JP2003020288A - Laser crystal and method for producing the same - Google Patents

Laser crystal and method for producing the same

Info

Publication number
JP2003020288A
JP2003020288A JP2001205069A JP2001205069A JP2003020288A JP 2003020288 A JP2003020288 A JP 2003020288A JP 2001205069 A JP2001205069 A JP 2001205069A JP 2001205069 A JP2001205069 A JP 2001205069A JP 2003020288 A JP2003020288 A JP 2003020288A
Authority
JP
Japan
Prior art keywords
crystal
laser
cast
molded body
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001205069A
Other languages
Japanese (ja)
Other versions
JP4052625B2 (en
Inventor
Takakimi Yanagiya
高公 柳谷
Hideki Yagi
秀喜 八木
Hitoshi Kubo
仁 久保
Tomonori Kubo
智紀 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2001205069A priority Critical patent/JP4052625B2/en
Publication of JP2003020288A publication Critical patent/JP2003020288A/en
Application granted granted Critical
Publication of JP4052625B2 publication Critical patent/JP4052625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a laser crystal obtained by jointing at least one crystal being a polycrystalline body with other crystals. SOLUTION: A single crystal Nd: YAG for a laser rod and a polycrystalline Nd: YAG are jointed by bringing formed body of the polycrystalline Nd: YAG obtained by slip casting into contact with an end face or a side face of the single crystal Nd: YAG, then dewaxing and sintering. When the formed body is jointed with the single crystal, a free face of the formed body which has not touched a slip discharging face or a mold is brought into contact with the single crystal and sintered. Accordingly, there is no need to polish the surface to be jointed in such a manner that optical contact is obtained, and the jointing is easily performed. Further, the face to be jointed is not limited to a flat surface and it is also possible to joint the formed body obtained by slip casting to a side face, or the like, of the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の結晶を接合した
レーザー結晶とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser crystal in which a plurality of crystals are joined and a method for manufacturing the same.

【0002】[0002]

【従来技術】固体レーザーの励起に伴う発熱は、レーザ
ー結晶の機械的な歪みを引き起こし、結晶が破壊するば
かりでなく、それ以前に熱複屈折効果や熱レンズ効果に
よるビーム品質の劣化や出力低下が生ずる為、レーザー
出力を制限している。これを解消する為、Nd:YAG単結
晶とYAG単結晶、Cr:アルミナ単結晶(ルビー)とアル
ミナ単結晶(サファイア)というように、レーザー結晶
に附活剤無添加の結晶を接合することにより、放熱を促
進するとともにレーザー結晶の均熱化が図られている。
2. Description of the Related Art The heat generated by the excitation of a solid-state laser causes mechanical distortion of the laser crystal and destroys the crystal, and before that, the beam quality is deteriorated and the output is lowered due to the thermal birefringence effect and the thermal lens effect. Therefore, the laser output is limited. In order to solve this, by joining a crystal without an activator to the laser crystal, such as Nd: YAG single crystal and YAG single crystal, Cr: alumina single crystal (ruby) and alumina single crystal (sapphire). The heat dissipation is promoted and the laser crystal is made uniform.

【0003】結晶同士の接合には、光学接着剤を用いる
方法やガラスを接着剤として用いる方法等の提案も有る
が、接着剤やガラスは本来熱伝導性の悪いものであり十
分な効果が望めないとして、米国特許第5,441,80
3にある拡散接合が多用されている。
For joining crystals, there are proposals such as a method of using an optical adhesive and a method of using glass as an adhesive. However, the adhesive and glass originally have poor thermal conductivity, and a sufficient effect can be expected. No, US Pat. No. 5,441,80
The diffusion bonding in 3 is often used.

【0004】また、レーザー結晶には非常に高度の品質
が求められ、大型のレーザー用単結晶の作製は困難とさ
れている。この対策として小さな結晶を複数個接合して
大型結晶とすることも可能であり、この場合にも拡散接
合は有効とされている(特開平4−259269)。
Further, the laser crystal is required to have a very high quality, and it is difficult to produce a large single crystal for laser. As a countermeasure against this, it is also possible to bond a plurality of small crystals into a large crystal, and in this case as well, diffusion bonding is effective (Japanese Patent Laid-Open No. 4-259269).

【0005】一方、 近年の粉体技術やセラミックス技
術の進歩により、光学応用可能な多結晶セラミックス
(以下、多結晶体と呼ぶ)も比較的簡単に作製されるよ
うになってきた。さらに、究極の品質を要求されるとい
われるレーザー結晶としても、例えばオプトロニクス社
のOPTRONICS,p168-173(2001)No.4に報告されている
ように、多結晶体の利用が可能となってきている。
On the other hand, with recent advances in powder technology and ceramics technology, optically applicable polycrystalline ceramics (hereinafter referred to as polycrystalline bodies) have become relatively easy to produce. Furthermore, as a laser crystal that is said to be required to have the ultimate quality, the use of polycrystals has become possible, as reported in, for example, OPTRONICS, p168-173 (2001) No.4 of Optronics. There is.

【0006】多結晶体は、原料粉体を所望の形に成形し
て焼結すればよい。従って、複数の結晶が接合された多
結晶体を得るには、目的とする複数の結晶原料を順次充
填して、多層からなるセラミックス成形体を作製したの
ち焼結すればよいと考えられる。しかしながらこの手法
では、結晶の接合界面での原料の混ざり込みが起こり易
く、また、セラミックスの焼結収縮の為、各結晶の寸法
精度にかける懸念が大である。従って、複数の結晶を接
合してなるレーザー結晶の作製には、上記の拡散接合を
用いるしかないのが現状である。
The polycrystalline body may be obtained by forming a raw material powder into a desired shape and sintering it. Therefore, in order to obtain a polycrystalline body in which a plurality of crystals are joined, it is considered that a plurality of desired crystal raw materials are sequentially filled, a multilayer ceramics compact is produced, and then sintered. However, in this method, the raw materials are likely to be mixed in at the joint interface of the crystals, and the dimensional accuracy of each crystal is greatly concerned due to the sintering shrinkage of the ceramics. Therefore, under the present circumstances, the above-mentioned diffusion bonding can only be used to manufacture a laser crystal formed by bonding a plurality of crystals.

