JP2003014398A - Shooting device for flying body - Google Patents

Shooting device for flying body

Info

Publication number
JP2003014398A
JP2003014398A JP2001196146A JP2001196146A JP2003014398A JP 2003014398 A JP2003014398 A JP 2003014398A JP 2001196146 A JP2001196146 A JP 2001196146A JP 2001196146 A JP2001196146 A JP 2001196146A JP 2003014398 A JP2003014398 A JP 2003014398A
Authority
JP
Japan
Prior art keywords
pressure
projectile
flying body
pressure accumulator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196146A
Other languages
Japanese (ja)
Other versions
JP3891800B2 (en
JP2003014398A5 (en
Inventor
Wakichi Arai
和吉 新井
Tomohiro Kira
知弘 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001196146A priority Critical patent/JP3891800B2/en
Publication of JP2003014398A publication Critical patent/JP2003014398A/en
Publication of JP2003014398A5 publication Critical patent/JP2003014398A5/ja
Application granted granted Critical
Publication of JP3891800B2 publication Critical patent/JP3891800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B9/00Liquid ejecting guns, e.g. water pistols, devices ejecting electrically charged liquid jets, devices ejecting liquid jets by explosive pressure
    • F41B9/0003Liquid ejecting guns, e.g. water pistols, devices ejecting electrically charged liquid jets, devices ejecting liquid jets by explosive pressure characterised by the pressurisation of the liquid
    • F41B9/0031Liquid ejecting guns, e.g. water pistols, devices ejecting electrically charged liquid jets, devices ejecting liquid jets by explosive pressure characterised by the pressurisation of the liquid the liquid being pressurised at the moment of ejection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shooting device for a flying body for safely and assuredly fling the flying body at high speed with a space saved and at low cost without requiring a special skill for a treatment. SOLUTION: In the shooting device for a flying body for shooting the flying body 5 through a burst plate by a medium pressed in a pressure storage device 3, liquid 1 is supplied under pressure to the pressure storage device 3 by a high pressure pump 2. The liquid by which tests are stably performed many times by a simple treatment, is high in its converting efficiency from pressurized energy to kinetic energy and is excellent in its workability, is used as working fluid. The flying body can fly at high speed without requiring a large-scale device or a high output such as explosive chemical. The space-saving device can be realized and the shooting device for the flying body can be obtained at low running cost without a special skill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、衝撃試験機や衝撃
加工機に利用できる飛翔体発射装置に係り、特に宇宙空
間や衛星軌道上にて発生する、稼働中の人口衛星へのス
ペースデブリ(人口衛星や隕石の破片)の衝突損傷機構
の解明に有効な飛翔体の高速発生を実現する飛翔体発射
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projectile launcher that can be used in impact testers and impact processors, and particularly space debris to an operating artificial satellite that occurs in space or in a satellite orbit. The present invention relates to a projectile launching device that realizes high-speed generation of a projectile, which is effective in elucidating the collision damage mechanism of artificial satellites and fragments of meteorites.

【0002】[0002]

【従来の技術】宇宙空間、特に地球の衛星軌道上には、
スペースデブリと呼ばれる人工衛星の破片や小隕石等が
秒速数Kmという高速で運動している。そして、近年そ
のような膨大な運動エネルギーを有するスペースデブリ
が、稼働中の人工衛星やスペースシャトル等に高速で衝
突し、それらの稼働性能に様々な障害を与えることが問
題視されている。そこで、このようなスペースデブリの
人工衛星等への衝突損傷機構の解明を予め地上にて行う
必要性が叫ばれ、国内外の研究機関にて衝突損傷機構の
解明のための実験装置の開発が鋭意進められている。特
に、スペースデブリを想定して小片の高速飛翔を実現す
る低コストな飛翔体発射装置の出現が待たれている。
2. Description of the Related Art In space, especially in the satellite orbits of the earth,
Space debris called artificial debris and small meteorites are moving at a high speed of several kilometers per second. In recent years, it has been considered a problem that space debris having such enormous kinetic energy collides with an operating artificial satellite, space shuttle, or the like at high speed, and gives various obstacles to their operating performance. Therefore, the need to elucidate the mechanism of collision damage of such space debris to artificial satellites in advance on the ground was exclaimed, and research institutions in Japan and overseas are developing experimental equipment for elucidating the mechanism of collision damage. It is being earnestly pursued. In particular, the emergence of a low-cost projectile launcher that realizes high-speed flight of small pieces assuming space debris is awaited.

【0003】小片の高速飛翔を実現する既存の飛翔体発
射装置として幾つかのものが採用され、最も古典的で代
表的なものとして火薬銃がある。火薬銃は火薬の燃焼ガ
スの圧力によって飛翔体を加速するもので構造が簡単で
あり、実験に必要な費用も安い。通常の火薬銃では銃身
内面に螺旋状のライフル溝が刻設されているが、飛翔体
発射装置における火薬銃では平滑内面(スムースボア)
が採用されている。他に実用性の高い飛翔体発射装置と
して、二段式軽ガス銃やレールガンあるいはプラズマ加
速装置がある。
Some existing projectile launchers for realizing high-speed flight of small pieces have been adopted, and the most classic and representative is the gunpowder gun. The gunpowder gun accelerates the projectile by the pressure of the combustion gas of the gunpowder, has a simple structure, and the cost required for the experiment is also low. A normal gunpowder gun has a spiral rifle groove engraved on the inner surface of the barrel, but a gunpowder gun in a projectile launcher has a smooth inner surface (smooth bore).
Has been adopted. Other highly practical projectile launchers include two-stage light gas guns, railguns, and plasma accelerators.

