JP2003019863A - Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method - Google Patents

Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method

Info

Publication number
JP2003019863A
JP2003019863A JP2001158677A JP2001158677A JP2003019863A JP 2003019863 A JP2003019863 A JP 2003019863A JP 2001158677 A JP2001158677 A JP 2001158677A JP 2001158677 A JP2001158677 A JP 2001158677A JP 2003019863 A JP2003019863 A JP 2003019863A
Authority
JP
Japan
Prior art keywords
irradiated
inorganic material
transparent inorganic
laser light
surroundings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001158677A
Other languages
Japanese (ja)
Inventor
Kenei Kiyu
建 栄 邱
Kazuyuki Hirao
尾 一 之 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2001158677A priority Critical patent/JP2003019863A/en
Publication of JP2003019863A publication Critical patent/JP2003019863A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a display material which can make an image existing as a heterogeneous part formed by being irradiated with pulse laser beams very narrow in width actually in a transparent material unable to indicate the image directly visible. SOLUTION: By exciting a specimen piece including the heterogeneous part by ultraviolet rays, a behavior different from the surroundings of the heterogeneous part, for example the generation of fluorescence, is made to occur in the heterogeneous part so that the shape of the heterogeneous part is made visible. By moving the focus of the ultraviolet rays according to a prescribed pattern, an optional image, which can not be recognized directly by an outsider but is indicated for the person concerned as required, can be recorded in a visible form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は透明無機材料(透明
体)の固相内にパルス幅1ps(1ピコ秒=10-12sec)以
下の少なくとも1種類のパルスレーザー光を照射して特
定の画像を潜像(不可視画像)の形で記録し、記録された
潜像を内蔵する試料片全体を紫外線で照射することによ
って、周囲とは異なる挙動を示す任意の形状の異質部分
を内蔵する有体物を製造する方法、その有体物が表示用
材である製造方法及び前記製造方法によって画像が潜像
として記録され、記録された潜像が紫外線照射を受けて
蛍光の形で表示される成形体に関する。
TECHNICAL FIELD The present invention irradiates a solid phase of a transparent inorganic material (transparent body) with at least one kind of pulsed laser light having a pulse width of 1 ps (1 picosecond = 10 −12 sec) or less, and is specified. By recording an image in the form of a latent image (invisible image) and irradiating the entire sample piece containing the recorded latent image with ultraviolet rays, a tangible object containing a foreign part of any shape that behaves differently from the surroundings. The present invention relates to a method for manufacturing a molded article, a manufacturing method in which the material is a display material, and a molded body in which an image is recorded as a latent image by the manufacturing method, and the recorded latent image is irradiated with ultraviolet rays and displayed in a fluorescent form.

【0002】詳しくは、本発明は透明無機材料製の試料
片の固相内における任意箇所にパルス幅1ps以下の少な
くとも1種類のパルスレーザー光を集光照射して任意形
状の異質部分を潜像(不可視画像)の形で形成させ(記録
し)、その試料片の略全域を紫外線照射した際に、その
試料片が示す周囲とは異なる挙動通常は、蛍光発光によ
って、初めて試料片(有体物)の外部から上記の異質部分
の位置及び/又は形状が認識可能になる表示材料及び成
形体並びにその製造方法に関する。
More specifically, the present invention condenses and irradiates at least one kind of pulsed laser light having a pulse width of 1 ps or less on an arbitrary position in a solid phase of a sample piece made of a transparent inorganic material to form a latent image of a heterogeneous portion having an arbitrary shape. When formed (recorded) in the form of (invisible image), when the entire area of the sample piece is irradiated with ultraviolet light, the sample piece behaves differently from its surroundings. The present invention relates to a display material and a molded body which enable the position and / or shape of the above-mentioned foreign portion to be recognized from the outside, and a manufacturing method thereof.

【0003】[0003]

【従来の技術】従来、透明無機材料代表的にはケイ酸塩
ガラス、石英ガラス等の非晶性材料の固相内に、集光点
を調節すると共にYAGレーザー光を集光照射することに
よって、集光点及びその近傍に任意形状の異質部分を形
成させ、光の散乱によって生ずる白色マーキングを行な
う方法及びそれによって得られたマーキング付き物品を
記録、識別又は装飾用等の各種材料として用いることは
既知である。
2. Description of the Related Art Conventionally, transparent inorganic materials, typically silicate glass, quartz glass, etc. , A method of forming a heterogeneous part of arbitrary shape at and around the focal point and performing white marking caused by light scattering, and using the marked article obtained thereby as various materials for recording, identification, decoration, etc. Is known.

【0004】また、希土類イオン及び遷移金属イオンか
ら選ばれる少なくとも1種類を含有する透明無機材料の
固相内における任意箇所を集光点として選び、そこにパ
ルスレーザー光を集光照射することによって、集光点及
びその近傍に任意形状の異質部分を形成させて、光吸収
及び/又は長残光発光を生じさせることも既知である。
In addition, by selecting an arbitrary point in the solid phase of a transparent inorganic material containing at least one selected from rare earth ions and transition metal ions as a focusing point, and irradiating the point with pulsed laser light by focusing. It is also known to form a heterogeneous portion having an arbitrary shape at and around the focal point to cause light absorption and / or long afterglow emission.

