JP2003020487A - Combustion system for liquid fuel - Google Patents

Combustion system for liquid fuel

Info

Publication number
JP2003020487A
JP2003020487A JP2001208425A JP2001208425A JP2003020487A JP 2003020487 A JP2003020487 A JP 2003020487A JP 2001208425 A JP2001208425 A JP 2001208425A JP 2001208425 A JP2001208425 A JP 2001208425A JP 2003020487 A JP2003020487 A JP 2003020487A
Authority
JP
Japan
Prior art keywords
gas
fuel
liquid fuel
dissolving
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001208425A
Other languages
Japanese (ja)
Inventor
Yasushi Yoshida
田 安 志 吉
Toshio Kumakura
倉 敏 雄 熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OV S ENGINEERING KK
Original Assignee
OV S ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OV S ENGINEERING KK filed Critical OV S ENGINEERING KK
Priority to JP2001208425A priority Critical patent/JP2003020487A/en
Publication of JP2003020487A publication Critical patent/JP2003020487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Spray-Type Burners (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion system capable of keeping a good and stable combustion condition even in a lean mixed gas, sufficiently attaining reduction of fuel consumption, NOx and CO and being widely applied to various combustion systems by improving the atomized state of the fuel during fuel injection. SOLUTION: A gas-mixed and dissolved fuel is prepared in advance by mixing and dissolving the gas in a requisite ratio into the liquid fuel to be fed to a combustion chamber through a gas-dissolving nozzle in a gas dissolver. The fuel is transferred from the gas dissolver to another low pressure or air-opened fuel tank and taken out of the tank. The fuel is pressurized and sprayed into a low pressure combustion chamber through a spray nozzle 2 and ignited and burned in the atomized state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として、自動車
エンジンなどの液体燃料の燃焼システムに関し、特に、
燃料噴射式の燃焼システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a liquid fuel combustion system such as an automobile engine, and in particular,
The present invention relates to a fuel injection type combustion system.

【0002】[0002]

【従来の技術】このような液体燃料(例えば、軽油、灯
油、A級重油など)の燃焼システムは、NOx及びCO
発生を低減するために、種々の対策を講じているが、そ
れぞれに、使用目的にそぐわない問題を抱えている。即
ち、NOx及びCOの浄化装置として、排気ガス系統に
三元触媒を備えるガソリンエンジンは、NOx及びCO
浄化性能が高い反面、高い熱効率が望めず、又、性能の
経時劣化は避けることができない。さらに熱負荷の点で
出力限界があるなどの課題がある。
2. Description of the Related Art A combustion system for such liquid fuels (for example, light oil, kerosene, class A heavy oil, etc.) uses NOx and CO.
Various measures have been taken to reduce the occurrence, but each has a problem that does not fit the purpose of use. That is, a gasoline engine having a three-way catalyst in the exhaust gas system as a NOx and CO purification device is
Although the purification performance is high, high thermal efficiency cannot be expected, and deterioration of the performance with time cannot be avoided. Further, there is a problem that there is an output limit in terms of heat load.

【0003】[0003]

【発明が解決しようとする課題】そこで、燃費や排気ガ
ス中のNOx及びCO低減を、燃焼過程で実現する希薄
燃焼技術の開発がなされている。この希薄燃焼は、均一
混合気方式と層状給気方式に大別される。しかし、いず
れの方式でも、使用目的に添わない問題がある。前者の
場合、一般に主室式希薄燃焼方式が採用されるが、この
方式では、燃焼室形状や空気流動を適正化する工夫や点
火装置の強化で希薄混合気の安定燃焼を達成している反
面、失火限界を十分に低減できない。
Therefore, there has been developed a lean combustion technique for realizing fuel consumption and reduction of NOx and CO in exhaust gas in a combustion process. This lean burn is roughly classified into a homogeneous mixture system and a stratified charge system. However, there is a problem that either method does not meet the purpose of use. In the former case, the main chamber lean combustion method is generally adopted, but this method achieves stable combustion of the lean air-fuel mixture by devising the shape of the combustion chamber and air flow and by strengthening the ignition device. , The misfire limit cannot be reduced sufficiently.