【0004】図6に示したものは、火薬銃以上の衝突速
度を実現するものとして我が国で最も普及している二段
式軽ガス銃である。発射薬点火前のaの状態から、bの
状態にて発射薬に点火がなされると、火薬の燃焼ガス圧
力によってピストンが加速され、ヘリウムガス等の軽ガ
スが圧縮される。このとき軽ガスの圧力は衝撃波の反射
によって段階状に上昇し、ピーク圧力は約1GPaに達
する。所定の圧縮圧が生じると、飛翔体との間に介設さ
れたダイヤフラムが破れ、状態cのごとく発射管の中に
噴出した軽ガスによって飛翔体が加速されて高速にて発
射される。
The one shown in FIG. 6 is a two-stage light gas gun that is the most popular in Japan for achieving a collision speed higher than that of a gunpowder gun. When the propellant is ignited in the state b from the state a before the propellant ignition, the piston is accelerated by the combustion gas pressure of the explosive and the light gas such as helium gas is compressed. At this time, the pressure of the light gas increases stepwise due to the reflection of the shock wave, and the peak pressure reaches about 1 GPa. When a predetermined compression pressure is generated, the diaphragm interposed between the projectile and the projectile is broken, and the projectile is accelerated by the light gas ejected into the launch tube as in the state c and is launched at high speed.

【0005】図7に示したものは、レールガンと呼ばれ
る飛翔体発射装置である。スイッチSを閉じるとキャパ
シタから電流Iが点線矢印のごとく、レール→飛翔体金
属部→レールの順に流れ、発生する磁場の圧力で飛翔体
は電磁力F=1/2Lx 2を受け加速される。ただ
し、Lx はレールの単位長当たりの自己インダクタンス
である。飛翔体の表面の金属は流れる電流によってガス
化し、該プラズマを通じて流れる電流の自乗に比例する
磁場の力で飛翔体が飛んでいき、原理的には電流を大き
くすればするほど飛翔体の速度は大きくなるが、シミュ
レーションによると15Km/s程度の速度が得られ
る。
FIG. 7 shows a projectile launching device called a rail gun. When the switch S is closed, a current I flows from the capacitor in the order of rail → flying body metal part → rail, and the flying body is accelerated by the electromagnetic force F = 1 / 2L × I 2 due to the pressure of the generated magnetic field. It However, L x is the self-inductance per unit length of the rail. The metal on the surface of the flying object is gasified by the flowing current, and the flying object flies with the force of the magnetic field proportional to the square of the current flowing through the plasma. In principle, the larger the current, the faster the flying object's velocity. Although it increases, a speed of about 15 km / s can be obtained by simulation.

【0006】図8に示したものは、プラズマガンと呼ば
れる飛翔体発射装置である。ガス貯蔵器102のニード
ル101を調整して、同軸チューブ107からアルミニ
ウムのプラズマを吹き出させ、ここに配設したコイル1
16に電流を流すと、プラズマが磁場の力によって圧縮
される。これによって、プラズマの流れが絞られて速度
が上昇し、吹き出すアルミニウムプラズマの速度が30
〜35Km/sに達する。このプラズマの流れに飛翔体
としてガラスのビーズ105を乗せることで高速飛翔体
を得る。0.1mmの直径のパイレックス(登録商標)
ガラスのビーズで20Km/sの世界最高速が得られて
いる。
FIG. 8 shows a projectile launching device called a plasma gun. The needle 101 of the gas reservoir 102 is adjusted so that aluminum plasma is blown out from the coaxial tube 107, and the coil 1 is placed here.
When a current is passed through 16, the plasma is compressed by the force of the magnetic field. As a result, the plasma flow is throttled to increase the velocity, and the velocity of the aluminum plasma blown out is 30%.
Reaching ~ 35 Km / s. A high-speed flying body is obtained by placing glass beads 105 as a flying body on this plasma flow. Pyrex (registered trademark) with a diameter of 0.1 mm
The world's highest speed of 20 km / s has been obtained with glass beads.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の飛翔体発射装置にあって、火薬銃では、火薬
の爆発燃焼を伴うため、熟練を要してランニングコスト
がかかる上、安定性に欠けるものであった。また、二段
式軽ガス銃では、依然として火薬を使用し取扱いが煩雑
で作動パラメータの最適な組合せを得るためのノウハウ
が必要である等、徹底した管理を必要として1日僅か1
〜2回程度の実験が限界である上、作動流体として圧縮
性流体である気体を用いているために、その加圧に膨大
なエネルギーを要していた。また、レールガンでは、原
理的には光速近傍までの加速が可能であるものの、実際
には大電流によるレールの摩耗やプラズマの粘性等に課
題を残し、現状では数Km/s程度に停まっている。ま
た、プラズマガンでは、装置が肥大化する上に制御の複
雑化は避けられなかった。
However, in such a conventional projectile launching apparatus as described above, since the explosive gun involves explosive combustion of the explosive powder, skill is required, running costs are high, and stability is high. It was lacking. In addition, with the two-stage light gas gun, explosives are still used, handling is complicated, and know-how to obtain an optimal combination of operating parameters is required.
Since the experiment is limited to about 2 times and a gas which is a compressive fluid is used as the working fluid, enormous energy is required for the pressurization. In addition, in principle, a rail gun can accelerate to a speed close to the speed of light, but in reality, there are problems in rail wear due to a large current, viscosity of plasma, etc., and at present it stops at several Km / s. There is. Further, in the plasma gun, the device is enlarged and the control is inevitably complicated.

【0008】そこで、本発明では、前記従来の飛翔体発
射装置の諸課題を解決して、省スペース、低コストで取
扱いに格別の熟練を要することがなく、安全かつ確実に
高速な飛翔が得られる飛翔体発射装置を提供することを
目的とする。
In view of the above, the present invention solves the problems of the conventional projectile launching device described above, saves space, costs low, does not require special skill in handling, and is capable of achieving safe and reliable high-speed flight. An object of the present invention is to provide a flying object launching device.

【0009】[0009]

【課題を解決するための手段】このため本発明は、蓄圧
器内にて加圧された媒体により破裂板を介して飛翔体を
発射させる飛翔体発射装置において、前記蓄圧器に液体
を加圧するように構成したことを特徴とする。また本発
明は、蓄圧器内にて加圧された媒体により破裂板を介し
て飛翔体を発射させる飛翔体発射装置において、前記蓄
圧器に流体を加圧して超臨界流体状態あるいは亜臨界流
体状態とするように構成したことを特徴とする。また本
発明は、前記蓄圧器の周囲あるいは内部もしくは周囲お
よび内部にヒータを配設して、前記流体を超臨界流体状
態あるいは亜臨界流体状態にまで昇温可能に構成したこ
とを特徴とする。また本発明は、前記蓄圧器に圧力計お
よび温度計を設置するとともに、前記破裂板の破裂時に
おける破裂圧力および温度を記憶できるように構成した
ことを特徴とする。また本発明は、前記圧力計は、蓄圧
器に接続された排気管から分岐して設置されたことを特
徴とするもので、これらを課題解決のための手段とする
ものである。
Therefore, according to the present invention, in a projectile launching device for launching a projectile through a rupture plate by a medium pressurized in a pressure accumulator, liquid is pressurized in the pressure accumulator. It is characterized in that it is configured as follows. Further, the present invention is a projectile launching device for launching a projectile through a rupture plate by a medium pressurized in a pressure accumulator, wherein a fluid is pressurized in the pressure accumulator to cause a supercritical fluid state or a subcritical fluid state. It is characterized in that it is configured to. Further, the present invention is characterized in that a heater is arranged around or inside or around and inside the pressure accumulator so that the temperature of the fluid can be raised to a supercritical fluid state or a subcritical fluid state. Further, the present invention is characterized in that a pressure gauge and a thermometer are installed in the pressure accumulator, and the burst pressure and temperature at the time of burst of the burst plate can be stored. Further, the present invention is characterized in that the pressure gauge is installed by branching from an exhaust pipe connected to a pressure accumulator, and these are means for solving the problems.

【0010】[0010]

【実施の形態】以下、本発明における飛翔体発射装置の
実施の形態を図面に基づいて詳細に説明する。図1およ
び図2は本発明の第1実施の形態を示すもので、図1は
本発明の飛翔体発射装置を実現する実験装置の概略図、
図2はその実験結果図である。本発明は、図1に示すよ
うに、蓄圧器3内にて加圧された媒体により破裂板を介
して飛翔体5を発射させる飛翔体発射装置において、前
記蓄圧器3に液体1を高圧ポンプ2にて加圧供給するよ
うに構成したことを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a projectile launching device according to the present invention will be described below in detail with reference to the drawings. 1 and 2 show a first embodiment of the present invention, and FIG. 1 is a schematic view of an experimental apparatus for realizing the projectile launching apparatus of the present invention,
FIG. 2 shows the experimental result. As shown in FIG. 1, the present invention relates to a projectile launching device for launching a projectile 5 through a rupture plate by a medium pressurized in a pressure accumulator 3, wherein a high pressure pump for liquid 1 is stored in the pressure accumulator 3. It is characterized in that it is configured so as to be pressurized and supplied in 2.

【0011】以下に詳述すると、実験装置は主として、
液体1(水道水でよい)を導入して加圧する高圧ポンプ
2、該高圧ポンプ2からの加圧流体を蓄える蓄圧器3、
該蓄圧器3の前面に破裂板であるラプチャー板(図示省
略)を介設して配設される助走管6とから構成される。
蓄圧器3には加圧流体の導入時に空気を排出する排気管
が接続され、該排気管には開閉バルブ7が設置される。
排気管には分岐して圧力計4が設置される。前記助走管
6には飛翔体5が前方から挿入される。
Explaining in detail below, the experimental apparatus mainly consists of
A high pressure pump 2 for introducing and pressurizing a liquid 1 (which may be tap water), a pressure accumulator 3 for storing the pressurized fluid from the high pressure pump 2,
The pressure accumulator 3 is composed of a run-up tube 6 which is arranged on the front surface of the pressure accumulator 3 with a rupture plate (not shown) interposed therebetween.
The pressure accumulator 3 is connected to an exhaust pipe that discharges air when a pressurized fluid is introduced, and an opening / closing valve 7 is installed in the exhaust pipe.
A pressure gauge 4 is installed branching to the exhaust pipe. The projectile 5 is inserted into the run-up tube 6 from the front.

【0012】このような実験装置により以下のような条
件にて実験を行った。高圧ポンプ2の流量範囲は0.1
〜10ml/minで、最大使用圧力は80MPaであ
る。圧力計4はデジタル方式で上限リミッター、ピーク
ホールド機能があり、測定能力は0.1MPa単位で0
〜100MPaを測定できる。蓄圧器3は全長300m
mで耐圧力は30MPa、容積は500mlである。ラ
プチャー板はSUS316Lとアルミホイルを利用す
る。SUS316Lの厚さは0.03、0.04、0.
05、0.06mmで、破裂する設定圧力をそれぞれ1
2、14、16、18MPaのものを使用する。アルミ
ホイルの厚さは15μmであり、それを2、4、8、1
6枚重ねて利用し、その設定圧力は0.8、1.5、
3.5、8.0MPaである。助走管6の内径は3/8
inで、長さは30mmである。各部の配管は内径1/
8inである。開閉バルブ7はニードルバルブを用いて
手動で開閉を行う。飛翔体5には直径6mm、密度3.
9kg/m3 のアルミナ球を使用する。作動流体には上
水を使用し、水道にゴムホースを接続して直接高圧ポン
プ2に供給する。
An experiment was conducted under the following conditions by using such an experimental apparatus. The flow rate range of the high-pressure pump 2 is 0.1
At 10 ml / min, the maximum working pressure is 80 MPa. The pressure gauge 4 is a digital type and has an upper limiter and a peak hold function, and the measurement capacity is 0 in 0.1 MPa units.
-100 MPa can be measured. Accumulator 3 has a total length of 300 m
The pressure resistance is 30 MPa and the volume is 500 ml. The rupture plate uses SUS316L and aluminum foil. The thickness of SUS316L is 0.03, 0.04, 0.
05 and 0.06 mm, set the burst pressure to 1
A material having a pressure of 2, 14, 16, 18 MPa is used. The thickness of aluminum foil is 15 μm, and it is 2, 4, 8, 1
It is used by stacking 6 sheets, and the set pressure is 0.8, 1.5,
It is 3.5 and 8.0 MPa. Inner diameter of run-up tube 6 is 3/8
In, the length is 30 mm. The piping of each part is 1 / inner diameter
It is 8 inches. The opening / closing valve 7 is manually opened / closed using a needle valve. The flying body 5 has a diameter of 6 mm and a density of 3.
Use 9 kg / m 3 alumina spheres. Tap water is used as the working fluid, and a rubber hose is connected to the tap water to supply it directly to the high pressure pump 2.

【0013】まず始めに、開閉バルブ7を開いてシステ
ム内に水道圧による流入がなされて水道水1が蓄圧器3
内に満たされる。次いで、開閉バルブ7を閉じ、高圧ポ
ンプ2を作動させて蓄圧器3内の水道水を加圧する。そ
の際の蓄圧器3内の圧力は圧力計4にて検出される。圧
力計4のリミッター機能により設定圧力を蓄圧器3の最
大圧力30MPaに設定し、その圧力に達すると、高圧
ポンプ2の電源が切断されて加圧が停止する。蓄圧器3
内の水道水の圧力によってラプチャー板が破裂し、水道
水の開放によって助走管6に挿入された飛翔体5が発
射、加速される。このとき、前記圧力計4にピークホー
ルドをかけてラプチャー板破裂時の最大圧力を検出す
る。
First, the on-off valve 7 is opened to allow the tap water to flow into the system so that the tap water 1 is stored in the pressure accumulator 3.
Filled within. Next, the opening / closing valve 7 is closed and the high pressure pump 2 is operated to pressurize the tap water in the pressure accumulator 3. The pressure in the pressure accumulator 3 at that time is detected by the pressure gauge 4. The limiter function of the pressure gauge 4 sets the set pressure to the maximum pressure of the pressure accumulator 3 of 30 MPa. When the set pressure is reached, the high pressure pump 2 is turned off and the pressurization is stopped. Accumulator 3
The rupture plate ruptures due to the pressure of the tap water therein, and the projectile 5 inserted into the run-up tube 6 is launched and accelerated by the opening of the tap water. At this time, the pressure gauge 4 is peak-held to detect the maximum pressure when the rupture plate ruptures.

【0014】飛翔体5の速度測定方法として、高速度ビ
デオカメラを用いた。高速度ビデオカメラを助走管6の
先端部分に設置して、飛翔体5が助走管6から発射され
る瞬間の映像を撮影した。撮影は1コマ1/18000
秒とし、撮影映像をもとに飛翔体5の速度を算出するも
のである。飛翔体5が助走管6から発射された直後から
3コマの移動距離を速度算出に利用した。
A high-speed video camera was used as a method for measuring the speed of the flying object 5. A high-speed video camera was installed at the tip of the run-up tube 6, and an image of the moment the projectile 5 was launched from the run-up tube 6 was taken. One frame 1/18000
Seconds are used to calculate the velocity of the flying object 5 based on the captured image. Immediately after the projectile 5 was launched from the approach tube 6, the moving distance of three frames was used for speed calculation.

【0015】このようにして行った実験の結果を図2に
示す。飛翔体5はアルミナ0.44gである。これによ
り、破裂板であるラプチャー板破断圧力と飛翔体速度の
関係が求められた。ラプチャー板破断圧力の増加ととも
に飛翔体速度も増加しているが、高圧になると速度上昇
が小さくなっている。これは空気抵抗による影響と考え
られる。したがって、高耐圧力のラプチャー板を用意し
て蓄圧器内の圧力を高めて、さらに助走管内の空気抵抗
を減らすことができれば、更なる飛翔体速度の増加が期
待できる。
The result of the experiment conducted in this way is shown in FIG. The flying object 5 is 0.44 g of alumina. From this, the relationship between the breaking pressure of the rupture plate, which is a rupture plate, and the velocity of the flying body was obtained. The velocity of the flying object also increases with the increase in the rupture plate rupture pressure, but the increase in velocity decreases with increasing pressure. This is considered to be the effect of air resistance. Therefore, if a rupture plate with high pressure resistance is prepared to increase the pressure in the accumulator and further reduce the air resistance in the run-up tube, further increase in the flying body speed can be expected.

【0016】図3〜図5は本発明の第2実施の形態を示
すもので、図3は飛翔体発射装置の実験装置の概略図、
図4は超臨界流体の説明図、図5はその実験結果図であ
る。本実施の形態では、図3に示すように、蓄圧器3内
にて加圧された媒体により破裂板を介して飛翔体5を発
射させる飛翔体発射装置において、前記蓄圧器3に流体
1を高圧ポンプ2にて加圧供給し、超臨界流体状態ある
いは亜臨界流体状態とするように構成したことを特徴と
する。本実施の形態では、また、前記蓄圧器3の周囲あ
るいは内部もしくは周囲および内部にヒータ8を配設し
て、蓄圧器3内の前記流体を超臨界流体状態あるいは亜
臨界流体状態にまで昇温可能に構成されている。また、
蓄圧器3内に温度センサー10を配設し、温度センサー
10とヒータ8は前記蓄圧器3の外部で温度計11に接
続され、蓄圧器3内の流体の温度制御が可能に構成され
ている。また、流体1と高圧ポンプ2との間には開閉バ
ルブ9が設置される。開閉バルブ7や圧力計4および助
走管6の配設形態は前記第1実施の形態のものと同様で
ある。
FIGS. 3 to 5 show a second embodiment of the present invention, and FIG. 3 is a schematic view of an experimental device of a projectile launcher,
FIG. 4 is an explanatory diagram of the supercritical fluid, and FIG. 5 is a result diagram of the experiment. In the present embodiment, as shown in FIG. 3, in a projectile launching device that launches a projectile 5 through a rupture plate by a medium pressurized in the pressure accumulator 3, the fluid 1 is stored in the pressure accumulator 3. It is characterized in that it is pressurized and supplied by the high-pressure pump 2 to be in a supercritical fluid state or a subcritical fluid state. In the present embodiment, a heater 8 is provided around or inside or inside and around the pressure accumulator 3 to heat the fluid in the pressure accumulator 3 to a supercritical fluid state or a subcritical fluid state. It is configured to be possible. Also,
A temperature sensor 10 is arranged in the pressure accumulator 3, and the temperature sensor 10 and the heater 8 are connected to a thermometer 11 outside the pressure accumulator 3 so that the temperature of the fluid in the pressure accumulator 3 can be controlled. . An opening / closing valve 9 is installed between the fluid 1 and the high pressure pump 2. The arrangement of the on-off valve 7, the pressure gauge 4 and the run-up pipe 6 is the same as that of the first embodiment.

【0017】本実施の形態の実験装置による実験では、
超臨界流体として二酸化炭素を用いた。したがって、流
体1として液化二酸化炭素ボンベを用いる。まず始め
に、開閉バルブ9および開閉バルブ7を開いてシステム
内に液化二酸化炭素ボンベからの液化二酸化炭素の流入
がなされて蓄圧器3内に満たされる。次いで、開閉バル
ブ7を閉じ、高圧ポンプ2を作動させて蓄圧器3内の液
化二酸化炭素を臨界圧力以上に加圧する。その際の蓄圧
器3内の圧力は圧力計4にて検出される。所定圧力まで
加圧した後、ヒータ8によって昇温して二酸化炭素を超
臨界状態とする。その際の蓄圧器3内の温度は、温度セ
ンサー10にて検出され、温度計11およびヒータ8に
よって温度制御が行われる。図4に示すように、二酸化
炭素における臨界圧力は7.38MPa、臨界温度は3
1.1°Cであるが、それらの圧力および温度以下のと
ころから亜臨界領域が存在する。本実施の形態では、こ
れらの亜臨界領域にある亜臨界流体をも非圧縮性流体と
して採用される。
In the experiment by the experimental apparatus of this embodiment,
Carbon dioxide was used as the supercritical fluid. Therefore, a liquefied carbon dioxide cylinder is used as the fluid 1. First, the on-off valve 9 and the on-off valve 7 are opened to allow the liquefied carbon dioxide from the liquefied carbon dioxide cylinder to flow into the system to fill the pressure accumulator 3 therein. Next, the opening / closing valve 7 is closed and the high pressure pump 2 is operated to pressurize the liquefied carbon dioxide in the pressure accumulator 3 to a pressure equal to or higher than the critical pressure. The pressure in the pressure accumulator 3 at that time is detected by the pressure gauge 4. After pressurizing to a predetermined pressure, the heater 8 raises the temperature to bring carbon dioxide into a supercritical state. The temperature inside the accumulator 3 at that time is detected by the temperature sensor 10, and the temperature is controlled by the thermometer 11 and the heater 8. As shown in FIG. 4, carbon dioxide has a critical pressure of 7.38 MPa and a critical temperature of 3
At 1.1 ° C, but below those pressures and temperatures, there are subcritical regions. In the present embodiment, subcritical fluids in these subcritical regions are also adopted as incompressible fluids.

【0018】蓄圧器3内にて超臨界あるいは亜臨界状態
となった流体によって破裂板が破裂し、開放された超臨
界あるいは亜臨界状態の二酸化炭素の圧力と、自らの気
化に伴う体積膨張した圧力とにより、破裂板直後に置か
れた飛翔体5を助走管6を通じて一定方向に加速するこ
とになる。また、前記圧力計4によってピークホールド
を設定しておくことにより破裂板破裂時の圧力と温度を
記憶させる。したがって、本実施の形態のものでは、高
圧ポンプ2にて加圧された流体の圧力に加えて、超臨界
あるいは亜臨界状態に置かれた流体の自らの気化に伴う
体積膨張圧力により、より大きな加速力が得られる。
The rupture plate is ruptured by the fluid in a supercritical or subcritical state in the pressure accumulator 3, and the pressure of the released carbon dioxide in the supercritical or subcritical state and the volume expansion due to its own vaporization The pressure causes the projectile 5 placed immediately after the rupture plate to accelerate in a certain direction through the run-up tube 6. In addition, the pressure and temperature at the time of rupture of the rupture plate are stored by setting the peak hold by the pressure gauge 4. Therefore, in the present embodiment, in addition to the pressure of the fluid pressurized by the high-pressure pump 2, the volume expansion pressure due to the self-vaporization of the fluid placed in the supercritical or subcritical state is larger. Acceleration is obtained.

【0019】図5はこのようにして行った実験の結果で
ある。ただし、図5のものは蓄圧器3を加温せず液化二
酸化炭素の状態で行ったものである。飛翔体5として不
飽和ポリエステル樹脂0.44gを使用した。飛翔体5
の速度測定方法は前記実験と同様に高速度ビデオカメラ
を用いた。これにより、二酸化炭素圧力(破裂板破断圧
力)と飛翔体速度の関係が求められた。破裂板破断圧力
の増加とともに飛翔体速度も増加していることが理解さ
れる。蓄圧器3の加温により、更なる飛翔体速度の増加
が期待できる。
FIG. 5 shows the result of the experiment conducted in this way. However, in FIG. 5, the pressure accumulator 3 is not heated but is liquefied carbon dioxide. As the flying vehicle 5, 0.44 g of unsaturated polyester resin was used. Flying body 5
The high speed video camera was used for the speed measurement method as in the above experiment. From this, the relationship between the carbon dioxide pressure (burst disc rupture pressure) and the flying body velocity was obtained. It is understood that the velocity of the projectile also increases as the rupture pressure of the rupture disc increases. Further heating of the pressure accumulator 3 can be expected to increase the velocity of the flying object.

【0020】以上、本発明の実施の形態について説明し
てきたが、本発明の趣旨の範囲内で、流体の種類、高圧
ポンプ、蓄圧器、開閉バルブ、圧力計、温度センサー、
温度計、破裂板、助走管、飛翔体の形状、形式、蓄圧器
に対する助走管の設置形態、蓄圧器に対する飛翔体との
間の破裂板の介設形態、助走管に対する飛翔体のセット
形態、圧力計および温度計における上限リミッター、ピ
ークホールド機能等の形式、温度計の温度制御機能等の
形式、温度センサーの配設形態、ヒータの配設形態およ
び昇温制御形態、飛翔体速度測定方式等については適宜
選定できる。
Although the embodiments of the present invention have been described above, the types of fluids, high-pressure pumps, accumulators, open / close valves, pressure gauges, temperature sensors, and
Thermometer, rupture disc, run-up tube, shape and type of projectile, installation form of run-up tube for accumulator, interposition of burst plate between accumulator and projectile, set form of projectile for approach-tube, Type of upper limit limiter and peak hold function in pressure gauge and thermometer, type of temperature control function of thermometer, arrangement of temperature sensor, arrangement of heater and control of temperature rise, flying body velocity measurement method, etc. Can be appropriately selected.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明によ
れば、蓄圧器内にて加圧された媒体により破裂板を介し
て飛翔体を発射させる飛翔体発射装置において、前記蓄
圧器に液体を加圧するように構成したことにより、取扱
いが簡便で何度でも安定した実験が行え、加圧エネルギ
ーからの運動エネルギーへの変換効率が高く加圧性に優
れる液体を作動流体として、大規模な装置や爆薬等の高
出力を要することなく高速の飛翔体速度が得られ、省ス
ペースの装置の実現と格別な熟練を要せず低いランニン
グコストで済む飛翔体発射装置が得られる。
As described above in detail, according to the present invention, in the projectile launching device for launching the projectile through the rupture plate by the medium pressurized in the pressure accumulator, the pressure accumulator is provided. Since it is configured to pressurize the liquid, it is easy to handle and stable experiments can be performed any number of times, and the liquid that has high conversion efficiency from pressurizing energy to kinetic energy and excellent pressurizing property is used as a large-scale working fluid. It is possible to obtain a high-speed projectile velocity without requiring a high output of a device, explosives, etc., and to realize a space-saving device and a projectile launching device which requires low running cost without requiring special skill.

【0022】また、蓄圧器内にて加圧された媒体により
破裂板を介して飛翔体を発射させる飛翔体発射装置にお
いて、前記蓄圧器に流体を加圧して超臨界流体状態ある
いは亜臨界流体状態とするように構成したことにより、
加圧された流体の圧力に加えて、超臨界あるいは亜臨界
状態に置かれた流体の自らの気化に伴う体積膨張圧力に
より、より大きな加速力が得られる。さらに、前記蓄圧
器の周囲あるいは内部もしくは周囲および内部にヒータ
を配設して、蓄圧器内の前記流体を超臨界状態あるいは
亜臨界流体状態にまで昇温可能に構成した場合は、超臨
界流体あるいは亜臨界流体の開放後の自らの気化に伴う
体積膨張圧力をより高めて、更なる飛翔体速度の増加が
期待できる。
Further, in a projectile launching device for launching a projectile through a rupture plate by a medium pressurized in a pressure accumulator, fluid is pressurized in the pressure accumulator to cause a supercritical fluid state or a subcritical fluid state. By configuring to
In addition to the pressure of the pressurized fluid, a larger accelerating force is obtained due to the volume expansion pressure associated with the vaporization of the fluid placed in the supercritical or subcritical state. Further, when a heater is arranged around or inside or around and inside the pressure accumulator so that the fluid in the pressure accumulator can be heated to a supercritical state or a subcritical fluid state, the supercritical fluid Alternatively, the volume expansion pressure due to the vaporization of the subcritical fluid after it is released can be further increased, and a further increase in the velocity of the flying object can be expected.

【0023】さらにまた、前記蓄圧器に圧力計および温
度計を設置するとともに、前記破裂板の破裂時における
破裂圧力および温度を記憶できるように構成した場合
は、破裂板破裂時の圧力および温度の設定を適宜に行っ
て飛翔体の速度の制御が可能となる。また、前記圧力計
が、蓄圧器に接続された排気管から分岐して設置された
場合は、空気を排気して蓄圧器に非圧縮性流体を導入す
るための排気管を利用して、破裂板破裂時の圧力の設定
等を行う圧力計を容易に設置することができる。かくし
て、本発明によれば、省スペース、低コストで取扱いに
格別の熟練を要することがなく、安全かつ確実に高速な
飛翔が得られる飛翔体発射装置が提供される。
Furthermore, when a pressure gauge and a thermometer are installed in the pressure accumulator and the burst pressure and temperature at the time of bursting of the burst plate are stored, the pressure and temperature at burst of the burst plate are The speed of the flying object can be controlled by making appropriate settings. When the pressure gauge is installed by branching from the exhaust pipe connected to the pressure accumulator, the pressure gauge is ruptured by using the exhaust pipe for exhausting air and introducing the incompressible fluid into the pressure accumulator. It is possible to easily install a pressure gauge that sets the pressure when the plate bursts. Thus, according to the present invention, there is provided a projectile launching device that saves space, costs low, does not require special skill in handling, and is capable of safe and reliable high-speed flight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施の形態を示すもので、実験装
置の概略図である。
FIG. 1 shows a first embodiment of the present invention and is a schematic diagram of an experimental device.

【図2】同、その実験結果図である。FIG. 2 is a diagram showing the results of the experiment.

【図3】本発明の第2実施の形態を示すもので、実験装
置の概略図である。
FIG. 3 shows a second embodiment of the present invention and is a schematic diagram of an experimental device.

【図4】同、超臨界流体の説明図である。FIG. 4 is an explanatory diagram of a supercritical fluid of the same.

【図5】同、その実験結果図である。FIG. 5 is a diagram showing the experimental results of the same.

【図6】我が国で最も普及している従来の二段式軽ガス
銃である。
FIG. 6 is a conventional two-stage light gas gun that is most popular in Japan.

【図7】従来のレールガンと呼ばれる飛翔体発射装置で
ある。
FIG. 7 shows a conventional projectile launcher called a rail gun.

【図8】従来のプラズマガンと呼ばれる飛翔体発射装置
である。
FIG. 8 shows a conventional projectile launcher called a plasma gun.

【符号の説明】[Explanation of symbols]

1 非圧縮性流体(水道水、液化二酸化炭素) 2 高圧ポンプ 3 蓄圧器 4 圧力計 5 破裂板および飛翔体 6 助走管 7 開閉バルブ 8 ヒータ 9 開閉バルブ 10 温度センサー 11 温度計 1 Incompressible fluid (tap water, liquefied carbon dioxide) 2 high pressure pump 3 accumulator 4 pressure gauge 5 Bursting discs and projectiles 6 Running tube 7 open / close valve 8 heater 9 open / close valve 10 Temperature sensor 11 thermometer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蓄圧器内にて加圧された媒体により破裂
板を介して飛翔体を発射させる飛翔体発射装置におい
て、前記蓄圧器に液体を加圧するように構成したことを
特徴とする飛翔体発射装置。
1. A projectile launching device for launching a projectile through a rupture plate by a medium pressurized in a pressure accumulator, wherein the liquid is pressurized in the pressure accumulator. Body launcher.
【請求項2】 蓄圧器内にて加圧された媒体により破裂
板を介して飛翔体を発射させる飛翔体発射装置におい
て、前記蓄圧器に流体を加圧して超臨界流体状態あるい
は亜臨界流体状態とするように構成したことを特徴とす
る飛翔体発射装置。
2. A projectile launching device for launching a projectile through a rupture plate by a medium pressurized in a pressure accumulator, wherein a fluid is pressurized in the pressure accumulator to be in a supercritical fluid state or a subcritical fluid state. A projectile launching device characterized by being configured as follows.
【請求項3】 前記蓄圧器の周囲あるいは内部もしくは
周囲および内部にヒータを配設して、前記流体を超臨界
流体状態あるいは亜臨界流体状態にまで昇温可能に構成
したことを特徴とする請求項2に記載の飛翔体発射装
置。
3. A heater is disposed around or inside or inside and around the pressure accumulator so that the temperature of the fluid can be raised to a supercritical fluid state or a subcritical fluid state. Item 2. The projectile launching device according to item 2.
【請求項4】 前記蓄圧器に圧力計および温度計を設置
するとともに、前記破裂板の破裂時における破裂圧力お
よび温度を記憶できるように構成したことを特徴とする
請求項1ないし3のいずれかに記載の飛翔体発射装置。
4. A pressure gauge and a thermometer are installed on the pressure accumulator, and the burst pressure and temperature at the time of burst of the burst plate are configured to be stored. The projectile launcher described in.
【請求項5】 前記圧力計は、蓄圧器に接続された排気
管から分岐して設置されたことを特徴とする請求項4に
記載の飛翔体発射装置。
5. The projectile launching apparatus according to claim 4, wherein the pressure gauge is installed by branching from an exhaust pipe connected to a pressure accumulator.
JP2001196146A 2001-06-28 2001-06-28 Flying object launcher Expired - Lifetime JP3891800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196146A JP3891800B2 (en) 2001-06-28 2001-06-28 Flying object launcher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196146A JP3891800B2 (en) 2001-06-28 2001-06-28 Flying object launcher

Publications (3)

Publication Number Publication Date
JP2003014398A true JP2003014398A (en) 2003-01-15
JP2003014398A5 JP2003014398A5 (en) 2005-07-07
JP3891800B2 JP3891800B2 (en) 2007-03-14

Family

ID=19034007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196146A Expired - Lifetime JP3891800B2 (en) 2001-06-28 2001-06-28 Flying object launcher

Country Status (1)

Country Link
JP (1) JP3891800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118916A (en) * 2005-10-28 2007-05-17 Yuta Nojiri Space craft for generating meteor phenomenon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118916A (en) * 2005-10-28 2007-05-17 Yuta Nojiri Space craft for generating meteor phenomenon

Also Published As

Publication number Publication date
JP3891800B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CA2465696C (en) Projectile firing device using liquified gas propellant
US8979033B2 (en) Gas gun launcher
CN103322857B (en) Small two-stage light-gas gun
US9915496B2 (en) Light gas gun
JP7373016B2 (en) Projectile launch system and method
CN110186324B (en) Light gas gun launching device for simulating coupling load of explosion shock wave and high-speed fragment
US20050188977A1 (en) Pneumatic shooting device
US11740039B2 (en) Apparatus and method for accelerating an object via an external free jet
CN111288842A (en) Supercritical carbon dioxide gas gun
US3465638A (en) Hypervelocity gun
CN113834379B (en) Method for launching supercritical carbon dioxide gas cannon
US7313881B1 (en) Pneumatic launcher system and method for operating same
JP3891800B2 (en) Flying object launcher
CN209639615U (en) Carbon dioxide phase change expansion launching device
US8936016B1 (en) Ambient temperature phase change launcher
RU2600013C2 (en) Water ballistic unit for space-mission and method for its preparation for operation
US3465639A (en) Hypervelocity jet and projectile velocity augmenter
US7451680B1 (en) Submarine steam generator missile ejection system
Knowlen et al. Ram accelerator as an impulsive space launcher: assessment of technical risks
CN221055633U (en) Piston type energy release mechanism in supercritical carbon dioxide emission device
CN216977653U (en) Pneumatic simulated shooting platform
Piekutowski A new technique for achieving impact velocities greater than 10 km/s
CN114383465A (en) Pneumatic simulated shooting platform
Thompson et al. Pyrotechnically actuated gas generator utilizing aqueous methanol
AU2002336805B2 (en) Projectile firing device using liquified gas propellant

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Ref document number: 3891800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term