【0005】例えば、中国特許ZL97234928.6号明細書
(国際出願番号PCT/CN98/00100号)はガラスの表面又は内
部にCO2レーザー光又はYAGレーザー光を集光照射して、
ガラスに亀裂又は損傷を与えて彫込み、その内部に三次
元画像を形成させる装置等を開示している。また、既知
のYAGレーザー光を照射して形成されるマーキングは白
色に限るから、多様な色彩の画像形成(マーキング提供)
には依然として研究の余地が残されていた。
For example, Chinese patent ZL97234928.6
(International Application No.PCT / CN98 / 00100) is a glass surface or the inside of which CO 2 laser light or YAG laser light is focused and irradiated,
It discloses a device or the like for cracking or damaging glass to engrave it and form a three-dimensional image therein. In addition, the marking formed by irradiating the known YAG laser light is limited to white, so image formation of various colors (marking provided)
Still had room for research.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は紫外線
照射によって発生する蛍光を用いて、予め記録されてい
た潜像が外部から初めて認識可能になる透明無機材料を
提供することにある。詳しくは、本発明の目的は透明無
機材料の固相中に潜像として記録された画像を内蔵する
試料片に紫外線を照射することによって、周囲とは異な
る挙動例えば、蛍光発光を示す異質部分を形成させるこ
とにある。更に、本発明の第二の目的は上記の照射処理
によって、透明無機材料を例えば、大容量の三次元・光
メモリー、三次元ディスプレイ、情報の記録媒体、情報
の表示媒体又は装飾体等に有用な素材として提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a transparent inorganic material in which a previously recorded latent image can be recognized for the first time from the outside by using fluorescence generated by irradiation of ultraviolet rays. More specifically, the object of the present invention is to irradiate a sample piece containing an image recorded as a latent image in a solid phase of a transparent inorganic material with ultraviolet rays so that a behavior different from that of the surroundings, for example, a heterogeneous portion exhibiting fluorescence emission can be obtained. To form. Further, the second object of the present invention is that the transparent inorganic material is useful in, for example, a large-capacity three-dimensional / optical memory, a three-dimensional display, an information recording medium, an information display medium or a decorative body by the above irradiation treatment. It is to provide as a raw material.

【0007】[0007]

【課題を解決するための手段】本発明は下記の構成要件
の結合によって所期の効果を達成することにある: (1) 透明無機材料の固相内の任意の位置に集光点を設
定してパルス幅1ps以下のパルスレーザー光を集光照射
することによって、該固相内に紫外線照射を受けた際に
周囲とは異なる挙動を示す任意の形状の異質部分が形成
された有体物を製造する方法。 (2) 紫外線照射を受けた際に示される周囲とは異なる
挙動が蛍光発光である前記項1に記載の有体物を製造す
る方法。 (3) 透明無機材料が非晶質のガラス状物である前記項
1又は2に記載の表示材料。 (4) 透明無機材料が結晶質の固体である前記項1又は
2に記載の表示材料。 (5) 透明無機材料の固相内における任意の位置に前記
項1又は2に記載された製造方法によって形成された任
意の形状の異質部分が紫外線照射を受けて示す周囲とは
異なる挙動によって、初めて外部から特定の文字、記
号、図形又は標識等として認識され得る表示として含有
されている表示用材。 (6) 板状体、管状体及び容器から選ばれる1種以上の
成形体の固相内の任意の位置にパルス幅1ps以下のパル
スレーザー光照射によって形成された任意形状の異質部
分が紫外線照射を受けて示す周囲とは異なる挙動によっ
て、初めて外部から特定の文字、記号、図形又は標識等
として認識される表示である前記項3〜5の何れかに記
載の成形体。
SUMMARY OF THE INVENTION The present invention is to achieve a desired effect by combining the following constituents: (1) Setting a focusing point at an arbitrary position in a solid phase of a transparent inorganic material. Then, by irradiating and irradiating the pulsed laser light with a pulse width of 1 ps or less, a solid material having a heterogeneous portion of an arbitrary shape that behaves differently from the surroundings when irradiated with ultraviolet rays in the solid phase is manufactured. how to. (2) The method for producing a tangible object according to the above item 1, wherein the behavior different from the surroundings when exposed to ultraviolet rays is fluorescence emission. (3) The display material according to the above item 1 or 2, wherein the transparent inorganic material is an amorphous glassy material. (4) The display material according to the above item 1 or 2, wherein the transparent inorganic material is a crystalline solid. (5) Due to the behavior different from the surroundings when the foreign portion of arbitrary shape formed by the manufacturing method described in the above item 1 or 2 is irradiated with ultraviolet rays at an arbitrary position in the solid phase of the transparent inorganic material, A display material contained as a display that can be recognized as a specific character, symbol, graphic or sign for the first time from the outside. (6) Irradiation with ultraviolet light on a heterogeneous portion of arbitrary shape formed by pulsed laser light irradiation with a pulse width of 1 ps or less at an arbitrary position in the solid phase of one or more molded bodies selected from plate-like bodies, tubular bodies and containers The molded article according to any one of items 3 to 5, which is a display that is recognized as a specific character, symbol, figure, or sign from the outside for the first time due to a behavior different from that of the surroundings.

【0008】[0008]

【発明の実施の形態】<パルス幅1ps以下のパルスレー
ザー光>本発明の製造方法並びに表示材及び成形体にお
いてパルス幅1ps以下のレーザー光(以下、「極狭幅パル
スレーザー光」と称することがある)としては、好ましく
はフェムト秒(fs;10-15s)レーザー光等の極狭幅パル
スレーザー光を用いることができる。この極狭幅パルス
レーザー光としては、透明無機材料に光吸収されにくい
非共鳴のパルスレーザー光であって例えば、アルゴン(A
r)レーザー励起Ti−サファイア−レーザー光を挙げるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION <Pulse laser light having a pulse width of 1 ps or less> Laser light having a pulse width of 1 ps or less in the manufacturing method, the display material and the molded article of the present invention (hereinafter referred to as "extremely narrow pulse laser light"). It is preferable to use an extremely narrow pulse laser light such as a femtosecond (fs; 10 −15 s) laser light. This ultra-narrow pulsed laser light is a non-resonant pulsed laser light that is not easily absorbed by the transparent inorganic material, such as argon (A
r) Laser-excited Ti-sapphire-laser light can be mentioned.