【0004】また、後者の場合、点火プラグ付近のみに
濃混合気を供給し、他に希薄混合気を供給できるため
に、失火限界を希薄側に延長させることができるが、シ
リンダ内燃料噴射のように燃料ガス(空気混合燃料)を
高圧まで圧縮する方式では、大きな動力を必要とする。
吸気ポートへの燃料噴射方式では、対象が限られ、低圧
ガス供給には採用されないのである。
In the latter case, since the rich mixture can be supplied only to the vicinity of the spark plug and the lean mixture can be supplied to the others, the misfire limit can be extended to the lean side. Such a method of compressing the fuel gas (air-mixed fuel) to a high pressure requires a large amount of power.
The fuel injection system to the intake port has a limited number of targets and is not used for low-pressure gas supply.

【0005】本発明は、燃料噴射における燃料の霧化の
状態を具に研究した結果に基づいてなされたもので、そ
の目的とするところは、希薄状態にても良好で安定した
燃焼状態を維持でき、かつNOx及びCO低減を十分に
達成できるとともに、幅広く各種燃焼システムに適用可
能な液体燃料の燃焼システムを提供することにある。
The present invention has been made on the basis of the results of research on the state of atomization of fuel in fuel injection. The purpose of the present invention is to maintain a good and stable combustion state even in a lean state. (EN) It is possible to provide a liquid fuel combustion system capable of achieving a sufficient reduction of NOx and CO and being widely applicable to various combustion systems.

【0006】[0006]

【課題を解決するための手段】このため、本発明では、
燃焼室に供給する液体燃料に、予め、気体溶解タンクで
所要割合の気体を混合・溶解させて得られた気体混合・
溶解燃料を前記気体溶解タンクから大気圧に開放し、又
は別の低圧又は大気開放された燃料タンク等に取出し、
その後前記気体混合・溶解液体燃料を加圧し、燃焼室内
に噴射して霧化させた状態で、着火・燃焼させることを
特徴とする。
Therefore, in the present invention,
The liquid fuel to be supplied to the combustion chamber is mixed and dissolved in advance with the required proportion of gas in the gas dissolution tank.
The dissolved fuel is released from the gas dissolution tank to atmospheric pressure, or taken out to another low-pressure or atmospherically opened fuel tank or the like,
After that, the gas mixed / dissolved liquid fuel is pressurized, injected into the combustion chamber and atomized, and then ignited / burned.

【0007】また、前記気体溶解タンク内での気体混合
割合は、気体/液体燃料の容量比が約0.5〜2.0で
あることを特徴とする。
The gas mixing ratio in the gas dissolving tank is characterized in that the volume ratio of gas / liquid fuel is about 0.5 to 2.0.

【0008】また、前記気体溶解タンク内には、所要圧
で圧縮気体を供給し、液体燃料に対し前記気体を混合・
溶解させる気体溶解ノズルが設けられていることを特徴
とする。
Compressed gas is supplied at a required pressure into the gas dissolving tank to mix the gas with liquid fuel.
A gas melting nozzle for melting is provided.

【0009】更には、前記気体溶解ノズルは、微細径の
ノズル体の集合であることを特徴とする。
Further, the gas dissolving nozzle is characterized in that it is a collection of nozzle bodies having a fine diameter.

【0010】また、前記気体は、空気及び/又は不活性
ガスであることを特徴とする。
The gas is air and / or an inert gas.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい一実施の
形態を、添付した図1乃至図4を参照して詳細に説明す
る。本発明の液体燃料の燃焼システムは、図1に示すよ
うな小容量加圧タンク方式(バッチ式)において適用さ
れる。比較的大容量の連続使用方式液体燃料の燃焼シス
テムについては、本願出願人が先に出願した平成12年
特許願第2000−00915に示されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the attached FIGS. The liquid fuel combustion system of the present invention is applied in a small capacity pressurized tank system (batch system) as shown in FIG. A comparatively large capacity continuous use type liquid fuel combustion system is shown in Japanese Patent Application No. 2000-009115 filed by the present applicant earlier.

【0012】燃焼室(図示せず)に供給する液体燃料
に、予め、気体溶解タンク1において所要割合の気体を
混合・溶解させ、気体溶解タンク1から大気圧に開放
し、又は、別の低圧又は大気開放された燃料タンク20
に移し変えてから供給される気体混合・溶解燃料を加圧
し、噴霧ノズル2を介して、低圧の燃焼室内に噴射し、
霧化させた状態で、着火・燃焼させるのである。
A liquid fuel to be supplied to a combustion chamber (not shown) is mixed and dissolved with a predetermined ratio of gas in the gas dissolution tank 1 in advance, and the gas dissolution tank 1 is opened to the atmospheric pressure or another low pressure. Alternatively, the fuel tank 20 opened to the atmosphere
After the gas mixture / dissolved fuel supplied is pressurized, it is injected into the low pressure combustion chamber through the spray nozzle 2,
Ignite and burn in an atomized state.

