JP2003020635A - Water-intake device for power generation - Google Patents

Water-intake device for power generation

Info

Publication number
JP2003020635A
JP2003020635A JP2001208046A JP2001208046A JP2003020635A JP 2003020635 A JP2003020635 A JP 2003020635A JP 2001208046 A JP2001208046 A JP 2001208046A JP 2001208046 A JP2001208046 A JP 2001208046A JP 2003020635 A JP2003020635 A JP 2003020635A
Authority
JP
Japan
Prior art keywords
water
pressure
floating body
power generation
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001208046A
Other languages
Japanese (ja)
Inventor
Yutaka Narutomi
豊 成富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001208046A priority Critical patent/JP2003020635A/en
Publication of JP2003020635A publication Critical patent/JP2003020635A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To provide a water-intake device for power generation small in size and not requiring a power supply. SOLUTION: This water-intake device for power generation comprises a floating body 3 floated on water and having a pump 4 for sucking water, ground side equipment 2 receiving water from the floating body 3, and ground side piping 6 as piping for feeding the water sucked by the floating body 3 to the ground side equipment 2. An automatic pressure control valve 10 is installed for controlling the pressure of the water according to the pressure of the water taken into the ground side piping 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンプラ
ント等の発電設備で用いられる水を採取する発電用取水
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water intake device for power generation used for power generation equipment such as gas turbine plants.

【0002】[0002]

【従来の技術】ガスタービンプラント等の発電プラント
においては、必要とされる水をダム湖等から取水し、パ
イプラインによって送水することで利用している場合が
ある。ダム湖では、ポンプを備えた浮体(浮きジェッテ
ィ)を水面に浮かべ、該ポンプによって取水して地上に
揚水している。
2. Description of the Related Art In a power generation plant such as a gas turbine plant, there is a case where required water is taken from a dam lake or the like and sent by a pipeline. In a dam lake, a floating body (floating jetty) equipped with a pump is floated on the water surface, and the water is taken up by the pump and pumped to the ground.

【0003】[0003]

【発明が解決しようとする課題】さて、ダム湖などで
は、水位が50m近く変動することがある。低水位の時
と高水位の時とでは、取水された水の水圧に差が開く。
すなわち、低水位の時にはポンプと地上との高低差が大
きいために圧力が低く、高水位の時にはポンプと地上と
の高低差が小さいために圧力が高くなる。このような圧
力差を抑えて安定した取水を行うためには、地上側に圧
力を制御するコントロール設備を設けることが考えられ
る。例えば、揚水された水の配管にコントロール弁を設
け、水位に応じて開度を電子制御することが等の方法が
考えられる。しかし、電力や制御空気設備を必要とする
ため、電力や制御空気設備が供給されていない山間地域
や僻地のダム湖等には設置が難しい。また、水位変動に
対応しうるように、取水設備として堤体支持形シリンダ
ゲートを設けることも考えられる。しかし、このような
ゲート式の取水設備では装置が巨大化してしまい、高コ
ストとなってしまうという問題がある。
In a dam lake or the like, the water level may fluctuate by about 50 m. There is a difference in water pressure between the low water level and the high water level.
That is, when the water level is low, the pressure difference is low because the height difference between the pump and the ground is large, and when the water level is high, the pressure difference is high because the height difference between the pump and the ground is small. In order to suppress such a pressure difference and perform stable water intake, it is conceivable to provide a control facility on the ground side to control the pressure. For example, a method in which a control valve is provided in a pipe of pumped water and the opening degree is electronically controlled according to the water level can be considered. However, since it requires electric power and controlled air equipment, it is difficult to install it in mountainous areas where power and controlled air equipment are not supplied or in dam lakes in remote areas. It is also possible to install a bank support type cylinder gate as water intake equipment so as to cope with fluctuations in water level. However, such a gate-type water intake facility has a problem that the device becomes huge and the cost becomes high.

【0004】本発明は上記事情に鑑みて成されたもので
あり、小型であり、かつ電源や制御空気設備を必要とし
ない発電用取水装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water intake device for power generation that is small in size and does not require a power source or a control air facility.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、水上に浮かべられるとともに水を吸い上げるポンプ
を備えた浮体と、該浮体から水が供給される地上側設備
と、前記浮体によって吸い上げられた水を前記地上側設
備に送水する配管とを備え、前記配管に、取り込まれた
水の圧力に応じて該水の圧力及び流量を制御する自圧弁
が介装されていることを特徴とする。
According to a first aspect of the present invention, there is provided a floating body provided with a pump that floats on the water and sucks up water, ground equipment to which water is supplied from the floating body, and suction by the floating body. A pipe for sending the taken water to the above-ground facility, and a self-pressure valve for controlling the pressure and flow rate of the water according to the pressure of the taken water is interposed in the pipe. To do.