【0007】[0007]

【発明が解決しようとする課題】拡散接合では、光学研
磨された結晶同士をオプティカルコンタクトさせた後
に、結晶格子の再配列が起こる温度まで加熱して接合す
る。オプティカルコンタクトでは、接触面にレーザー波
長域での輝点や散乱点が生じないように、2つの結晶を
正確にコンタクトさせることが必要で、オプティカルコ
ンタクトが可能な研磨は非常に高価となり、その産業応
用を困難なものとしている。またオプティカルコンタク
トを必要とするため、その接合面の形状は平面に限られ
ている。この為、形状にとらわれない、安価な接合方法
ならびに接合体が望まれている。
In diffusion bonding, optically polished crystals are brought into optical contact with each other, and then heated to a temperature at which rearrangement of crystal lattice occurs and bonded. In optical contact, it is necessary to accurately contact two crystals so that bright points and scattering points in the laser wavelength range do not occur on the contact surface, and polishing that enables optical contact becomes very expensive, which is a major factor in the industry. Makes application difficult. Moreover, since the optical contact is required, the shape of the joint surface is limited to a flat surface. Therefore, there is a demand for an inexpensive joining method and a joined body which are not bound by the shape.

【0008】[0008]

【課題を解決する為の手段】本発明者らは上記問題を解
決する為種々検討した結果、単結晶ないし多結晶体と多
結晶の鋳込み成形体の自由面とを組み合わせた後に、な
いしは多結晶の鋳込み成形体の自由面同士を組み合わせ
た後に焼結することにより、光学的に問題の無い接合体
の作製が可能であることを見出し、本発明を完成した。
すなわち、本発明は、(1) 複数の結晶を接合してなる
レーザー結晶において、少なくとも1つの結晶を多結晶
体とし、これを他の結晶と接合したことを特徴とするレ
ーザー結晶、及び(2) 鋳込み成形体の成形時の自由面
を接合面とし、この接合面を他の結晶の表面に接触させ
て焼結することにより、成形体を焼結して多結晶体と
し、同時に多結晶体の接合面を他の結晶と接合する、レ
ーザー結晶の製造方法にある。好ましくは、レーザーロ
ッドの側面に円筒状の多結晶体を接合し、また好ましく
は、レーザーロッドの両端面に板状の多結晶体を接合す
る。好ましくは、鋳込み成形を排泥鋳込み成形とし、か
つ前記自由面を鋳込み成形時に型に接触しない面とす
る。特に好ましくは、円筒状の鋳込み成形体の内周面を
自由面とし、レーザーロッドを鋳込み成形体の内周面に
挿入し、鋳込み成形体をレーザーロッドと共に焼結し
て、鋳込み成形体の内周面をレーザーロッドの側面に接
合する。この明細書で鋳込み成形時の自由面は、鋳込み
成形を行った際に型などに接触しない面を言い、例えば
排泥面などが自由面である。
As a result of various studies to solve the above problems, the present inventors have found that after combining a single crystal or polycrystal with a free surface of a polycrystal cast molding, or The present invention has been completed by finding that it is possible to produce an optically problem-free joined body by combining the free surfaces of the cast molded article of 1 and then sintering.
That is, the present invention provides: (1) a laser crystal formed by joining a plurality of crystals, wherein at least one crystal is a polycrystal, and this is joined to another crystal, and (2) ) The free surface at the time of molding of the cast compact is used as a joint surface, and the joint surface is brought into contact with the surface of another crystal to sinter, thereby sintering the compact to obtain a polycrystalline body and at the same time a polycrystalline body. Is a method for manufacturing a laser crystal, in which the bonding surface of is bonded to another crystal. Preferably, a cylindrical polycrystalline body is bonded to the side surface of the laser rod, and more preferably, a plate-shaped polycrystalline body is bonded to both end surfaces of the laser rod. Preferably, the cast molding is a sludge cast molding, and the free surface is a surface that does not come into contact with the mold during the cast molding. Particularly preferably, the inner peripheral surface of the cylindrical cast molded body is a free surface, the laser rod is inserted into the inner peripheral surface of the cast molded body, the cast molded body is sintered together with the laser rod, and The peripheral surface is joined to the side surface of the laser rod. In this specification, the free surface at the time of cast molding refers to a surface that does not come into contact with a mold or the like when cast molding is performed, and for example, a mud discharge surface is a free surface.

【0009】レーザー結晶は例えば固体レーザーのレー
ザーロッドとし、好ましくは附活剤(発振用不純物)を
含んだ単結晶ロッドの端面や側面(周面)に、附活剤の
含有量がより少ない、もしくは実質的に附活剤を含まな
い多結晶体を接合する。附活剤は、例えばYAGやY2O3の
場合のネオジウムや、アルミナの場合のクロム等であ
る。従来例では、接合面に散乱点等を生じずに単結晶ロ
ッドの側面に多結晶体を接合することは不可能である
が、この発明では接合面が平面に限られないので、単結
晶ロッドの側面に多結晶体を接合することもできる。ま
た接合面にはオプティカルコンタクトが得られる程の研
磨が必要でないので、接合が容易になる。
The laser crystal is, for example, a laser rod of a solid-state laser, and preferably the content of the activator is smaller on the end face or side face (circumferential surface) of the single crystal rod containing the activator (oscillation impurities). Alternatively, a polycrystalline body containing substantially no activator is bonded. The activator is, for example, neodymium in the case of YAG or Y2O3 or chromium in the case of alumina. In the conventional example, it is impossible to bond the polycrystalline body to the side surface of the single crystal rod without generating a scattering point or the like on the bonding surface, but since the bonding surface is not limited to a flat surface in the present invention, the single crystal rod It is also possible to bond a polycrystalline body to the side surface of the. Further, since the joining surface does not need to be polished enough to obtain an optical contact, the joining becomes easy.

【0010】[0010]

【発明の実施の形態】実施例の複数の結晶を接合してな
るレーザー結晶は、鋳込み成形体の自由面を接合面とし
て用いて作製する。接合する結晶の組み合わせとして
は、(1)単結晶体ないしは多結晶体と多結晶の鋳込み
成形体の自由面、あるいは(2)多結晶の鋳込み成形体
の自由面同士、の2通りがある。
BEST MODE FOR CARRYING OUT THE INVENTION A laser crystal obtained by joining a plurality of crystals of the embodiment is produced by using a free surface of a cast body as a joining surface. There are two combinations of crystals to be joined: (1) a single crystal body or a free surface of a polycrystalline body and a polycrystalline cast body, or (2) free surfaces of a polycrystalline cast body.

【0011】まず、(1)の単結晶体ないしは多結晶体
と鋳込み成形体の自由面との組み合わせにより、接合結
晶を作成する方法について説明する。(2)の鋳込み成
形体の自由面同士による接合では、単結晶ないし多結晶
体のラップ面を鋳込み成形体の自由面で置き換えればよ
い。
First, a method for producing a bonded crystal by combining the single crystal or polycrystal of (1) and a free surface of a cast body will be described. In the joining of the free surfaces of the cast-molded body of (2), the lap surface of the single crystal or the polycrystalline body may be replaced with the free surface of the cast-molded body.