【0013】なお、図中、符号3は液体燃料供給タン
ク、4は液体燃料供給タンク3から液体燃料、例えば、
軽油、灯油、A級重油、ガソリンなどを気体溶解タンク
1に供給する経路に設けた電磁制御バルブ、5は気体溶
解タンク1内に設けた気体溶解ノズル、6は気体溶解ノ
ズル5に圧縮気体を供給する圧縮気体供給源(空気ポン
プ、液体気体ボンベなど)、7はその経路に設けた圧力
調整弁である。
In the figure, reference numeral 3 is a liquid fuel supply tank, and 4 is a liquid fuel from the liquid fuel supply tank 3, for example,
An electromagnetic control valve provided in a path for supplying gas oil, kerosene, class A heavy oil, gasoline, etc. to the gas dissolving tank 1, 5 is a gas dissolving nozzle provided in the gas dissolving tank 1, and 6 is a gas dissolving nozzle 5 for supplying compressed gas. A compressed gas supply source (air pump, liquid gas cylinder, etc.) to be supplied, 7 is a pressure adjusting valve provided in the path.

【0014】また、符号8は気体溶解タンク1に設けた
圧力安全弁、9は圧力計、10は気体抜き弁、11は液
面計である。なお、バッチ式(図2又は図6を参照)の
場合、気体溶解タンク1内の上部の分離気体を気体溶解
ノズル5に循環させるための経路12、これに付帯する
制御弁、ポンプなどが装備されることが望ましい。
Reference numeral 8 is a pressure safety valve provided in the gas dissolution tank 1, 9 is a pressure gauge, 10 is a gas vent valve, and 11 is a liquid level gauge. In the case of a batch type (see FIG. 2 or FIG. 6), a path 12 for circulating the upper separated gas in the gas dissolution tank 1 to the gas dissolution nozzle 5, a control valve attached to this, a pump, etc. are provided. It is desirable to be done.

【0015】本発明の実施の形態では、気体溶解タンク
1内での気体混合割合が、気体/液体燃料の比で約0.
5〜2.0であることが有効であり、特に、容量比0.
5〜1.5であることがより好ましい(図2を参照)。
気体溶解タンク1内には、圧力調整弁7で所要圧に調整
された圧縮気体が供給され、気体溶解ノズル5によっ
て、この圧縮気体は、気体溶解タンク1内に供給された
液体燃料に対し、混合・溶解される。
In the embodiment of the present invention, the gas mixing ratio in the gas dissolution tank 1 is about 0.
It is effective that the ratio is 5 to 2.0, and particularly, the capacity ratio is 0.
It is more preferably 5 to 1.5 (see FIG. 2).
Compressed gas adjusted to a required pressure by the pressure adjusting valve 7 is supplied into the gas dissolving tank 1, and the compressed gas is supplied to the liquid fuel supplied into the gas dissolving tank 1 by the gas dissolving nozzle 5. Mixed and dissolved.

【0016】本発明の一実施の形態における気体溶解ノ
ズル5は、図4に示すように、微細ノズル体5aの集合
である。微細ノズル体は、例えば0.1mmの内径を有
する金属管であり、この様な微細ノズル体5aの10〜
30本程度が圧縮気体供給源6からの管接合部におい
て、外筒5bにより互いに結合されて気体溶解ノズルが
構成される。多数の微細ノズル体5aの先端部は、異な
る方向に圧縮気体を噴霧できるように、その向きが異な
っている。また、例えば、一部の微細ノズル体5aは、
その先端部が外に向いて開口する形状に形成されてお
り、これにより液体燃料に対する気体の混合・溶解の効
率を向上させている。上記のような気体溶解ノズル5を
介して、気体圧縮供給源6により気体を供給すること
で、短時間の内に液体燃料に気体を溶解することがで
き、バッチ式のみならず、連続使用方式においても適応
可能としたものである。さらに、気体溶解ノズル5は必
要に応じて気体溶解タンク内1に複数設置することも可
能である。
The gas dissolving nozzle 5 in one embodiment of the present invention is a set of fine nozzle bodies 5a, as shown in FIG. The fine nozzle body is, for example, a metal tube having an inner diameter of 0.1 mm.
About thirty pipes are connected to each other by the outer cylinder 5b at a pipe joint from the compressed gas supply source 6 to form a gas dissolving nozzle. The tips of the many fine nozzle bodies 5a have different directions so that the compressed gas can be sprayed in different directions. Further, for example, some of the fine nozzle bodies 5a are
The tip portion is formed in a shape that is open toward the outside, thereby improving the efficiency of gas mixing and melting with respect to the liquid fuel. By supplying the gas from the gas compression supply source 6 through the gas dissolution nozzle 5 as described above, the gas can be dissolved in the liquid fuel within a short time, and not only the batch system but also the continuous use system It is also applicable to. Further, a plurality of gas dissolving nozzles 5 can be installed in the gas dissolving tank 1 as needed.