【0006】この発明においては、電源や制御空気設備
を必要としない自圧弁を設けることにより、圧力が制御
される。
In the present invention, the pressure is controlled by providing a self-pressure valve that does not require a power source or controlled air equipment.

【0007】請求項2に記載の発明は、請求項1に記載
の発電用取水装置において、前記配管は、長手方向に伸
縮自在であることを特徴とする。
According to a second aspect of the present invention, in the water intake device for power generation according to the first aspect, the pipe is expandable and contractable in a longitudinal direction.

【0008】この発明においては、水面の変動によって
浮体が上下動しても、配管が伸縮することにより、浮体
の移動に追従する。このとき、送水経路長が変動するこ
とによって圧損が変化する可能性があるが、上記のよう
に本発明では自圧弁によって吐出圧力が制御されるた
め、送水経路長の変動に関わらず安定して水圧を制御す
ることができる。
In the present invention, even if the floating body moves up and down due to fluctuations in the water surface, the pipe expands and contracts to follow the movement of the floating body. At this time, the pressure loss may change due to the fluctuation of the water supply path length, but since the discharge pressure is controlled by the self-pressure valve in the present invention as described above, it is stable regardless of the fluctuation of the water supply path length. Water pressure can be controlled.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施形態につい
て、図面を参照して説明する。図1において、符号1は
水上側設備、2は地上側設備である。符号3は水上に浮
かべられた浮体(浮きジェッティ)であり、4は浮体3
に設置されたポンプである。後述するように、水位が低
下するとポンプ4と地上側設備2との高低差が大きくな
るため、地上側に到達する水圧が低くなる。ポンプ4は
最も低水位であっても地上側で十分な大きさの水圧が得
られるように選定される。水上側設備1と地上側設備2
との間は、配管として地上側に設けられた地上側配管
6,スチールパイプ7、伸び縮み可能なフレキシブルパ
イプ8、および、浮体側配管9より接続されている。図
では簡略化して示したが、本例では、スチールパイプ7
が湖底に沿って設けられ、フレキシブルパイプ8は、湖
底のスチールパイプ7端部から水面の浮体3に延びてい
る。ダム湖の水面WLが上昇すると、浮体3の上昇と共
にフレキシブルパイプ8が長手方向に伸び、水面WLが
下降すると、浮体3の下降と共にフレキシブルパイプ8
が長手方向に縮小するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 is a water side facility, and 2 is a ground side facility. Reference numeral 3 is a floating body (floating jetty) floated on the water, and 4 is a floating body 3.
Is a pump installed in. As will be described later, when the water level decreases, the height difference between the pump 4 and the ground-side equipment 2 increases, so that the water pressure reaching the ground side decreases. The pump 4 is selected so that a sufficient water pressure can be obtained on the ground side even at the lowest water level. Waterside equipment 1 and aboveground equipment 2
Are connected to each other by a ground side pipe 6, a steel pipe 7, an expandable and contractible flexible pipe 8 and a floating body side pipe 9 provided on the ground side as pipes. Although shown in a simplified manner in the figure, in this example, the steel pipe 7
Are provided along the lake bottom, and the flexible pipe 8 extends from the end of the steel pipe 7 at the lake bottom to the floating body 3 on the water surface. When the water surface WL of the dam lake rises, the flexible pipe 8 extends in the longitudinal direction as the floating body 3 rises, and when the water surface WL falls, the flexible body 8 descends as the floating body 3 descends.
Is reduced in the longitudinal direction.

