JP2003013906A - Electro-hydraulic actuator for forging press, caulking press or the like - Google Patents

Electro-hydraulic actuator for forging press, caulking press or the like

Info

Publication number
JP2003013906A
JP2003013906A JP2001232833A JP2001232833A JP2003013906A JP 2003013906 A JP2003013906 A JP 2003013906A JP 2001232833 A JP2001232833 A JP 2001232833A JP 2001232833 A JP2001232833 A JP 2001232833A JP 2003013906 A JP2003013906 A JP 2003013906A
Authority
JP
Japan
Prior art keywords
hydraulic
actuator
flow rate
pressure
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001232833A
Other languages
Japanese (ja)
Inventor
Yuichi Kiryu
悠一 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001232833A priority Critical patent/JP2003013906A/en
Publication of JP2003013906A publication Critical patent/JP2003013906A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that an electro-hydraulic pump unit which delivers constant rated pressure with the use of one hydraulic pump is inefficient and high in power consumption for use in a caulking press or forging press or the like which requires two hydraulic pressure energy use patterns; one pattern is large delivery rate and low pressure, and the other pattern is small delivery rate and high pressure. SOLUTION: A large delivery rate and low pressure hydraulic pump and a small delivery rate and high pressure hydraulic pump are coupled with one servo-motor by which two hydraulic pumps jointly deliver hydraulic pressure energy in the phase of large delivery rate and low pressure, while the small delivery rate and high pressure hydraulic pump alone delivers the hydraulic energy in the phase of small delivery rate and high pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は電気をエネルギー
源とし、油圧シリンダー、油圧ロータリーアクチュエー
タ等のアクチュエータにより機械的エネルギーを出力す
る電気・機械エネルギー変換系に関し、さらに具体的に
いえば、油圧式のかしめプレスや冷間鍛造プレス等の加
工の瞬間に巨大な力を必要とするインパクトタイプのプ
レスに属する用途を主要な応用領域とする油圧機械に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric / mechanical energy conversion system that uses electricity as an energy source and outputs mechanical energy by an actuator such as a hydraulic cylinder or a hydraulic rotary actuator. More specifically, it is of a hydraulic type. The present invention relates to a hydraulic machine whose main application area is an impact type press that requires a huge force at the moment of processing, such as a caulking press and a cold forging press.

【0002】[0002]

【従来の技術】従来の油圧プレスでは、商用周波数によ
り定格速度で回転する誘導電動機を原動機とする電動油
圧ポンプユニットより一定の圧力の油圧エネルギーを供
給され、電磁弁等により油圧エネルギーの供給方向、供
給流量を制御してアクチュエータの移動方向、移動速
度、発生力等を制御していた。
2. Description of the Related Art In a conventional hydraulic press, hydraulic energy of a constant pressure is supplied from an electric hydraulic pump unit that uses an induction motor that rotates at a rated speed at a commercial frequency as a prime mover, and a hydraulic energy supply direction is supplied by an electromagnetic valve or the like. The supply flow rate was controlled to control the moving direction, moving speed, generated force, etc. of the actuator.

【0003】[0003]

【発明が解決しようとする課題】従来技術の電動油圧ポ
ンプユニットは、定格出力付近では高い電気・機械エネ
ルギー変換効率(以下、効率と略)を達成するが、無負
荷時に出力流量が零になっても定格入力のおよそ80%
の電力を消費する。無負荷時に消費されるこの電力は、
電動油圧ポンプの内部損失と、作動油の圧力を一定値に
保つためのリリーフバルブによる油圧エネルギー放出損
失より成り立つ。なお、最近、サーボモータにより駆動
する油圧ポンプを用いる電動油圧ポンプユニットが市場
に現れてきたが、これも電動油圧ポンプユニットの宿命
で何時でもフルパワーが出力できるように定格圧力を維
持しなければならないため、出力流量が零である保圧時
の電力消費量は定格出力時の約50%であり、かなり改
善されてはいるが、いまだ技術的に満足できる水準では
ない。
The conventional electric hydraulic pump unit achieves high electric-mechanical energy conversion efficiency (hereinafter referred to as efficiency) near the rated output, but the output flow rate becomes zero when there is no load. Even about 80% of the rated input
Consumes electricity. This power consumed at no load is
It consists of the internal loss of the electric hydraulic pump and the hydraulic energy discharge loss by the relief valve for keeping the pressure of the hydraulic oil at a constant value. Recently, an electric hydraulic pump unit using a hydraulic pump driven by a servo motor has appeared on the market. However, this is also the fate of the electric hydraulic pump unit, and the rated pressure must be maintained so that full power can be output at any time. Therefore, the power consumption at the time of holding pressure when the output flow rate is zero is about 50% of the rated output, and although it has been improved considerably, it is not technically satisfactory.

【0004】以上のような訳で、アクチュエータがワー
クを加工している期間のように定格出力に近い領域の出
力流量で使用されればこのシステムは高い効率を示す
が、出力流量が零となる待機時や、加工前あるいは加工
後の期間でアクチュエータが移動動作だけを行って要求
される力が軽微な期間は、このシステムは零か著しく低
い効率しか示し得ない。
As described above, if the actuator is used at an output flow rate in a region close to the rated output such as a period during which the actuator is processing a work, this system exhibits high efficiency, but the output flow rate becomes zero. During standby, or during periods before or after machining, when the actuator performs only movement movements and the required force is small, this system can show zero or extremely low efficiency.

【0005】このため、従来技術による電動油圧ポンプ
ユニットはアクチュエータを全負荷で連続的に作動させ
る用途であれば高い効率を達成できるが、運転中の大部
分の期間が無負荷あるいは低負荷である用途では著しく
低い効率しか達成できない。
For this reason, the electric hydraulic pump unit according to the prior art can achieve high efficiency in applications where the actuator is continuously operated at full load, but most of the period during operation is no load or low load. The application can achieve significantly lower efficiencies.

【0006】そのような低い効率の用途例を挙げると、
かしめプレス、冷間鍛造プレス等の場合である。これら
の機械の電動油圧ポンプが効率が高い最大出力を要求さ
れるのは金型がワークに接触してからの瞬間というべき
短期間だけである。残りの期間は効率が著しく低い軽負
荷である金型を含めた機械の移動と、効率が零である無
負荷時でのワークの取り出し・取り付け・待機より成り
立つ。機械の移動とワークの加工に要した機械的エネル
ギーと電動油圧ポンプユニットが消費した電気的エネル
ギーを比較すると、その効率は数%にしか達しない。地
球規模で環境問題が取上げられている今日、このような
低効率を承知で機械を運転することは許されることでは
ない。本発明はこの課題を次のように解決する。
Examples of such low efficiency applications are:
This is the case with a caulking press, a cold forging press, etc. The electric hydraulic pumps of these machines require high efficiency and maximum output only for a short period of time, which is the moment after the mold comes into contact with the work. The rest of the period consists of moving the machine, including the mold, which has a light load with extremely low efficiency, and picking up, mounting, and waiting for a workpiece at no load, which has no efficiency. Comparing the mechanical energy required for moving the machine and machining the workpiece with the electrical energy consumed by the electric hydraulic pump unit, its efficiency reaches only a few percent. Today, with environmental issues being addressed on a global scale, it is unacceptable to operate machines with such low efficiency. The present invention solves this problem as follows.

【0007】[0007]

【課題を解決するための手段】この発明では1台のサー
ボモータにより大流量の油圧ポンプと小流量の油圧ポン
プの2台の油圧ポンプを駆動する。
According to the present invention, one hydraulic motor drives two hydraulic pumps, a large hydraulic pump and a small hydraulic pump.

【0008】アクチュエータが停止する期間はサーボモ
ータへの電力供給を止めて油圧ポンプを停止する。サー
ボモータはエネルギー消費が零であり、それへ電力を供
給するインバータを含む制御装置も待機電力だけの微小
な電力しか必要としない。この時の作動油の圧力は零で
ある。
During the period when the actuator is stopped, the power supply to the servo motor is stopped and the hydraulic pump is stopped. The servo motor consumes no energy, and the control device including the inverter that supplies electric power to the servo motor also needs only a small amount of power such as standby power. The pressure of the hydraulic oil at this time is zero.

【0009】アクチュエータが加工前あるいは加工後で
金型を含む機械が軽負荷で移動している期間は前述2台
の油圧ポンプが協同して作動油を送出してアクチュエー
タを移動させる。この時の作動油の圧力は低く、流量は
大きい。油圧ポンプの必要とする機械的入力は作動油の
圧力と流量の積であるから、それを駆動するサーボモー
タの機械的出力あるいは消費電力は低い値である。
Before and after the actuator is machined, the two hydraulic pumps cooperate to send hydraulic oil to move the actuator while the machine including the mold is moving under a light load. At this time, the pressure of the hydraulic oil is low and the flow rate is large. Since the mechanical input required by the hydraulic pump is the product of the pressure and flow rate of the hydraulic oil, the mechanical output or power consumption of the servomotor that drives it is low.

【0010】加工前の期間において金型がワークに接近
して接触が始まる直前か直後に大流量の油圧ポンプはア
クチュエータの押し側油圧回路から電磁弁等により切り
離されてアンロード運転状態になる。以後は小流量の油
圧ポンプのみがサーボモータにより駆動される。サーボ
モータの回転速度と出力トルクの積は油圧ポンプの機械
的入力に等しく、油圧ポンプの機械的出力である作動油
の流量Vと圧力Pの積に内部損失を加えた値に等しい。
いま、大流量の油圧ポンプの流量を3V、小流量の油圧
ポンプの流量を1Vとしよう。2台の油圧ポンプが協同
して送出する流量は4Vであり、この時発生し得る圧力
を1Pとしよう。2台の油圧ポンプが並行運転したまま
で金型がワークを加工すると、利用できる圧力は1Pで
ある。しかし、大流量の油圧ポンプを切り離して無負荷
にし、小流量の油圧ポンプのみで金型がワークを加工す
る場合は、サーボモータの出力トルクが小流量の油圧ポ
ンプに集中供給されるため発生できる圧力は4Pまで上
昇する。
Immediately before or immediately after the die approaches the workpiece and contact is started in the period before processing, the hydraulic pump with a large flow rate is disconnected from the hydraulic circuit on the pushing side of the actuator by an electromagnetic valve or the like to be in an unloading operation state. After that, only the hydraulic pump with a small flow rate is driven by the servo motor. The product of the rotational speed of the servomotor and the output torque is equal to the mechanical input of the hydraulic pump, and is equal to the product of the flow rate V and the pressure P of the hydraulic oil, which is the mechanical output of the hydraulic pump, plus internal loss.
Now, let's assume that the flow rate of the large flow rate hydraulic pump is 3V and the flow rate of the small flow rate hydraulic pump is 1V. The flow rate that the two hydraulic pumps send together is 4V, and the pressure that can be generated at this time is 1P. If the mold processes the work while the two hydraulic pumps are operating in parallel, the available pressure is 1P. However, when the hydraulic pump with a large flow rate is disconnected and no load is applied, and the die processes the work with only the hydraulic pump with a small flow rate, the output torque of the servo motor can be generated because it is centrally supplied to the hydraulic pump with a small flow rate. The pressure rises to 4P.

【0011】以上述べたように、本発明になる油圧回路
構成及び運転モードによれば、加工前あるいは加工後で
金型を含む機械が軽微な負荷であって急速に移動すべき
期間は、2台の油圧ポンプが協同して低圧力・大流量の
作動油を送出する。この期間は従来技術の油圧ポンプユ
ニットであればほぼ100%の定格電力を消費しながら
定格流量の作動油を送出している期間に相当する。これ
に対して本発明になる方式では、この期間の作動油の流
量は同じでも必要とする圧力はかなり低いから、サーボ
モータの消費電力もかなり小さい。
As described above, according to the hydraulic circuit configuration and the operation mode according to the present invention, the machine including the mold before or after the processing has a slight load, and the period in which the machine should move rapidly is 2 The hydraulic pumps of the units work together to deliver low pressure, high flow hydraulic oil. This period corresponds to a period during which the hydraulic pump unit according to the related art consumes almost 100% of the rated electric power and delivers the hydraulic oil of the rated flow rate. On the other hand, in the system according to the present invention, even if the flow rate of the hydraulic oil is the same during this period, the required pressure is considerably low, so that the power consumption of the servo motor is considerably small.

【0012】また本発明になる油圧回路構成及び運転モ
ードによれば、金型によるワークの加工中は1台の小流
量の油圧ポンプのみが高圧力・小流量の作動油を送出す
る。この期間は従来技術の油圧ポンプユニットであれば
アクチュエータが要求するだけの小流量しか出力しない
が、電力は定格電力に近い値を消費している期間に相当
する。これに対して本発明になる方式では、この期間の
作動油の圧力は従来技術の定格圧力並みの高圧力になる
が、流量はアクチュエータが要求するだけの小流量にな
るから、サーボモータの消費電力は極めて小さい。
Further, according to the hydraulic circuit configuration and the operation mode according to the present invention, only one hydraulic pump having a small flow rate delivers the hydraulic oil having a high pressure and a small flow rate during the machining of the work by the die. In this period, the hydraulic pump unit of the related art outputs only a small flow rate required by the actuator, but the power corresponds to a period in which a value close to the rated power is consumed. On the other hand, in the system according to the present invention, the pressure of the hydraulic oil during this period is as high as the rated pressure of the prior art, but the flow rate is as small as required by the actuator. The power is extremely small.

【0013】前述した用途例では加工時間は瞬間ともい
うべき短時間であって、小流量油圧ポンプが発生する圧
力はサーボモータから供給されるトルクによるものに加
えて、金型がワークを押し切る瞬間はアクチュエータが
急速に停止するために油圧ポンプが作動油を押し切る形
となり、サーボモータと油圧ポンプが短時間で停止させ
られるためにその慣性モーメントがサージトルクを発生
させ、このサージトルクにより駆動される油圧ポンプが
作動油にサージ圧力を発生させるため、従来技術の油圧
ポンプユニットが供給し得ない高圧力を短時間ではある
が加工力として供給することができる。このことは本発
明になる方式を利用するにあたって厳重に注意すべき点
である。即ち、瞬間的な高圧力を加工力として利用でき
るため金型の形状・寸法を従来技術による油圧プレスよ
りも精度よく写し取れる利点がある。この利点が有効に
利用できる加工分野は、例えばかしめであり、加工スト
ローク数ミリメータの冷間鍛造である。同じ冷間鍛造で
も加工ストロークが数センチメータになると短時間のサ
ージ圧力では加工できない。このような利点の反面、サ
ージ圧力が暴力的に油圧回路や機械本体を破損する危険
も並行して存在する。従って、本発明になる方式を使用
する場合は、その性格を熟知して安全な範囲で使いこな
すことが求められる。定格圧力より遥かに高い危険な圧
力限界を超えないために、安全弁を適用することも考え
られる。
In the above-mentioned application example, the processing time is a short time which should be called an instant, and the pressure generated by the small flow rate hydraulic pump is not only due to the torque supplied from the servo motor, but also at the moment when the die pushes out the work. Is a form in which the hydraulic pump pushes out the hydraulic oil because the actuator stops rapidly, and the servo motor and hydraulic pump are stopped in a short period of time, causing the moment of inertia to generate surge torque, which is driven by this surge torque. Since the hydraulic pump generates a surge pressure in the hydraulic oil, it is possible to supply a high pressure, which cannot be supplied by the hydraulic pump unit of the related art, as a processing force for a short time. This is a point to be careful when using the method according to the present invention. That is, since a momentary high pressure can be used as a processing force, there is an advantage that the shape and size of the die can be copied more accurately than the conventional hydraulic press. A processing field in which this advantage can be effectively utilized is, for example, caulking, and cold forging with a processing stroke of several millimeters. Even with the same cold forging, if the processing stroke is several centimeters, it cannot be processed with a short surge pressure. Despite these advantages, there is also the danger that surge pressure may violently damage the hydraulic circuit or machine body. Therefore, when the method according to the present invention is used, it is required to be familiar with its character and use it in a safe range. It is also conceivable to apply safety valves in order not to exceed dangerous pressure limits much higher than the rated pressure.

【0014】以上の説明において、本発明の方式では加
工前、加工後の金型を含む機械の移動動作中も、金型に
よるワークの加工中も、その何れにおいても従来技術の
電動油圧ポンプユニットに対比してサーボモータの消費
電力は相当小さかった。当然サーボモータの機械的出力
容量と、それに電力を供給するインバータを含む制御装
置の電気的出力容量が従来技術による電動油圧ポンプユ
ニットより小さくてよい。その比率は運転モードによる
が、およそ2分の1から3分の1である。
In the above description, according to the method of the present invention, the electric hydraulic pump unit of the prior art is used both during the moving operation of the machine including the mold before and after machining and during the machining of the work by the mold. In contrast, the power consumption of the servo motor was considerably small. Naturally, the mechanical output capacity of the servomotor and the electrical output capacity of the control device including the inverter supplying the electric power to the servomotor may be smaller than those of the electric hydraulic pump unit according to the related art. The ratio depends on the operation mode, but is about one half to one third.

【0015】[0015]

【発明の実施の形態】以上のような本発明になる動作様
態を実現する実施の形態につき、三つの事例について以
下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Three examples of the embodiment for realizing the above-described operation mode according to the present invention will be described below.

【0016】[0016]

【実施例】図1は本発明の第1の実施の形態を示す電気
回路・油圧回路図である。サーボモータ5に大流量油圧
ポンプ12と小流量油圧ポンプ13が連結されてある。
油圧ポンプ12は3ポート電磁弁14につながれてお
り、ノーマル位置では押し側油圧回路8に接続して油圧
シリンダー1に向って作動油を送出し、動作位置では引
き側油圧回路7に接続してアンロード運転になる。
1 is an electric circuit / hydraulic circuit diagram showing a first embodiment of the present invention. A large flow hydraulic pump 12 and a small flow hydraulic pump 13 are connected to the servomotor 5.
The hydraulic pump 12 is connected to a 3-port solenoid valve 14, and is connected to the push side hydraulic circuit 8 to send hydraulic oil toward the hydraulic cylinder 1 in the normal position and connected to the pull side hydraulic circuit 7 in the operating position. It becomes unloading operation.

【0017】いま、加工後の期間では3ポート電磁弁1
4はノーマル位置であって、サーボモータ5は逆回転し
て2台の油圧ポンプ12、13は協同して押し側油圧回
路8から作動油を吸引して引き側油圧回路7に送出して
油圧シリンダー1は早い移動速度で引き動作を行う。次
に加工前の期間では3ポート電磁弁14はノーマル位置
にあってサーボモータ5は正回転して2台の油圧ポンプ
12、13は協同して引き側油圧回路7から作動油を吸
引して押し側油圧回路8に送出して油圧シリンダー1は
早い移動速度で押し動作を行う。油圧シリンダー1に設
置した位置検出器3が所定位置に達したとの位置情報を
伝送すると、受け取った制御装置4は3ポート電磁弁1
4に制御電圧を印加して動作位置に動かし、大流量油圧
ポンプ12は押し側油圧回路から切り離されてアンロー
ド運転に入り、小流量油圧ポンプ13が単独で必要な高
圧力を押し側油圧回路8に送出して所定の圧力まで油圧
を上昇させる。この間、圧力検出器9は押し側油圧回路
8の圧力情報を伝送し、それを受け取る制御装置4は設
定された圧力を小流量油圧ポンプ13が供給できるよう
にサーボモータ5に送る電力の電圧・周波数をフィード
バック制御する。
Now, in the period after processing, the 3-port solenoid valve 1
4 is a normal position, the servomotor 5 is rotated in the reverse direction, and the two hydraulic pumps 12 and 13 cooperate to suck the hydraulic oil from the push side hydraulic circuit 8 and send it to the pull side hydraulic circuit 7 for hydraulic pressure. The cylinder 1 pulls at a high moving speed. Next, in the period before processing, the 3-port solenoid valve 14 is in the normal position, the servo motor 5 rotates forward, and the two hydraulic pumps 12 and 13 cooperate to suck the hydraulic oil from the pull-side hydraulic circuit 7. The hydraulic cylinder 1 is sent to the push side hydraulic circuit 8 to perform the pushing operation at a high moving speed. When the position detector 3 installed in the hydraulic cylinder 1 transmits the position information indicating that the position detector 3 has reached a predetermined position, the control device 4 that receives the position information receives the position information.
4, a control voltage is applied to move to the operating position, the large flow rate hydraulic pump 12 is disconnected from the push side hydraulic circuit and the unloading operation is started, and the small flow rate hydraulic pump 13 independently applies the necessary high pressure to the push side hydraulic circuit. 8 to raise the hydraulic pressure to a predetermined pressure. During this time, the pressure detector 9 transmits the pressure information of the push side hydraulic circuit 8, and the control device 4 which receives the pressure information supplies the voltage to the servo motor 5 so that the small flow hydraulic pump 13 can supply the set pressure. Frequency feedback control.

【0018】第1の実施例では3ポート電磁弁を用いた
が、3ポート電磁弁以外の電磁弁による組み合わせでも
課題を解決するための方法で説明した機能を実現するこ
とができる。これらは容易に考案できるものであり、本
発明はここに挙げた実施例に限定されるものではない。
なお、図1の2ポート手動切換弁は停止時にシリンダー
が落下しないように安全のために設けたものであって、
本発明に必須の要素ではない。
Although the three-port solenoid valve is used in the first embodiment, the function described in the method for solving the problem can be realized by a combination of solenoid valves other than the three-port solenoid valve. These can be easily devised, and the present invention is not limited to the examples given here.
The 2-port manual switching valve shown in FIG. 1 is provided for safety so that the cylinder will not drop when stopped.
It is not an essential element of the present invention.

【0019】第2の実施例は図1において、加工前の期
間から加工期間に入ったことを金型がワークに接触し
て、油圧シリンダーが急速に減速し、作動油の圧力が急
上昇するのを、圧力検出器3が伝送する圧力情報の急激
な変動により制御装置4が検知して3ポート電磁弁14
に制御電圧を印加して動作位置に動かし、大流量油圧ポ
ンプ12を押し側油圧回路8から切り離してアンロード
運転し、小流量油圧ポンプ13が単独で高圧力の作動油
を送出する方式である。
In the second embodiment shown in FIG. 1, when the machining period is entered from the period before machining, the die comes into contact with the work, the hydraulic cylinder is rapidly decelerated, and the pressure of the hydraulic oil is rapidly increased. Is detected by the control device 4 due to a sudden change in pressure information transmitted by the pressure detector 3, and the 3-port solenoid valve 14 is detected.
A control voltage is applied to the valve to move it to the operating position, the large flow rate hydraulic pump 12 is disconnected from the push side hydraulic circuit 8 and unloading is performed, and the small flow rate hydraulic pump 13 independently sends out high pressure hydraulic oil. .

【0020】図2は第3の実施例を示す。第1と第2の
実施例では位置検出器3や圧力検出器9から伝送される
情報により電磁弁が操作されたが、第3の実施例では所
定の圧力に達したら大流量油圧ポンプ12を押し側油圧
回路8から切り離し、アンロード運転に入る油圧操作の
3ポート可変絞り弁17を用いる。この3ポート可変絞
り弁17の動作圧力は例えば定格圧力の3分の1のよう
に低く設定されてある。金型がワークに接触して加工期
間に入ることにより、油圧シリンダー1が停止してもな
お送り込まれる作動油により急速に押し側油圧回路8の
圧力が上昇すると、3ポート可変絞り弁がノーマル位置
から動作位置に切り替わって大流量油圧ポンプ12はア
ンロード運転に入り、以後は小流量油圧ポンプ13によ
り加工が行われる。
FIG. 2 shows a third embodiment. In the first and second embodiments, the solenoid valve is operated by the information transmitted from the position detector 3 and the pressure detector 9, but in the third embodiment, the large flow rate hydraulic pump 12 is operated when the predetermined pressure is reached. A hydraulically operated three-port variable throttle valve 17 is used which is separated from the push side hydraulic circuit 8 and enters the unloading operation. The operating pressure of the 3-port variable throttle valve 17 is set low, for example, one third of the rated pressure. If the pressure of the push side hydraulic circuit 8 rises rapidly due to the hydraulic oil that is sent even when the hydraulic cylinder 1 is stopped due to the die coming into contact with the workpiece and entering the processing period, the 3-port variable throttle valve will move to the normal position. To the operating position, the large flow rate hydraulic pump 12 enters the unloading operation, and thereafter, the small flow rate hydraulic pump 13 performs processing.

【0021】[0021]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0022】油圧エネルギー使用パターンが大流量・低
圧力と小流量・高圧力の2パターンよりなる用途におい
て、本発明になる油圧方式を適用すれば、従来技術の油
圧ポンプユニットを使用する場合に較べて制御装置の電
気的出力及びサーボモータの機械的出力を2分の1から
3分の1程度まで低減することができる。
In the application where the hydraulic energy use pattern has two patterns of large flow rate / low pressure and small flow rate / high pressure, when the hydraulic system according to the present invention is applied, compared with the case of using the hydraulic pump unit of the prior art. Thus, the electrical output of the control device and the mechanical output of the servomotor can be reduced to about 1/2 to 1/3.

【0023】また、本発明によれば、装置の小型軽量
化、低価格化が可能となる。
Further, according to the present invention, it is possible to reduce the size and weight of the device and reduce the cost.

【0024】また、本発明の方式は加工の瞬間に発生す
るサージ圧力を積極的に利用することにより、同一規模
でより高加工力の油圧機械を得ることができる。
Further, according to the method of the present invention, by positively utilizing the surge pressure generated at the moment of machining, it is possible to obtain a hydraulic machine having a higher machining force on the same scale.

【0025】更に、この発明によれば、同一の作業内容
に対して従来技術より大幅な省エネ化が可能になる。
Further, according to the present invention, it is possible to significantly save energy as compared with the prior art for the same work content.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の請求項1及び請求項2に相当する
実施例の電気回路・油圧回路図である。
FIG. 1 is an electric circuit / hydraulic circuit diagram of an embodiment corresponding to claim 1 and claim 2 of the present invention.

【図2】 この発明の請求項3に相当する実施例の電気
回路・油圧回路図である。
FIG. 2 is an electric circuit / hydraulic circuit diagram of an embodiment corresponding to claim 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 油圧シリンダー 2 出力軸 3 位置検出器 4 制御装置 5 サーボモータ 6 油圧ポンプ 7 引き側油圧回路 8 押し側油圧回路 9 圧力検出器 10 低圧優先シヤトル弁 11 油タンク 12 大流量油圧ポンプ 13 小流量油圧ポンプ 14 3ポート電磁弁 17 3ポート可変絞り弁 20 2ポート手動切換弁 1 hydraulic cylinder 2 output shaft 3 position detector 4 control device 5 Servo motor 6 hydraulic pump 7 Pulling side hydraulic circuit 8 Push side hydraulic circuit 9 Pressure detector 10 Low pressure priority shuttle valve 11 oil tank 12 Large flow hydraulic pump 13 Small flow hydraulic pump 14 3-port solenoid valve 17 3-port variable throttle valve 20 2-port manual switching valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】1動作サイクルの殆どの期間において移動
するだけで要求される力が軽微であって限られた短い期
間だけに最大の力を発生することが必要な用途に用いら
れ、 前述力を発生するアクチュエータは一定圧力を供給する
油圧ポンプユニットから油圧エネルギーの供給を受ける
のでなく、 1台のサーボモータに流量が大きな油圧ポンプと流量が
小さな油圧ポンプの2台の油圧ポンプが連結されてお
り、 前述要求される力が軽微な期間は前述2台の油圧ポンプ
は協同してアクチュエータに作動油を送出し、 前述最大の力を要求される期間が接近したことをアクチ
ュエータの作動部の位置検出装置により検知したら電磁
切替弁により油圧回路を切り替えて前述流量が大きな油
圧ポンプはアクチュエータへ向っての作動油の送出を停
止して機械的に無負荷状態となり、 前述最大の力を要求される期間は前述流量が小さな油圧
ポンプのみがアクチュエータに作動油を送出するように
制御されてなる電動油圧アクチュエータ。
1. A device for use in an application in which the force required only by moving in most of one operation cycle is slight and the maximum force is required to be generated only in a limited short period. The actuator that generates is not supplied with hydraulic energy from the hydraulic pump unit that supplies a constant pressure, but two hydraulic pumps, one with a large flow rate and the other with a small flow rate, are connected to one servomotor. During the period when the required force is small, the two hydraulic pumps cooperate to send hydraulic oil to the actuator, and when the period when the maximum force is required approaches, the position of the actuator operating part is changed. When it is detected by the detection device, the hydraulic circuit is switched by the electromagnetic switching valve and the hydraulic pump with a large flow rate stops the delivery of hydraulic oil to the actuator. An electro-hydraulic actuator that is controlled so that only the hydraulic pump with a small flow rate delivers hydraulic fluid to the actuator during the period in which it is mechanically unloaded and the maximum force is required.
【請求項2】1動作サイクルの殆どの期間において移動
するだけで要求される力が軽微であって限られた短い期
間だけに最大の力を発生することが必要な用途に用いら
れ、 前述力を発生するアクチュエータは一定圧力を供給する
油圧ポンプユニットから油圧エネルギーの供給を受ける
のでなく、 1台のサーボモータに流量が大きな油圧ポンプと流量が
小さな油圧ポンプの2台の油圧ポンプが連結されてお
り、 前述要求される力が軽微な期間は前述2台の油圧ポンプ
は協同してアクチュエータに作動油を送出し、 前述最大の力を要求される期間が到来して油圧が急激に
上昇したことを圧力センサーにより検知したら電磁切替
弁により油圧回路を切り替えて前述流量が大きな油圧ポ
ンプはアクチュエータへ向っての作動油の送出を停止し
て機械的に無負荷状態となり、 前述最大の力を要求される期間は前述流量が小さな油圧
ポンプのみがアクチュエータに作動油を送出するように
制御されてなる電動油圧アクチュエータ。
2. The above-mentioned force is used for an application in which the force required only by moving in most of one operation cycle is small and the maximum force is required to be generated only in a limited short period. The actuator that generates is not supplied with hydraulic energy from the hydraulic pump unit that supplies a constant pressure, but two hydraulic pumps, one with a large flow rate and the other with a small flow rate, are connected to one servomotor. During the period when the required force is small, the two hydraulic pumps work together to deliver hydraulic oil to the actuator, and the period when the maximum force is required has arrived and the hydraulic pressure has sharply increased. When the hydraulic pressure is detected by the pressure sensor, the hydraulic circuit is switched by the electromagnetic switching valve, and the hydraulic pump with a large flow rate stops sending hydraulic oil to the actuator and stops The electro-hydraulic actuator is controlled so that only the hydraulic pump with a small flow rate delivers hydraulic oil to the actuator during the period in which the maximum force is required, because it is in a no-load state.
【請求項3】1動作サイクルの殆どの期間において移動
するだけで要求される力が軽微であって限られた短い期
間だけに最大の力を発生することが必要な用途に用いら
れ、 前述力を発生するアクチュエータは一定圧力を供給する
油圧ポンプユニットから油圧エネルギーの供給を受ける
のでなく、 1台のサーボモータに流量が大きな油圧ポンプと流量が
小さな油圧ポンプの2台の油圧ポンプが連結されてお
り、 前述要求される力が軽微な期間は前述2台の油圧ポンプ
は協同してアクチュエータに作動油を送出し、 前述最大の力を要求される期間が到来して油圧が設定圧
力を超えて上昇したら圧力により機械的に作動する切替
弁により油圧回路を切り替えて前述流量が大きな油圧ポ
ンプはアクチュエータへ向っての作動油の送出を停止し
て機械的に無負荷状態となり、 前述最大の力を要求される期間は前述流量が小さな油圧
ポンプのみがアクチュエータに作動油を送出するように
制御されてなる電動油圧アクチュエータ。
3. The method according to claim 1, wherein the force required only by moving in most of one operation cycle is small and the maximum force is required to be generated only in a limited short period. The actuator that generates is not supplied with hydraulic energy from the hydraulic pump unit that supplies a constant pressure, but two hydraulic pumps, one with a large flow rate and the other with a small flow rate, are connected to one servomotor. During the period when the required force is small, the two hydraulic pumps cooperate to send hydraulic oil to the actuator, and the period when the maximum force is required comes and the hydraulic pressure exceeds the set pressure. When it rises, the hydraulic circuit is switched mechanically by pressure to switch the hydraulic circuit, and the hydraulic pump with a large flow rate stops the delivery of hydraulic oil to the actuator and stops The electro-hydraulic actuator is controlled so that only the hydraulic pump with a small flow rate delivers hydraulic oil to the actuator during the period in which the maximum force is required, because it is in a no-load state.
JP2001232833A 2001-06-27 2001-06-27 Electro-hydraulic actuator for forging press, caulking press or the like Withdrawn JP2003013906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232833A JP2003013906A (en) 2001-06-27 2001-06-27 Electro-hydraulic actuator for forging press, caulking press or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232833A JP2003013906A (en) 2001-06-27 2001-06-27 Electro-hydraulic actuator for forging press, caulking press or the like

Publications (1)

Publication Number Publication Date
JP2003013906A true JP2003013906A (en) 2003-01-15

Family

ID=19064686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232833A Withdrawn JP2003013906A (en) 2001-06-27 2001-06-27 Electro-hydraulic actuator for forging press, caulking press or the like

Country Status (1)

Country Link
JP (1) JP2003013906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053766A1 (en) * 2008-10-21 2010-04-22 Voith Patent Gmbh Hydraulic press drive and method for operating a hydraulic press drive
US20140346211A1 (en) * 2011-09-06 2014-11-27 Gaindu, S.L. Machine for breaking a connecting rod
JP2016114188A (en) * 2014-12-16 2016-06-23 株式会社ショーワ Pump device and tilt/trim device of outboard engine
CN110481086A (en) * 2019-09-17 2019-11-22 中国工程物理研究院化工材料研究所 A kind of multichannel variable damping powder compacting pressing tool and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053766A1 (en) * 2008-10-21 2010-04-22 Voith Patent Gmbh Hydraulic press drive and method for operating a hydraulic press drive
US20140346211A1 (en) * 2011-09-06 2014-11-27 Gaindu, S.L. Machine for breaking a connecting rod
US9821387B2 (en) * 2011-09-06 2017-11-21 Gaindu, S.L. Machine for breaking a connecting rod
JP2016114188A (en) * 2014-12-16 2016-06-23 株式会社ショーワ Pump device and tilt/trim device of outboard engine
CN110481086A (en) * 2019-09-17 2019-11-22 中国工程物理研究院化工材料研究所 A kind of multichannel variable damping powder compacting pressing tool and its control method

Similar Documents

Publication Publication Date Title
US6647719B2 (en) Hydraulic oscillator as a drive of machines
CN102420552B (en) Control loop and control method for improving starting and stopping performance of motor
CN104929992A (en) Energy-saving design method for variable-load servo control system
CN115076162B (en) Double-pump double-loop electro-hydraulic load sensing system with independently controlled valve ports and control method
Willkomm et al. Potentials of speed and displacement variable pumps in hydraulic applications
JP4194868B2 (en) Hydraulic control system
CN113323930B (en) Multistage pressure control and pressure speed regulation hydraulic system and operation machinery
JP2003013907A (en) Electro-hydraulic actuator for compression molding machine, injection molding machine or the like
JP2003013906A (en) Electro-hydraulic actuator for forging press, caulking press or the like
CN110541868B (en) Engineering machinery slewing braking energy recovery system utilizing flywheel to store energy
CN107839750A (en) A kind of servo steering system and automobile
CN103306959B (en) Power air compressor and controlling method thereof
CN107725504B (en) Hydraulic system capable of providing proper performance for load and hydraulic control method
Imamura et al. Energy-saving hybrid hydraulic system comprising highly efficient IPM motor and inverter, for injection molding and manufacturing machine
CN202833367U (en) Mortar pump hydraulic system and mortar pump
CN102705211B (en) A kind of variable pump small displacement and little pressure control loop and control method thereof
JP2003011000A (en) Hydraulic circuit of hydraulic press for cold forging and the like
CN108915021B (en) Multi-mode rotary electrohydraulic control system for hydraulic excavator
CN1432739A (en) Current associating and unloading control method for multiple-pump hydraulic system
CN209818444U (en) Hydraulic cylinder position control system based on bidirectional pressure regulation
CN111156210A (en) Pumping oil cylinder control system and control method for concrete pump
CN111734700A (en) Engineering machine, hydraulic system and control method thereof
CN112112869A (en) Control module and hydraulic system
CN217152453U (en) Crane rotary energy-saving hydraulic system based on independent load port
CN111350706B (en) Pulse width modulation type hydraulic transformer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902