【0017】上述の気体溶解ノズル5を介して、気体圧
縮供給源6により圧力約5〜7Kg/cmにて気体を
供給することにより、気体溶解タンク1内の液体燃料に
混合・溶解される気体の容量比(気体/液体燃料)は1
前後となり、燃焼時におけるNOx、COの低減が達成
される。また、より高圧で、例えば8〜9Kg/cm
にて気体を送る場合には気体の混合・溶解される容量比
(気体/液体燃料)は約1.5となり、更に低NOx、
低COとすることが可能である。
Through the gas dissolving nozzle 5 described above, the gas pressure is
Pressure of about 5 to 7 kg / cm depending on the contraction supply source 6.TwoGas
By supplying it, it becomes liquid fuel in the gas dissolution tank 1.
The volume ratio (gas / liquid fuel) of the mixed / dissolved gas is 1
Around the same time, NOx and CO reduction during combustion is achieved
To be done. Also, at higher pressure, for example, 8-9 Kg / cm Two
When sending gas by gas, the volume ratio at which the gas is mixed / dissolved
(Gas / liquid fuel) is about 1.5, and NOx is lower,
It is possible to have low CO.

【0018】図3には、本発明の燃焼システムにおける
液体燃料の圧力推移の一例が示されている。気体溶解タ
ンク1内への給油には、ポンプ(図示せず)などが採用
されるが、その圧力P1に対して、圧縮気体供給源6か
らの圧縮気体圧が加わり、ΔPだけ圧力上昇し、噴霧ノ
ズル2へは、気体溶解タンク1から噴霧ノズル2への経
路に設けた加圧ポンプ(図示せず)が働き、その圧力を
P2まで上昇する。
FIG. 3 shows an example of the pressure transition of the liquid fuel in the combustion system of the present invention. A pump (not shown) or the like is used for refueling the gas dissolution tank 1, but the compressed gas pressure from the compressed gas supply source 6 is applied to the pressure P1 thereof, and the pressure increases by ΔP, A pressure pump (not shown) provided on the path from the gas dissolution tank 1 to the spray nozzle 2 works on the spray nozzle 2 to raise the pressure to P2.

【0019】前記加圧ポンプによる圧力P2は、噴射ノ
ズル2に至るまでのわずかな圧力損失を除き維持される
ので噴射圧にほぼ等しく、通常100Kg/cm〜2
00Kg/cmである。そして、燃焼室では、噴霧ノ
ズル2から、低圧化された燃焼室内に機械的に噴霧され
る際、通常の分散、微粒化と同時に各燃料粒子内の溶解
気体が燃焼室内の高温度により熱膨張して燃料粒子を発
泡させ、再分裂することができる。このようにして、再
分裂した破片(細微粒化粒子)は、極めて微細で、数ミ
クロン程度となり、通常の分散、微粒化された燃料粒子
に比べて、表面積/体積の比が大幅に増加し、さらに内
部温度上昇に伴い燃料粒子内からも燃焼が始まる。
The pressure P2 generated by the pressurizing pump is maintained almost the same as the injection pressure because it is maintained except for a slight pressure loss up to the injection nozzle 2, and is usually 100 Kg / cm 2 to 2.
It is 00 Kg / cm 2 . Then, in the combustion chamber, when mechanically sprayed from the spray nozzle 2 into the low-pressure combustion chamber, the dissolved gas in each fuel particle is thermally expanded due to the high temperature in the combustion chamber at the same time as normal dispersion and atomization. The fuel particles can be foamed and re-split. In this way, the re-fragmented debris (fine atomized particles) are extremely fine, on the order of a few microns, and have a significantly increased surface area / volume ratio compared to normal dispersed, atomized fuel particles. Combustion also starts from inside the fuel particles as the internal temperature rises.