【0009】本発明において好適に用いられる「fsレー
ザー光」とは、「そのパルス幅が1ps以下のパルスレーザ
ー光」の中で、そのパルス幅が1×10-15〜999×1
-1 5secのパルスレーザー光の意味である。本発明の目
的達成に用いられるfsレーザー光のパルス幅は通常、1
0×10-15〜800×10-15secである。上記のパル
スレーザーを発振させるには、各種のポンピング光源例
えば、キセノン(Xe)ランプ、タングステン(W)・ヨウ素
(I)ランプ又は水銀(Hg)ランプ等を用いることができ
る。これらのポンピング光源を用いた照射によってパル
スレーザーを発振させれば、電子が励起状態から基底状
態へ戻る際にレーザー発光を生じさせることができる。
The "fs laser light" preferably used in the present invention is "pulse laser light having a pulse width of 1 ps or less", and its pulse width is 1 × 10 -15 to 999 × 1.
0 is a meaning of -1 5 sec of the pulse laser beam. The pulse width of the fs laser light used to achieve the object of the present invention is usually 1
It is 0 × 10 −15 to 800 × 10 −15 sec. In order to oscillate the above pulsed laser, various pumping light sources, for example, xenon (Xe) lamp, tungsten (W) and iodine
A (I) lamp or a mercury (Hg) lamp can be used. If a pulsed laser is oscillated by irradiation with these pumping light sources, laser emission can be generated when electrons return from the excited state to the ground state.

【0010】<透明無機材料>本発明方法において透明
無機材料として用いられるものは透明非晶性材料及び透
明結晶性材料から選ばれる1種類以上の高透明体であ
る。本発明では、前記の透明非晶性材料及び透明結晶性
材料を一括して「高透明体」と称することがある。前記の
高透明体の無機化学的成分の例としては、酸化物、ハロ
ゲン化物及びカルコゲナイドから選ばれる少なくとも1
種類の化合物を挙げることができる。
<Transparent Inorganic Material> The transparent inorganic material used in the method of the present invention is at least one highly transparent material selected from transparent amorphous materials and transparent crystalline materials. In the present invention, the transparent amorphous material and the transparent crystalline material may be collectively referred to as a "high transparency". As an example of the inorganic chemical component of the highly transparent body, at least one selected from oxides, halides and chalcogenides is used.
A class of compounds may be mentioned.

【0011】前記の高透明体の中で非晶性材料の例とし
ては、ケイ酸塩(シリケート)ガラス、硼・ケイ酸塩(ボ
ロシリケート)ガラス及び石英ガラスを挙げることがで
きる。これらの透明無機ガラス類の中で、入手容易性の
点で好ましいものはケイ酸塩(シリケート)ガラスである
が、化学的安定性及び耐熱性に稍優れる点ではケイ酸カ
リウムガラス(通称「カリガラス」)である。それよりも稍
厳しい耐熱性が要求される分野では、硼・ケイ酸塩(ボ
ロシリケート)ガラス[例えば、登録商標:パイレックス
(R)(ダウコーニング社製)]が適し、最も厳しい耐熱性が
要求される分野には、石英ガラスが適する。
Among the above-mentioned highly transparent materials, examples of the amorphous material include silicate (silicate) glass, boro-silicate (borosilicate) glass and quartz glass. Among these transparent inorganic glasses, the silicate glass is preferable from the viewpoint of easy availability, but potassium silicate glass (commonly referred to as `` potassium glass '' in terms of excellent chemical stability and heat resistance). )). Borosilicate glass (for example, registered trademark: Pyrex) is used in fields where stricter heat resistance is required.
(R) (manufactured by Dow Corning Co., Ltd.)] is suitable, and quartz glass is suitable for the field requiring the most severe heat resistance.

【0012】本発明方法において用いられる透明結晶性
材料としては、好ましくは単結晶であって例えば、水晶
及び方解石等の二酸化珪素からなるもの、蛍石(フッ化
カルシウム主体)、岩塩(塩化ナトリウム主体)等を挙げ
ることができる。なお、塩化ナトリウム及び臭化カリウ
ムには合成単結晶として提供されているものもある。実
際に用いられる単結晶としては、合成単結晶が好まし
い。その理由は結晶格子が整っている点、他の夾雑化合
物を含有しない点等に求められる。
The transparent crystalline material used in the method of the present invention is preferably a single crystal composed of silicon dioxide such as quartz and calcite, fluorite (mainly calcium fluoride), rock salt (mainly sodium chloride). ) And the like. Some sodium chloride and potassium bromide are provided as synthetic single crystals. As the single crystal actually used, a synthetic single crystal is preferable. The reason for this is that the crystal lattice is well-ordered and that other contaminant compounds are not contained.

【0013】<希土類イオン>本発明方法において用い
られる透明無機材料に対するドーパントとして添加され
得る希土類イオンとしては例えば、Euイオン、Dyイオ
ン、Prイオン、Tbイオン、Ceイオン、Ndイオン、Smイオ
ン、Ybイオン及びTmイオンを挙げることができる。これ
らの希土類イオンの中で好ましいものはSmイオン及びEu
イオンである。
<Rare Earth Ions> Examples of rare earth ions that can be added as a dopant to the transparent inorganic material used in the method of the present invention include Eu ions, Dy ions, Pr ions, Tb ions, Ce ions, Nd ions, Sm ions, Yb. Ions and Tm ions may be mentioned. Preferred among these rare earth ions are Sm ions and Eu.
Ion.

【0014】<遷移金属イオン>本発明において用いら
れる透明無機材料にドーパントとして添加され得る遷移
金属イオンとしては例えば、Mnイオン、Crイオン及びTi
イオンを挙げることができる。 <重金属イオン>また、本発明において用いられる透明
無機材料にドーパントとして添加され得る重金属イオン
としては例えば、Agイオン、Auイオン及びBiイオンを挙
げることができる。これらの中でも好ましい重金属イオ
ンはAgイオンである。
<Transition metal ion> Examples of the transition metal ion which can be added as a dopant to the transparent inorganic material used in the present invention include Mn ion, Cr ion and Ti.
Ions can be mentioned. <Heavy Metal Ion> Further, examples of heavy metal ions that can be added as a dopant to the transparent inorganic material used in the present invention include Ag ions, Au ions, and Bi ions. Of these, the preferred heavy metal ion is Ag ion.

【0015】<希土類、遷移金属又は重金属各イオンの
量とその基準量>本発明方法において用いられる希土類
イオン単独の量、遷移金属イオン単独の量及び重金属イ
オン単独の量、好適態様において併用される遷移金属イ
オン、希土類イオン及び重金属イオンのそれぞれの好適
量は透明無機材料中に含有される全陽イオン量(各種陽
イオン量の総和)に対する値(陽イオン%)である。
<Amount of Rare Earth, Transition Metal or Heavy Metal Ion and Reference Amount> The amount of rare earth ion alone, the amount of transition metal ion alone and the amount of heavy metal ion used in the method of the present invention are used together in a preferred embodiment. The preferable amount of each of the transition metal ion, the rare earth ion, and the heavy metal ion is a value (cation%) with respect to the total amount of cations (sum of various cations) contained in the transparent inorganic material.

【0016】本発明方法において用いられる希土類イオ
ン、遷移金属イオン及び重金属イオンそれぞれの内訳量
は透明無機材料中に含有される全陽イオン量に対して、
希土類イオン通常0.0005〜10cat%、好ましくは
0.002〜5cat%、遷移金属イオン通常0.0005
〜10cat%、好ましくは0.002〜5cat%及び重金
属イオン通常0.0005〜10cat%、好ましくは0.
002〜5cat%に設定されることが好ましい。
The content of each of the rare earth ion, transition metal ion and heavy metal ion used in the method of the present invention is based on the total amount of cations contained in the transparent inorganic material.
Rare earth ions usually 0.0005 to 10 cat%, preferably 0.002 to 5 cat%, transition metal ions usually 0.0005
-10cat%, preferably 0.002-5cat% and heavy metal ions usually 0.0005-10cat%, preferably 0.0
It is preferably set to 002 to 5 cat%.

【0017】<集光点の調整>本発明の方法では、透明
無機材料の固相内への集光点の位置を調整する為に、両
者を相対的に移動させて透明無機材料の固相内に所定の
マーキングパターン(画像形状)を潜像として形成させ
る。この調整によって集光点を所定のパターンに従って
移動させながら極狭幅パルスレーザー光を照射すると共
に、その後の紫外線照射によって、周囲とは異なる挙動
例えば、蛍光発光を示す任意の形状の異質部分を集光点
及びその近傍に系列的に生じさせる。前記の相対的移動
を担う送り機構として、前後左右上下の3方向それぞれ
に集光点を微調整できる位置合せ装置を挙げることがで
きる。
<Adjustment of Converging Point> In the method of the present invention, in order to adjust the position of the converging point of the transparent inorganic material in the solid phase, the two are relatively moved and the solid phase of the transparent inorganic material is adjusted. A predetermined marking pattern (image shape) is formed inside as a latent image. This adjustment irradiates the ultra-narrow pulsed laser light while moving the focal point in accordance with a predetermined pattern, and the subsequent irradiation of ultraviolet rays collects a behavior different from the surroundings, for example, a heterogeneous portion of an arbitrary shape that exhibits fluorescence emission. It is generated in series at the light spot and its vicinity. An example of the feeding mechanism for carrying out the relative movement is a positioning device capable of finely adjusting the focal point in each of the front, rear, left, right, and top directions.

【0018】<極狭幅パルスレーザー光発生装置>本発
明方法において用いられるパルス幅1ps以下、好ましく
はフェムト秒(fs)のレーザー光(「極狭幅パルスレーザー
光」と称することがある)を発生させる装置としては、固
体レーザー光発生装置、液体レーザー光発生装置又は気
体レーザー光発生装置を挙げることができる。
<Ultra-narrow-width pulsed laser light generator> A laser beam having a pulse width of 1 ps or less, preferably femtosecond (fs) used in the method of the present invention (sometimes referred to as "ultra-narrow-width pulsed laser light") is used. Examples of the device for generation include a solid-state laser light generator, a liquid laser light generator, and a gas laser light generator.

【0019】本発明で用いられる極狭幅パルスレーザー
光はそのパルス幅1ps以下、好ましくはfs(フェムト秒)
のパルスレーザー光として透明無機材料試料片に対して
照射される。 <極狭幅レーザー光で照射された透明体の用途>本発明
の方法によって1種以上のパルス幅1ps以下、好ましく
はfs以下のレーザー光照射を受けた無機透明体(透明無
機材料)は次に行なわれる紫外線照射によって、周囲と
は異なる挙動通常は蛍光発光を示す。この能力を活用し
て、多色性及び/又は多形性を備えた記録用材料、識別
用材料又は装飾用等の表示用材料等として各種の用途に
用いられ得る。
The ultra-narrow pulsed laser light used in the present invention has a pulse width of 1 ps or less, preferably fs (femtosecond).
The transparent inorganic material sample piece is irradiated with the pulsed laser light. <Use of transparent body irradiated with ultra-narrow width laser light> The inorganic transparent body (transparent inorganic material) which has been irradiated with laser light of one or more pulse widths of 1 ps or less, preferably fs or less by the method of the present invention is as follows. When irradiated with ultraviolet rays, the behavior that differs from the surroundings usually causes fluorescence emission. By utilizing this ability, it can be used in various applications as a recording material having polychromaticity and / or polymorphism, an identifying material, a display material for decoration, and the like.

【0020】[0020]

【発明の効果】本発明の方法によれば、透明無機材料の
内部に集光点を調節した極狭幅パルスレーザー光を集光
照射することによって、透明無機材料内部の集光点及び
その近傍に、周囲とは異なる挙動を示す異質部分が形成
される。この異質部分が次に行なわれる紫外線照射にお
いて、前記パルスレーザー光未照射部位とは異質の挙動
を示す寄与で、潜像として形成されていた画像が視認可
能に齎らされる。
According to the method of the present invention, by focusing and irradiating the inside of a transparent inorganic material with an extremely narrow pulse laser beam having a focused point adjusted, the focused point inside the transparent inorganic material and the vicinity thereof. On the other hand, a foreign part that behaves differently from the surroundings is formed. In the subsequent irradiation of ultraviolet rays by this foreign portion, the image formed as a latent image is visually recognizable due to the contribution of exhibiting a behavior different from that of the portion not irradiated with the pulsed laser light.

【0021】その結果、この種の領域が形成された高透
明体、透明無機材料は大容量の三次元メモリー、三次元
ディスプレイ、情報の記録媒体、識別媒体又は装飾材等
として有用である。
As a result, the highly transparent body and the transparent inorganic material in which this kind of region is formed are useful as a large-capacity three-dimensional memory, a three-dimensional display, an information recording medium, an identification medium or a decorative material.

【0022】[0022]

【実施例】以下に、本発明の方法を実施例に基づいて具
体的に説明する。しかし、本発明はこれらの実施例によ
っては全く制限されない。
EXAMPLES The method of the present invention will be specifically described below based on examples. However, the invention is in no way limited by these examples.

【0023】[0023]

【実施例1】水酸基(OH)濃度1300ppmの二酸化珪
素(SiO2)ガラスから試料片(長さ10mm×幅10mm×厚
さ5mm)を切出し、その2平行面(相互に平行な2面)を
光学研磨した。作成された試料片の内部に集光点が位置
する様にfsパルスレーザー光を10倍の対物レンズで絞
って試料片に集光照射した。ここで用いられたfsパルス
レーザー光はパルス幅150fs(フェムト秒=10-15se
c)、繰返し周波数1kHz及び波長800nmの光束であっ
て、そのピークエネルギーは2×1011W/cm2であっ
た。
Example 1 A sample piece (length 10 mm × width 10 mm × thickness 5 mm) was cut out from silicon dioxide (SiO 2 ) glass having a hydroxyl group (OH) concentration of 1300 ppm, and its two parallel surfaces (two surfaces parallel to each other) were cut out. Optically polished. The fs pulsed laser light was focused by a 10 × objective lens so that the focal point was located inside the prepared sample piece, and the sample piece was focused and irradiated. The fs pulse laser light used here has a pulse width of 150 fs (femtosecond = 10 −15 se)
c) The light flux had a repetition frequency of 1 kHz and a wavelength of 800 nm, and its peak energy was 2 × 10 11 W / cm 2 .

【0024】上記のfsパルスレーザー光によって集光照
射された試料片に対して、その内部を紫外線(波長35
0nm)で励起した際の発光スペクトルを測定した結果、f
sパルスレーザー光で照射された部位からは緑色の蛍光
が観測された。また、fsパルスレーザー光未照射部位か
らは、紫外線励起によっても発光は全く観測されなかっ
た。
The inside of the sample piece irradiated with the fs pulsed laser beam is irradiated with ultraviolet rays (wavelength: 35
(0 nm), and the emission spectrum was measured.
Green fluorescence was observed from the area irradiated with s-pulse laser light. In addition, no light emission was observed from the site not irradiated with the fs pulsed laser beam even when excited by ultraviolet rays.

【0025】[0025]

【実施例2】フッ化物製の透明ガラス状物を作成する為
に、各陽イオン含有量を相互間の割合(モル%)で表わし
て、原料のSmF3:0.1、YF3:14.9、MgF2:10、
CaF2:20、SrF2:10、BaF2:10及びAlF3:35を
それぞれ秤量して、それぞれ全て白金るつぼに収容し、
温度1150℃で30min加熱溶融した後に、室温まで
放冷して透明ガラス状物を得た。
[Example 2] In order to prepare a transparent glassy material made of fluoride, the cation contents were expressed by the mutual ratio (mol%), and the raw materials SmF 3 : 0.1 and YF 3 : 14 were used. .9, MgF 2 : 10,
CaF 2 : 20, SrF 2 : 10, BaF 2 : 10 and AlF 3 : 35 are weighed and housed in platinum crucibles,
After heating and melting at a temperature of 1150 ° C. for 30 minutes, the mixture was allowed to cool to room temperature to obtain a transparent glass.

【0026】得られたSm3+含有フッ化物ガラス状物から
試料片(長さ10mm×幅10mm×厚さ5mm)を切出し、そ
の2平行面(相互に平行な2面)を光学研磨した。作成さ
れた試料片の内部に集光点が位置する様にfsパルスレー
ザー光を10倍の対物レンズで絞って試料片に集光照射
した。ここで用いられたfsパルスレーザー光はアルゴン
レーザー励起Ti−サファイアレーザーから発振されたパ
ルス幅500fs、繰返し周波数1kHz及び波長400nm
のパルスレーザー光束であって、ピークエネルギー5×
1011W/cm2であった。
A sample piece (length 10 mm × width 10 mm × thickness 5 mm) was cut out from the obtained Sm 3+ -containing fluoride glass material, and its two parallel surfaces (two surfaces parallel to each other) were optically polished. The fs pulsed laser light was focused by a 10 × objective lens so that the focal point was located inside the prepared sample piece, and the sample piece was focused and irradiated. The fs pulsed laser light used here is a pulse width of 500 fs oscillated from an argon laser pumped Ti-sapphire laser, a repetition frequency of 1 kHz and a wavelength of 400 nm.
Pulsed laser light flux with a peak energy of 5 ×
It was 10 11 W / cm 2 .

【0027】このfsパルスレーザー光によって集光照射
された試料片に対して、パルスレーザー光照射済み試料
片全体を紫外線(波長350nm)で励起した。その際の発
光スペクトルを測定した結果、fsパルスレーザー光照射
済部位からは赤色の蛍光が観測された。また、パルスレ
ーザー光未照射部位からは、紫外線照射によるオレンジ
色の発光が観測された。
With respect to the sample piece which was focused and irradiated with this fs pulsed laser light, the entire sample piece irradiated with the pulsed laser light was excited by ultraviolet rays (wavelength 350 nm). As a result of measuring the emission spectrum at that time, red fluorescence was observed from the site which had been irradiated with the fs pulsed laser light. In addition, orange emission due to ultraviolet irradiation was observed from the site not irradiated with the pulsed laser light.

【0028】[0028]

【実施例3】透明ガラス状物を作成する為に、AgPO3
8wt%、KPO3:2.5wt%、Ba(PO3)2:50wt%及びAl
(PO3)3:50wt%をそれぞれ全て白金るつぼに収容し、
加熱溶融した後に、室温まで放冷して透明ガラス状物を
得た。得られたガラス状物から試料片(長さ10mm×幅
10mm×厚さ5mm)を切出し、その2平行面(相互に平行
な2面)を光学研磨した。
Example 3 To prepare a transparent glass material, AgPO 3 :
8 wt%, KPO 3 : 2.5 wt%, Ba (PO 3 ) 2 : 50 wt% and Al
(PO 3 ) 3 : 50 wt% of each was stored in a platinum crucible,
After heating and melting, the mixture was allowed to cool to room temperature to obtain a transparent glass. A sample piece (length 10 mm × width 10 mm × thickness 5 mm) was cut out from the obtained glassy material, and its 2 parallel surfaces (2 surfaces parallel to each other) were optically polished.

【0029】作成された試料片の内部に集光点が位置す
る様に5倍の対物レンズで絞ってfsパルスレーザー光を
試料片に集光照射した。ここで用いられたfsパルスレー
ザー光は波長775nm、パルス幅150fs及び繰返し周
波数1Hzの光束で、そのピークエネルギー3×1011W/
cm2であった。fsレーザー光照射試料片に対しては、前
記のfsレーザー光照射後の試料片に対して、紫外線(波
長250〜350nm)で励起した際の発光スペクトルを
測定した結果、前記のfsレーザー光照射部位からはオレ
ンジ色の蛍光が観測された。また、前記のfsレーザー光
未照射の部位からは、紫外線励起を行なっても発光が全
く観測されなかった。
The sample piece was focused and irradiated with fs pulsed laser light by squeezing with a 5 × objective lens so that the focus point was located inside the prepared sample piece. The fs pulsed laser light used here is a light flux with a wavelength of 775 nm, a pulse width of 150 fs and a repetition frequency of 1 Hz, and its peak energy is 3 × 10 11 W /
It was cm 2 . For the sample piece irradiated with fs laser light, the emission spectrum when excited with ultraviolet rays (wavelength 250 to 350 nm) was measured for the sample piece irradiated with fs laser light, and the sample was irradiated with fs laser light. Orange fluorescence was observed from the site. Further, no light emission was observed from the above-mentioned site not irradiated with the fs laser light, even when ultraviolet light excitation was performed.

【0030】[0030]

【実施例4】モル比(モル%)で表わされた割合で、Eu
F2:0.1、YF3:14.9、MgF2:10、CaF2:20、S
rF2:10、BaF2:10及びAlF3:35をそれぞれ原料
として秤量し、次にそれらを全て白金るつぼへ収容し、
加熱溶融した後に室温まで放置冷却することによって透
明ガラス状物を得た。
Example 4 Eu at a ratio represented by a molar ratio (mol%)
F 2: 0.1, YF 3: 14.9, MgF 2: 10, CaF 2: 20, S
rF 2 : 10, BaF 2 : 10 and AlF 3 : 35 are weighed as raw materials, respectively, and then they are all put into a platinum crucible,
A transparent glass material was obtained by heating and melting and then leaving to cool to room temperature.

【0031】得られたフッ化物ガラス状物から試料片
(長さ10mm×幅10mm×厚さ5mm)を切出し、対向する
2平行面(相互に平行な2面)を光学研磨した。作成され
た試料片の内部に集光点が位置する様にfsパルスレーザ
ー光を10倍の対物レンズで絞込み、試料片を集光照射
した。ここで用いられたfsパルスレーザー光はパルス幅
150fs、繰返し周波数10Hz、波長1550nmの光束
で、そのピークエネルギーは2×109W/cm2であった。
Specimen piece from the obtained fluoride glass-like material
(Length 10 mm × width 10 mm × thickness 5 mm) was cut out, and two opposing parallel surfaces (two surfaces parallel to each other) were optically polished. The fs pulsed laser light was focused with a 10 × objective lens so that the focal point was located inside the prepared sample piece, and the sample piece was focused and irradiated. The fs pulsed laser light used here was a light flux with a pulse width of 150 fs, a repetition frequency of 10 Hz and a wavelength of 1550 nm, and its peak energy was 2 × 10 9 W / cm 2 .

【0032】上記のfsパルスレーザー光が集光照射され
た試料片に対し、紫外線(波長394nm)で励起した際の
発光スペクトルを測定した結果、上記のfsパルスレーザ
ー光で照射された部位からは赤色の蛍光が観測された。
また、上記のfsパルスレーザー光未照射部位からは、紫
外線励起による青色の蛍光が観測された。
As a result of measuring the emission spectrum of the sample piece irradiated with the above fs pulsed laser light when irradiated with ultraviolet light (wavelength 394 nm), it was found that the area irradiated with the above fs pulsed laser light was Red fluorescence was observed.
In addition, blue fluorescence due to ultraviolet excitation was observed from the above-mentioned site not irradiated with fs pulsed laser light.

【0033】[0033]

【実施例5】CdS及びCdSeをドープしたホウ酸塩ガラス
状物を作成し、得られたガラス状物から試料片(長さ1
0mm×幅10mm×厚さ5mm)を切出し、その対向する2
平行面(相互に平行な2面)を光学研磨した。作成された
試料片の内部に集光点が位置する様にfsパルスレーザー
光を10倍の対物レンズで絞込み、試料片を集光照射し
た。
Example 5 A borate glass material doped with CdS and CdSe was prepared, and a sample piece (length 1) was prepared from the obtained glass material.
0mm x width 10mm x thickness 5mm) is cut out and it is facing 2
The parallel surfaces (two surfaces parallel to each other) were optically polished. The fs pulsed laser light was focused with a 10 × objective lens so that the focal point was located inside the prepared sample piece, and the sample piece was focused and irradiated.

【0034】ここで用いられたfsパルスレーザー光はパ
ルス幅150fs、繰返し周波数200kHz、波長133
0nmの光束で、そのピークエネルギーは5×109W/cm2
であった。上記のfsパルスレーザー光で集光照射された
試料片に対して、紫外線(波長350nm)で励起した際の
試料片外観を観察した結果、前記fsパルスレーザー光で
照射された部位では発光が観測されなかった。他方、前
記fsパルスレーザー光未照射部位からは、紫外線励起に
よるオレンジ色の蛍光が観察された。
The fs pulse laser light used here has a pulse width of 150 fs, a repetition frequency of 200 kHz, and a wavelength of 133.
With 0 nm luminous flux, its peak energy is 5 × 10 9 W / cm 2
Met. As a result of observing the appearance of the sample piece when it was excited by ultraviolet rays (wavelength 350 nm), the sample piece irradiated with the above fs pulsed laser light was observed to emit light at the portion irradiated with the fs pulsed laser light. Was not done. On the other hand, from the site not irradiated with the fs pulsed laser light, orange fluorescence due to ultraviolet excitation was observed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平 尾 一 之 京都府相楽郡木津町木津川台三丁目5番8 号 Fターム(参考) 2H111 EA03 EA11 EA21 EA31 EA32 FA00 FB31 HA14 HA21 HA32 HA35 4G059 AA02 AC15 5C096 AA11 AA14 BA04 BC12 CA03 CA12 CA28 CA33 CB07 CC02 EA01 EA03 EB02 EB20 FA01 FA05 FA13 FA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuyuki Hirao             3-5-8 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto Prefecture             issue F-term (reference) 2H111 EA03 EA11 EA21 EA31 EA32                       FA00 FB31 HA14 HA21 HA32                       HA35                 4G059 AA02 AC15                 5C096 AA11 AA14 BA04 BC12 CA03                       CA12 CA28 CA33 CB07 CC02                       EA01 EA03 EB02 EB20 FA01                       FA05 FA13 FA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明無機材料の固相内の任意の位置に集
光点を設定してパルス幅1ps以下のパルスレーザー光を
集光照射することによって、該固相内に紫外線照射を受
けた際に周囲とは異なる挙動を示す任意の形状の異質部
分が形成された有体物を製造する方法。
1. An ultraviolet ray is irradiated in the solid phase by setting a focusing point at an arbitrary position in the solid phase of the transparent inorganic material and focusing and irradiating a pulse laser beam having a pulse width of 1 ps or less. A method for producing a tangible object in which a foreign part having an arbitrary shape that behaves differently from the surroundings is formed.
【請求項2】 紫外線照射を受けた際に示される周囲と
は異なる挙動が蛍光発光である請求項1に記載の有体物
を製造する方法。
2. The method for producing a tangible object according to claim 1, wherein the behavior different from the surroundings when exposed to ultraviolet rays is fluorescence emission.
【請求項3】 透明無機材料が非晶質のガラス状物であ
る請求項1又は2に記載の表示材料。
3. The display material according to claim 1, wherein the transparent inorganic material is an amorphous glassy material.
【請求項4】 透明無機材料が結晶質の固体である請求
項1又は2に記載の表示材料。
4. The display material according to claim 1, wherein the transparent inorganic material is a crystalline solid.
【請求項5】 透明無機材料の固相内における任意の位
置に請求項1又は2に記載された製造方法によって形成
された任意の形状の異質部分が紫外線照射を受けて示す
周囲とは異なる挙動によって、初めて外部から特定の文
字、記号、図形又は標識等として認識され得る表示とし
て含有されている表示用材。
5. A behavior different from the surroundings when a foreign portion of an arbitrary shape formed by the manufacturing method according to claim 1 or 2 is exposed to ultraviolet rays at an arbitrary position in a solid phase of a transparent inorganic material. For the first time, a display material contained as a display that can be recognized as a specific character, symbol, figure or sign from the outside for the first time.
【請求項6】 板状体、管状体及び容器から選ばれる1
種以上の成形体の固相内の任意の位置にパルス幅1ps以
下のパルスレーザー光照射によって形成された任意形状
の異質部分が紫外線照射を受けて示す周囲とは異なる挙
動によって、初めて外部から特定の文字、記号、図形又
は標識等として認識される表示である請求項3〜5の何
れかに記載の成形体。
6. 1 selected from a plate-like body, a tubular body and a container
For the first time, it is identified from the outside by the behavior different from the surrounding that the heterogeneous part of arbitrary shape formed by irradiation of pulsed laser light with a pulse width of 1 ps or less at an arbitrary position in the solid phase of at least one kind of molded body is exposed to ultraviolet light The molded article according to any one of claims 3 to 5, which is a display recognized as a character, a symbol, a figure, a sign, or the like.
JP2001158677A 2001-05-02 2001-05-28 Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method Pending JP2003019863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158677A JP2003019863A (en) 2001-05-02 2001-05-28 Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-135315 2001-05-02
JP2001135315 2001-05-02
JP2001158677A JP2003019863A (en) 2001-05-02 2001-05-28 Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method

Publications (1)

Publication Number Publication Date
JP2003019863A true JP2003019863A (en) 2003-01-21

Family

ID=26614655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158677A Pending JP2003019863A (en) 2001-05-02 2001-05-28 Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method

Country Status (1)

Country Link
JP (1) JP2003019863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083377A (en) * 2002-08-29 2004-03-18 Shin Etsu Chem Co Ltd Internally marked quartz glass, quartz glass substrate for optical member, and method of manufacturing the same
JP2006185564A (en) * 2004-12-28 2006-07-13 Sony Corp Optical recording method and optical recording device
JP2013530480A (en) * 2010-05-28 2013-07-25 ユニベルシテ ボルドー アン Method of writing and reading data by fluorescence on a photosensitive medium and related medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083377A (en) * 2002-08-29 2004-03-18 Shin Etsu Chem Co Ltd Internally marked quartz glass, quartz glass substrate for optical member, and method of manufacturing the same
JP2006185564A (en) * 2004-12-28 2006-07-13 Sony Corp Optical recording method and optical recording device
JP4525345B2 (en) * 2004-12-28 2010-08-18 ソニー株式会社 Optical recording method and optical recording apparatus
JP2013530480A (en) * 2010-05-28 2013-07-25 ユニベルシテ ボルドー アン Method of writing and reading data by fluorescence on a photosensitive medium and related medium
JP2016105085A (en) * 2010-05-28 2016-06-09 ユニベルシテ ボルドー アン Method of writing and reading data using fluorescence on photosensitive medium, and associated medium
US9816925B2 (en) 2010-05-28 2017-11-14 Universite Bordeaux 1 Method for writing and reading data by fluorescence on a light-sensitive substrate, and related substrate and devices

Similar Documents

Publication Publication Date Title
US6729161B1 (en) Method of selectively reforming an inner part of an inorganic body
Wei et al. Recent advances in hybrid optical materials: integrating nanoparticles within a glass matrix
Qiu et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass
Tanabe et al. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals
El-Maaref et al. Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses
Rasool et al. Spectroscopic Investigation of Sm3+ doped phosphate based glasses for reddish-orange emission
JPH10167755A (en) Oxide fluorescent glass emitting visible fluorescence
Dantelle et al. Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass− ceramics
CA2394879A1 (en) Article authentication
de Pablos-Martín et al. Crystallization and up-conversion luminescence properties of Er3+/Yb3+-doped NaYF4-based nano-glass-ceramics
EP0662933B1 (en) Novel composites for glass
JP2003283028A (en) Infrared illuminator and optical amplifying medium
Watanabe et al. Photosensitivity in phosphate glass doped with Ag+ upon exposure to near-ultraviolet femtosecond laser pulses
US6228787B1 (en) Fluorescent photosensitive glasses and process for the production thereof
Yusof et al. Synergistic effects of Nd3+ and Ag nanoparticles doping on spectroscopic attributes of phosphate glass
JP2007153626A (en) Fluorescent glass
JP2003019863A (en) Transparent inorganic material which can form heterogeneous part in optional shape showing behavior different from surroundings when irradiated with ultraviolet ray, and its production method
US6132643A (en) Fluorescent photosensitive vitroceramics and process for the production thereof
Anjaiah et al. Concentration dependent luminescence and energy transfer properties of samarium doped LLSZFB glasses
Nogami et al. Effect of OH bonds on persistent spectral hole burning of Sm2+-doped glasses
Honma et al. Synthesis of LaF3 nanocrystals by laser-induced Nd3+ atom heat processing in oxyfluoride glasses
Qiu External electromagnetic field induced electronic structures and novel optical functions of rare-earth-ion-doped glasses
JP2002154845A (en) Method for manufacturing material for display by irradiation with laser beam
Wagh et al. The effects of γ rays and electron beam on Eu3++ Sm3+ and Eu3++ Nd3+ co-doped lead fluoroborate glasses
JP3950947B2 (en) Method for selectively generating long afterglow inside glass