【0010】地上側配管6には、上流側の圧力によって
弁開度が制御される自圧弁10が介装されている。自圧
弁10は、弁体10cと、弁体10cの開度を制御する
開度調節部10aを備えている。開度調節部10aは、
図2に示すように弁体10cを駆動する流体が流入する
流入口15aと、吐出する吐出口15bとを備え、流入
口15aには上流側流路の流体が連通管10b(図1参
照)によって与えられている。流入口15aに流入した
流体は、作用室16に流入し、プレート17に圧力を作
用して弁体10cを動かす。そして、吐出口15bより
吐出する。すなわち、開度調節部10aは、連通管10
b内の流体の圧力に応じて弁体10cの開度を制御する
機構となっている。地上側配管6の下流側は遠方の発電
設備(タービンプラント)と接続され、ポンプ4によっ
て取り込まれた水が発電設備に送水されるようになって
いる。
A self-pressure valve 10 whose valve opening is controlled by the pressure on the upstream side is interposed in the aboveground piping 6. The self-pressure valve 10 includes a valve body 10c and an opening degree adjusting unit 10a that controls the opening degree of the valve body 10c. The opening adjustment unit 10a
As shown in FIG. 2, it is provided with an inflow port 15a into which the fluid for driving the valve body 10c flows, and a discharge port 15b to discharge the fluid, and the fluid in the upstream flow path is connected to the communication port 10b (see FIG. 1). Is given by. The fluid flowing into the inflow port 15a flows into the working chamber 16 and exerts pressure on the plate 17 to move the valve body 10c. Then, the liquid is discharged from the discharge port 15b. That is, the opening adjustment unit 10a includes the communication pipe 10
It is a mechanism for controlling the opening degree of the valve body 10c according to the pressure of the fluid in b. The downstream side of the ground side pipe 6 is connected to a distant power generation facility (turbine plant) so that the water taken in by the pump 4 is sent to the power generation facility.

【0011】さて、このように構成された取水設備で
は、高水位の時には湖底から水面WLまでの高さが高く
なるためフレキシブルパイプ8が伸びる。この状態では
水上側設備1と地上側設備2との高低差が小さいため、
ポンプ4により取り込まれた水は、高水圧で自圧弁10
に達する。自圧弁10では、開度調節部10aによって
弁体10cが絞られ、高水圧の水を低水圧にして下流側
に送る。低水位の時には、湖底から水面WLまでの高さ
が低くなるため、フレキシブルパイプ8が縮む。この状
態では水上側設備1と地上側設備2との高低差が大きく
なるため、ポンプ4により取り込まれた水は、低水圧で
自圧弁10に達する。自圧弁10では、開度調節部10
aによって弁体10cが開放され、低水圧のまま下流側
に送水される。なお、フレキシブルパイプ8が伸縮する
ことにより、送水経路長が変動して圧損が変化する可能
性があるが、上記のように水の圧力が自圧弁10によっ
て制御されるため、送水経路長の変動に関わらず安定し
て水圧を制御することができる。
In the intake facility thus constructed, the flexible pipe 8 extends because the height from the lake bottom to the water surface WL becomes high when the water level is high. In this state, the height difference between the water side equipment 1 and the ground side equipment 2 is small,
The water taken in by the pump 4 has high water pressure, and the self-pressure valve 10
Reach In the self-pressure valve 10, the valve body 10c is throttled by the opening degree adjusting unit 10a, and the water having a high water pressure is made a low water pressure and sent to the downstream side. When the water level is low, the height from the lake bottom to the water surface WL becomes low, so that the flexible pipe 8 contracts. In this state, the height difference between the water-side equipment 1 and the ground-side equipment 2 becomes large, so that the water taken in by the pump 4 reaches the self-pressure valve 10 at a low water pressure. In the self-pressure valve 10, the opening adjustment unit 10
The valve body 10c is opened by a, and water is sent to the downstream side while maintaining a low water pressure. Although the flexible pipe 8 may expand and contract, the water supply path length may fluctuate and the pressure loss may change. However, since the water pressure is controlled by the self-pressure valve 10 as described above, the water supply path length varies. Regardless of this, the water pressure can be controlled stably.

【0012】以上のように、本例の取水設備において
は、自圧弁10を設けたことにより、水位に応じて送水
圧力を制御することができる。したがって、安定して送
水することができる。また、自圧弁10を設けないとす
れば、低水位で十分な圧力が得られるように選定したポ
ンプでは、高水位のときに過流量運転となってしまい、
ポンプの運転レンジを超えてしまって運転することがで
きない。したがってワンランク上の(運転範囲の広い)
ポンプを採用して過流量に耐え得るようにしなければな
らない。本例では高水位の時に自圧弁10で圧力を低減
することにより、流量を減少させることができるので、
低水位時を基準に選定したポンプで運転することができ
る。したがって小型のポンプを採用することができる。
As described above, in the water intake equipment of this embodiment, the water pressure can be controlled according to the water level by providing the self-pressure valve 10. Therefore, water can be stably supplied. Further, if the self-pressure valve 10 is not provided, a pump selected so that sufficient pressure can be obtained at a low water level will have an overflow operation at a high water level,
The pump has exceeded its operating range and cannot be operated. Therefore, one rank higher (wide operating range)
A pump must be employed to withstand overflow. In this example, since the flow rate can be reduced by reducing the pressure with the self-pressure valve 10 when the water level is high,
It can be operated by the pump selected based on the low water level. Therefore, a small pump can be adopted.

【0013】なお、自圧弁10としては上記構成の他、
一般的に知られている構造のものを採用可能である。
In addition to the above-mentioned structure, the self-pressure valve 10
A generally known structure can be adopted.

【0014】[0014]

【発明の効果】以上説明したように、本発明の発電用取
水装置においては、自圧弁を設けたことにより、水位に
応じて送水圧力を制御することができる。したがって、
小型で、かつ電力や制御空気設備を必要としない発電用
取水装置を実現することができる。
As described above, in the water intake device for power generation of the present invention, the water pressure can be controlled according to the water level by providing the self-pressure valve. Therefore,
It is possible to realize a water intake device for power generation that is compact and does not require electric power or controlled air equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態として示した取水設備を
示した概略図である。
FIG. 1 is a schematic diagram showing a water intake facility shown as an embodiment of the present invention.

【図2】 自圧弁の構成を示した断面図である。FIG. 2 is a cross-sectional view showing the structure of a self-pressure valve.

【符号の説明】[Explanation of symbols]

3 浮体 4 ポンプ 6 地上側配管(配管) 8 フレキシブルパイプ(配管) 10 自圧弁 3 floating body 4 pumps 6 Ground side piping (piping) 8 Flexible pipe (piping) 10 Self-pressure valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水上に浮かべられるとともに水を吸い上
げるポンプを備えた浮体と、該浮体から水が供給される
地上側設備と、前記浮体によって吸い上げられた水を前
記地上側設備に送水する配管とを備え、 前記配管に、取り込まれた水の圧力に応じて該水の圧力
及び流量を制御する自圧弁が介装されていることを特徴
とする発電用取水装置。
1. A floating body provided with a pump that is floated on water and sucks up water, ground equipment to which water is supplied from the floating body, and piping for sending water sucked up by the floating body to the ground equipment. And a self-pressure valve for controlling the pressure and flow rate of the taken-in water according to the pressure of the taken-in water.
【請求項2】 請求項1に記載の発電用取水装置におい
て、 前記配管は、長手方向に伸縮自在であることを特徴とす
る発電用取水装置。
2. The water intake device for power generation according to claim 1, wherein the pipe is stretchable in the longitudinal direction.
JP2001208046A 2001-07-09 2001-07-09 Water-intake device for power generation Withdrawn JP2003020635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208046A JP2003020635A (en) 2001-07-09 2001-07-09 Water-intake device for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208046A JP2003020635A (en) 2001-07-09 2001-07-09 Water-intake device for power generation

Publications (1)

Publication Number Publication Date
JP2003020635A true JP2003020635A (en) 2003-01-24

Family

ID=19043936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208046A Withdrawn JP2003020635A (en) 2001-07-09 2001-07-09 Water-intake device for power generation

Country Status (1)

Country Link
JP (1) JP2003020635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059015B2 (en) 2012-10-23 2018-08-28 The Procter & Gamble Company Method and apparatus for positioning a cutting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059015B2 (en) 2012-10-23 2018-08-28 The Procter & Gamble Company Method and apparatus for positioning a cutting apparatus

Similar Documents

Publication Publication Date Title
US8740576B2 (en) Pumping system for pumping liquid from a lower level to an operatively higher level
JPS6158666B2 (en)
EP3743625B1 (en) Power generation system
JP2003020635A (en) Water-intake device for power generation
US6474356B2 (en) Device for controlling a liquid flow
CN106122751A (en) Float-ball type self-balancing steam trap connection and hydrophobic flow area computational methods thereof
JP4255813B2 (en) Fine air supply device
AU2010246912B2 (en) A fluid driven pump
JP2002227171A (en) Variable buoyancy type constant overflow weir and remote control method therefor
JP2797822B2 (en) pump
CN112334649A (en) Power plant using buoyant body and power generation method thereof
JP2007138961A (en) Operating method of movable vane pump device
GB2401405A (en) A tidal powered device for pumping fluid
KR20050007256A (en) drainage water tank
RU2190730C2 (en) Device for extraction of water from group of shaft wells
JP3306453B2 (en) Underground drainage facility
JP3496121B2 (en) Pumps for underground drainage facilities and vertical multi-stage movable blade pumps
CA2281647C (en) Device for controlling a liquid flow
Narula et al. Siphon for shp projects
KR200381429Y1 (en) drainage water tank
JPH063280B2 (en) Water supply device in waterway
SU1253524A1 (en) Hydraulically-controlled valve for irrigation system
JP3099227B2 (en) Water pump
JP2860736B2 (en) Pump station
RU2125140C1 (en) Device for delivering water from well

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007