【0020】このような複合作用により、着火・燃焼性
が向上するので、安定した超希薄燃焼が実現でき、細微
粒化(発泡・破裂)が達成される泡沫分裂過程で、さら
に圧力低下が起こり大気圧〜1kg/cmとなり、そ
の状態で点火・燃焼により、燃焼ゾーンに入るのであ
る。上述の細微粒化では、微粒子の表面積/体積の比
が、通常の霧化による燃料粒子に比べて、著しく増加し
ているので、超希薄燃焼が達成され、NOx及びCO発
生の低下をもたらす。
Since the ignition / combustibility is improved by such a combined action, stable ultra-lean combustion can be realized, and further pressure drop occurs in the foam splitting process in which atomization (foaming / burst) is achieved. Atmospheric pressure is up to 1 kg / cm 2 , and in this state, ignition / combustion enters the combustion zone. In the above-mentioned atomization, the surface area / volume ratio of the fine particles is remarkably increased as compared with the fuel particles by normal atomization, so that ultra-lean combustion is achieved, resulting in a reduction in NOx and CO generation.

【0021】その後の調査研究の結果、本発明の一実施
の形態として、図1に示すように、前記液体燃料の燃焼
システムによって得られた気体混合・溶解燃料を気体溶
解タンク1から一旦大気圧に開放し、又は別の低圧又は
大気開放された燃料タンク20等に取出し、その後前記
気体混合・溶解液体燃料を加圧し、燃焼室内に噴射して
霧化させた状態で、着火・燃焼させた場合でも、燃料消
費量(以下、燃費という)やNOx及びCO低減率の向
上が図れることが発見された。これは、前記気体混合・
溶解燃料は、一旦大気に開放された状態でも、微細な気
体が全部大気中に放出されることなく前記気体混合・溶
解燃料の中にかなり(密閉時の数10%程度)残存して
おり、安定した超希薄燃焼が実現できるためと考えられ
る。
As a result of the subsequent research and study, as one embodiment of the present invention, as shown in FIG. 1, the gas mixing / dissolving fuel obtained by the liquid fuel combustion system is temporarily returned to atmospheric pressure from the gas dissolving tank 1. Open or open to another low-pressure or atmospherically opened fuel tank 20 or the like, and then pressurize the gas-mixed / dissolved liquid fuel, inject it into the combustion chamber, and atomize and burn it. Even in such a case, it was discovered that the fuel consumption (hereinafter referred to as fuel consumption) and the NOx and CO reduction rate can be improved. This is the gas mixture
Even if the dissolved fuel is once open to the atmosphere, all the fine gas remains in the gas mixed / dissolved fuel without being released into the atmosphere (several tens of percent of that in the sealed state), It is considered that stable ultra-lean combustion can be realized.

【0022】例えば、ある小型エンジンテストの結果、
前記気体混合・溶解燃料を7kg/cmに保持したま
ま直接燃焼室内に噴射して霧化させた状態で着火・燃焼
させた場合、通常の液体燃料に対し燃費向上率が約12
%強、NOx低減率が約24%強であるが、前記気体混
合・溶解燃料を一旦大気に開放した後で燃焼室内に噴射
して着火・燃焼させた場合でも前者の約1/2前後の向
上率(燃費向上率が約5〜6%、NOx低減率が約10
〜12%程度)が得られることが判明した。前記タンク
20等は、ほとんど耐圧性は不要で、安価で簡易な構造
でよく各種車両用、その他幅広く汎用性があるなど本発
明による液体燃料燃焼システムのメリットが拡大する。
For example, as a result of a small engine test,
When the gas mixed / dissolved fuel is directly injected into the combustion chamber while being kept atomized at 7 kg / cm 2 and ignited / combusted in a state of being atomized, the fuel consumption improvement rate is about 12 with respect to the ordinary liquid fuel.
%, The NOx reduction rate is about 24% or more, but even if the gas mixture / dissolved fuel is once released into the atmosphere and then injected into the combustion chamber to be ignited / combusted, it is about half that of the former. Improvement rate (fuel consumption improvement rate of about 5-6%, NOx reduction rate of about 10
It was found that about 12%) was obtained. The tank 20 and the like need almost no pressure resistance, can be inexpensive and have a simple structure, can be used for various vehicles, and have a wide range of versatility, and the advantages of the liquid fuel combustion system according to the present invention can be expanded.

