むケーシング(13)との間に、インペラと同一
方向に自由回転可能なフローティング部材(20)を備
える、ことを特徴とする低損失遠心ポンプが提供され
る。
According to the present invention, there is provided a low specific speed centrifugal pump for pressurizing liquid fuel, wherein a shroud (12) of an impeller (11) capable of high speed rotation and a casing (13) surrounding the impeller. A low loss centrifugal pump characterized by comprising a floating member (20) freely rotatable in the same direction as the impeller.

【0014】本発明の好ましい実施形態によれば、前記
フローティング部材(20)は、シュラウド(12)と
ケーシング(13)との間で非接触に回転可能なフロー
ティングディスク(21、22)と、該フローティング
ディスクとケーシング(13)との隙間を液密にシール
するシール部材(21a,21b,22a,22b)と
からなる。
According to a preferred embodiment of the present invention, the floating member (20) includes a floating disk (21, 22) rotatable between the shroud (12) and the casing (13) in a non-contact manner. It comprises a seal member (21a, 21b, 22a, 22b) for sealing the gap between the floating disk and the casing (13) in a liquid-tight manner.

【0015】円板摩擦は、ケーシングとシュラウドの相
対速度の二乗に比例するため、相対速度を半分にするデ
ィスクをケーシングとシュラウドの間に入れれば、円板
摩擦の生じる面積は2倍になるが、円板摩擦が1/4に
なるため、全体で損失が1/2になる。
Since the disc friction is proportional to the square of the relative velocity between the casing and the shroud, if a disc that halves the relative velocity is inserted between the casing and the shroud, the area where the disc friction occurs is doubled. Since the disc friction becomes 1/4, the loss becomes 1/2 as a whole.

【0016】[0016]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し、重複した説明を省略す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In each drawing, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0017】図1は、本発明による低損失遠心ポンプの
構成図である。この図において、本発明の低損失遠心ポ
ンプは、液体燃料を加圧する低比速度の遠心ポンプであ
る。また、本発明の低損失遠心ポンプは、高速回転可能
なインペラ11のシュラウド12とインペラを囲むケー
シング13との間に、インペラ11と同一方向に自由回
転可能なフローティング部材20を備える。
FIG. 1 is a block diagram of a low loss centrifugal pump according to the present invention. In this figure, the low loss centrifugal pump of the present invention is a low specific speed centrifugal pump that pressurizes liquid fuel. Further, the low-loss centrifugal pump of the present invention includes a floating member 20 freely rotatable in the same direction as the impeller 11 between the shroud 12 of the impeller 11 that can rotate at high speed and the casing 13 that surrounds the impeller.

【0018】フローティング部材20は、この例では、
シュラウド12とケーシング13との間で非接触に回転
可能なフローティングディスク21、22と、これらの
フローティングディスク21、22とケーシング13と
の隙間を液密にシールするシール部材21a,21b,
22a,22bとからなる。シール部材21a,21
b,22a,22bはこの例ではラビリンスシールであ
る。
The floating member 20 is, in this example,
Floating disks 21 and 22 that can rotate in a non-contact manner between the shroud 12 and the casing 13, and sealing members 21a and 21b that seal the gaps between the floating disks 21 and 22 and the casing 13 in a liquid-tight manner.
22a and 22b. Seal members 21a, 21
b, 22a and 22b are labyrinth seals in this example.