【0012】単結晶体ないし多結晶体の接合面は、Rma
xが5μm以下となるまでラッピングしておくのが好ま
しく、2μm以下がより好ましく、0.5μm以下が最
も好ましい。これ以上大きな場合にはセラミックスの焼
結力をもってしても、結晶とセラミックスとの間に形成
される空孔を取り除くことが出来ず、最終的に接合面に
ポアとして取り残され、光散乱の原因となる。
The joint surface of the single crystal or the polycrystal is Rma.
Lapping is preferably performed until x is 5 μm or less, more preferably 2 μm or less, and most preferably 0.5 μm or less. If it is larger than this, the pores formed between the crystal and the ceramic cannot be removed even if the sintering power of the ceramic is used, and it is left behind as a pore in the joint surface, causing the light scattering. Becomes

【0013】結晶に接合するセラミックスの材質は、基
本的に結晶と同材質が好ましい。焼結により接合が完了
するが、冷却時に熱膨張率の差に基づき接合界面に応力
が働き、結果として接合後の結晶全体に歪みが生じて、
透過波面に乱れが生じることになる。ただしイットリア
とYAGのように熱膨張率が酷似している場合には問題無
い。この種の制限は、拡散接合による場合と同等であ
る。そして好ましくは、レーザーロッドが不純物含有量
の高い単結晶のロッドで、その端面または側面に多結晶
で不純物含有量が少ない、もしくはゼロのセラミックス
を接合する。
The ceramic material to be bonded to the crystal is basically preferably the same material as the crystal. Bonding is completed by sintering, but stress acts on the bonding interface due to the difference in coefficient of thermal expansion during cooling, resulting in strain in the entire crystal after bonding,
Disturbance will occur in the transmitted wavefront. However, there is no problem when the coefficient of thermal expansion is very similar to Yttria and YAG. This type of limitation is equivalent to that of diffusion bonding. And, preferably, the laser rod is a single crystal rod having a high impurity content, and a polycrystalline and low or zero impurity content ceramics is bonded to the end face or the side face thereof.

【0014】接合に用いる成形体は、鋳込み成形により
作製する。鋳込み成形には固形鋳込み方式と排泥鋳込み
方式とが有るが、自由面が必要な為、排泥鋳込み方式を
採用する。鋳込み成形に使用する泥漿は水系でも非水系
でもよいが、水系の場合には通常の鋳込み成形で用いら
れる溶媒吸収性の型としての石膏型は使用しない方が好
ましい。媒液として使用している水に石膏が溶解して、
成形体中に石膏が混入し、光学特性に優れた多結晶体が
得られなくなる。石膏を型として用いる場合にはアルコ
ール系の泥漿が、また、水系の泥漿を用いる場合には溶
媒吸収性の型として樹脂型やセラミックスの素焼き状態
等にみられる多孔質セラミックスが推奨される。
The molded body used for joining is produced by cast molding. There are solid casting method and sludge sludge casting method for cast molding, but since a free surface is required, the sludge casting method is adopted. The slurry used for the cast molding may be water-based or non-water-based, but in the case of the water-based slurry, it is preferable not to use a gypsum mold as a solvent-absorbing mold used in ordinary cast molding. Gypsum dissolves in the water used as the medium,
Gypsum is mixed in the molded body, and it becomes impossible to obtain a polycrystalline body having excellent optical characteristics. When gypsum is used as a mold, alcohol-based slurry is recommended, and when water-based slurry is used, a solvent-absorbent mold is recommended such as a resin mold or porous ceramics found in the unglazed state of ceramics.

【0015】実際の接合操作の例として、レーザーロッ
ドとしてよく用いられる形状である単結晶円柱状結晶
の、側面または端面に多結晶体を接合する方法について
説明する。
As an example of an actual joining operation, a method of joining a polycrystalline body to a side surface or an end face of a single crystal columnar crystal which is a shape often used as a laser rod will be described.

【0016】側面に多結晶体を接合する場合には、セラ
ミック成形体としてパイプを作製する。まず、溶媒吸収
性の型に必要寸法の穴を貫通させてあけ、下部を閉じて
おく。この穴に作製しようとするセラミックスの泥漿を
流し込み、、しばらく放置して着肉させる。目的とする
肉厚まで着肉が起こった時点で下部を開放し、残ってい
る泥漿を排泥する。これによってパイプ内面は排泥面と
なる。
When joining a polycrystalline body to the side surface, a pipe is produced as a ceramic molded body. First, a hole having a required size is made by penetrating a solvent-absorbent mold, and the lower part is closed. The ceramic slurry to be produced is poured into this hole, and left to stand for a while to be inlaid. When the desired thickness is reached, the lower part is opened and the remaining sludge is drained. As a result, the inner surface of the pipe becomes a mud discharge surface.

【0017】乾燥機中でしばらく放置することにより、
乾燥収縮により型から成形体が離れ、成形体を取り出す
ことが可能となる。このようにして得られた成形体に直
接結晶を挿入して脱脂さらに焼結を行なうか、あるいは
成形体は傷つき易いため、成形体のみで脱脂を行い、強
度を持たせた後に結晶を挿入して焼結する。結晶とセラ
ミック成形体を組み合わせた後、透光性セラミックスを
得る為の通常の焼結を行なうことにより、レーザー品質
の接合結晶が得られる。
By leaving it in the dryer for a while,
The molding shrinks from the mold due to drying shrinkage, and the molding can be taken out. The crystals thus obtained are directly inserted into the molded body for degreasing and further sintering, or because the molded body is easily scratched, degreasing is performed only with the molded body and the crystals are inserted after the strength is given. And sinter. A laser-quality bonded crystal is obtained by combining the crystal and the ceramic molded body and then performing ordinary sintering for obtaining a translucent ceramic.