【0023】本発明の一実施の形態においては、液体燃
料に混合・溶解する気体として、主に空気を対象に述べ
たが、本発明の液体燃料の燃焼システムにおける気体は
空気以外に不活性ガス及び空気と不活性ガスとの混合ガ
スを用いることができる。
In the embodiment of the present invention, air was mainly described as the gas mixed / dissolved in the liquid fuel, but the gas in the liquid fuel combustion system of the present invention is an inert gas other than air. Also, a mixed gas of air and an inert gas can be used.

【0024】なお、本発明の一実施の形態では、自動車
エンジンなどの燃焼を念頭に置いて説明しているが、そ
の他の、NOx対策を必要とする工場などでの燃焼方式
にも、本発明は適用できるものである。
Although one embodiment of the present invention has been described with combustion of an automobile engine or the like in mind, the present invention is also applicable to other combustion systems in factories and the like which require NOx countermeasures. Is applicable.

【0025】[0025]

【発明の効果】本発明は、以上詳述したように、燃焼室
に供給する液体燃料に、予め、気体溶解タンクで、所要
割合の気体を気体溶解ノズルにより混合・溶解させ、前
記気体溶解タンクから別の低圧又は大気開放された燃料
タンクに移してから供給する気体混合・溶解燃料を加圧
して低圧の燃焼室内に噴射し、霧化させた状態で着火・
燃焼させるシステムとしたので、通常の分散、微粒化と
同時に各燃料粒子内の溶解気体が燃焼室内の高温度によ
り熱膨張して燃料粒子を発泡させ、再分裂することがで
きる。
As described in detail above, according to the present invention, the liquid fuel to be supplied to the combustion chamber is mixed and dissolved in advance with a gas dissolving nozzle at a required ratio in a gas dissolving tank. Gas mixture / dissolved fuel, which is supplied after being transferred to another low-pressure or atmospherically opened fuel tank, is injected into the low-pressure combustion chamber and ignited in the atomized state.
Since the system is made to burn, the dissolved gas in each fuel particle can be thermally expanded due to the high temperature in the combustion chamber at the same time as the normal dispersion and atomization, and the fuel particles can be foamed and re-split.

【0026】このようにして、再分裂した破片(細微粒
化粒子)は、極めて微細で、数ミクロン程度となり、通
常の分散、微粒化された燃料粒子に比べて、表面積/体
積の比が大幅に増加し、さらに内部温度上昇に伴い燃料
粒子内からも燃焼が始まる。このような複合作用によ
り、着火・燃焼性が向上するので、安定した超希薄燃焼
が実現でき、燃費やNOx及びCOを大幅に低減でき
る。特に、前記気体混合・溶解燃料を一旦大気に開放し
ても燃費やNOx及びCO低減がはかれるので、これま
でのほとんどの領域における燃焼システムに幅広く適用
できるメリットは大きい。
In this way, the re-split fragments (fine atomized particles) are extremely fine and have a size of a few microns, and the surface area / volume ratio is significantly larger than that of ordinary dispersed and atomized fuel particles. Combustion also starts from within the fuel particles as the internal temperature rises. Since the ignition / combustibility is improved by such a combined action, stable ultra-lean combustion can be realized, and fuel consumption and NOx and CO can be greatly reduced. In particular, even if the gas-mixed / dissolved fuel is once released to the atmosphere, fuel consumption and NOx and CO can be reduced, so that there is a great merit that it can be widely applied to combustion systems in most of the areas so far.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係わるバッチ(大気開
放)式に適用した場合の液体燃料の燃焼システム構成図
である。
FIG. 1 is a configuration diagram of a liquid fuel combustion system when applied to a batch (open to the atmosphere) type according to an embodiment of the present invention.

【図2】本発明の燃料システムにおける気体溶解タンク
での各種液体燃料別空気溶解量の測定値例を示すグラフ
である。
FIG. 2 is a graph showing an example of measurement values of the amount of dissolved air for various liquid fuels in a gas dissolution tank in the fuel system of the present invention.

【図3】本発明の燃焼システムでの、液体燃料の圧力推
移を示すタイムテーブルの一例である。
FIG. 3 is an example of a time table showing changes in the pressure of liquid fuel in the combustion system of the present invention.

【図4】本発明に係わる気体溶解ノズルの先端部分を示
す概略図である。
FIG. 4 is a schematic view showing a tip portion of a gas dissolving nozzle according to the present invention.

【符号の説明】[Explanation of symbols]

1 気体溶解タンク 2 噴霧ノズル 3 液体燃料供給タンク 4 電磁制御バルブ 5 気体溶解ノズル 5a 微細ノズル体 5b 外筒 6 圧縮気体供給源 7 圧力調整弁 8 圧力安全弁 9 圧力計 10 気体抜き弁 11 液面計 12 経路 20 (低圧又は大気開放型)燃料タンク 1 gas dissolution tank 2 spray nozzles 3 Liquid fuel supply tank 4 electromagnetic control valve 5 Gas dissolution nozzle 5a Fine nozzle body 5b outer cylinder 6 Compressed gas supply source 7 Pressure control valve 8 Pressure relief valve 9 pressure gauge 10 Gas vent valve 11 Level gauge 12 routes 20 (low pressure or open to the atmosphere) fuel tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23C 11/00 ZAB F23C 11/00 ZAB F23D 11/10 F23D 11/10 Z F23K 5/00 303 F23K 5/00 303 (72)発明者 熊 倉 敏 雄 新潟市入船町1丁目3671番地1 オーブ イ・エス・エンジニアリング株式会社内 Fターム(参考) 3G092 AA02 AB15 AB20 FA17 FA18 3K052 GA06 GC01 GC07 3K065 TA01 TA04 TB08 TC07 TD04 TD10 TP00 3K068 AA11 AA13 AA14 AA15 AA16 AB04 CA00 CA26 CB00 EA02 4H013 AA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F23C 11/00 ZAB F23C 11/00 ZAB F23D 11/10 F23D 11/10 Z F23K 5/00 303 F23K 5 / 00 303 (72) Toshio Kumakura Toshio Kumakura 1 3671 Irifune-cho, Niigata 1 F-term in AVS Engineering Co., Ltd. (reference) 3G092 AA02 AB15 AB20 FA17 FA18 3K052 GA06 GC01 GC07 3K065 TA01 TA04 TB08 TC07 TD04 TD10 TP00 3K068 AA11 AA13 AA14 AA15 AA16 AB04 CA00 CA26 CB00 EA02 4H013 AA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室に供給する液体燃料に、予め、気
体溶解タンクで所要割合の気体を混合・溶解させて得ら
れた気体混合・溶解燃料を前記気体溶解タンクから大気
圧に開放し、又は別の低圧又は大気開放された燃料タン
ク等に取出し、 その後前記気体混合・溶解液体燃料を加圧し、燃焼室内
に噴射して霧化させた状態で、着火・燃焼させることを
特徴とする液体燃料の燃焼システム。
1. A gas mixing / dissolving fuel obtained by previously mixing / dissolving a liquid fuel supplied to a combustion chamber with a required ratio of gas in a gas dissolution tank, and releasing the gas mixing / dissolving fuel from the gas dissolution tank to atmospheric pressure, Alternatively, the liquid is characterized in that it is taken out to another low-pressure or atmospherically open fuel tank or the like, and then the gas-mixed / dissolved liquid fuel is pressurized, ignited and burned in the state of being injected and atomized into the combustion chamber. Fuel combustion system.
【請求項2】 前記気体溶解タンク内での気体混合割合
は、気体/液体燃料の容量比が約0.5〜2.0である
ことを特徴とする請求項1記載の液体燃料の燃焼システ
ム。
2. The liquid fuel combustion system according to claim 1, wherein the gas mixing ratio in the gas dissolving tank is a gas / liquid fuel volume ratio of about 0.5 to 2.0. .
【請求項3】 前記気体溶解タンク内には、所要圧で圧
縮気体を供給し、液体燃料に対し前記気体を混合・溶解
させる気体溶解ノズルが設けられていることを特徴とす
る請求項1又は請求項2記載の液体燃料の燃焼システ
ム。
3. A gas dissolving nozzle for supplying a compressed gas at a required pressure to mix and dissolve the gas in a liquid fuel is provided in the gas dissolving tank. The liquid fuel combustion system according to claim 2.
【請求項4】 前記気体溶解ノズルは、微細径のノズル
体の集合であることを特徴とする請求項3記載の液体燃
料の燃焼システム。
4. The liquid fuel combustion system according to claim 3, wherein the gas dissolving nozzle is a set of nozzle bodies having a small diameter.
【請求項5】 前記気体は、空気及び/又は不活性ガス
であることを特徴とする請求項1ないし請求項4のいず
れかに記載の液体燃料の燃焼システム。
5. The liquid fuel combustion system according to any one of claims 1 to 4, wherein the gas is air and / or an inert gas.
JP2001208425A 2001-07-09 2001-07-09 Combustion system for liquid fuel Pending JP2003020487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208425A JP2003020487A (en) 2001-07-09 2001-07-09 Combustion system for liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208425A JP2003020487A (en) 2001-07-09 2001-07-09 Combustion system for liquid fuel