【0019】図2に示した従来の低比速度の遠心ポンプ
の場合、A.J.Stepanoffらの研究によれ
ば、比速度100程度の場合、最も大きい損失は円板摩
擦であり、20%以上の損失となる。また、これはイン
ペラ11のシュラウド12(円盤状の羽根を覆う板)と
流体の摩擦によるものであり回転速度の2乗に比例す
る。またこの円板摩擦は図2に太い破線18で示す4ケ
所部分で発生する。この円板摩擦部分18は、この例で
はすべて高圧流体内であり円板摩擦も大きくなってい
る。
In the case of the conventional low specific speed centrifugal pump shown in FIG. J. According to the study by Stepanoff et al., When the specific speed is about 100, the largest loss is disk friction, which is 20% or more. Further, this is due to the friction between the shroud 12 (the plate covering the disk-shaped blades) of the impeller 11 and the fluid, and is proportional to the square of the rotation speed. Further, this disc friction occurs at the four places indicated by the thick broken line 18 in FIG. In this example, the disc friction portion 18 is entirely in the high pressure fluid, and the disc friction is large.

【0020】シュラウド12と流体の相対速度を1/2
にできれば、円盤摩擦はその二乗の1/4に減少する。
この効果を得るために、図1に示した装置では、シュラ
ウド12(インペラ回転数)とケーシング13(回転
数:0)との間にフリーに回転する円盤(フローティン
グディスク)を挿入している。
Halve the relative velocity of the shroud 12 and the fluid
If possible, the disk friction will be reduced to 1/4 of its square.
In order to obtain this effect, in the apparatus shown in FIG. 1, a freely rotating disk (floating disk) is inserted between the shroud 12 (impeller rotation speed) and the casing 13 (rotation speed: 0).

【0021】この構成により、シュラウド12とフリー
円盤(フローティングディスク)の相対速度が約1/2
となり、ケーシング13とフローティングディスクとの
相対速度も約1/2となる。すなわちフローティングデ
ィスク21、22は、その両面に作用する摩擦抵抗が一
致する速度、言い換えれば損失エネルギーが最小となる
速度で回転し、両面の面積が同一の場合、その速度はイ
ンペラ回転数の約1/2となる。
With this configuration, the relative speed between the shroud 12 and the free disk (floating disk) is about 1/2.
Therefore, the relative speed between the casing 13 and the floating disk is also about 1/2. That is, the floating disks 21 and 22 rotate at a speed at which the frictional resistances acting on both surfaces match, in other words, at a speed at which the energy loss is minimized, and when the areas on both surfaces are the same, the speed is about 1 of the impeller rotation speed. / 2.

【0022】図1において、フローティングディスク2
1、22は受圧面(4ケ所の円板摩擦部分18)の釣り
合いにより、どの部材とも接触しておらず、流体の摩擦
だけにより駆動される。
In FIG. 1, the floating disk 2
1 and 22 are not in contact with any member due to the balance of the pressure receiving surfaces (the disc friction portions 18 at the four places), and are driven only by the friction of the fluid.

【0023】シール部材(ラビリンスシール)21a,
21b,22a,22bにより、フローティングディス
ク21、22の外面は、高圧流体17と低圧流体16の
中間圧力、すなわち外側シール部材21a,22aと内
側シール部材21b,22bを通して高圧から低圧まで
に抜ける中間圧力を受ける。従ってこの中間圧力によ
り、フローティングディスク21、22は、インペラ1
1のシュラウド12に向けて押し付けられる。
A seal member (labyrinth seal) 21a,
21b, 22a, 22b cause the outer surfaces of the floating disks 21, 22 to have an intermediate pressure between the high-pressure fluid 17 and the low-pressure fluid 16, that is, an intermediate pressure at which high pressure to low pressure is released through the outer seal members 21a, 22a and inner seal members 21b, 22b. Receive. Therefore, this intermediate pressure causes the floating disks 21 and 22 to move to the impeller 1
It is pressed toward the shroud 12 of 1.

【0024】一方、フローティングディスク21、22
の内面は、この例では高圧流体17の圧力を受け、イン
ペラ11のシュラウド12から遠ざかる方向に力を受け
る。
On the other hand, the floating disks 21, 22
The inner surface of is subjected to the pressure of the high-pressure fluid 17 in this example, and is subjected to a force in a direction away from the shroud 12 of the impeller 11.

【0025】フローティングディスク21、22の外面
圧力は、シュラウド12に近づいたとき内側シール部材
21b,22bが開き外側シール部材21a,22aを
流れる流量も増えて中間圧力が下がる。またシュラウド
12から遠ざかったときに、内側シール部材21b,2
2bが閉まり、リークが減り圧力が上がる。また、内側
シール部材21b,22bのリークが0となったときフ
ローティングディスク21、22の外面圧力は中間圧力
と同圧になる。
The outer surface pressure of the floating disks 21, 22 is such that when the shroud 12 is approached, the inner seal members 21b, 22b are opened and the flow rate of the outer seal members 21a, 22a is increased to lower the intermediate pressure. Also, when the shroud 12 is moved away from the inner seal members 21b, 2
2b closes, leaks decrease and pressure rises. Further, when the leakage of the inner seal members 21b and 22b becomes 0, the outer surface pressure of the floating disks 21 and 22 becomes the same as the intermediate pressure.

【0026】このような関係によりリークが0でないど
こかのリーク量で、部材は完全にどこにも接していない
状態で圧力がバランスする点で静止する。なお、径方向
にも圧力バランス溝等を設けることによって、径方向も
どこにも接していない状態にすることが可能である。こ
の構成により、フローティングディスク21、22は、
ポンプによって生じる流体の回転の摩擦のトルクにより
自転する。
Due to such a relationship, when the leak amount is somewhere other than zero, the member is stationary at a point where the pressure is balanced without being completely in contact with anything. By providing a pressure balance groove or the like in the radial direction as well, it is possible to make a state in which no pressure contact groove is in contact with the radial direction either. With this configuration, the floating disks 21 and 22 are
The rotation of the fluid caused by the pump causes the friction torque to rotate on its axis.

【0027】円板摩擦は、ケーシングとシュラウドの相
対速度の二乗に比例するため、上述したフローティング
ディスク21、22をケーシング13とシュラウド12
の間に入れることにより、円板摩擦の生じる面積は2倍
になるが、円板摩擦が1/2の二乗の1/4になるた
め、全体で損失が1/2になる。従って、低比速度の遠
心ポンプの効率が向上し、低流量域まで使用できるよう
になる。
Since the disc friction is proportional to the square of the relative velocity of the casing and the shroud, the above-mentioned floating disks 21 and 22 are attached to the casing 13 and the shroud 12.
By inserting it in between, the area where the disc friction occurs is doubled, but since the disc friction becomes 1/4 of the square of 1/2, the loss becomes 1/2 as a whole. Therefore, the efficiency of the low specific speed centrifugal pump is improved and the low flow rate region can be used.

【0028】なお本発明は以上に述べた実施形態に限ら
れるものではなく、発明の要旨を逸脱しない範囲で各種
の変更が可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.

【0029】[0029]

【発明の効果】上述したように、本発明の低損失遠心ポ
ンプは、円板摩擦による損失を低減することができ、こ
れにより、低流量で使用しても流体の温度上昇を抑制す
ることができる等の優れた効果を有する。
As described above, the low-loss centrifugal pump of the present invention can reduce the loss due to the disc friction, and thus suppress the temperature rise of the fluid even when used at a low flow rate. It has an excellent effect such as being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による低損失遠心ポンプの構成図であ
る。
FIG. 1 is a configuration diagram of a low loss centrifugal pump according to the present invention.

【図2】従来の低損失遠心ポンプの構成図である。FIG. 2 is a configuration diagram of a conventional low-loss centrifugal pump.

【図3】従来の燃料流量制御装置の構成図である。FIG. 3 is a configuration diagram of a conventional fuel flow rate control device.

【符号の説明】 1 燃料ポンプ、2 計量バルブ、3 ドレインバル
ブ、4 ノズル、5 バイパスバルブ、6 差圧センサ
ーバルブ、7a,7b パイロットライン、8a,8
b,8c パイロットライン、9a,9b バイパスラ
イン、10 遠心ポンプ、11 インペラ、12 シュ
ラウド、13 ケーシング、14 軸受、15 シール
(ラビリンスシール)、16 低圧流体、17 高圧流
体、20 フローティング部材、21、22 フローテ
ィングディスク、21a,21b,22a,22b シ
ール部材(ラビリンスシール)
[Explanation of reference numerals] 1 fuel pump, 2 metering valve, 3 drain valve, 4 nozzle, 5 bypass valve, 6 differential pressure sensor valve, 7a, 7b pilot line, 8a, 8
b, 8c Pilot line, 9a, 9b Bypass line, 10 Centrifugal pump, 11 Impeller, 12 Shroud, 13 Casing, 14 Bearing, 15 Seal (labyrinth seal), 16 Low pressure fluid, 17 High pressure fluid, 20 Floating member, 21, 22 Floating disk, 21a, 21b, 22a, 22b Seal member (labyrinth seal)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H022 AA01 BA02 BA07 CA21 CA22 CA32 CA56 DA08 3H033 AA01 AA15 AA16 BB01 BB06 BB11 CC04 CC07 DD01 DD29 DD30 EE09 EE13 3H034 AA01 AA15 AA16 BB01 BB06 BB11 CC04 CC07 DD01 DD28 DD30 EE09 EE13    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3H022 AA01 BA02 BA07 CA21 CA22                       CA32 CA56 DA08                 3H033 AA01 AA15 AA16 BB01 BB06                       BB11 CC04 CC07 DD01 DD29                       DD30 EE09 EE13                 3H034 AA01 AA15 AA16 BB01 BB06                       BB11 CC04 CC07 DD01 DD28                       DD30 EE09 EE13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体燃料を加圧する低比速度の遠心ポン
プであって、高速回転可能なインペラ(11)のシュラ
ウド(12)とインペラを囲むケーシング(13)との
間に、インペラと同一方向に自由回転可能なフローティ
ング部材(20)を備える、ことを特徴とする低損失遠
心ポンプ。
1. A low specific speed centrifugal pump for pressurizing liquid fuel, which is provided between a shroud (12) of an impeller (11) capable of high speed rotation and a casing (13) surrounding the impeller in the same direction as the impeller. A low-loss centrifugal pump, comprising a freely rotatable floating member (20).
【請求項2】 前記フローティング部材(20)は、シ
ュラウド(12)とケーシング(13)との間で非接触
に回転可能なフローティングディスク(21、22)
と、該フローティングディスクとケーシング(13)と
の隙間を液密にシールするシール部材(21a,21
b,22a,22b)とからなる、ことを特徴とする請
求項1に記載の低損失遠心ポンプ。
2. The floating member (20) is a floating disk (21, 22) rotatable in a non-contact manner between the shroud (12) and the casing (13).
And sealing members (21a, 21a) for sealing the gap between the floating disk and the casing (13) in a liquid-tight manner.
b, 22a, 22b), The low-loss centrifugal pump according to claim 1, characterized in that
JP2001207312A 2001-07-09 2001-07-09 Low loss centrifugal pump Expired - Lifetime JP4807542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207312A JP4807542B2 (en) 2001-07-09 2001-07-09 Low loss centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207312A JP4807542B2 (en) 2001-07-09 2001-07-09 Low loss centrifugal pump

Publications (2)

Publication Number Publication Date
JP2003021096A true JP2003021096A (en) 2003-01-24
JP4807542B2 JP4807542B2 (en) 2011-11-02

Family

ID=19043318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207312A Expired - Lifetime JP4807542B2 (en) 2001-07-09 2001-07-09 Low loss centrifugal pump

Country Status (1)

Country Link
JP (1) JP4807542B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273009A (en) * 2006-03-31 2007-10-18 Saxa Inc Disk device
JP2010216374A (en) * 2009-03-17 2010-09-30 Kawasaki Heavy Ind Ltd Hydraulic power generating device
ITFI20120210A1 (en) * 2012-10-15 2014-04-16 Nuovo Pignone Srl "HIGH EFFICIENCY LOW SPECIFIC SPEED CENTRIFUGAL PUMP"
KR20140070251A (en) * 2012-11-30 2014-06-10 삼성테크윈 주식회사 Impeller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126593U (en) * 1981-01-31 1982-08-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126593U (en) * 1981-01-31 1982-08-06

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273009A (en) * 2006-03-31 2007-10-18 Saxa Inc Disk device
JP2010216374A (en) * 2009-03-17 2010-09-30 Kawasaki Heavy Ind Ltd Hydraulic power generating device
ITFI20120210A1 (en) * 2012-10-15 2014-04-16 Nuovo Pignone Srl "HIGH EFFICIENCY LOW SPECIFIC SPEED CENTRIFUGAL PUMP"
WO2014060343A1 (en) * 2012-10-15 2014-04-24 Nuovo Pignone Srl High efficiency low specific speed centrifugal pump
KR20150070294A (en) * 2012-10-15 2015-06-24 누보 피그노네 에스알엘 High efficiency low specific speed centrifugal pump
CN104813033A (en) * 2012-10-15 2015-07-29 诺沃皮尼奥内股份有限公司 High efficiency low specific speed centrifugal pump
US20150260190A1 (en) * 2012-10-15 2015-09-17 Nuovo Pignone Srl High efficiency low specific speed centrifugal pump
JP2015532389A (en) * 2012-10-15 2015-11-09 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. High efficiency low specific speed centrifugal pump
AU2013331741B2 (en) * 2012-10-15 2017-06-08 Nuovo Pignone Tecnologie - S.R.L. High efficiency low specific speed centrifugal pump
KR102200789B1 (en) * 2012-10-15 2021-01-13 누보 피그노네 에스알엘 High efficiency low specific speed centrifugal pump
KR20140070251A (en) * 2012-11-30 2014-06-10 삼성테크윈 주식회사 Impeller
KR101960714B1 (en) * 2012-11-30 2019-03-22 한화파워시스템 주식회사 Impeller

Also Published As

Publication number Publication date
JP4807542B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
Lefebvre et al. Centrifugal pump performance during transient operation
US5983621A (en) Method for controlling the flow rate of fuel within a gas turbine
Iversen Performance of the periphery pump
US7258524B2 (en) Method of regulating the flow rate of air in a rotary shaft of a turbomachine
Badami et al. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system
US3926442A (en) Sliding ring seal
US10385715B2 (en) Floating, non-contact seal with angled beams
JPS605796B2 (en) liquid sho vane pump
JP2873581B2 (en) Centrifugal compressor
JP2828231B2 (en) Pump sealing device
JP2003021096A (en) Low loss centrifugal pump
EP4317663A1 (en) Aircraft intake duct with actively movable flow restrictor
US3248943A (en) Turbine flow meter
Hu Ning Comparison of discharge coefficient measurements and correlations for several orifice designs with cross-flow and rotation around several axes
Childs et al. Static destabilizing behavior for gas annular seals at high eccentricity ratios
US5145314A (en) Low drag pitot pump and method of operating same
Xiaohan et al. Steady performance on high speed spiral-grooved mechanical seals based on turbulent model
JPH06213195A (en) Fuel feed pump
JP5907764B2 (en) Turbo pump
Das et al. Study of pressure surge during priming phase of start transient in an initially unprimed pump-fed liquid rocket engine
US2451055A (en) Fuel pump
US5098255A (en) VAriable geometry pitot pump
US5171026A (en) High pressure gas seal
Due Jr An empirical method for calculating radial pressure distribution on rotating disks
Burton Review of regenerative compressor theory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4807542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term