JP2003014721A - Measurement method of relative volatility - Google Patents

Measurement method of relative volatility

Info

Publication number
JP2003014721A
JP2003014721A JP2002126190A JP2002126190A JP2003014721A JP 2003014721 A JP2003014721 A JP 2003014721A JP 2002126190 A JP2002126190 A JP 2002126190A JP 2002126190 A JP2002126190 A JP 2002126190A JP 2003014721 A JP2003014721 A JP 2003014721A
Authority
JP
Japan
Prior art keywords
compound
peak area
relative volatility
phase
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002126190A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
正裕 吉田
Hideo Narahara
英夫 楢原
Morio Yamamoto
盛夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd, Sumitomo Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2002126190A priority Critical patent/JP2003014721A/en
Publication of JP2003014721A publication Critical patent/JP2003014721A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply measuring a relative volatility that is the basic physical property value of distillation. SOLUTION: In the measurement method of relative volatility, a liquid phase section where two kinds of liquid compounds in an enclosure are mixed and a vapor phase section are introduced to a gas chromatograph separately, the peak area of each compound being detected for each phase is calculated, and then the relative volatility is calculated according to an expression (1), namely α=(Ay1 /Ax1 )/(Ay2 /Ax2 ). In this case, α, Ax1 , Ax2 , Ay1 and Ay2 indicate the relative volatility of a compound 1 to a compound 2, the peak area of the compound 1 in the liquid phase, the peak area of the compound 2 in the liquid phase, the peak area of the compound 1 in the vapor phase, and the peak area of the compound 2 in the vapor phase, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は相対揮発度を測定す
る方法に関し、詳しくは、密閉容器中の2種の液体化合
物が混合された液相部と気相部とを、別々に、ガスクロ
マトグラフに導入し、各相毎に検出された各化合物のピ
ーク面積から、蒸留の基礎物性値である相対揮発度を簡
便に測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring relative volatility, and more particularly to a gas chromatograph in which a liquid phase part and a gas phase part in which two kinds of liquid compounds are mixed in a closed container are separately provided. The present invention relates to a method for simply measuring the relative volatility, which is the basic physical property value of distillation, from the peak area of each compound detected in each phase introduced in.

【0002】[0002]

【従来の技術】従来、相対揮発度は、気相部の組成につ
いては、予め調製した2種の化合物の高純度品を用いて
ガスクロマトグラフの検量線を作成し、該検量線と各化
合物のピークの面積とから求め、一方、液相部の組成に
ついては、上記気相部の組成の場合と同様、上記検量線
と各化合物のピークの面積とから求めるか、或いは、密
閉容器中に仕込んだ混合液の重量比により求めていた。
2. Description of the Related Art Conventionally, regarding the relative volatility, regarding the composition of the gas phase part, a calibration curve of a gas chromatograph was prepared by using high purity products of two kinds of compounds prepared in advance, and the calibration curve and each compound Obtained from the area of the peak, on the other hand, for the composition of the liquid phase portion, as in the case of the composition of the gas phase portion, or from the area of the peak of the calibration curve and each compound, or charged in a closed container It was calculated from the weight ratio of the mixed liquid.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記密
閉容器における2種の液体化合物の相対揮発度αは、下
式(2) α=(y/x)/(y/x) (2) [式中、αは化合物2に対する化合物1の相対揮発度
を、xは液相中の化合物1のモル分率を、xは液相
中の化合物2のモル分率を、yは気相中の化合物1の
モル分率を、yは気相中の化合物2のモル分率を表
す。]により算出されるが、上式(2)中のモル分率x
、x、y及びyを、各々、下式(3)〜(6) x=(Ax・fA1)/{(Ax・fA1)+(Ax・fA2)} (3) x=(Ax・fA2)/{(Ax・fA1)+(Ax・fA2)} (4) y=(Ay・fA1)/{(Ay・fA1)+(Ay・fA2)} (5) y=(Ay・fA2)/{(Ay・fA1)+(Ay・fA2)} (6) [式中、Axは液相中の化合物1のピーク面積を、A
は液相中の化合物2のピーク面積を、Ayは気相
中の化合物1のピーク面積を、Ayは気相中の化合物
2のピーク面積を、fA1はガスクロマトグラフに導入
した化合物1の量とピーク面積を点綴して得られる直線
の傾きを、fA2はガスクロマトグラフに導入した化合
物2の量とピーク面積を点綴して得られる直線の傾きを
表す。]により求める必要があったため、多大の労力を
要していた。
However, the relative volatility α of the two liquid compounds in the above-mentioned closed container is expressed by the following formula (2) α = (y 1 / x 1 ) / (y 2 / x 2 ) ( 2) [wherein α is the relative volatility of compound 1 to compound 2, x 1 is the mole fraction of compound 1 in the liquid phase, x 2 is the mole fraction of compound 2 in the liquid phase, y 1 represents the mole fraction of compound 1 in the gas phase, and y 2 represents the mole fraction of compound 2 in the gas phase. ], The molar fraction x in the above formula (2)
1 , x 2 , y 1 and y 2 are respectively represented by the following formulas (3) to (6) x 1 = (Ax 1 · f A1 ) / {(Ax 1 · f A1 ) + (Ax 2 · f A2 ). } (3) x 2 = ( Ax 2 · f A2) / {(Ax 1 · f A1) + (Ax 2 · f A2)} (4) y 1 = (Ay 1 · f A1) / {(Ay 1 · f A1) + (Ay 2 · f A2)} (5) y 2 = (Ay 2 · f A2) / {(Ay 1 · f A1) + (Ay 2 · f A2)} (6) [ wherein , Ax 1 is the peak area of Compound 1 in the liquid phase,
x 2 was the peak area of compound 2 in the liquid phase, Ay 1 was the peak area of compound 1 in the gas phase, Ay 2 was the peak area of compound 2 in the gas phase, and f A1 was the gas chromatograph. The slope of a straight line obtained by stippling the amount of compound 1 and the peak area, and f A2 represents the slope of a straight line obtained by stippling the amount of compound 2 and the peak area introduced into the gas chromatograph. ], It required a great deal of labor.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記問題点
を解決すべく鋭意検討した結果、式(1) α=(Ay/Ax)/(Ay/Ax) (1) [式中、αは化合物2に対する化合物1の相対揮発度
を、Axは液相中の化合物1のピーク面積を、Ax
は液相中の化合物2のピーク面積を、Ayは気相中の
化合物1のピーク面積を、Ayは気相中の化合物2の
ピーク面積を表す。]を用いると、相対揮発度が容易に
算出できることを見出して、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that equation (1) α = (Ay 1 / Ax 1 ) / (Ay 2 / Ax 2 ) (1) [Wherein α is the relative volatility of Compound 1 with respect to Compound 2, Ax 1 is the peak area of Compound 1 in the liquid phase, Ax 2
Represents the peak area of compound 2 in the liquid phase, Ay 1 represents the peak area of compound 1 in the gas phase, and Ay 2 represents the peak area of compound 2 in the gas phase. ], It was found that the relative volatility can be easily calculated, and the present invention has been completed.

【0005】即ち、本発明は、密閉容器中の2種の液体
化合物が混合された液相部と気相部とを、別々に、ガス
クロマトグラフに導入し、各相毎に検出された各化合物
のピーク面積を計測し、次いで、上式(1)から相対揮
発度を算出することを特徴とする相対揮発度の測定方法
を提供するものである。以下、本発明を詳細に説明す
る。
That is, according to the present invention, a liquid phase part and a gas phase part in which two kinds of liquid compounds in a closed container are mixed are separately introduced into a gas chromatograph, and each compound detected for each phase is detected. The present invention provides a method for measuring relative volatility, which comprises measuring the peak area of, and then calculating the relative volatility from the above formula (1). Hereinafter, the present invention will be described in detail.

【0006】[0006]

【発明の実施の形態】本発明において用いられる密閉容
器は、2種の液体化合物が混合された液相部と気相部と
を、別々に、ガスクロマトグラフに導入可能なものであ
ればよく、特に限定されるものではないが、例えば、ゴ
ム栓付のガラス製のサンプル瓶等が挙げられる。密閉容
器中の2種の液体化合物は互いに相溶性のものであり、
他に上記液体化合物と互いに相溶性の第三の液体化合物
nを含んでいてもよい。この場合の基準化合物2に対す
る化合物nの相対揮発度αは、下式(7) α=(Ay/Ax)/(Ay/Ax) (7) [式中、αは化合物2に対する化合物nの相対揮発度
を、Axは液相中の化合物nのピーク面積を、Ax
は液相中の化合物2のピーク面積を、Ayは気相中の
化合物nのピーク面積を、Ayは気相中の化合物2の
ピーク面積を表す。]により、算出される。
BEST MODE FOR CARRYING OUT THE INVENTION The closed container used in the present invention may be any as long as it can separately introduce a liquid phase part and a gas phase part in which two kinds of liquid compounds are mixed into a gas chromatograph, Although not particularly limited, examples thereof include a glass sample bottle with a rubber stopper. The two liquid compounds in the closed container are compatible with each other,
In addition, a third liquid compound n compatible with the above liquid compound may be contained. In this case, the relative volatility α n of the compound n with respect to the reference compound 2 is represented by the following formula (7) α n = (Ay n / Ax n ) / (Ay 2 / Ax 2 ) (7) [wherein, α n is The relative volatility of compound n with respect to compound 2, Ax n is the peak area of compound n in the liquid phase, and Ax 2
Represents the peak area of compound 2 in the liquid phase, Ay n represents the peak area of compound n in the gas phase, and Ay 2 represents the peak area of compound 2 in the gas phase. ] Is calculated.

【0007】本発明において用いられるガスクロマトグ
ラフとしては、例えば、気相部を採取する際に、上記密
閉容器中で気液平衡状態になっている気相蒸気が放熱に
より凝縮しないように、保温機能を有したシリンジ、或
いは、恒温槽付のヘッドスペースガスサンプラーが付属
されたものが好ましい。
The gas chromatograph used in the present invention has, for example, a heat retention function so that the vapor phase vapor in a vapor-liquid equilibrium state in the closed container is not condensed by heat dissipation when the vapor phase portion is sampled. It is preferable to use a syringe having a head space gas sampler with a constant temperature bath.

【0008】[0008]

【実施例】以下、実施例により、本発明を更に詳細に説
明する。例中の「%」は、重量%である。
The present invention will be described in more detail with reference to the following examples. "%" In the examples is% by weight.

【0009】実施例1 70℃に保温したトルエンとn−へキサンの混合液(下
記表1の液相)を、密閉容器(1)、恒温槽(2)及び
シリンジ(3)を有する図1に記載のガスクロマトグラ
フ(4)に導入し、各化合物のピーク面積をインテグレ
ーターで計算させた。次いで、上式(1)により、トル
エンに対するn−へキサンの相対揮発度αを算出して、
表1の値を得た。
Example 1 A mixed liquid of toluene and n-hexane (liquid phase shown in Table 1 below) kept at 70 ° C. was placed in a closed container (1), a thermostat (2) and a syringe (3). Introduced into the gas chromatograph (4) described in 1 above, the peak area of each compound was calculated by an integrator. Then, the relative volatility α of n-hexane to toluene is calculated by the above formula (1),
The values in Table 1 were obtained.

【0010】 表 1 液相中のn−へキサン(%) 相対揮発度α 99.4 2.96 98.8 3.09 96.7 3.38 89.1 3.37 67.9 3.87 [0010]               Table 1   N-Hexane (%) in liquid phase Relative volatility α           99.4 2.96           98.8 3.09           96.7 3.38           89.1 3.37           67.9 3.87

【0011】[0011]

【発明の効果】本発明によれば、密閉容器中の液体化合
物の混合液(液相部)と対応する気相部とを、別々にガ
スクロマトグラフに導入することにより、簡便に相対揮
発度を求めることができる。
EFFECTS OF THE INVENTION According to the present invention, the relative volatility can be easily adjusted by separately introducing the liquid mixture (liquid phase portion) of the liquid compound in the closed container and the corresponding gas phase portion into the gas chromatograph. You can ask.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた装置FIG. 1 is an apparatus used in an embodiment of the present invention.

【図2】ガスクロマトグラムの例[Fig. 2] Example of gas chromatogram

【符号の説明】[Explanation of symbols]

1・・密閉容器、2・・恒温槽、3・・シリンジ、4・
・ガスクロマトグラフ、5・・インテグレーター
1 ... Closed container, 2 ... Constant temperature bath, 3 ... Syringe, 4 ...
・ Gas chromatograph, 5 ・ ・ Integrator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楢原 英夫 大阪市此花区春日出中3丁目1番98号 住 友化学工業株式会社内 (72)発明者 山本 盛夫 大阪市此花区春日出中3丁目1番98号 住 友化学工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Narahara             3-1,98-1 Kasugade, Konohana-ku, Osaka             Tomo Chemical Co., Ltd. (72) Inventor Morio Yamamoto             3-1,98-1 Kasugade, Konohana-ku, Osaka             Tomo Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】密閉容器中の2種の液体化合物が混合され
た液相部と気相部とを、別々に、ガスクロマトグラフに
導入し、各相毎に検出された各化合物のピーク面積を計
測し、次いで、下式(1)から相対揮発度を算出するこ
とを特徴とする相対揮発度の測定方法。 α=(Ay/Ax)/(Ay/Ax) (1) [式中、αは化合物2に対する化合物1の相対揮発度
を、Axは液相中の化合物1のピーク面積を、Ax
は液相中の化合物2のピーク面積を、Ayは気相中の
化合物1のピーク面積を、Ayは気相中の化合物2の
ピーク面積を表す。]
1. A liquid phase part in which two liquid compounds are mixed in a closed container and a gas phase part are separately introduced into a gas chromatograph, and the peak area of each compound detected for each phase is measured. A method for measuring relative volatility, which comprises measuring and then calculating the relative volatility from the following formula (1). α = (Ay 1 / Ax 1 ) / (Ay 2 / Ax 2 ) (1) [wherein α is the relative volatility of compound 1 with respect to compound 2, and Ax 1 is the peak area of compound 1 in the liquid phase. , Ax 2
Represents the peak area of compound 2 in the liquid phase, Ay 1 represents the peak area of compound 1 in the gas phase, and Ay 2 represents the peak area of compound 2 in the gas phase. ]
【請求項2】ヒーターにより保温可能なシリンジ又はヘ
ッドスペースガスサンプラーを用いて、気相部をガスク
ロマトグラフに導入する請求項1に記載の方法。
2. The method according to claim 1, wherein the gas phase part is introduced into the gas chromatograph by using a syringe or a headspace gas sampler which can be kept warm by a heater.
JP2002126190A 2001-04-27 2002-04-26 Measurement method of relative volatility Pending JP2003014721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126190A JP2003014721A (en) 2001-04-27 2002-04-26 Measurement method of relative volatility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001132014 2001-04-27
JP2001-132014 2001-04-27
JP2002126190A JP2003014721A (en) 2001-04-27 2002-04-26 Measurement method of relative volatility

Publications (1)

Publication Number Publication Date
JP2003014721A true JP2003014721A (en) 2003-01-15

Family

ID=26614434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126190A Pending JP2003014721A (en) 2001-04-27 2002-04-26 Measurement method of relative volatility

Country Status (1)

Country Link
JP (1) JP2003014721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026717A1 (en) * 2003-09-10 2005-03-24 Astellas Pharma Inc. Method of analyzing vaporization pattern of solvent and solvent vacuum vaporization device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026717A1 (en) * 2003-09-10 2005-03-24 Astellas Pharma Inc. Method of analyzing vaporization pattern of solvent and solvent vacuum vaporization device
JPWO2005026717A1 (en) * 2003-09-10 2006-11-24 アステラス製薬株式会社 Solvent evaporation pattern analysis method and solvent vacuum evaporation apparatus
US7758317B2 (en) 2003-09-10 2010-07-20 Astellas Pharma Inc. Method of analyzing vaporization pattern of solvent and solvent vacuum vaporization device

Similar Documents

Publication Publication Date Title
Wong et al. Phase equilibria of water and ionic liquids [emim][PF6] and [bmim][PF6]
Siongco et al. Densities, refractive indices, and viscosities of N, N-diethylethanol ammonium chloride–glycerol or–ethylene glycol deep eutectic solvents and their aqueous solutions
Peng et al. Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents
Pereiro et al. Study on the phase behaviour and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures
Shekaari et al. Apparent molar volumes and expansivities of aqueous solutions of ionic liquids, l-alkyl-3-methylimidazolium alkyl sulfate at T=(298.15–328.15) K
Govinda et al. Temperature effect on the molecular interactions between two ammonium ionic liquids and dimethylsulfoxide
Živković et al. Viscosity of the binary systems 2-methyl-2-propanol with n-alkanes at T=(303.15, 308.15, 313.15, 318.15 and 323.15) K: prediction and correlation–New UNIFAC–VISCO interaction parameters
Govinda et al. Influence of anion on thermophysical properties of ionic liquids with polar solvent
Kiselev High‐Pressure Influence on the Rate of Diels–Alder Cycloaddition Reactions of Maleic Anhydride with Some Dienes
Wei et al. The effect of temperature on the solubility of 11-cyanoundecanoic acid in cyclohexane, n-hexane, and water
Chen et al. Properties of pure 1, 1, 3, 3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T=(293.15 to 313.15) K
Vitorino et al. The nature of protic ionic liquids in the gas phase revisited: Fourier transform ion cyclotron resonance mass spectrometry study of 1, 1, 3, 3-tetramethylguanidinium chloride
Nain Densities and volumetric properties of (acetonitrile+ an amide) binary mixtures at temperatures between 293.15 K and 318.15 K
Alonso et al. Thermodynamics of ketone+ amine mixtures 7. Volumetric and speed of sound data at (293.15, 298.15 and 303.15) K for 2-pentanone+ aniline,+ N-methylaniline, or+ pyridine systems
Mohammad et al. Effect of temperature and chain length on the viscosity and surface tension of binary systems of N, N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol
Fan et al. Densities and viscosities of binary liquid mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with acetone, methyl ethyl ketone, and N-methyl-2-pyrrolidone
Wang et al. Density and viscosity of (3-picoline+ water) binary mixtures from T=(293.15 to 343.15) K
Zhang et al. Effect of ionic liquids on (vapor+ liquid) equilibrium behavior of (water+ 2-methyl-2-propanol)
Valtz et al. Volumetric properties of the monoethanolamine–methanol mixture at atmospheric pressure from 283.15 to 353.15 K
Taha et al. Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1, 4-dioxane and ethanol solutions
Zhang et al. Experiment and model for surface tensions of 2‑diethylaminoethanol‑N‑(2‑aminoethyl) ethanolamine, 2‑diethylaminoethanol‑N‑methyl‑1, 3‑propane‑diamine and 2‑diethylaminoethanol‑1, 4‑butanediamine aqueous solutions
Park et al. Isothermal vapor–liquid equilibria and excess molar volumes for 2-methyl pyrazine (2MP) containing binary mixtures
JP2003014721A (en) Measurement method of relative volatility
Królikowska et al. Physicochemical properties of tri (butyl) ethylphosphonium diethylphosphate aqueous mixtures
Domańska et al. Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole+ hydrocarbon, or an alcohol) and modeling