Publications (1)

Publication Number Publication Date
JP2003020487A true JP2003020487A (en) 2003-01-24

Family

ID=19044250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208425A Pending JP2003020487A (en) 2001-07-09 2001-07-09 Combustion system for liquid fuel

Country Status (1)

Country Link
JP (1) JP2003020487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067281A1 (en) * 2007-11-20 2009-05-28 Ultimate Combustion Corporation Method and system for liquid fuel conditioning
US8118012B2 (en) 2005-09-15 2012-02-21 Toyota Jidosha Kabushiki Kaisha Internal combustion engine using hydrogen
KR20160011623A (en) * 2013-03-15 2016-02-01 사우디 아라비안 오일 컴퍼니 System and process for handling heavy oil residue
JP2017520726A (en) * 2014-05-07 2017-07-27 サウジ アラビアン オイル カンパニー System and method for handling heavy oil residues
CN107941515A (en) * 2017-12-20 2018-04-20 中国科学技术大学 A kind of fuel heater and transverse jet atomization test system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118012B2 (en) 2005-09-15 2012-02-21 Toyota Jidosha Kabushiki Kaisha Internal combustion engine using hydrogen
WO2009067281A1 (en) * 2007-11-20 2009-05-28 Ultimate Combustion Corporation Method and system for liquid fuel conditioning
JP2011503442A (en) * 2007-11-20 2011-01-27 アルティミット コンバスチョン コーポレイション Liquid fuel adjustment method and system
RU2545262C2 (en) * 2007-11-20 2015-03-27 Алтимейт Комбасшн Корпорейшн Method and system for liquid fuel conditioning
KR20160011623A (en) * 2013-03-15 2016-02-01 사우디 아라비안 오일 컴퍼니 System and process for handling heavy oil residue
JP2016517501A (en) * 2013-03-15 2016-06-16 サウジ アラビアン オイル カンパニー System and method for handling heavy oil residues
KR102225584B1 (en) * 2013-03-15 2021-03-09 사우디 아라비안 오일 컴퍼니 System and process for handling heavy oil residue
JP2017520726A (en) * 2014-05-07 2017-07-27 サウジ アラビアン オイル カンパニー System and method for handling heavy oil residues
CN107941515A (en) * 2017-12-20 2018-04-20 中国科学技术大学 A kind of fuel heater and transverse jet atomization test system

Similar Documents

Publication Publication Date Title
Han et al. Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine
KR100204626B1 (en) Apparatud and method for fuel injection and ignition of an internal combustion engine
DE112007002006B4 (en) Exhaust treatment device with a fuel-operated burner
EP1373695B1 (en) Method of operating internal combustion engine injected with critical water
JP2590170B2 (en) Flame culture breeder for fuel combustion systems
CN103161563B (en) The dual-fuel combustion system and its method of the IGNITION CONTROL based on diesel compression ignition triggering
JPH1172039A (en) Compressive ignition type internal combustion engine
JPH1172038A (en) Compressive ignition type internal combustion engine
KR20050083710A (en) Glow ring ignition assist for internal combustion engine
KR20130069081A (en) Exhaust gas regeneration system of combined fuel homogeneous charge compression ignition engine and method thereof
US5727519A (en) Low evaporativity fuel diesel engine
JP2003020487A (en) Combustion system for liquid fuel
US20040103859A1 (en) Diesel emission and combustion control system
JP4558878B2 (en) Liquid fuel combustion system
JPS6033992B2 (en) Diesel engine fuel supply method and device
JPH09317470A (en) Diesel engine for low volatile fuel
JP3039155B2 (en) Fuel combustion promotion method for diesel engine
JP2778846B2 (en) Methanol engine
JP3150481B2 (en) Spark ignition gas internal combustion engine
Kurtz et al. Identifying a critical time for mixing in a direct injection diesel engine through the study of increased in-cylinder mixing and its effect on emissions
JPH09317471A (en) Diesel engine using low quality fuel
Murotani et al. Simultaneous reduction of NOx and soot in a heavy-duty diesel engine by instantaneous mixing of fuel and water
JPH06241145A (en) Fuel injection method and device for combustor
CN115095421A (en) Combustion system, engine and vehicle
KR20040009475A (en) Rocket engine for test