【0018】結晶とセラミックパイプ成形体(鋳込み成
形体)の外径及び内径の関係は、セラミック成形体の焼
結による収縮量によって決める。焼結後にセラミックパ
イプの内径が結晶の外径よりも小さくなるようにすれば
よい。小さくなりすぎる場合には、セラミックスの破壊
が考えられるが、驚くべきことに通常レーザーロッドと
して用いられている10mmΦ程度の結晶へのセラミッ
クスの接合では、結晶の外径と焼結前のセラミックパイ
プ成形体の内径とがほぼ同じであっても、焼結時に破壊
に至ることはない。この現象により、結晶の外径寸法精
度やセラミック成形体の内径寸法精度は、非常に自由度
の高いものとなる。
The relationship between the outer diameter and the inner diameter of the crystal and the ceramic pipe molded body (cast molded body) is determined by the shrinkage amount of the ceramic molded body due to sintering. After sintering, the inner diameter of the ceramic pipe may be smaller than the outer diameter of the crystal. If it becomes too small, the ceramic may be destroyed, but surprisingly, when the ceramic is bonded to a crystal of about 10 mmΦ which is usually used as a laser rod, the outer diameter of the crystal and the ceramic pipe before sintering are molded. Even if the inner diameter of the body is almost the same, no fracture occurs during sintering. Due to this phenomenon, the dimensional accuracy of the outer diameter of the crystal and the dimensional accuracy of the inner diameter of the ceramic molded body have a very high degree of freedom.

【0019】次に円柱状結晶の端面に多結晶体を接合す
る方法を説明する。セラミック成形体は、焼結後に必要
厚み以上のものとなる板材を用意すればよい。鋳込み成
形により作製するのであれば手法に制限はないが、溶媒
吸収性の型材の上に泥漿貯留部として塩ビパイプや硝子
管等を切断したリングを乗せ、これに泥漿を注ぎ込んで
成形し、自由面を得るのが最も簡単であろう。この成形
法では、必要厚み分の泥漿しか用いない場合には特に排
泥する必要はない。自由面は鋳込み成形時に型に接触し
ない表面のことで、排泥面は自由面であり、手法的に考
えて排泥面と自由面に差異はない。
Next, a method for joining a polycrystalline body to the end face of the columnar crystal will be described. The ceramic molded body may be prepared as a plate material having a required thickness or more after sintering. The method is not limited as long as it is made by cast molding, but put a ring cut PVC pipe or glass tube etc. as a sludge storage part on the solvent absorbent mold material, pour the sludge into it and mold it. It would be easiest to get a face. In this molding method, it is not necessary to drain the mud when only the required amount of sludge is used. The free surface is the surface that does not come into contact with the mold during casting, and the mud discharge surface is the free surface, and there is no difference between the mud discharge surface and the free surface considering the method.

【0020】セラミック成形体は前述のごとく、直接結
晶体と組み合わせて脱脂、焼結を行なってもよいが、結
晶体との接合前に脱脂を済ませて初期的強度を与え、特
に結晶との擦り合わせで傷が付かない程度に加熱処理し
ておくのが好ましい。
As described above, the ceramic molded body may be directly degreased and sintered in combination with the crystal body, but it is degreased before joining with the crystal body to give initial strength, and in particular, it rubs against the crystal. It is preferable to heat-treat so as not to scratch the joint.

【0021】セラミック成形体の自由面と結晶とを組み
合わせ、焼結して接合が完了する。この際、焼成炉中で
接合する結晶と成形体とを上下に重ねて配置するのが、
焼成中の接合面のズレ等を防止するのに好適である。
The free surface of the ceramic molded body and the crystal are combined and sintered to complete the joining. At this time, it is to arrange the crystal and the compact to be joined in the firing furnace in a vertically stacked manner.
It is suitable for preventing displacement of the joint surface during firing.

【0022】焼成中に接合面に圧縮加重をかける手法が
有効である。結晶の接合面の平坦度として、通常のラッ
ピングが行われるならば3μm程度の面は簡単に得られ
る。この程度の平坦度であれば、セラミックスの焼成途
上での変形により、セラミックスが結晶に倣う形で結晶
とセラミックスとの間の空間が吸収され、完全な光学接
合が可能である。通常のレーザー結晶の取り扱いではま
ずありえないが、仮にこれ以上の大きな平坦度の差があ
っても荷重を掛けることにより50μm程度までは許容
される。荷重の許容範囲は無荷重から、セラミック成形
体の破壊荷重までである。
It is effective to apply a compression load to the joint surface during firing. As the flatness of the bonded surface of the crystal, a surface of about 3 μm can be easily obtained if ordinary lapping is performed. With the flatness of this degree, the space between the crystal and the ceramic is absorbed in a manner that the ceramic follows the crystal due to the deformation of the ceramic during firing, and complete optical bonding is possible. It is almost impossible to handle ordinary laser crystals, but even if there is a large difference in flatness, a maximum of about 50 μm is allowed by applying a load. The allowable load range is from no load to the breaking load of the ceramic compact.

【0023】以上の説明の通り、本願発明によれば、現
在結晶の接合方法として広く用いられている拡散接合に
比較して、非常に簡単に接合結晶を作製することが可能
となる。この理由は定かでないが、鋳込み成形体の自由
面では、その表面粗さとして原料粒子数個分の乱れしか
なく、またこの乱れは焼結途上におけるセラミックスの
変形により吸収されてしまう為と考えられる。
As described above, according to the present invention, a bonded crystal can be manufactured very easily as compared with the diffusion bonding which is widely used as a crystal bonding method at present. The reason for this is not clear, but on the free surface of the cast body, it is considered that there is only a disturbance of a few raw material particles as the surface roughness, and this disturbance is absorbed by the deformation of the ceramics during sintering. .

【0024】[0024]

【実施例】実施例1 硝酸イットリウム水溶液と硝酸アルミニウム水溶液とを
YAG組成となる様に混合し、水を加えて、YAG換算で0.
003mol/Lの酸性水溶液1000Lとした。これにモ
ル比で金属イオン濃度の14.5倍量の尿素並びに1.6
倍量の濃硫酸をそれぞれ添加し、また焼結助剤としてコ
ロイダルシリカをYAGに対して酸化物換算で400wt
ppmとなるように加えた後、100℃に加熱して撹袢
下3時間反応させ沈殿を生成させた。反応後、35℃ま
で冷却し、ろ過、水洗を6回繰り返した後に150℃で
12時間乾燥した。この沈澱を1200℃で3時間仮焼
することにより、TEMおよびSEMでの観察で平均一次粒子
径0.2μm、二次粒子径0.3μmのYAG粉末が得られ
た。
Example 1 An yttrium nitrate aqueous solution and an aluminum nitrate aqueous solution were prepared.
Mix it so that it has a YAG composition, add water, and convert it to YAG conversion of 0.
It was set to 1000 L of 003 mol / L acidic aqueous solution. To this, 14.5 times the molar ratio of metal ion concentration of urea and 1.6
Add twice the amount of concentrated sulfuric acid, and use colloidal silica as a sintering aid in an amount of 400 wt.
After adding so that it might become ppm, it heated at 100 degreeC and was made to react under stirring for 3 hours, and precipitate was produced. After the reaction, the mixture was cooled to 35 ° C., filtered and washed with water 6 times, and dried at 150 ° C. for 12 hours. By calcining this precipitate at 1200 ° C. for 3 hours, YAG powder having an average primary particle diameter of 0.2 μm and a secondary particle diameter of 0.3 μm was obtained by observation with TEM and SEM.

【0025】この粉末1kgに媒液として純水を250
g、分散剤としてA−6114(東亜合成化学、ポリカ
ルボン酸系、A−6114は東亜合成化学の商品名)を
純分換算で0.5wt%、更にバインダーとしてWF−
804(中京油脂社製、ポリビニルアルコール系、WF
−804は中京油脂社の商品名)を0.5wt%添加し
て、一昼夜ボールミル粉砕ならびに混合を行い、鋳込み
用泥漿を得た。この泥漿を、泥漿貯留部として塩ビ製リ
ングを乗せた素焼き状態の多孔質アルミナ板上に注ぎ込
み、1日放置した後、60℃の乾燥機中で1日、更に1
20℃の乾燥機で1日乾燥し、105Φ×5mmtの成
形体7個を得た。なおこの明細書で、Φは直径をmm単
位で表す。
To 1 kg of this powder, 250 pure water was used as a liquid medium.
g, 0.5% by weight of A-6114 (Toagosei Kagaku Kabushiki Kaisha, polycarboxylic acid type, A-6114 is a trade name of Toa Gosei Kagaku) as a dispersant, and WF- as a binder.
804 (manufactured by Chukyo Yushi Co., Ltd., polyvinyl alcohol, WF
-804 was added by 0.5 wt% of Chukyo Yushi-Seiyaku Co., Ltd., and was ball-milled and mixed all day and night to obtain a casting slurry. The sludge was poured onto a porous alumina plate in a unglazed state on which a vinyl chloride ring was placed as a sludge storage part, left for 1 day, then dried in a dryer at 60 ° C for 1 day, and then 1 hour.
It was dried for 1 day in a dryer at 20 ° C. to obtain 7 molded bodies of 105Φ × 5 mmt. In this specification, Φ represents a diameter in mm.

【0026】実施例2 実施例1で得られた成形体から、10×10×5mmt
の成形体70個を切出し、毎時25℃の速度で昇温した
後、1100℃で5時間熱処理して脱脂した。熱処理
後、25個を10−1Pa以下の真空度のもと、1800
℃で10時間焼結して、透光性YAGセラミックスを得
た。上下面を平行度10秒で鏡面研磨した後、フィゾー
干渉計で透過波面を観察したが、歪みは観察されなかっ
た。
Example 2 From the molded body obtained in Example 1, 10 × 10 × 5 mmt
70 molded articles of 1 were cut out, heated at a rate of 25 ° C./hour, and then heat-treated at 1100 ° C. for 5 hours to degrease. After heat treatment, 25 pieces are 1800 under a vacuum of 10-1 Pa or less.
Sintering was performed at 0 ° C. for 10 hours to obtain a translucent YAG ceramic. After mirror polishing the upper and lower surfaces with a parallelism of 10 seconds, the transmitted wave front was observed with a Fizeau interferometer, but no distortion was observed.

【0027】実施例3 実施例2で作製した焼結体の片面をSiCの遊離砥粒を用
いて、Rmax10.1、4.8、2.2、0.45μmの各面
粗さに5個ずつラップした。何れの試料の平坦度も約1
μmであった。このラップ面と、同じく実施例2で作製
し熱処理した成形体の自由面とを向かい合わせに組み合
わせて、真空炉にセットし焼結した。焼結体は接合面と
向かい合う2面を平行度8から10秒で鏡面に研磨し、
肉眼で接合状態を確認したところ、何れの接合面も全面
が接合されていた。He-Neレーザーを透過させて接
合面に存在する散乱点(空隙、気孔)を観察し、更に透
過波面の乱れも確認した。結果を表1に示す。
Example 3 On one side of the sintered body produced in Example 2, using free SiC abrasive grains, 5 pieces each having a surface roughness of Rmax 10.1, 4.8, 2.2 and 0.45 μm were prepared. I wrapped each one. Flatness of all samples is about 1
was μm. The lap surface and the free surface of the heat-treated compact produced in Example 2 were combined face-to-face and set in a vacuum furnace for sintering. For the sintered body, the two surfaces facing the joint surface are mirror-polished with parallelism of 8 to 10 seconds,
When the joining state was visually confirmed, all the joining surfaces were joined together. The He-Ne laser was transmitted and the scattering points (voids, pores) existing on the joint surface were observed, and the disturbance of the transmitted wave front was also confirmed. The results are shown in Table 1.

【0028】[0028]

【表1】 接合面の観察結果 面粗さ 接合面に輝点の存 透過波面に乱れが生じ 在したサンプル数 たサンプルの数 10.1μm 5個 5個 4.8μm 1個 2個 2.2μm 無し 1個 0.45μm 無し 無し[Table 1] Observation result of bonding surface Surface roughness Presence of bright spots on bonding surface Number of samples with turbulence on transmitted wavefront 10.1 μm 5 5 4.8 μm 1 2 2.2 μm None 1 piece 0.45 μm None None

【0029】ここでは脱脂済み板状の鋳込み成形体の自
由面を、焼結後の鋳込み成形体に接合したが、実際の応
用では、レーザーロッド、例えば単結晶レーザーロッ
ド、の両端面に未焼結で脱脂済みの鋳込み成形体の自由
面を接触させて、焼結することが好ましい。
Here, the free surface of the degreased plate-shaped cast body was joined to the sintered cast body, but in actual application, both end faces of a laser rod, for example, a single crystal laser rod, are not fired. It is preferable to bring the free surface of the cast molded body that has been degreased by binding into contact and sinter.

【0030】比較例1 焼結体のラップ面(Rmax0.45μm、平坦度1μm)
と組み合わせる熱処理した成形体の面を、成形時にアル
ミナ型に向かい合った面(5個)ないしはカットした後
旋盤で上仕上げした加工面(5個)とした以外は、実施
例3と同様にして接合結晶を作製した。接合結晶の接合
面と向かい合う2面を鏡面に研磨し、肉眼で接合状態を
確認したところ、何れの接合面も全面が接合されてい
た。次いで5mWのHe-Neレーザーを透過させて接
合面でのレーザー光散乱点を観察すると、全数に多数の
散乱輝点が存在した。
Comparative Example 1 Lap surface of sintered body (Rmax 0.45 μm, flatness 1 μm)
Joining was performed in the same manner as in Example 3 except that the surface of the heat-treated molded body to be combined with was a surface (5 pieces) facing the alumina mold during molding or a machined surface (5 pieces) that was cut and then finished by lathe. Crystals were made. Two surfaces facing the bonding surface of the bonded crystal were mirror-polished, and the bonding state was confirmed with the naked eye. As a result, the entire bonding surface was bonded. Next, when 5 mW of He-Ne laser was transmitted and the laser light scattering points at the bonding surface were observed, a large number of scattering bright points were present in all.

【0031】比較例2 Rmax0.45μm、平坦度0.8μmにラップした焼結体
のラップ面同士を組み合わせ、実施例3と同様に真空下
1800℃で熱処理した。接合面の面積のうち約20%
が接合されていなかった。
Comparative Example 2 The lapped surfaces of the sinters having the Rmax of 0.45 μm and the flatness of 0.8 μm were combined and heat-treated at 1800 ° C. under vacuum in the same manner as in Example 3. About 20% of the joint surface area
Was not joined.

【0032】実施例4 8Φ×205mmの0.6%Nd:YAG単結晶レーザーロッ
ドから約10mm長さの試料を10個切出し、端面をR
max0.45μm、平坦度0.9μmにラップした。このラ
ップ面と、実施例2で作製した熱処理した成形体の自由
面とを向かい合わせに組み合わせたものを5セット用意
し、真空炉にセットして焼結した。結晶体は接合面と向
かい合う2面を平行度8から10秒で鏡面に研磨し、肉
眼で接合状態を確認したところ、何れの接合面も単結晶
側の全面が接合されていた。この面に5mW出力のHe
-Neレーザーを透過させて接合面に存在する散乱点
(空隙、気孔)を観察したが、全く認められなかった。
Example 4 Ten samples each having a length of about 10 mm were cut out from a 8% × 205 mm 0.6% Nd: YAG single crystal laser rod, and the end face was rounded.
It was wrapped to a maximum of 0.45 μm and a flatness of 0.9 μm. Five sets of the lap surface and the free surface of the heat-treated molded body produced in Example 2 were combined facing each other, and 5 sets were prepared and set in a vacuum furnace and sintered. When the crystal body was mirror-polished on two surfaces facing the joint surface with a parallelism of 8 to 10 seconds and the joint state was confirmed with the naked eye, all the joint surfaces were joined on the single crystal side. He of 5mW output on this side
The scattering points (voids, pores) existing on the bonding surface were observed after passing through the -Ne laser, but none were observed.

【0033】比較例3 焼結体の替わりに実施例4で用意した8Φ×10mmの
単結晶試料を用いた以外は比較例2と同様にして、単結
晶の接合結晶を作製した。接合面の面積のうち約50%
が接合されていなかった。
Comparative Example 3 A single crystal bonded crystal was prepared in the same manner as Comparative Example 2 except that the 8Φ × 10 mm single crystal sample prepared in Example 4 was used instead of the sintered body. About 50% of the joint surface area
Was not joined.

【0034】実施例5 実施例1と同様にして作製したYAG原料粉末1000g
に、媒液として667gのエタノール、分散剤としてE
−503(中京油脂社製、ポリカルボン酸系,E−50
3は中京油脂社の商品名)0.5wt%、バインダーと
してPVB−BL1(積水化学社製、ポリビニルアルコ
ール系,PVBは積水化学の商品名)1wt%を添加し
て、1日ボールミルにて粉砕・混合して泥漿を得た。こ
の泥漿を、あらかじめ11.5Φ×75mmの貫通穴を
あけたのち再度底部を塞いでおいた石膏型に流し込み、
着肉厚みが1mmになるまで放置した。目的の着肉厚み
に達した後、残っている泥漿を石膏型の底部を開けて排
泥した。こうして得られた成形体を乾燥することによ
り、内径9Φ−外径11Φ−長さ70mmのYAGセラミ
ックス成形体が得られた。
Example 5 1000 g of YAG raw material powder produced in the same manner as in Example 1
And 667 g of ethanol as a liquid medium and E as a dispersant.
-503 (Chukyo Yushi Co., Ltd., polycarboxylic acid type, E-50
3 was added by 0.5% by weight of Chukyo Yushi Co., Ltd. and 1% by weight of PVB-BL1 (manufactured by Sekisui Chemical Co., Ltd., polyvinyl alcohol, PVB is a trademark of Sekisui Chemical Co., Ltd.) as a binder, and crushed by a ball mill for 1 day.・ Mixed to obtain slurry. After pouring a through hole of 11.5Φ × 75mm in advance, pour this slurry into the plaster mold with the bottom closed again,
It was left to stand until the inking thickness became 1 mm. After reaching the target thickness, the remaining sludge was drained by opening the bottom of the plaster mold. By drying the thus obtained molded body, a YAG ceramics molded body having an inner diameter of 9Φ, an outer diameter of 11Φ and a length of 70 mm was obtained.

【0035】この成形体に傷を付けないよう十分に注意
して、8Φ×50mm長さのNd:YAG単結晶を内部に挿
入した。この後、大気中で毎時25℃の速度で1100
℃まで昇温し、この温度で5時間保持して十分に脱脂し
た。脱脂処理後、10−1Pa以下の真空度のもと、18
00℃で10時間焼結して透光性YAGセラミックス−N
d:YAG単結晶のロッド状接合結晶を得た。両端面を鏡面
研磨した後、この面に5mW出力のHe-Neレーザー
を透過させて接合面に存在する散乱点(空隙、気孔)を
観察したが、全く認められなかった。
A Nd: YAG single crystal having a length of 8Φ × 50 mm was inserted into the inside of the molded body while paying sufficient attention not to damage it. After this, 1100 at a rate of 25 ° C./h in air
The temperature was raised to 0 ° C., and this temperature was maintained for 5 hours for sufficient degreasing. After degreasing, under vacuum of 10-1 Pa or less, 18
Translucent YAG Ceramics-N by sintering at 00 ℃ for 10 hours
A rod-shaped bonded crystal of d: YAG single crystal was obtained. After mirror-polishing both end faces, a He-Ne laser with a power of 5 mW was transmitted through this face to observe scattering points (voids, pores) existing on the joint surface, but none were observed.

【0036】比較例4 実施例5と同様にして作製した泥漿からスプレードライ
ヤーを用いてCIP(冷間静水圧)成形に用いる顆粒を
得た。この顆粒を用いてCIP成形によりパイプ状成形
体を作製した以外は実施例5と同様にして接合結晶を作
製した。両端面を鏡面研磨して接合面の状態を肉眼で確
認したところ、明らかに単結晶外周にそって気孔が存在
すると判断できる白いリングが認められた。
Comparative Example 4 Granules used for CIP (Cold Isostatic Pressing) molding were obtained from the slurry produced in the same manner as in Example 5 using a spray dryer. A bonded crystal was produced in the same manner as in Example 5 except that a pipe-shaped molded body was produced by CIP molding using the granules. When both end surfaces were mirror-polished and the state of the joint surface was confirmed with the naked eye, white rings were clearly seen along the outer periphery of the single crystal, which could be judged to have pores.

【0037】実施例6 硝酸イットリウム、尿素、硫酸アンモニウムならびに硝
酸アルミニウムを、濃度がそれぞれ、[ Y(NO3)3 ] =
0.25 mol/L、[ Urea ] = 1.5 mol/L、 [(NH4)2
SO4 ] = 0.25 mol/L、及び[ Al(NO3)3 ] = 6.7
×10-5 mol/Lとなる様に純水で溶解した。次に、該
混合液10Lをオートクレーブに入れ、温度を125
℃、圧力を5×10 Paにそれぞれ調節し、2時間保
持してイットリウムの炭酸塩の沈殿を得た。得られた沈
殿物の濾過洗浄を、5回繰り返し行い、110℃で24
時間乾燥した。 次に、この乾燥粉をアルミナるつぼに
て大気雰囲気で1200℃,3時間仮焼して易焼結性イ
ットリア粉末を得た。得られたイットリア原料粉末20
0gに対して解膠剤として中京油脂製E−503とF−2
19(アミン系)を12g及び4g添加し、更にバインダー
として積水化学製PVB-BL1を1g添加して、エタノール
50gと共にナイロンポット及びナイロンボールを用い
て12時間混合し、アルコールスラリーとした。
Example 6 Yttrium nitrate, urea, ammonium sulfate and aluminum nitrate were respectively added in concentrations of [Y (NO3) 3] =
0.25 mol / L, [Urea] = 1.5 mol / L, [(NH4) 2
SO4] = 0.25 mol / L, and [Al (NO3) 3] = 6.7
It was dissolved in pure water so that the concentration became × 10 −5 mol / L. Next, 10 L of the mixed solution was put into an autoclave and the temperature was adjusted to 125
The temperature was adjusted to 5 × 10 5 Pa and the temperature was kept for 2 hours to obtain a yttrium carbonate precipitate. Filtration and washing of the obtained precipitate are repeated 5 times, and 24 hours at 110 ° C.
Dried for hours. Next, this dry powder was calcined in an alumina crucible at 1200 ° C. for 3 hours in an air atmosphere to obtain an easily sinterable yttria powder. The obtained yttria raw material powder 20
Chugyo Yushi E-503 and F-2 as deflocculants for 0 g
12 g and 4 g of 19 (amine type) were further added, and 1 g of PVB-BL1 manufactured by Sekisui Chemical Co., Ltd. was further added as a binder and mixed with 50 g of ethanol for 12 hours using a nylon pot and a nylon ball to prepare an alcohol slurry.

【0038】このアルコールスラリーを石膏型に流し込
み、60mm×60mm×5mmの成形体を得た。この成形体
から10×10×5mmの成形体を20個切出した。こ
のうち5個を、毎時25℃で昇温して1100℃で5時
間充分に脱脂した後、真空炉にて1650℃の温度で5
時間焼結した。この際、昇温速度は100℃/hr、真
空度は10-1Pa以下とした。こうして得られた焼結体
の一端面をRmax0.45μm、平坦度0.8μmにラッ
プした。このラップ面と成形体の自由面とを組み合わせ
たもの5セットと、成形体の自由面同士を組み合わせた
もの5セットとを再度、毎時25℃で昇温して1100
℃で5時間充分に脱脂した後、真空炉にて1650℃の
温度で5時間焼結した。この際、成形体の自由面同士を
組み合わせたものは、脱脂時イットリア焼結体を5×1
Paの荷重となるように乗せた。
This alcohol slurry was poured into a gypsum mold to obtain a 60 mm × 60 mm × 5 mm compact. From this molded body, 20 molded bodies each having a size of 10 × 10 × 5 mm were cut out. Five of them were heated at 25 ° C./hour to sufficiently degrease them at 1100 ° C. for 5 hours, and then 5 at a temperature of 1650 ° C. in a vacuum furnace.
Sintered for hours. At this time, the temperature rising rate was 100 ° C./hr and the degree of vacuum was 10 −1 Pa or less. One end surface of the thus obtained sintered body was wrapped with Rmax 0.45 μm and flatness 0.8 μm. 5 sets of the combination of the lap surface and the free surface of the molded body and 5 sets of the combination of the free surfaces of the molded body were heated again at 25 ° C./hr for 1100
After sufficiently degreasing at 5 ° C. for 5 hours, it was sintered at 1650 ° C. for 5 hours in a vacuum furnace. In this case, the combination of the free surfaces of the molded body was 5 × 1 times that of the yttria sintered body during degreasing.
It was placed so that the load was 0 3 Pa.

【0039】得られた結晶体は、接合面と向かい合う2
面を平行度8から10秒で鏡面に研磨し、肉眼で接合状
態を確認したところ、何れの接合面も全面が接合されて
いた。He-Neレーザーを透過させて接合面に存在す
る散乱点(空隙、気孔)を観察し、更に透過波面の乱れ
も確認したが、光学結晶として全く問題の無い物であっ
た。
The obtained crystal body faces the joint surface 2
The surfaces were polished to a mirror surface with a parallelism of 8 to 10 seconds, and the bonding state was confirmed with the naked eye. As a result, all the bonding surfaces were bonded. The He-Ne laser was transmitted and the scattering points (voids, pores) existing on the joint surface were observed, and the disturbance of the transmitted wave front was also confirmed, but it was an optical crystal with no problem.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 仁 大阪市中央区高麗橋4丁目2番7号 神島 化学工業株式会社内 (72)発明者 久保 智紀 大阪市中央区高麗橋4丁目2番7号 神島 化学工業株式会社内 Fターム(参考) 4G026 BA02 BB02 BC01 BD11 BE01 BE02 BG02 BG05 BH06 4G031 AA08 AA29 BA01 CA01 CA07 GA06 GA16 5F072 AB02 AK01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hitoshi Kubo             4-7 Koraibashi, Chuo-ku, Osaka Kamijima             Chemical Industry Co., Ltd. (72) Inventor Tomoki Kubo             4-7 Koraibashi, Chuo-ku, Osaka Kamijima             Chemical Industry Co., Ltd. F-term (reference) 4G026 BA02 BB02 BC01 BD11 BE01                       BE02 BG02 BG05 BH06                 4G031 AA08 AA29 BA01 CA01 CA07                       GA06 GA16                 5F072 AB02 AK01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の結晶を接合してなるレーザー結晶
において、少なくとも1つの結晶を多結晶体とし、これ
を他の結晶と接合したことを特徴とするレーザー結晶。
1. A laser crystal formed by bonding a plurality of crystals, wherein at least one crystal is a polycrystal, and this is bonded to another crystal.
【請求項2】 レーザーロッドの側面に円筒状の多結晶
体を接合したことを特徴とする請求項1のレーザー結
晶。
2. The laser crystal according to claim 1, wherein a cylindrical polycrystalline body is bonded to the side surface of the laser rod.
【請求項3】 レーザーロッドの両端面に板状の多結晶
体を接合したことを特徴とする請求項1のレーザー結
晶。
3. The laser crystal according to claim 1, wherein a plate-shaped polycrystalline body is bonded to both end faces of the laser rod.
【請求項4】 鋳込み成形体の成形時の自由面を接合面
とし、この接合面を他の結晶の表面に接触させて焼結す
ることにより、成形体を焼結して多結晶体とすると共
に、該多結晶体の接合面を他の結晶と接合する、レーザ
ー結晶の製造方法。
4. A molded body is sintered into a polycrystalline body by making a free surface at the time of molding of a cast molded body a joint surface and bringing the joint surface into contact with the surface of another crystal to sinter. At the same time, a method for producing a laser crystal, in which the bonding surface of the polycrystalline body is bonded to another crystal.
【請求項5】 鋳込み成形を排泥鋳込み成形とし、かつ
前記自由面を鋳込み成形時に型に接触しない面としたこ
とを特徴とする、請求項4のレーザー結晶の製造方法。
5. The method for producing a laser crystal according to claim 4, wherein the cast molding is a sludge sludge cast molding, and the free surface is a surface which does not come into contact with the mold during the cast molding.
【請求項6】 円筒状の鋳込み成形体の内周面を自由面
とし、レーザーロッドを鋳込み成形体の内周面に挿入
し、鋳込み成形体をレーザーロッドと共に焼結して、鋳
込み成形体の内周面をレーザーロッドの側面に接合する
ことを特徴とする、請求項5のレーザー結晶の製造方
法。
6. A cylindrical cast-molded body having an inner peripheral surface as a free surface, a laser rod inserted into the inner peripheral surface of the cast-molded body, and the cast-molded body sintered together with the laser rod. The method for producing a laser crystal according to claim 5, wherein the inner peripheral surface is joined to the side surface of the laser rod.
JP2001205069A 2001-07-05 2001-07-05 Laser crystal manufacturing method Expired - Fee Related JP4052625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205069A JP4052625B2 (en) 2001-07-05 2001-07-05 Laser crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205069A JP4052625B2 (en) 2001-07-05 2001-07-05 Laser crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2003020288A true JP2003020288A (en) 2003-01-24
JP4052625B2 JP4052625B2 (en) 2008-02-27

Family

ID=19041439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205069A Expired - Fee Related JP4052625B2 (en) 2001-07-05 2001-07-05 Laser crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4052625B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112208A1 (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator employing it
US7158546B2 (en) 2002-02-27 2007-01-02 Nec Corporation Composite laser rod, fabricating method thereof, and laser device therewith
DE102007002079A1 (en) 2007-01-09 2008-07-10 Schott Ag Process for the production of optical elements and optical elements
JP2014040350A (en) * 2012-08-23 2014-03-06 Konoshima Chemical Co Ltd Optical ceramics and production method of the same
CN108689712A (en) * 2018-06-26 2018-10-23 镭米光学科技(宁波)有限公司 Integral type composite ceramics fluorophor and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158546B2 (en) 2002-02-27 2007-01-02 Nec Corporation Composite laser rod, fabricating method thereof, and laser device therewith
US7496125B2 (en) 2002-02-27 2009-02-24 Konoshima Chemical Co. Ltd. Composite laser rod, fabricating method thereof, and laser device therewith
WO2005112208A1 (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator employing it
JP2005327997A (en) * 2004-05-17 2005-11-24 Akio Ikesue Composite laser element and laser oscillator using the element
US7960191B2 (en) 2004-05-17 2011-06-14 Akio Ikesue Composite laser element and laser oscillator employing it
DE102007002079A1 (en) 2007-01-09 2008-07-10 Schott Ag Process for the production of optical elements and optical elements
JP2014040350A (en) * 2012-08-23 2014-03-06 Konoshima Chemical Co Ltd Optical ceramics and production method of the same
CN108689712A (en) * 2018-06-26 2018-10-23 镭米光学科技(宁波)有限公司 Integral type composite ceramics fluorophor and preparation method thereof
CN108689712B (en) * 2018-06-26 2020-10-09 镭米光学科技(宁波)有限公司 Integrated composite ceramic phosphor and preparation method thereof

Also Published As

Publication number Publication date
JP4052625B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US5047181A (en) Forming of complex high performance ceramic and metallic shapes
WO2005112208A1 (en) Composite laser element and laser oscillator employing it
EP1713149B1 (en) Glaze soldered laser components and method of manufacturing
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
Sun et al. Gelcasting and reactive sintering of sheet-like YAG transparent ceramics
JP2003020288A (en) Laser crystal and method for producing the same
US7964296B2 (en) High-volume, fully dense silicon nitride monolith and method of making by simultaneously joining and hot pressing a plurality of RBSN parts
CN87100024A (en) With magnesia partial stabilized zirconium white
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JP2015030629A (en) Alumina ceramic joined body and method for producing the same
JP2001158660A (en) Optically transmitting rare earth-aluminum garnet sintered product and production method therefor
CN1123413C (en) Method for making refractory zirconia stem bar
Akbas et al. Low CTE & high stiffness diamond reinforced SiC based composites with machineable surfaces for mirrors & structures
JP3187968B2 (en) Manufacturing method of glass ceramic sintered body
KR101652397B1 (en) zirconia-alumina composite and method for manufacturing the same
JP7351071B2 (en) sintered body
CN116947524B (en) Laser curing forming method of ceramic bond fine-grained diamond honeycomb grinding block
Kishawy et al. Ceramics
US8999091B2 (en) Layer material for high-temperature use
JP2007008774A (en) Manufacturing method of ceramic structure with through-holes
Choi Plasma Resistance Evaluation and Characteristics of Yttria Ceramics Sintered by Using Calcination Yttria
RU2610744C1 (en) Silicon nitride based charge and method for production of articles thereof
JPS6026076B2 (en) Method for joining ceramic articles
WO2024005207A1 (en) Method for producing sintered body
JPH01305861A (en) Compound body of boron nitride type ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees