JP2003019196A - Neurotization tube - Google Patents
Neurotization tubeInfo
- Publication number
- JP2003019196A JP2003019196A JP2001208179A JP2001208179A JP2003019196A JP 2003019196 A JP2003019196 A JP 2003019196A JP 2001208179 A JP2001208179 A JP 2001208179A JP 2001208179 A JP2001208179 A JP 2001208179A JP 2003019196 A JP2003019196 A JP 2003019196A
- Authority
- JP
- Japan
- Prior art keywords
- sponge
- tube
- reinforcing material
- tubular
- nerve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000005036 nerve Anatomy 0.000 claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 9
- 239000012779 reinforcing material Substances 0.000 claims description 55
- 230000008929 regeneration Effects 0.000 claims description 29
- 238000011069 regeneration method Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000003102 growth factor Substances 0.000 claims description 14
- 210000004116 schwann cell Anatomy 0.000 claims description 14
- 230000021164 cell adhesion Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000004956 cell adhesive effect Effects 0.000 claims description 6
- 238000004108 freeze drying Methods 0.000 claims description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000010899 nucleation Methods 0.000 claims description 3
- 238000004080 punching Methods 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 29
- 239000011162 core material Substances 0.000 description 26
- 102000008186 Collagen Human genes 0.000 description 17
- 108010035532 Collagen Proteins 0.000 description 17
- 229920001436 collagen Polymers 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 13
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 10
- 229920001432 poly(L-lactide) Polymers 0.000 description 10
- 102000004266 Collagen Type IV Human genes 0.000 description 7
- 108010042086 Collagen Type IV Proteins 0.000 description 7
- 229920000747 poly(lactic acid) Polymers 0.000 description 7
- 239000004626 polylactic acid Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 102000012422 Collagen Type I Human genes 0.000 description 5
- 108010022452 Collagen Type I Proteins 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 210000003497 sciatic nerve Anatomy 0.000 description 5
- 210000003050 axon Anatomy 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000012744 immunostaining Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920001610 polycaprolactone Polymers 0.000 description 3
- 239000004632 polycaprolactone Substances 0.000 description 3
- 239000004633 polyglycolic acid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000001590 sural nerve Anatomy 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000009954 braiding Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000004126 nerve fiber Anatomy 0.000 description 2
- 210000000276 neural tube Anatomy 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- AOLNDUQWRUPYGE-UHFFFAOYSA-N 1,4-dioxepan-5-one Chemical compound O=C1CCOCCO1 AOLNDUQWRUPYGE-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 108010045569 atelocollagen Proteins 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc.) Polymers 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、神経再生チューブ
及びその製造法に関する。TECHNICAL FIELD The present invention relates to a nerve regeneration tube and a method for producing the same.
【0002】[0002]
【従来の技術及びその課題】末梢神経の再生に関し、1
982年に報告されたLundbergらによるシリコーンチュ
ーブモデルの発表以来、シリコーンチューブを用いて再
生可能な断端間距離を延長するための試みがなされてき
た。しかしながら、シリコーンチューブを用いて損傷神
経を修復した場合、時間が経つにつれてチューブ内に再
生した神経をシリコーンチューブが全周性に圧迫する可
能性がある。2. Description of the Related Art Regeneration of peripheral nerves 1
Since the publication of the silicone tube model by Lundberg et al. In 982, attempts have been made to extend the reproducible stump distance with silicone tubes. However, when a damaged nerve is repaired using a silicone tube, the silicone tube may circumscribe the nerve regenerated in the tube over time.
【0003】一方、生体吸収性高分子からなる高分子を
用いる神経欠損の再生に関する技術も公知である。例え
ば特開2001−70436号公報は、スポンジ、チュ
ーブ、コイル等のコラーゲン支持体を用いる技術を開示
しているが、このような支持体では十分な強度が得られ
ない。On the other hand, a technique relating to regeneration of nerve defect using a polymer composed of a bioabsorbable polymer is also known. For example, Japanese Patent Laid-Open No. 2001-70436 discloses a technique using a collagen support such as a sponge, a tube, and a coil, but such a support cannot provide sufficient strength.
【0004】また、WO98/22155は、生体分解
吸収性材料のチューブと、その内腔に該チューブの軸線
にほぼ平行に沿って該チューブを貫通する空隙を有する
コラーゲン体からなり、該空隙がコラーゲン、ラミニン
等を含むマトリックスゲルで充填されている人工神経管
を開示している。しかしながら、該人工神経管は内部を
コラーゲン体及びマトリックスゲルで充填されているた
め、シュワン細胞を内部に播種できない。Further, WO98 / 22155 discloses a tube made of a biodegradable and absorbable material and a collagen body having an inner cavity having a void penetrating the tube substantially parallel to the axis of the tube. , An artificial neural tube filled with a matrix gel containing laminin, etc. is disclosed. However, since the artificial neural tube is filled with collagen and matrix gel inside, Schwann cells cannot be seeded inside.
【0005】本発明は、長い神経欠損部においても速や
かな神経再生が可能であり、再生神経に対して悪影響の
ない神経再生チューブ及びその製造法を提供することを
目的とする。It is an object of the present invention to provide a nerve regeneration tube capable of prompt nerve regeneration even in a long nerve defect portion and having no adverse effect on the regeneration nerve, and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】本発明は、以下の神経再
生チューブ及びその製造法を提供するものである。
項1. 生体吸収性高分子から構成されるスポンジ、及
び、該スポンジより分解吸収期間の長い生体吸収性高分
子から構成される筒状の強化材を含み、少なくとも内面
がスポンジである神経再生チューブ。
項2. 筒状の強化材が組紐、編物、織物、不織布、パ
ンチングシートまたはスパイラルメッシュの形状を有す
る項1に記載のチューブ。
項3. 前記筒状強化材が外層であり、前記スポンジが
内層である項2に記載のチューブ。
項4. さらに細胞接着性因子を含む項1〜3のいずれ
かに記載のチューブ。
項5. さらに成長因子を含む項1〜4のいずれかに記
載のチューブ。
項6. シュワン細胞がチューブの内面に播種されたこ
とを特徴とする項1〜5のいずれかに記載のチューブ。
項7. 以下の工程(A)〜工程(C):
工程(A):筒状芯体の外側に生体吸収性繊維から構成
される筒状強化材を固定する、
工程(B):得られた強化材固定芯体を生体吸収性高分
子溶液に浸漬後凍結乾燥して、筒状強化材よりも分解吸
収期間の短いスポンジを形成する、
工程(C):凍結乾燥物を筒状芯体から外し、必要に応
じて反転するを包含することを特徴とする、スポンジ及
び筒状強化材を有する神経再生チューブの製造方法。
項8. 工程(B)で得られたスポンジ及び強化材を有
する筒状芯体を細胞接着性因子及び/又は成長因子の溶
液に浸漬して凍結乾燥する工程(B1)をさらに含み、
工程(B1)で得られた凍結乾燥物を前記工程(C)に
供することを特徴とする、細胞接着性因子及び/又は成
長因子でコーティングされたスポンジ内面を有する項7
に記載の神経再生チューブの製造方法。
項9. 項7又は8の工程(C)で得られたチューブ内
面にシュワン細胞を播種して培養する工程(D)をさら
に包含する、内面にシュワン細胞を有する神経再生チュ
ーブの製造方法。The present invention provides the following nerve regeneration tube and a method for producing the same. Item 1. A nerve regeneration tube comprising a sponge composed of a bioabsorbable polymer and a tubular reinforcing material composed of a bioabsorbable polymer having a decomposition and absorption period longer than that of the sponge, at least the inner surface of which is a sponge. Item 2. Item 2. The tube according to Item 1, wherein the tubular reinforcing material has a shape of a braid, a knit, a woven fabric, a non-woven fabric, a punching sheet or a spiral mesh. Item 3. Item 3. The tube according to Item 2, wherein the tubular reinforcing material is an outer layer and the sponge is an inner layer. Item 4. The tube according to any one of Items 1 to 3, further comprising a cell adhesive factor. Item 5. Item 5. The tube according to any one of Items 1 to 4, further containing a growth factor. Item 6. Item 6. The tube according to any one of Items 1 to 5, wherein the Schwann cells are seeded on the inner surface of the tube. Item 7. The following steps (A) to (C): Step (A): Fixing a tubular reinforcing material composed of a bioabsorbable fiber on the outside of the tubular core, Step (B): Obtained reinforcing material The fixed core is immersed in a bioabsorbable polymer solution and then freeze-dried to form a sponge having a shorter decomposition and absorption period than the tubular reinforcing material. Step (C): The freeze-dried product is removed from the tubular core, A method for producing a nerve regeneration tube having a sponge and a tubular reinforcing material, which comprises inverting as necessary. Item 8. The method further includes a step (B1) of immersing the tubular core body having the sponge and the reinforcing material obtained in the step (B) in a solution of a cell adhesive factor and / or a growth factor and freeze-drying the same.
Item 7 having an inner surface of a sponge coated with a cell adhesion factor and / or a growth factor, characterized in that the freeze-dried product obtained in the step (B1) is subjected to the step (C).
The method for producing a nerve regeneration tube according to [4]. Item 9. Item 9. A method for producing a nerve regeneration tube having Schwann cells on the inner surface, which further comprises a step (D) of seeding and culturing Schwann cells on the inner surface of the tube obtained in the step (C) of Item 7 or 8.
【0007】[0007]
【発明の実施の形態】本発明において、生体吸収性高分
子としては、合成生体吸収性高分子と天然生体吸収性高
分子のいずれも使用することができる。合成生体吸収性
高分子としては、脂肪族ポリエステル(ポリグリコール
酸、ポリ乳酸(D体、L体、DL体)、ポリカプロラク
トン、ポリバレロラクトン及びそれらの共重合体、例え
ば乳酸−カプロラクトン共重合体、乳酸−グリコール酸
共重合体、グリコール酸−トリメチレンカーボネート共
重合体、グリコール酸−トリメチレンカーボネート−ジ
オキサノン共重合体、グリコール酸−トリメチレンカー
ボネート−εカプロラクトン共重合体など)、ポリエス
テルエーテル(ポリ−1,4−ジオキサノン−2−オ
ン、ポリ−1,5−ジオキセパン−2−オン、エチレン
グリコール−前記脂肪族ポリエステル共重合体や、前記
脂肪族ポリエステルとポリエステルエーテルとの共重合
体)が挙げられる。天然生体吸収性高分子としては、コ
ラーゲン、ゼラチン、ヒアルロン酸、アルギン酸等が例
示される。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as the bioabsorbable polymer, both synthetic bioabsorbable polymer and natural bioabsorbable polymer can be used. Examples of the synthetic bioabsorbable polymer include aliphatic polyesters (polyglycolic acid, polylactic acid (D-form, L-form, DL-form), polycaprolactone, polyvalerolactone and copolymers thereof, for example, lactic acid-caprolactone copolymer. , Lactic acid-glycolic acid copolymer, glycolic acid-trimethylene carbonate copolymer, glycolic acid-trimethylene carbonate-dioxanone copolymer, glycolic acid-trimethylene carbonate-ε caprolactone copolymer, etc.), polyester ether (polyether) -1,4-dioxanone-2-one, poly-1,5-dioxepan-2-one, ethylene glycol-the aliphatic polyester copolymer, and the aliphatic polyester-polyester ether copolymer). To be Examples of natural bioabsorbable polymers include collagen, gelatin, hyaluronic acid, alginic acid and the like.
【0008】スポンジを構成する好ましい合成生体吸収
性高分子としては、ポリ乳酸、ポリグリコール酸、ポリ
カプロラクトンおよびそれらの共重合体などが例示さ
れ、強化材を構成する好ましい合成生体吸収性高分子と
しては、ポリ乳酸、ポリグリコール酸、ポリカプロラク
トンおよびそれらの共重合体などが例示される。[0008] Examples of preferable synthetic bioabsorbable polymer constituting the sponge include polylactic acid, polyglycolic acid, polycaprolactone and copolymers thereof, and the like, as preferable synthetic bioabsorbable polymer constituting the reinforcing material. Examples thereof include polylactic acid, polyglycolic acid, polycaprolactone, and copolymers thereof.
【0009】スポンジを構成する合成生体吸収性高分子
と、強化材を構成する該スポンジより分解吸収期間の長
い合成生体吸収性高分子は、同一でも異なっていてもよ
い。The synthetic bioabsorbable polymer that constitutes the sponge and the synthetic bioabsorbable polymer that has a longer decomposition and absorption period than the sponge that constitutes the reinforcing material may be the same or different.
【0010】「該スポンジより分解吸収期間の長い合成
生体吸収性高分子から構成される強化材」とは、強化材
を構成する合成生体吸収性高分子自体がスポンジの合成
生体吸収性高分子よりも生体内で分解抵抗性の高い高分
子である場合の他に、高分子自体は同一であるか、或い
は強化材の高分子の方が分解されやすいが、筒状の強化
材がスポンジよりも分解され難いため、全体として合成
生体吸収性繊維が合成生体吸収性スポンジよりも分解吸
収期間が長くなる場合の両方を意味する。"A reinforcing material composed of a synthetic bioabsorbable polymer having a longer decomposition and absorption period than the sponge" means that the synthetic bioabsorbable polymer itself constituting the reinforcing material is more than the synthetic bioabsorbable polymer of the sponge. In addition to a polymer that is highly resistant to decomposition in vivo, the polymer itself is the same, or the polymer of the reinforcing material is more easily decomposed, but the tubular reinforcing material is better than the sponge. Since it is difficult to be decomposed, it means that the synthetic bioabsorbable fiber as a whole has a longer decomposition and absorption period than the synthetic bioabsorbable sponge.
【0011】本発明の強化材の構成要素としては、モノ
フィラメント、マルチフィラメント、紐などの繊維、シ
ート、不織布が例示される。該繊維の直径は10〜20
00μm程度、好ましくは50〜1000μm程度であ
る。筒状の強化材としては、組紐、織物、編物、不織
布、パンチングシートまたはフィラメント糸で螺旋状に
編んだスパイラルメッシュ等が例示され、好ましくは組
紐が例示される。筒状強化材の厚みは10〜2000μ
m程度、好ましくは50〜1000μm程度である。Examples of constituent elements of the reinforcing material of the present invention include fibers such as monofilaments, multifilaments, and strings, sheets, and nonwoven fabrics. The diameter of the fiber is 10 to 20
The thickness is about 00 μm, preferably about 50 to 1000 μm. Examples of the tubular reinforcing material include braids, woven fabrics, knitted fabrics, non-woven fabrics, punching sheets, spiral meshes spirally knitted with filament yarn, and the like, and preferably braided braids. The thickness of the tubular reinforcement is 10-2000μ
m, preferably about 50 to 1000 μm.
【0012】本発明のスポンジの厚みは0.1〜5mm
程度、好ましくは0.5〜2mm程度であり、スポンジ
の孔径は1〜500μm程度、好ましくは10〜200
μm程度である。強化材はスポンジの内部にあって一体
として神経再生チューブを構成してもよく、スポンジが
内層であり、強化材が外層であってもよい。この場合、
スポンジ内層と強化材外層は完全に分離してもよく、ス
ポンジと強化材が混在する層があってもよい。The sponge of the present invention has a thickness of 0.1-5 mm
About 0.5 to 2 mm, and the sponge has a pore size of about 1 to 500 μm, preferably 10 to 200.
It is about μm. The reinforcing material may be inside the sponge to integrally form a nerve regeneration tube, and the sponge may be the inner layer and the reinforcing material may be the outer layer. in this case,
The inner layer of the sponge and the outer layer of the reinforcing material may be completely separated, or there may be a layer in which the sponge and the reinforcing material are mixed.
【0013】本発明の神経再生チューブの厚みは0.1
〜5mm程度、好ましくは0.5〜2mm程度、内径は
0.1〜5mm程度、好ましくは0.5〜3mm程度で
ある。The thickness of the nerve regeneration tube of the present invention is 0.1.
Is about 5 mm, preferably about 0.5 to 2 mm, and the inner diameter is about 0.1 to 5 mm, preferably about 0.5 to 3 mm.
【0014】細胞接着性因子としては、コラーゲン(I
型、IV型など)、ラミニン、フィブロネクチンなどが挙
げられる。As a cell adhesion factor, collagen (I
Type, IV type, etc.), laminin, fibronectin and the like.
【0015】成長因子としては、神経成長因子(NG
F)、神経栄養因子、神経突起進展因子などが挙げられ
る。As a growth factor, nerve growth factor (NG
F), neurotrophic factors, neurite outgrowth factors and the like.
【0016】細胞接着性因子及び成長因子は、スポンジ
の内部に含まれていてもよく、スポンジの表面にコーテ
ィングされていてもよい。細胞接着性因子及び成長因子
は、さらに強化材の内部に含まれていてもよく、強化材
の表面にコーティングされていてもよい。The cell adhesive factor and the growth factor may be contained inside the sponge or may be coated on the surface of the sponge. The cell adhesion factor and the growth factor may be further contained inside the reinforcing material or may be coated on the surface of the reinforcing material.
【0017】本発明の神経再生チューブは、以下の工程
(A)〜工程(C)を含む方法により製造できる:
工程(A):筒状芯体の外側に合成生体吸収性繊維から
構成される筒状強化材を固定する、
工程(B):得られた強化材固定芯体を合成生体吸収性
高分子溶液に浸漬後凍結乾燥して、筒状強化材よりも分
解吸収期間の短いスポンジ層を形成する、及び
工程(C):凍結乾燥物を筒状芯体から外し、必要に応
じて反転する。The nerve regeneration tube of the present invention can be manufactured by a method including the following steps (A) to (C): Step (A): Synthetic bioabsorbable fiber is formed on the outside of the tubular core. Step (B): Immobilize the tubular reinforcing material, soaking the obtained reinforcing material-fixed core in a synthetic bioabsorbable polymer solution, and then freeze-drying it to obtain a sponge layer having a shorter decomposition and absorption period than the tubular reinforcing material. And step (C): The freeze-dried product is removed from the tubular core body and inverted as necessary.
【0018】工程(A)において、筒状強化材は筒状芯
体の外側に密着するように外嵌してもよく、この場合、
筒状強化材を外層に含む神経再生チューブが得られる
(強化材が開口を有する場合、該開口にスポンジが侵入
する)。また、筒状芯体の所定の位置(例えば神経再生
チューブの長さに対応する位置)に、筒状強化材を固定
するための着脱可能な突出部(例えば放射状の突起、ド
ーナツ状の鍔など)を設けることにより筒状芯体から離
れた位置に固定してもよい。この場合、強化材と筒状芯
体の隙間に合成生体吸収性高分子溶液が侵入するよう
に、強化材或いは前記突起部において開口を有する。こ
のように、筒状強化材を筒状芯体から離れた位置に固定
することで、強化材とスポンジが一体となった(強化材
がスポンジで囲まれた)神経再生チューブが得られる。In the step (A), the tubular reinforcing material may be externally fitted to the outer side of the tubular core body. In this case,
A nerve regeneration tube including a tubular reinforcing material in the outer layer is obtained (if the reinforcing material has an opening, the sponge penetrates into the opening). In addition, a detachable protrusion (for example, a radial protrusion, a donut-shaped brim, or the like) for fixing the tubular reinforcing material at a predetermined position of the tubular core (for example, a position corresponding to the length of the nerve regeneration tube). ), It may be fixed at a position away from the tubular core. In this case, the reinforcing material or the protrusion has an opening so that the synthetic bioabsorbable polymer solution enters the gap between the reinforcing material and the tubular core. In this way, by fixing the tubular reinforcing material at a position apart from the tubular core body, a nerve regeneration tube in which the reinforcing material and the sponge are integrated (the reinforcing material is surrounded by the sponge) is obtained.
【0019】なお、筒状芯体は、内部に合成生体吸収性
高分子溶液が侵入しないものが使用できる。As the cylindrical core, one in which the synthetic bioabsorbable polymer solution does not enter can be used.
【0020】工程(B)において、合成生体吸収性高分
子溶液は、強化材を構成する高分子をできるだけ溶かさ
ない溶液であるのが望ましい。該溶液の溶媒としては、
ジオキサン、クロロホルム、アセトニトリル、塩化メチ
レンなどが挙げられる。該溶媒が強化材を構成する高分
子を溶解し得る場合、該溶媒の濃度が飽和溶解度に近く
なるように、濃度、温度を調節するか、或いは 合成生
体吸収性高分子溶液に強化材固定芯体を浸漬する時間を
できるだけ短くし、浸漬後速やかに凍結乾燥するのが望
ましい。In the step (B), the synthetic bioabsorbable polymer solution is preferably a solution which does not dissolve the polymer constituting the reinforcing material as much as possible. As the solvent of the solution,
Examples include dioxane, chloroform, acetonitrile, methylene chloride and the like. When the solvent can dissolve the polymer constituting the reinforcing material, the concentration and temperature are adjusted so that the concentration of the solvent is close to the saturated solubility, or the reinforcing material fixed core is added to the synthetic bioabsorbable polymer solution. It is desirable to keep the body soaked for as short a time as possible, and to freeze-dry immediately after soaking.
【0021】合成生体吸収性高分子溶液の濃度として
は、0.1〜20重量%程度、好ましくは1〜10重量
%程度である。The concentration of the synthetic bioabsorbable polymer solution is about 0.1 to 20% by weight, preferably about 1 to 10% by weight.
【0022】工程(C)において、浸漬後の凍結乾燥物
を筒状芯体から外した場合、スポンジは強化材の外側に
存在するか(強化材を筒状芯体に密着固定)、外側と内
側の両方(強化材を筒状芯体と離れた位置に固定)に存
在する場合がある。スポンジが強化材の外層として存在
する場合、これを反転してスポンジを内面に有する神経
再生チューブを得る。強化材の両側にスポンジ層を有す
る場合、内面がスポンジであるので必ずしも反転する必
要はないが、強化材の外側のスポンジ層が内側と比較し
てより厚い場合、反転させて、内側のスポンジ層をより
厚くした神経再生チューブを得るのが望ましい。In step (C), when the freeze-dried product after immersion is removed from the tubular core body, the sponge exists outside the reinforcing material (the reinforcing material is adhered and fixed to the cylindrical core body) or outside. It may exist both inside (the reinforcing material is fixed at a position apart from the tubular core body). If the sponge is present as an outer layer of reinforcement, it is inverted to obtain a nerve regeneration tube with the sponge on the inner surface. When the reinforcing material has sponge layers on both sides, it is not necessary to invert because the inner surface is a sponge, but when the outer sponge layer of the reinforcing material is thicker than the inner side, it is inverted and the inner sponge layer It is desirable to have a thicker nerve regeneration tube.
【0023】反転は、チューブの一端をチューブ内径よ
り細い保持具にてつかんだ状態で、チューブの端をチュ
ーブ内に押し込んでいくことにより行うことができる。The reversal can be performed by pushing one end of the tube into the tube while holding one end of the tube with a holder smaller than the inner diameter of the tube.
【0024】反転を行わない場合、強化材を中空の第1
筒状芯材の内側に固定し、中心部にさらに筒状の第2筒
状芯材を固定し、第1筒状芯材と第2筒状芯材の間に合
成生体吸収性高分子溶液を流し込んで凍結乾燥すれば、
反転を行わないで、内面にスポンジを有する神経再生チ
ューブを得ることができる。When no inversion is carried out, the reinforcing material is hollow first.
The synthetic bioabsorbable polymer solution is fixed to the inside of the tubular core material, and the tubular second tubular core material is further fixed to the center portion between the first tubular core material and the second tubular core material. If you pour and freeze-dry,
A nerve regeneration tube having a sponge on the inner surface can be obtained without inversion.
【0025】合成生体吸収性高分子溶液に、細胞接着性
因子及び/又は成長因子を所定の濃度で配合しておけ
ば、該因子がスポンジ内に含まれる神経再生チューブを
得ることができる。By mixing a cell adhesion factor and / or a growth factor in a synthetic bioabsorbable polymer solution at a predetermined concentration, a nerve regeneration tube containing the factor in a sponge can be obtained.
【0026】工程(B)で得られたスポンジ及び強化材
を有する筒状芯体を細胞接着性因子及び/又は成長因子
の溶液(好ましくは水溶液)に浸漬して凍結乾燥する工
程を行うことによっても、細胞接着性因子及び/又は成
長因子でコーティングされたスポンジ内面を有する神経
再生チューブを得ることができる。また、成長因子を架
橋ゼラチン微粒子に包含させてからスポンジと複合化さ
せてもよい。By subjecting the tubular core body having the sponge and the reinforcing material obtained in the step (B) to a solution (preferably an aqueous solution) of a cell adhesive factor and / or a growth factor and freeze-drying the same. Also, a nerve regeneration tube having a sponge inner surface coated with a cell adhesive factor and / or a growth factor can be obtained. Alternatively, the growth factor may be incorporated into the crosslinked gelatin fine particles and then combined with the sponge.
【0027】細胞接着性因子の濃度としては、0.01
〜10%程度が例示される。The concentration of the cell adhesion factor is 0.01
An example is about 10%.
【0028】細胞接着性因子及び/又は成長因子の溶液
は、通常水溶液が用いられるが、含水アルコール等の水
性溶液を用いてもよい。As the solution of the cell adhesion factor and / or the growth factor, an aqueous solution is usually used, but an aqueous solution such as hydrous alcohol may be used.
【0029】チューブ内面にシュワン細胞を播種して培
養すると、チューブ内面にシュワン細胞が1層で好まし
くは内腔全周に存在する神経再生チューブを得ることが
できる。シュワン細胞を内腔全周に接着させるために
は、チューブを回転させながら(転がしながら)ピペッ
ティングして内腔全体にシュワン細胞を播種するのが好
ましい。By seeding Schwann cells on the inner surface of the tube and culturing, a nerve regeneration tube having a single layer of Schwann cells on the inner surface of the tube, preferably on the entire circumference of the lumen, can be obtained. In order to attach the Schwann cells to the entire circumference of the lumen, it is preferable to pipette while rotating (rolling) the tube to seed the Schwann cells throughout the lumen.
【0030】[0030]
【実施例】以下、本発明を実施例に基づいてより詳細に
説明する。
製造例1
ポリ乳酸繊維(40d)を組紐機を用いて製紐し、筒状芯材
とした。これをステンレス製ロッドにはめ、乳酸/ε−
カプロラクトン共重合体(モル比50/50)のジオキ
サン溶液(5重量%)に浸漬後、−40℃にて凍結して
から30℃で24時間凍結乾燥した。このようにして、
内層に乳酸/ε−カプロラクトン共重合体スポンジ、外
層にポリ乳酸組紐からなる強化材を有する複合体(実験
例4の(A))を得た。EXAMPLES The present invention will now be described in more detail with reference to examples. Production Example 1 Polylactic acid fiber (40d) was braided using a braiding machine to obtain a tubular core material. Attach this to a stainless steel rod, lactate / ε-
After dipping in a dioxane solution (5% by weight) of a caprolactone copolymer (molar ratio 50/50), it was frozen at -40 ° C and then freeze-dried at 30 ° C for 24 hours. In this way
A composite having a lactic acid / ε-caprolactone copolymer sponge in the inner layer and a reinforcing material composed of a polylactic acid braid in the outer layer ((A) of Experimental Example 4) was obtained.
【0031】コラーゲン(Type I、豚腱由来アテロコラ
ーゲン)の0.1%溶液を上記スポンジ複合体に十分に
浸透させ、−100℃にて凍結後30℃にて24時間凍
結乾燥した。内面を含む全体にType Iコラーゲンがコー
ティングされたコラーゲンチューブ(実験例4の
(C))を得た。A 0.1% solution of collagen (Type I, porcine tendon-derived atelocollagen) was thoroughly permeated into the sponge complex, frozen at -100 ° C, and then lyophilized at 30 ° C for 24 hours. A collagen tube (Type (C) of Experimental Example 4) in which the entire type including the inner surface was coated with Type I collagen was obtained.
【0032】得られた神経再生チューブは、図1(組紐
強化材層表面の50倍拡大写真)、図2(スポンジ内層
の400倍拡大写真)、図3(チューブの横断面の50
倍拡大写真)に示すように、内層がスポンジであり、外
層は強化材であって、スポンジ層と強化材層は分離して
いた。
製造例2
ポリ乳酸繊維(40d)を組紐機を用いて製紐し、筒状芯材
とした。これをステンレス製ロッドにはめ、乳酸/ε−
カプロラクトン共重合体(モル比25/75)のジオキ
サン溶液(5重量%)に浸漬後、−40℃にて凍結して
から30℃で24時間凍結乾燥した。このようにして、
内層に乳酸/ε−カプロラクトン共重合体スポンジ、外
層にポリ乳酸組紐からなる強化材を有する複合体(実験
例4の(B))を得た。
製造例3
Type Iコラーゲンに代えてType IVコラーゲンを用いる
他は製造例1と同様にして内面を含む全体にType IVコ
ラーゲンがコーティングされたコラーゲンチューブ(実
験例4の(D))を得た。
製造例4
Type Iコラーゲンに代えてType IコラーゲンとType IV
コラーゲンの混合物(1:1重量比)を用いる他は製造
例1と同様にして全体にType I +Type IVコラーゲンが
コーティングされたコラーゲンチューブ(実験例4の
(E))を得た。
実験例1
Fischer 344ラット雄10匹の両坐骨神経を一時的に切
離する。右側は、P(LA/CL)スポンジ内層、芯材PLLA組紐
外層で作製されたチューブ(内径2mm、長さ4mm)にT
ype I コラーゲンをコーティングしたものを用い、両端
に2mmずつ神経を挿入し、これらの神経断端を密着させ
て神経接合を行った。神経接合は、8・0ナイロン糸に
より神経をチューブに縫合することにより行った。一
方、左側には、一時的に切離した坐骨神経を8-0ナイロ
ン糸にて縫合を行った。The obtained nerve regeneration tube is shown in FIG. 1 (a magnified photograph of the surface of the braid reinforcement layer 50 times), FIG. 2 (a photograph of the sponge inner layer magnified 400 times), and FIG.
As shown in the enlarged photograph), the inner layer was a sponge, the outer layer was a reinforcing material, and the sponge layer and the reinforcing material layer were separated. Production Example 2 Polylactic acid fiber (40d) was braided using a braiding machine to obtain a tubular core material. Attach this to a stainless steel rod, lactate / ε-
After dipping in a dioxane solution (5% by weight) of a caprolactone copolymer (molar ratio 25/75), it was frozen at -40 ° C and then lyophilized at 30 ° C for 24 hours. In this way
A composite having a lactic acid / ε-caprolactone copolymer sponge in the inner layer and a reinforcing material composed of a polylactic acid braid in the outer layer ((B) of Experimental Example 4) was obtained. Production Example 3 A collagen tube (Type D of Experimental Example 4) in which the entire inner surface including Type IV collagen was coated was obtained in the same manner as in Production Example 1 except that Type IV collagen was used instead of Type I collagen. Production Example 4 Type I collagen and Type IV instead of Type I collagen
A collagen tube coated with Type I + Type IV collagen ((E) of Experimental Example 4) was obtained in the same manner as in Production Example 1 except that a mixture of collagen (1: 1 weight ratio) was used. Experimental Example 1 Ten sciatic nerves of 10 male Fischer 344 rats are temporarily dissected. On the right side is a tube (inner diameter 2 mm, length 4 mm) made of P (LA / CL) sponge inner layer and core material PLLA braid outer layer.
Using a ype I collagen-coated product, nerves were inserted into both ends by 2 mm, and these nerve stumps were brought into close contact with each other to perform nerve junction. Nerve junction was performed by suturing the nerve to a tube with 8.0 nylon thread. On the other hand, on the left side, the temporarily cut sciatic nerve was sutured with 8-0 nylon thread.
【0033】術後8週にて両側坐骨神経を摘出し、移植
部の中枢及び末梢の軸索数及び軸索密度を測定した。Bilateral sciatic nerves were excised at 8 weeks after the operation, and the number of central and peripheral axons and the density of axons were measured.
【0034】これらの結果によると、P(LA/CL)スポンジ
をPLLA組紐からなる芯材で補強したチューブを用いると
神経の再生は良好な結果を示し、切断された神経を縫合
するよりも簡便な方法で同等もしくはそれを上回る結果
が得られた。
実験例2
Fischer 344ラット雄10匹の両坐骨神経を約12mm
切除した。右側は、P(LA/CL)スポンジ内層、PLLA組紐外
層で作製されたチューブ(内径2mm、長さ16mm)にT
ype I コラーゲンをコーティングしたものを用い、両端
に2mmずつ神経を挿入し、欠損間隔を12mmになるよ
うにし、8・0ナイロン糸にてチューブの両末端と神経
繊維を縫合することにより固定した。左側には、Type I
コラーゲンに代えてType IV コラーゲンを用いてコー
ティングした他は同様にして神経繊維を固定した。According to these results, nerve regeneration was shown to be good when a tube in which P (LA / CL) sponge was reinforced with a core material composed of a PLLA braid was used, which is easier than suturing a cut nerve. The same or better results have been obtained with various methods. Experimental Example 2 About 12 mm of both sciatic nerves of 10 male Fischer 344 rats
I removed it. The tube on the right is made of P (LA / CL) sponge inner layer and PLLA braid outer layer (inner diameter 2 mm, length 16 mm).
Using a ype I collagen-coated product, nerves were inserted by 2 mm at both ends so that the defect interval was 12 mm, and both ends of the tube and nerve fibers were sutured with 8.0 nylon thread for fixation. Type I on the left
Nerve fibers were fixed in the same manner except that Type IV collagen was used instead of collagen for coating.
【0035】術後8週にて両側坐骨神経を摘出し、移植
部の中枢及び末梢の軸索数及び軸索密度を測定した。The bilateral sciatic nerves were excised 8 weeks after the operation, and the number of central and peripheral axons and the density of axons were measured.
【0036】これらの結果によると、神経断端はType I
コラーゲンとType IV コラーゲンは、いずれも同様に
良好な結果を示した。
実験例3
日本白色家兎10羽を用い、両側の総腓腹神経に約20mm
の欠損を作成した。次に同側の腓腹神経を60mm採取
し、長さ20mm×3本のcable graftを作製して、総腓腹
神経欠損部に手術用顕微鏡下に極性を反転させ移植し
た。うち5羽10肢は縫合部はそのままとし、閉創しコ
ントロールとした。残り5羽10肢に対しては中枢及び
末梢の神経接合部に長さ6mm、内腔2mmの生体吸収性
チューブを縦割りしたもので全周を巻き込み再び管腔状
となるように縫合した。それら2群について術後6ヶ月
の時点で電気生理学的・機能的及び形態学的検索を行っ
た。
実験例4
製造例1〜4で得られた以下の(A)〜(E)の複合体
を用いた。
(A):CL:PLLA(50:50)、コラーゲンコーティング
(−)
(B):CL:PLLA(75:25)、コラーゲンコーティング
(−)
(C):CL:PLLA(50:50)、Type Iコラーゲンコーティン
グ(+)
(D):CL:PLLA(50:50)、Type IVコラーゲンコーティ
ング(+)
(E):CL:PLLA(50:50)、Type I+Type IVコラーゲン
コーティング(+)
上記複合体を軸方向に切り、平板状の複合体を得、これ
をディスク状に切断した。得られたディスク状の複合体
をエタノール処理した後、ラットの後根神経節から採取
し培養したシュワン細胞を前記複合体のスポンジ状のCL
/PLLA共重合体上又はその表面を覆ったコラーゲンコー
ティング層上に播種し、その接着性を走査電子顕微鏡及
び組織学的に検討した。なお、シュワン細胞の同定には
S-100抗体による免疫染色を行った。複合体(C)を用
いたS-100抗体による免疫染色結果を図4に示す。According to these results, the nerve stump is Type I
Both collagen and Type IV collagen showed similarly good results. Experimental Example 3 Using 10 Japanese white rabbits, about 20 mm in the common sural nerve on both sides
Created a defect. Next, 60 mm of the sural nerve on the same side was collected, 20 mm in length × 3 cable grafts were prepared, and the polarity was reversed under a surgical microscope and transplanted into the common sural nerve defect. Of these, 5 limbs and 10 limbs were left with the sutured part as it was, and closed as a control. With respect to the remaining 5 limbs, a bioabsorbable tube having a length of 6 mm and a lumen of 2 mm was longitudinally divided at the central and peripheral nerve junctions, and the whole circumference was wrapped and sutured again to form a lumen. An electrophysiological, functional and morphological search was performed 6 months after the operation on these two groups. Experimental Example 4 The following composites (A) to (E) obtained in Production Examples 1 to 4 were used. (A): CL: PLLA (50:50), collagen coating (-) (B): CL: PLLA (75:25), collagen coating (-) (C): CL: PLLA (50:50), Type I collagen coating (+) (D): CL: PLLA (50:50), Type IV collagen coating (+) (E): CL: PLLA (50:50), Type I + Type IV collagen coating (+) The above complex Was cut in the axial direction to obtain a plate-shaped composite body, which was cut into a disk shape. The obtained disc-shaped complex was treated with ethanol, and Schwann cells collected from the rat dorsal root ganglia and cultured were treated with sponge-like CL of the complex.
It was seeded on the / PLLA copolymer or on the collagen coating layer covering the surface thereof, and its adhesion was examined by scanning electron microscopy and histology. For identification of Schwann cells
Immunostaining with S-100 antibody was performed. The result of immunostaining with the S-100 antibody using the complex (C) is shown in FIG.
【0037】その結果、(A)〜(E)の全ての複合体におい
て、CL/PLLA共重合体スポンジ上に一層性にシュワン細
胞の接着が認められた。As a result, in all the composites of (A) to (E), Schwann cell adhesion was further recognized on the CL / PLLA copolymer sponge.
【0038】[0038]
【発明の効果】本発明の方法によれば、シリコーンチュ
ーブを使用した場合と同等以上の神経再生が行われ得、
しかも生体吸収性材料のみからなっているので術後に取
り出す必要がない。EFFECTS OF THE INVENTION According to the method of the present invention, nerve regeneration equal to or higher than that when a silicone tube is used can be performed,
Moreover, it is not necessary to take it out after the operation since it is made of only the bioabsorbable material.
【0039】死体の神経移植が近年実施されているが、
免疫抑制約が必要であったり、ウイルス感染の危険があ
り、一般的な手法になり難いが、本発明にはそのような
問題はない。Although nerve transplantation of a cadaver has been carried out in recent years,
Although immunosuppression is necessary or there is a risk of viral infection, it is difficult to use a general method, but the present invention does not have such a problem.
【図1】組紐強化材層表面を示す図面代用写真(50倍
拡大)である。FIG. 1 is a drawing-substitute photograph (magnified 50 times) showing the surface of a braid reinforcing material layer.
【図2】スポンジ内層を示す図面代用写真(400倍拡
大)である。FIG. 2 is a drawing-substitute photograph (400 times magnification) showing an inner layer of a sponge.
【図3】チューブの横断面を示す図面代用写真(50倍
拡大)である。FIG. 3 is a drawing-substitute photograph (magnified 50 times) showing a cross section of a tube.
【図4】実験例4のS-100抗体による免疫染色結果を示
す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing a result of immunostaining with S-100 antibody of Experimental Example 4.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高松 聖仁 大阪府大阪市天王寺区上汐6−4−5 セ ザンヌ夕陽丘502号 Fターム(参考) 4C081 AB18 BA12 BA16 CA161 CA162 CD122 CD132 DA03 DA05 DA06 DB03 DC03 4C097 AA14 BB04 CC02 DD02 DD05 DD12 EE08 EE19 FF02 FF17 MM04 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Seiji Takamatsu 6-4-5 Kamishio, Tennoji-ku, Osaka City, Osaka Prefecture Zanne Yuhigaoka No.502 F-term (reference) 4C081 AB18 BA12 BA16 CA161 CA162 CD122 CD132 DA03 DA05 DA06 DB03 DC03 4C097 AA14 BB04 CC02 DD02 DD05 DD12 EE08 EE19 FF02 FF17 MM04
Claims (9)
ジ、及び、該スポンジより分解吸収期間の長い生体吸収
性高分子から構成される筒状の強化材を含み、少なくと
も内面がスポンジである神経再生チューブ。1. A nerve comprising a sponge composed of a bioabsorbable polymer and a tubular reinforcing material composed of a bioabsorbable polymer having a decomposition and absorption period longer than that of the sponge, at least the inner surface of which is a sponge. Play tube.
布、パンチングシートまたはスパイラルメッシュの形状
を有する請求項1に記載のチューブ。2. The tube according to claim 1, wherein the tubular reinforcing material has a shape of a braid, a knit, a woven fabric, a non-woven fabric, a punching sheet or a spiral mesh.
内層である請求項2に記載のチューブ。3. The tube according to claim 2, wherein the reinforcing material is an outer layer and the sponge is an inner layer.
のいずれかに記載のチューブ。4. The method according to claim 1, which further comprises a cell adhesion factor.
The tube according to any one of 1.
れかに記載のチューブ。5. The tube according to claim 1, further comprising a growth factor.
たことを特徴とする請求項1〜5のいずれかに記載のチ
ューブ。6. The tube according to claim 1, wherein the Schwann cells are seeded on the inner surface of the tube.
される筒状強化材を固定する、 工程(B):得られた強化材固定芯体を生体吸収性高分
子溶液に浸漬後凍結乾燥して、筒状強化材よりも分解吸
収期間の短いスポンジを形成する、 工程(C):凍結乾燥物を筒状芯体から外し、必要に応
じて反転する を包含することを特徴とする、スポンジ及び筒状強化材
を有する神経再生チューブの製造方法。7. The following steps (A) to (C): Step (A): Fixing a tubular reinforcing material composed of a bioabsorbable fiber on the outside of the tubular core body, Step (B): The obtained reinforcing material-immobilized core is immersed in a bioabsorbable polymer solution and freeze-dried to form a sponge having a shorter decomposition and absorption period than the tubular reinforcing material. Step (C): The freeze-dried material is tubular. A method for producing a nerve regeneration tube having a sponge and a tubular reinforcing material, which comprises removing from a core body and inverting as necessary.
を有する筒状芯体を細胞接着性因子及び/又は成長因子
の溶液に浸漬して凍結乾燥する工程(B1)をさらに含
み、工程(B1)で得られた凍結乾燥物を前記工程
(C)に供することを特徴とする、細胞接着性因子及び
/又は成長因子でコーティングされたスポンジ内面を有
する請求項7に記載の神経再生チューブの製造方法。8. The method further comprises a step (B1) of immersing the tubular core body having the sponge and the reinforcing material obtained in the step (B) in a solution of a cell adhesive factor and / or a growth factor and freeze-drying. The nerve regeneration according to claim 7, which has an inner surface of a sponge coated with a cell adhesion factor and / or a growth factor, characterized by subjecting the lyophilized product obtained in the step (B1) to the step (C). Tube manufacturing method.
ューブ内面にシュワン細胞を播種して培養する工程
(D)をさらに包含する、内面にシュワン細胞を有する
神経再生チューブの製造方法。9. A method for producing a nerve regeneration tube having Schwann cells on the inner surface thereof, which further comprises a step (D) of seeding and culturing Schwann cells on the inner surface of the tube obtained in the step (C) of claim 7 or 8. Method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001208179A JP4740482B2 (en) | 2001-07-09 | 2001-07-09 | Nerve regeneration tube |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001208179A JP4740482B2 (en) | 2001-07-09 | 2001-07-09 | Nerve regeneration tube |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003019196A true JP2003019196A (en) | 2003-01-21 |
| JP4740482B2 JP4740482B2 (en) | 2011-08-03 |
Family
ID=19044053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001208179A Expired - Fee Related JP4740482B2 (en) | 2001-07-09 | 2001-07-09 | Nerve regeneration tube |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4740482B2 (en) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002320630A (en) * | 2001-04-26 | 2002-11-05 | Nipro Corp | Somatic tissue or organ reproduction equipment |
| JP2005143979A (en) * | 2003-11-18 | 2005-06-09 | Gunze Ltd | Tube for neuroregeneration |
| JP2007167366A (en) * | 2005-12-22 | 2007-07-05 | Teijin Ltd | Nerve regeneration material |
| WO2008001952A1 (en) | 2006-06-30 | 2008-01-03 | Kyoto University | Thin film multilocular structure comprising collagen, material for tissue regeneration containing the same and method for producing the same |
| JP2008100038A (en) * | 2006-10-17 | 2008-05-01 | Henrich Cheng | Laminin modified conduit for nerve regeneration, method for producing this conduit, and nerve regeneration method using this conduit |
| WO2008088042A1 (en) * | 2007-01-18 | 2008-07-24 | Gunze Limited | Substrate for culture of cardiovascular tissue |
| JP2008539842A (en) * | 2005-05-04 | 2008-11-20 | イーテク アーゲー | Coupling element |
| JP2009509594A (en) * | 2005-09-28 | 2009-03-12 | 南通大学 | Silk fibroin-containing medical artificial nerve graft and preparation method thereof |
| WO2009072552A1 (en) | 2007-12-07 | 2009-06-11 | Toyo Boseki Kabushiki Kaisha | Method for producing nerve regeneration-inducing tube |
| WO2009084572A1 (en) | 2007-12-28 | 2009-07-09 | Toyo Boseki Kabushiki Kaisha | Nerve regeneration-inducing tube |
| WO2010087015A1 (en) | 2009-02-02 | 2010-08-05 | 東洋紡績株式会社 | Nerve regeneration-inducing tube |
| JP2011526187A (en) * | 2008-06-25 | 2011-10-06 | ケーシーアイ ライセンシング インコーポレイテッド | Absorbent vacuum manifold and system |
| WO2012039367A1 (en) * | 2010-09-21 | 2012-03-29 | 学校法人同志社 | Suture reinforcing material being for use in automatic suturing devices and containing hydrophilic polymer |
| KR101137457B1 (en) * | 2010-04-01 | 2012-04-20 | 주식회사 메타바이오메드 | A nerve guide rail and the method of preparing the same |
| JP2012513846A (en) * | 2008-12-31 | 2012-06-21 | ケーシーアイ ライセンシング インコーポレイテッド | System for providing fluid flow to neural tissue |
| JP2014155622A (en) * | 2013-02-15 | 2014-08-28 | Terumo Corp | Tubular body |
| JP2015062559A (en) * | 2013-09-25 | 2015-04-09 | テルモ株式会社 | Bellows-like lumen structure |
| JP2016195642A (en) * | 2015-04-02 | 2016-11-24 | グンゼ株式会社 | Nerve regeneration tube and manufacturing method of nerve regeneration tube |
| US9550977B2 (en) | 2011-12-02 | 2017-01-24 | Gunze Limited | Method for producing auricular cartilage tissue |
| JP2018089370A (en) * | 2016-12-05 | 2018-06-14 | グンゼ株式会社 | Nerve anti-conglutinate wrapping material |
| WO2019189835A1 (en) * | 2018-03-30 | 2019-10-03 | 東洋紡株式会社 | Suture auxiliary material |
| US10660638B2 (en) | 2012-03-01 | 2020-05-26 | DePuy Synthes Products, Inc. | Surgical suture with soft core |
| JP2021010552A (en) * | 2019-07-05 | 2021-02-04 | グンゼ株式会社 | Base material for finger joint cartilage |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001003609A1 (en) * | 1999-07-07 | 2001-01-18 | Tapic International Co., Ltd. | Artificial neural tube |
-
2001
- 2001-07-09 JP JP2001208179A patent/JP4740482B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001003609A1 (en) * | 1999-07-07 | 2001-01-18 | Tapic International Co., Ltd. | Artificial neural tube |
Cited By (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002320630A (en) * | 2001-04-26 | 2002-11-05 | Nipro Corp | Somatic tissue or organ reproduction equipment |
| JP2005143979A (en) * | 2003-11-18 | 2005-06-09 | Gunze Ltd | Tube for neuroregeneration |
| US10542972B2 (en) | 2005-05-04 | 2020-01-28 | DePuy Synthes Products, Inc. | Joining element |
| US11471154B2 (en) | 2005-05-04 | 2022-10-18 | DePuy Synthes Products, Inc. | Joining element |
| US9757121B2 (en) | 2005-05-04 | 2017-09-12 | DePuy Synthes Products, Inc. | Joining element |
| JP2015164645A (en) * | 2005-05-04 | 2015-09-17 | シンセス ゲゼルシャフト ミット ベシュレンクテル ハフツングSynthes Gmbh | Connecting member |
| JP2008539842A (en) * | 2005-05-04 | 2008-11-20 | イーテク アーゲー | Coupling element |
| US8870915B2 (en) | 2005-05-04 | 2014-10-28 | DePuy Synthes Products, LLC | Joining element |
| JP2017064455A (en) * | 2005-05-04 | 2017-04-06 | シンセス ゲゼルシャフト ミット ベシュレンクテル ハフツングSynthes Gmbh | Connecting member |
| JP2013078603A (en) * | 2005-05-04 | 2013-05-02 | R&D Concepts Ag | Connecting member |
| JP2018075408A (en) * | 2005-05-04 | 2018-05-17 | シンセス ゲゼルシャフト ミット ベシュレンクテル ハフツングSynthes Gmbh | Binding member |
| US12268384B2 (en) | 2005-05-04 | 2025-04-08 | DePuy Synthes Products, Inc. | Joining element |
| US9757120B2 (en) | 2005-05-04 | 2017-09-12 | DePuy Synthes Products, Inc. | Joining element |
| JP2009509594A (en) * | 2005-09-28 | 2009-03-12 | 南通大学 | Silk fibroin-containing medical artificial nerve graft and preparation method thereof |
| JP2007167366A (en) * | 2005-12-22 | 2007-07-05 | Teijin Ltd | Nerve regeneration material |
| JP2013031730A (en) * | 2006-06-30 | 2013-02-14 | Kyoto Univ | Thin film multilocular structure comprising collagen, material for tissue regeneration containing the same, and method for producing the same |
| WO2008001952A1 (en) | 2006-06-30 | 2008-01-03 | Kyoto University | Thin film multilocular structure comprising collagen, material for tissue regeneration containing the same and method for producing the same |
| US8709095B2 (en) | 2006-06-30 | 2014-04-29 | Kyoto University | Thin film multilocular structure made of collagen, member for tissue regeneration containing the same, and method for producing the same |
| US8388692B2 (en) | 2006-06-30 | 2013-03-05 | Kyoto University | Thin film multilocular structure made of collagen, member for tissue regeneration containing the same, and method for producing the same |
| JP2008100038A (en) * | 2006-10-17 | 2008-05-01 | Henrich Cheng | Laminin modified conduit for nerve regeneration, method for producing this conduit, and nerve regeneration method using this conduit |
| JP2013150909A (en) * | 2007-01-18 | 2013-08-08 | Gunze Ltd | Substrate for culture of cardiovascular tissue, method for producing transplant cardiovascular tissue, regeneration method of cardiovascular tissue, and transplant cardiovascular tissue |
| US8372433B2 (en) | 2007-01-18 | 2013-02-12 | Gunze Limited | Substrate for culture of cardiovascular tissue |
| WO2008088042A1 (en) * | 2007-01-18 | 2008-07-24 | Gunze Limited | Substrate for culture of cardiovascular tissue |
| US8632844B2 (en) | 2007-12-07 | 2014-01-21 | Toyo Boseki Kabushiki Kaisha | Method for the manufacture of nerve regeneration-inducing tube |
| US9687592B2 (en) | 2007-12-07 | 2017-06-27 | Toyo Boseki Kabushiki Kaisha | Method for the manufacture of nerve regeneration-inducing tube |
| WO2009072552A1 (en) | 2007-12-07 | 2009-06-11 | Toyo Boseki Kabushiki Kaisha | Method for producing nerve regeneration-inducing tube |
| EP2799094A1 (en) | 2007-12-07 | 2014-11-05 | Toyobo Co., Ltd. | Nerve regeneration-inducing tube |
| US9017714B2 (en) | 2007-12-28 | 2015-04-28 | Toyo Boseki Kabushiki Kaisha | Nerve regeneration-inducing tube |
| JP2009153947A (en) * | 2007-12-28 | 2009-07-16 | Toyobo Co Ltd | Nerve regeneration inducing tube |
| WO2009084572A1 (en) | 2007-12-28 | 2009-07-09 | Toyo Boseki Kabushiki Kaisha | Nerve regeneration-inducing tube |
| JP2011526187A (en) * | 2008-06-25 | 2011-10-06 | ケーシーアイ ライセンシング インコーポレイテッド | Absorbent vacuum manifold and system |
| JP2012513846A (en) * | 2008-12-31 | 2012-06-21 | ケーシーアイ ライセンシング インコーポレイテッド | System for providing fluid flow to neural tissue |
| WO2010087015A1 (en) | 2009-02-02 | 2010-08-05 | 東洋紡績株式会社 | Nerve regeneration-inducing tube |
| EP2987508A1 (en) | 2009-02-02 | 2016-02-24 | Toyobo Co., Ltd. | Nerve regeneration-inducing tube |
| JP4572996B2 (en) * | 2009-02-02 | 2010-11-04 | 東洋紡績株式会社 | Nerve regeneration induction tube |
| US8741328B2 (en) | 2009-02-02 | 2014-06-03 | Toyo Boseki Kabushiki Kaisha | Nerve regeneration-inducing tube |
| JPWO2010087015A1 (en) * | 2009-02-02 | 2012-07-26 | 東洋紡績株式会社 | Nerve regeneration induction tube |
| KR101137457B1 (en) * | 2010-04-01 | 2012-04-20 | 주식회사 메타바이오메드 | A nerve guide rail and the method of preparing the same |
| JP2012065699A (en) * | 2010-09-21 | 2012-04-05 | Doshisha | Suture reinforcing material being for use in automatic suturing device and containing hydrophilic polymer |
| WO2012039367A1 (en) * | 2010-09-21 | 2012-03-29 | 学校法人同志社 | Suture reinforcing material being for use in automatic suturing devices and containing hydrophilic polymer |
| CN103209716A (en) * | 2010-09-21 | 2013-07-17 | 学校法人同志社 | Suture reinforcing material being for use in automatic suturing devices and containing hydrophilic polymer |
| US9550977B2 (en) | 2011-12-02 | 2017-01-24 | Gunze Limited | Method for producing auricular cartilage tissue |
| US10660638B2 (en) | 2012-03-01 | 2020-05-26 | DePuy Synthes Products, Inc. | Surgical suture with soft core |
| JP2014155622A (en) * | 2013-02-15 | 2014-08-28 | Terumo Corp | Tubular body |
| JP2015062559A (en) * | 2013-09-25 | 2015-04-09 | テルモ株式会社 | Bellows-like lumen structure |
| JP2016195642A (en) * | 2015-04-02 | 2016-11-24 | グンゼ株式会社 | Nerve regeneration tube and manufacturing method of nerve regeneration tube |
| JP2018089370A (en) * | 2016-12-05 | 2018-06-14 | グンゼ株式会社 | Nerve anti-conglutinate wrapping material |
| WO2019189835A1 (en) * | 2018-03-30 | 2019-10-03 | 東洋紡株式会社 | Suture auxiliary material |
| JP2021010552A (en) * | 2019-07-05 | 2021-02-04 | グンゼ株式会社 | Base material for finger joint cartilage |
| JP7335737B2 (en) | 2019-07-05 | 2023-08-30 | グンゼ株式会社 | Substrate for finger joint cartilage |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4740482B2 (en) | 2011-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4740482B2 (en) | Nerve regeneration tube | |
| US12144716B2 (en) | Biomedical patches with aligned fibers | |
| Amoroso et al. | Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering | |
| Ciardelli et al. | Materials for peripheral nerve regeneration | |
| Boland et al. | Electrospinning collagen and elastin: preliminary vascular tissue engineering | |
| Duffy et al. | Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date | |
| JP3871525B2 (en) | Biological tissue or organ regeneration device | |
| US20080208358A1 (en) | Nanofilament Scaffold for Tissue Regeneration | |
| Thomas et al. | Electrospinning of Biosyn®-based tubular conduits: Structural, morphological, and mechanical characterizations | |
| JP3521226B2 (en) | Crosslinked composite biomaterial | |
| KR100718073B1 (en) | Method for preparing biodegradable polymer neural conduit using electrospinning | |
| Sukmana | PLAGIARISM_ELECTROSPUN-BASED FIBROUS SCAFFOLD FOR CARDIOVASCULAR ENGINEERING APPLICATIONS: A REVIEW | |
| WO2019235543A1 (en) | Porous body and material for medical use | |
| JP6469500B2 (en) | Nerve regeneration tube and method for manufacturing nerve regeneration tube | |
| Biazar et al. | Nanotechnology for peripheral nerve regeneration | |
| He et al. | Silk Fibroin Scaffolds Facilitating the Repair of Rat Abdominal Wall Defect | |
| Murthy et al. | Biomaterials based on natural and synthetic polymer fibers | |
| JP2007050263A (en) | Apparatus for reproducing biological tissue or organ | |
| Zhang | Electrospun Tri-Layer Micro/Nano-Fibrous Scaffold for Vascular Tissue Engineering |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080514 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110324 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110502 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4740482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |