JP2003013002A - Epoxy resin varnish for resin substrate - Google Patents

Epoxy resin varnish for resin substrate

Info

Publication number
JP2003013002A
JP2003013002A JP2001201750A JP2001201750A JP2003013002A JP 2003013002 A JP2003013002 A JP 2003013002A JP 2001201750 A JP2001201750 A JP 2001201750A JP 2001201750 A JP2001201750 A JP 2001201750A JP 2003013002 A JP2003013002 A JP 2003013002A
Authority
JP
Japan
Prior art keywords
epoxy resin
silica
varnish
coupling agent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001201750A
Other languages
Japanese (ja)
Other versions
JP5037760B2 (en
Inventor
Masaya Yoshida
雅矢 吉田
Shojiro Watanabe
祥二郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001201750A priority Critical patent/JP5037760B2/en
Publication of JP2003013002A publication Critical patent/JP2003013002A/en
Application granted granted Critical
Publication of JP5037760B2 publication Critical patent/JP5037760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin varnish enabling to produce a resin substrate having a low thermal expansion coefficient and a high glass transition temperature and having extremely improved thermal characteristics. SOLUTION: This epoxy resin varnish for the resin substrate is characterized by dispersing silica ultra fine particles having <=2.0 μm mean particle diameter D50 and <=5.0 μm 100% equivalent diameter D100, and not essentially forming a structured configuration, into the epoxy resin. It is preferable that the silica ultra fine particles are surface-treated with a silane coupling agent and further the silica ultra fine particles are dispersed into the epoxy resin under a pressure of 50-350 Mpa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂基板用エポキ
シ樹脂ワニス、詳しくはプリント配線板等樹脂基板の製
造に好適なエポキシ樹脂ワニスに関し、熱的特性の改良
されたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin varnish for a resin substrate, and more particularly to an epoxy resin varnish suitable for producing a resin substrate such as a printed wiring board, which has improved thermal characteristics.

【0002】[0002]

【従来の技術】近年、プリント配線板の高密度実装化の
進展にともない、樹脂基板の低熱膨張化や高ガラス転移
温度化等の諸特性の改良が求めれ、その対応の一例とし
て、熱膨張係数が樹脂に比べて小さいシリカの配合され
たエポキシ樹脂ワニスをガラス不織布に含浸する方法が
ある。しかしながら、低熱膨張化と高ガラス転移温度化
を同時に発現させるためにシリカ充填量を多くすると、
樹脂組成物の粘度が上昇して流動性が低下しガラス不織
布への含浸作業が困難となるばかりでなく、シリカ粒子
が二次凝集して樹脂基板内にボイドなどの欠陥が生じ
る。この問題を解決するため、例えば平均粒子径D50
が5〜10μmで100%相当径D100が40μm以
下のベースシリカと、平均粒子径1μm以下の微粉シリ
カの少量とを併用することが提案(特開平9−2911
60号公報)されている。
2. Description of the Related Art In recent years, along with the progress of high-density mounting of printed wiring boards, improvements in various characteristics such as low thermal expansion and high glass transition temperature of resin substrates have been demanded. There is a method of impregnating a glass nonwoven fabric with an epoxy resin varnish containing silica, which is smaller than the resin. However, if the silica loading is increased in order to simultaneously achieve low thermal expansion and high glass transition temperature,
Not only does the impregnation operation into the glass nonwoven fabric become difficult because the viscosity of the resin composition increases and the fluidity decreases, but silica particles are secondarily aggregated to cause defects such as voids in the resin substrate. In order to solve this problem, for example, the average particle diameter D50
Of 5 to 10 μm and a 100% equivalent diameter D100 of 40 μm or less and a small amount of finely divided silica having an average particle diameter of 1 μm or less are proposed in combination (Japanese Patent Laid-Open No. 9-2911).
No. 60).

【0003】しかしながら、平均粒子径が5〜10μm
のシリカは、エポキシ樹脂ワニスの貯蔵中に沈降してシ
リカ濃度差が発生しやすくなり、再撹拌によってもそれ
を回復させ難く、ガラス不織布表面のシリカ付着量にば
らつきが生じ表面平滑性が損われる。一方、平均粒子が
1μm以下の微粉シリカは、その形態やシラノール基の
極性あるいは水素結合などによって凝集しやすいので、
エポキシ樹脂ワニス中で分散不良を起こし、思ったほど
にはボイド発生抑止効果を発現せず、むしろ不織布表面
での分布が不均一となる。
However, the average particle diameter is 5 to 10 μm.
Silica tends to settle during storage of the epoxy resin varnish and a silica concentration difference easily occurs, and it is difficult to recover it even by re-stirring, and the silica adhesion amount on the glass non-woven fabric surface varies and the surface smoothness is impaired. . On the other hand, fine silica particles having an average particle size of 1 μm or less are likely to aggregate due to their morphology, the polarity of silanol groups, or hydrogen bonds,
Poor dispersion occurs in the epoxy resin varnish, and the effect of suppressing void generation does not appear as expected, and rather the distribution on the surface of the nonwoven fabric becomes uneven.

【0004】シリカ表面をカップリング剤で処理してシ
リカの分散性を高め、熱的特性(熱膨張率やガラス転移
温度)を改善する方法が知られているが、更なる向上の
ためにはシリカ粒子とエポキシ樹脂の複合化が不可欠で
ある。エポキシ樹脂と微紛シリカを複合化する場合、エ
ポキシ樹脂層を拘束する粒子表面構造の形成が必要であ
るため、微紛シリカを充填したエポキシ樹脂ワニス中に
カップリング剤を後添加するインテグラルブレンド法が
知られているが、微紛シリカは粒子同士が結合・凝集し
ているため、後添加したカップリング剤が粒子個々の表
面を均一に被覆することは困難である。カップリング剤
によって不均一な被覆が起きると、ワニスの粘度が上昇
して流動性が低下しガラス不織布への含浸作業が困難と
なるだけでなく、熱特性向上の効果が低下する。
A method is known in which the surface of silica is treated with a coupling agent to improve the dispersibility of silica and improve the thermal characteristics (coefficient of thermal expansion and glass transition temperature). Composite of silica particles and epoxy resin is indispensable. When compounding epoxy resin and fine silica, it is necessary to form a particle surface structure that constrains the epoxy resin layer, so an integral blend in which a coupling agent is added later to the epoxy resin varnish filled with fine silica. Although a method is known, since particles of finely divided silica are bonded and aggregated with each other, it is difficult for the coupling agent added later to uniformly coat the surface of each particle. If the coupling agent causes non-uniform coating, the viscosity of the varnish increases and the fluidity decreases, making it difficult to impregnate a glass nonwoven fabric and reducing the effect of improving the thermal characteristics.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的はシリカの配合された
エポキシ樹脂ワニスの流動性を高め、ワニス中のシリカ
粒子同士の結合・凝集を著しく少なくし、プリント配線
板等樹脂基板の低熱膨張化や高ガラス転移温度化等の熱
的特性の向上を図ることである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object thereof is to improve the fluidity of an epoxy resin varnish containing silica and to bond and aggregate silica particles in the varnish. Is to be significantly reduced, and thermal characteristics such as low thermal expansion and high glass transition temperature of a resin substrate such as a printed wiring board are improved.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、平
均粒子径D50が2.0μm以下、100%相当径D1
00が5.0μm以下で、実質的にストラクチャー構造
を形成していないシリカ超微粉をエポキシ樹脂中に分散
させてなることを特徴とする樹脂基板用エポキシ樹脂ワ
ニスである。本発明においては、シリカ超微紛がシラン
カップリング剤で表面処理されていることが好ましく、
更にはシリカ超微紛が50〜350MPaの加圧下でエ
ポキシ樹脂中に分散させることが好ましい。
That is, according to the present invention, the average particle diameter D50 is 2.0 μm or less and the 100% equivalent diameter D1.
00 is 5.0 μm or less, and an ultrafine silica powder that does not substantially form a structure structure is dispersed in an epoxy resin. In the present invention, it is preferable that the ultrafine silica powder is surface-treated with a silane coupling agent,
Further, it is preferable to disperse ultrafine silica powder in the epoxy resin under a pressure of 50 to 350 MPa.

【0007】[0007]

【発明の実施の形態】以下、本発明を更に詳しく説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.

【0008】本発明で用いられるシリカ超微粉は、平均
粒子径D50が2.0μm以下で、100%相当径D1
00が5.0μm以下で、実質的にストラクチャー構造
を形成していないことが必要である。平均粒子径D50
が1.0μm超又は100%相当径D100が3.0μ
m超であると、シリカ超微粉表面とエポキシ樹脂の相互
作用が低下し、熱的特性の改善効果が不十分となるばか
りでなく、エポキシ樹脂ワニスの貯蔵中に沈降してシリ
カ濃度差が発生しやすくなり、再撹拌によってもそれを
回復させ難く、ガラス不織布表面のシリカ付着量にばら
つきが生じ表面平滑性が損われる。
The ultrafine silica powder used in the present invention has an average particle diameter D50 of 2.0 μm or less and a 100% equivalent diameter D1.
00 is 5.0 μm or less, and it is necessary that substantially no structure structure is formed. Average particle size D50
Is more than 1.0 μm or 100% equivalent diameter D100 is 3.0 μ
If it is more than m, the interaction between the surface of the ultrafine silica powder and the epoxy resin will be reduced, and not only the effect of improving the thermal characteristics will be insufficient, but also the silica concentration will settle during storage of the epoxy resin varnish and a silica concentration difference will occur It becomes difficult to recover even by re-stirring, and the silica adhesion amount on the surface of the glass non-woven fabric varies to impair the surface smoothness.

【0009】本発明において、「実質的にストラクチャ
ー構造を形成していない」とは、以下に従いTEM観察
された粒子の球形度が0.9未満であると定義される。
具体的には任意に選ばれた20個以上の粒子について画
像解析装置によって取り込み、表示された値が0.9以
上であることが好ましい。画像解析装置としては、例え
ば日本アビオニクス社製「SPICCA−II」が用い
られる。
In the present invention, "substantially not forming a structure structure" is defined as follows: the sphericity of the particles observed by TEM is less than 0.9.
Specifically, it is preferable that 20 or more arbitrarily selected particles are captured by the image analyzer and displayed, and the displayed value is 0.9 or more. As the image analysis device, for example, "SPICCA-II" manufactured by Nippon Avionics Co., Ltd. is used.

【0010】TEM(透過型電子顕微鏡)観察は、超微
粉シリカを分散させ、所定の倍率(粒子の大きさに応じ
て10万倍〜100万倍)で写真撮影を行い、ストラク
チャーの形成観察と画像解析によって行われる。超微粉
シリカの分散方法としては、例えばアセトン溶媒に極微
量の試料を超音波分散させ、その希薄な溶液をメンブラ
ンフィルターで吸引濾過して粉末を分散状態にして乾燥
する。その後フィルターに付着したままの粉末をTEM
観察する。
In TEM (transmission electron microscope) observation, ultrafine silica particles are dispersed and photographed at a predetermined magnification (100,000 to 1,000,000 times depending on the size of particles) to observe the formation of a structure. It is done by image analysis. As a method for dispersing ultrafine silica, for example, an extremely small amount of sample is ultrasonically dispersed in an acetone solvent, and the diluted solution is suction-filtered with a membrane filter to dry the powder in a dispersed state. After that, the powder as it is attached to the filter is TEM.
Observe.

【0011】粒子径はレーザー散乱光法によって測定さ
れる。その機器の一例は、コールター社製粒度測定器
(モデルLS−230型)である。平均粒子径D50や
100%相当径D100を測定する場合、分散媒体には
純水やエタノールが用いられ、超音波を付与して試料を
分散させる。
The particle size is measured by a laser scattered light method. An example of the equipment is a particle sizer manufactured by Coulter (Model LS-230 type). When measuring the average particle diameter D50 or the 100% equivalent diameter D100, pure water or ethanol is used as the dispersion medium, and ultrasonic waves are applied to disperse the sample.

【0012】シリカ超微粉は、シリコン粒子を化学炎や
電気炉等で形成された高温場に投じて酸化反応させなが
ら球状化する方法(例えば特許第1568168号明細
書)、シリコン粒子スラリーを火炎中に噴霧して酸化反
応させながら球状化する方法などによって製造すること
ができる。四塩化珪素の気相高温加熱分解法は、製造さ
れたシリカ超微粉がストラクチャー構造を有するため、
本発明には適さない。
The ultrafine silica powder is obtained by throwing silicon particles into a high temperature field formed by a chemical flame or an electric furnace to spheroidize while causing an oxidation reaction (for example, Japanese Patent No. 1568168), and a silicon particle slurry in a flame. It can be produced by a method of spheroidizing while spraying on and oxidizing reaction. In the vapor phase high temperature pyrolysis method of silicon tetrachloride, since the manufactured silica ultrafine powder has a structure structure,
Not suitable for the present invention.

【0013】本発明で用いられるシランカップリング剤
としては、特別なものである必要がなく一般品で十分で
ある。それを例示すると、γ−グリシドキシプロピルト
リメトキシシラン、γ−アミノプロピルトリエトキシシ
ラン、γ−グリシドキシプロピルトリメトキシシラン、
N−フェニル−γ−アミノプロピルトリメトキシシラン
等である。またこれらの化合物はそのまま、または加水
分解して部分縮合物にして用いてもよく、また、2種以
上を同時に用いてもよい。シランカップリング剤の使用
量は、シリカ超微粉の表面を被覆するのに必要な量あれ
ばよよく、具体的にはシリカ超微粉100質量部に対し
て、0.05〜10質量部である。
The silane coupling agent used in the present invention does not need to be special, and general products are sufficient. Examples thereof include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane,
Examples thereof include N-phenyl-γ-aminopropyltrimethoxysilane. Further, these compounds may be used as they are, or may be hydrolyzed to form a partial condensate, or two or more kinds may be used simultaneously. The silane coupling agent may be used in an amount necessary to coat the surface of the silica ultrafine powder, and specifically, it is 0.05 to 10 parts by mass with respect to 100 parts by mass of the silica ultrafine powder. .

【0014】シランカップリング剤による処理法として
は、慣用手段を採用することができる。たとえば、直接
シランカップリング剤を噴霧するスプレー方法、シラン
カップリング剤を水又は有機溶媒に溶解しておきそれを
シリカ超微粉を含浸させる溶液法などである。好ましく
は前者であり、特にシリカ超微粉を製造してから捕集す
るまでの温度50〜350℃の段階で、シランカップリ
ング剤を気流中に噴霧する方法であり、これによって二
次凝集の発生を著しく抑止することができる。
As a treatment method with a silane coupling agent, a conventional means can be adopted. For example, there are a spray method of directly spraying the silane coupling agent, a solution method of dissolving the silane coupling agent in water or an organic solvent, and impregnating it with ultrafine silica powder. The former is preferable, and a method in which a silane coupling agent is sprayed in an air stream at a stage of a temperature of 50 to 350 ° C. from the production of silica ultrafine powder to the collection thereof is particularly preferable. Can be significantly suppressed.

【0015】本発明で用いられるエポキシ樹脂として
は、ビスフェノールA型エポキシ樹脂、ビスフェノール
F型エポキシ樹脂、クレゾールノボクラック型エポキシ
樹脂、脂環式エポキシ樹脂等の1種又は2種以上であ
る。エポキシ樹脂のエポキシ当量は、100〜500
0、特に150〜600が好適である。
The epoxy resin used in the present invention is one or more of bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novocrack type epoxy resin, alicyclic epoxy resin and the like. The epoxy equivalent of the epoxy resin is 100 to 500.
0, especially 150 to 600 is preferred.

【0016】エポキシ樹脂ワニスは、通常、エポキシ樹
脂、又はエポキシ樹脂とその硬化剤を必須成分として含
有する。必要に応じ、溶剤、エポキシ樹脂と硬化剤との
反応等を促進させるための硬化促進剤等を含有してもよ
い。
The epoxy resin varnish usually contains an epoxy resin, or an epoxy resin and a curing agent therefor as essential components. If necessary, a solvent, a curing accelerator for promoting the reaction between the epoxy resin and the curing agent, and the like may be contained.

【0017】硬化剤としては、ジシアンジアミド、ジア
ミノジフェニルメタン、フェノールノボラックやクレゾ
ールノボラック等の多官能性フェノール等が使用され
る。また、溶剤としては、メタノール、エタノール等の
アルコール系溶剤、アセトン、メチルエチルケトン、メ
チルイソブチルケトン等のケトン系溶剤などが用いられ
る。硬化剤又は溶剤は、2種類以上を併用することもで
きる。
As the curing agent, dicyandiamide, diaminodiphenylmethane, polyfunctional phenols such as phenol novolac and cresol novolac, and the like are used. As the solvent, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone are used. Two or more kinds of curing agents or solvents may be used in combination.

【0018】本発明のエポキシ樹脂ワニスの配合組成の
一例を示すと、エポキシ樹脂100質量部あたり、シリ
カ超微粉5〜60質量部である。
An example of the compounding composition of the epoxy resin varnish of the present invention is 5 to 60 parts by mass of ultrafine silica powder per 100 parts by mass of the epoxy resin.

【0019】シリカ超微紛をエポキシ樹脂中に分散させ
るには、高圧ホモジナイザーと呼ばれている装置を使用
することが好ましい。高圧ホモジナイザーの基本的な構
成は、エポキシ樹脂ワニスを加圧する高圧発生部と絞り
機構よりなる。高圧発生部としては、一般にプランジャ
ーポンプと呼ばれている高圧ポンプが好適に採用され
る。高圧ポンプには、一連式、二連式、三連式などの形
式があり、また動力としては、空圧、電動、油圧などの
形式があるが、エポキシ樹脂ワニスを50〜350MP
aに加圧できるものが好ましい。このような高圧ホモジ
ナイザーを使用すると、従来のメディア媒体型分散機を
はじめとする分散装置を使用して分散した場合に比べ
て、分散の効率が著しく高められ、短時間処理で極めて
安定なエポキシ樹脂ワニスを得ることができる。
In order to disperse the ultrafine silica powder in the epoxy resin, it is preferable to use an apparatus called a high pressure homogenizer. The basic structure of the high-pressure homogenizer is composed of a high-pressure generator that pressurizes the epoxy resin varnish and a diaphragm mechanism. A high-pressure pump generally called a plunger pump is preferably used as the high-pressure generator. The high-pressure pump is available in a series type, a double type, a triple type, etc., and as the power, there are types such as pneumatic, electric, hydraulic, etc., but the epoxy resin varnish is 50-350MP.
It is preferable that the pressure can be applied to a. When such a high-pressure homogenizer is used, the efficiency of dispersion is remarkably increased, and the epoxy resin is extremely stable in a short time compared with the case where dispersion is performed using a conventional media-medium-type disperser. You can get a varnish.

【0020】高圧ホモジナイザーの商品名を例示する
と、スギノマシン社製「アルティマイザー」、ナノマイ
ザー社製「ナノマイザー」、マイクロフルイディクス社
製「マイクロフルイダイザー」、ミラクル社製「ナノメ
ーカー」などである。
Examples of trade names of the high-pressure homogenizer include "Ultimizer" manufactured by Sugino Machine Ltd., "Nanomizer" manufactured by Nanomizer, "Microfluidizer" manufactured by Microfluidics, and "Nanomaker" manufactured by Miracle.

【0021】本発明のエポキシ樹脂ワニスを用いて樹脂
基板を製造するには、例えばガラス布基材にエポキシ樹
脂ワニスを含浸し、その繊維基材を積層成形して樹脂基
板を製造する方法が一般的に用いられる。
In order to manufacture a resin substrate using the epoxy resin varnish of the present invention, for example, a method of manufacturing a resin substrate by impregnating a glass cloth substrate with the epoxy resin varnish and laminating and molding the fiber substrate is generally used. Used for.

【0022】[0022]

【実施例】 以下、本発明の実施例、比較例をあげて更
に説明する。
[Examples] Examples and comparative examples of the present invention will be further described below.

【0023】シリカ超微粉の製造炉は、内炎と外炎が形
成できるように、二重管構造のLPG−酸素混合型バー
ナーが炉頂に設けられており、そのバーナーの中心部に
は更にスラリー噴射用の二流体ノズルが取り付けられて
いる。そして、二流体ノズルの中心からスラリーが、ま
たその周囲から酸素がそれぞれ火炎に噴射される。火炎
の形成は、二重管構造バーナーのそれぞれの噴射口の細
孔から、外炎形成用と内炎形成用のLPG−酸素の混合
ガスが噴射されることによって行われ、LPGと酸素ガ
ス量の制御によって火炎状態が調整される。火炎を通過
した熱処理物は、ブロワーで捕集系に送られる。
In the furnace for producing ultrafine silica powder, a double-tube structure LPG-oxygen mixed burner is provided at the furnace top so that an internal flame and an external flame can be formed. A two-fluid nozzle for slurry injection is attached. Then, the slurry is injected into the flame from the center of the two-fluid nozzle and the oxygen is injected into the flame from the surroundings. The flame is formed by injecting an LPG-oxygen mixed gas for forming an outer flame and forming an inner flame from the pores of the respective injection ports of the double-tube burner, and the amount of LPG and oxygen gas. The flame condition is adjusted by the control of. The heat-treated product that has passed through the flame is sent to a collection system by a blower.

【0024】金属シリコン粉末(平均粒径10.5μ
m)30部(質量部、以下同じ)と水70部とを混合し
水系スラリーを調合(固形分濃度20%)し、二流体ノ
ズルの中心部から火炎中(温度約1900℃)に12.
0kg/時間の速度で噴射し、生成したシリカ超微粉を
バグフィルターで捕集した。
Metallic silicon powder (average particle size 10.5μ
m) 30 parts (mass parts, the same applies hereinafter) and 70 parts of water are mixed to prepare an aqueous slurry (solid content concentration 20%), and the mixture is heated from the center of the two-fluid nozzle into the flame (temperature about 1900 ° C.).
It was injected at a rate of 0 kg / hour, and the generated ultrafine silica powder was collected by a bag filter.

【0025】実施例1 液状エポキシ樹脂(YD−128)85部、溶剤(メチ
ルエチルケトン)30部とシリカ超微粉15部をかき混
ぜ予備混合を行った。これを簡易型混練機(シンキー社
製商品名「あわとり練太郎AR−360M」)を用い、
自転回転数600rpm、公転回転数2000rpmで
10分間混練し、粘度(1rpm時)を測定した。ま
た、沈降安定性は1ヶ月間静置後に生じた沈降成分を計
量し、初期のシリカ分に対する質量%で示した。混練し
て得られたエポキシ樹脂ワニスを真空乾燥機で溶媒を除
去し、これの20gに硬化剤4,4’−ジアミノジフェ
ニルメタン(DDM)を4.88g(和光純薬特級試
薬)を加え、5分間減圧脱法を行い、四フッ化エチレン
樹脂製型(5mm×5mm×20mm)に注入した。そ
の後、150℃で1時間、引き続き200℃で2時間の
硬化を行い、硬化物の室温から250℃までの熱膨張率
を測定した。
Example 1 85 parts of a liquid epoxy resin (YD-128), 30 parts of a solvent (methyl ethyl ketone) and 15 parts of silica ultrafine powder were stirred and premixed. Using a simple kneading machine (trade name "Awatori Kentaro AR-360M" manufactured by Shinky Co., Ltd.),
Kneading was performed for 10 minutes at a rotation speed of 600 rpm and an orbital rotation speed of 2000 rpm, and the viscosity (at 1 rpm) was measured. In addition, the sedimentation stability was measured by measuring the sedimentation component generated after standing for 1 month, and shown by mass% with respect to the initial silica content. The solvent was removed from the epoxy resin varnish obtained by kneading with a vacuum drier, and 4.88 g (Wako Pure Chemical Industries, Ltd. special grade reagent) of a curing agent 4,4′-diaminodiphenylmethane (DDM) was added to 20 g of this, and 5 A vacuum desorption method was performed for a minute, and the mixture was poured into a tetrafluoroethylene resin mold (5 mm × 5 mm × 20 mm). Then, curing was performed at 150 ° C. for 1 hour and then at 200 ° C. for 2 hours, and the coefficient of thermal expansion from room temperature to 250 ° C. was measured.

【0026】実施例2 予備混合物を簡易型混練機で混練する代わりに、高圧ホ
モジナイザー(スギノマシン社製商品名「アルティマイ
ザー」)を用い、圧力150MPaにて5回分散処理
(混練)したこと以外は、実施例1と同様にして硬化物
を製造し、その熱膨張率を測定した。
Example 2 A high-pressure homogenizer (trade name "Ultimizer" manufactured by Sugino Machine Co., Ltd.) was used instead of kneading the preliminary mixture with a simple type kneader, except that the pre-mixture was dispersed (kneaded) 5 times at a pressure of 150 MPa. In the same manner as in Example 1, a cured product was produced, and its coefficient of thermal expansion was measured.

【0027】実施例3 生成したシリカ超微粉をブロワーで捕集系(バグフィル
ター)に空気輸送する間の温度約270℃の配管部にお
いて、シランカップリング剤(信越化学工業社製γ−グ
リシドキシプロピルトリメトキシシラン「KBM−40
3」)を噴霧して、シランカップリング剤で処理された
シリカ超微粉を実施例1に準じて製造し、これを用いた
こと以外は、実施例1と同様にして硬化物を製造し、そ
の熱膨張率を測定した。なお、シランカップリング剤
は、水100部に2.5部を混合したものを、シリカ超
微粉100部あたりシランカップリング剤として0.5
部の割合となるように噴霧した。
Example 3 A silane coupling agent (γ-glycid manufactured by Shin-Etsu Chemical Co., Ltd.) was used in a pipe section at a temperature of about 270 ° C. while the produced ultrafine silica powder was pneumatically transported to a collection system (bag filter) by a blower. Xypropyltrimethoxysilane "KBM-40
3 ") was sprayed to produce silica ultrafine powder treated with a silane coupling agent according to Example 1, and a cured product was produced in the same manner as in Example 1 except that this was used. The coefficient of thermal expansion was measured. As the silane coupling agent, a mixture of 100 parts of water and 2.5 parts was used as 0.5 parts of silane coupling agent per 100 parts of ultrafine silica powder.
It was sprayed so as to have a ratio of parts.

【0028】実施例4 実施例3で製造された、シランカップリング剤で処理さ
れたシリカ超微粉を用いたこと以外は、実施例2と同様
にして硬化物を製造し、その熱膨張率を測定した。
Example 4 A cured product was produced in the same manner as in Example 2 except that the silica ultrafine powder treated with the silane coupling agent produced in Example 3 was used. It was measured.

【0029】実施例5 金属シリコン粉末の水系スラリーの固形分濃度が65%
であるものを用いたこと以外は、実施例2と同様にして
シリカ超微粉を製造した。このシリカ超微粉を用いたこ
と以外は、実施例2と同様にして硬化物を製造し、その
熱膨張率を測定した。
Example 5 The solid content concentration of the aqueous slurry of metallic silicon powder was 65%.
Silica ultrafine powder was produced in the same manner as in Example 2 except that the above was used. A cured product was produced in the same manner as in Example 2 except that this silica ultrafine powder was used, and the thermal expansion coefficient thereof was measured.

【0030】実施例6 金属シリコン粉末の水系スラリーの固形分濃度が65%
であるものを用いたこと以外は、実施例4と同様にして
シランカップリング剤で処理されたシリカ超微粉を製造
した。このシランカップリング剤で処理されたシリカ超
微粉を用いたこと以外は、実施例4と同様にして硬化物
を製造し、その熱膨張率を測定した。
Example 6 The solid content concentration of an aqueous slurry of metallic silicon powder was 65%.
A silica ultrafine powder treated with a silane coupling agent was produced in the same manner as in Example 4 except that the above was used. A cured product was produced in the same manner as in Example 4 except that the silica ultrafine powder treated with the silane coupling agent was used, and the coefficient of thermal expansion thereof was measured.

【0031】比較例1 市販のシリカ超微粉(日本アエロジル社製商品名「アエ
ロジル130」)を用いたことは以外は、実施例1と同
様にして硬化物を製造し、その熱膨張率を測定した。
Comparative Example 1 A cured product was produced in the same manner as in Example 1 except that a commercially available ultrafine silica powder (trade name "Aerosil 130" manufactured by Nippon Aerosil Co., Ltd.) was used, and the coefficient of thermal expansion thereof was measured. did.

【0032】比較例2 「アエロジル130」を用いたことは以外は、実施例2
と同様にして硬化物を製造し、その熱膨張率を測定し
た。
Comparative Example 2 Example 2 except that "Aerosil 130" was used.
A cured product was produced in the same manner as in, and the coefficient of thermal expansion was measured.

【0033】比較例3 「アエロジル130」をミキサーに入れ、2000rp
mで攪拌し、流動状態に保持し、これにシランカップリ
ング剤(信越化学工業社製γ−グリシドキシプロピルト
リメトキシシラン「KBM−403」)を噴霧、次いで
150℃で1時間熱処理し、シランカップリング処理さ
れたシリカ超微粉を得た。このシリカ超微紛を用いたこ
とは以外は、実施例1と同様にして硬化物を製造し、そ
の熱膨張率を測定した。
Comparative Example 3 "Aerosil 130" was placed in a mixer and 2000 rp
The mixture was stirred at m and maintained in a fluidized state, and a silane coupling agent (γ-glycidoxypropyltrimethoxysilane “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed on the mixture, and then heat-treated at 150 ° C. for 1 hour, Silica-coupling ultrafine powder was obtained. A cured product was produced in the same manner as in Example 1 except that this silica ultrafine powder was used, and the coefficient of thermal expansion thereof was measured.

【0034】比較例4 比較例3で製造された、シランカップリング処理された
「アエロジル130」を用いたことは以外は、実施例2
と同様にして硬化物を製造し、その熱膨張率を測定し
た。
Comparative Example 4 Example 2 except that the silane-coupling treated "Aerosil 130" prepared in Comparative Example 3 was used.
A cured product was produced in the same manner as in, and the coefficient of thermal expansion was measured.

【0035】以上の結果を表2に、シリカ超微粉の特性
を表1に示す。
The above results are shown in Table 2, and the characteristics of the ultrafine silica powder are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】実施例1〜6と比較例1〜4との対比から
明らかなように、本発明の樹脂基板用エポキシ樹脂ワニ
スは、シリカ粒子が高度に分散しており、シリカ粒子同
士の結合・凝集が極めて起こり難くいため沈降安定性に
優れる。その結果、これを用いて製造されたプリント配
線板等の樹脂基板は従来品よりも低熱膨張率化等の諸特
性の改善が著しく図られている。
As is clear from the comparison between Examples 1 to 6 and Comparative Examples 1 to 4, the epoxy resin varnish for resin substrate of the present invention has highly dispersed silica particles, and the silica particles are bonded together. Excellent sedimentation stability because aggregation is extremely unlikely to occur. As a result, the resin substrate such as a printed wiring board manufactured by using the resin is remarkably improved in various characteristics such as a lower coefficient of thermal expansion than conventional products.

【0039】[0039]

【発明の効果】本発明によれば、エポキシ樹脂ワニス中
のシリカ粒子同士の結合・凝集が著しく少なく、これを
用いて製造された樹脂基板は、低熱膨張率かつ高ガラス
転移温度を有し、熱的特性が極めて向上したものとな
る。
EFFECTS OF THE INVENTION According to the present invention, the bonding / aggregation of silica particles in an epoxy resin varnish is remarkably small, and a resin substrate produced using this has a low coefficient of thermal expansion and a high glass transition temperature, The thermal characteristics are extremely improved.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CD051 CD061 DJ016 FB136 FB146 FD016 FD140 GQ01 4J038 DA051 DA052 DB031 DB032 DB061 DB071 DB072 HA446 JB07 JB18 JC30 KA03 LA06 NA11 NA14 PA07 PA19 PB09 PB11 PC02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4J002 CD051 CD061 DJ016 FB136                       FB146 FD016 FD140 GQ01                 4J038 DA051 DA052 DB031 DB032                       DB061 DB071 DB072 HA446                       JB07 JB18 JC30 KA03 LA06                       NA11 NA14 PA07 PA19 PB09                       PB11 PC02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径D50が2.0μm以下、1
00%相当径D100が5.0μm以下で、実質的にス
トラクチャー構造を形成していないシリカ超微粉をエポ
キシ樹脂中に分散させてなることを特徴とする樹脂基板
用エポキシ樹脂ワニス。
1. An average particle diameter D50 of 2.0 μm or less, 1
An epoxy resin varnish for a resin substrate, characterized in that ultrafine silica powder having a 100% equivalent diameter D100 of 5.0 μm or less and substantially not forming a structure structure is dispersed in an epoxy resin.
【請求項2】 シリカ超微紛がシランカップリング剤で
表面処理されてなることを特徴とする請求項1記載の樹
脂基板用エポキシ樹脂ワニス。
2. The epoxy resin varnish for a resin substrate according to claim 1, wherein the ultrafine silica powder is surface-treated with a silane coupling agent.
【請求項3】 シリカ超微紛が50〜350MPaの加
圧下でエポキシ樹脂中に分散させてなることを特徴とす
る請求項1又は2記載の樹脂基板用エポキシ樹脂ワニ
ス。
3. The epoxy resin varnish for resin substrate according to claim 1 or 2, wherein ultrafine silica powder is dispersed in the epoxy resin under a pressure of 50 to 350 MPa.
JP2001201750A 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates Expired - Fee Related JP5037760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201750A JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201750A JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Publications (2)

Publication Number Publication Date
JP2003013002A true JP2003013002A (en) 2003-01-15
JP5037760B2 JP5037760B2 (en) 2012-10-03

Family

ID=19038658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201750A Expired - Fee Related JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Country Status (1)

Country Link
JP (1) JP5037760B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052357A (en) * 2004-08-16 2006-02-23 Denki Kagaku Kogyo Kk Filler and method for producing the same
JP2007235773A (en) * 2006-03-03 2007-09-13 Totoku Electric Co Ltd Heat-resistant self-fusing wire and heat-resistant voice coil for speaker
WO2009096507A1 (en) * 2008-01-31 2009-08-06 Sekisui Chemical Co., Ltd. Resin composition and multilayer resin film employing the same
JP2010150407A (en) * 2008-12-25 2010-07-08 Ajinomoto Co Inc Method for producing resin composition varnish
CN101704991B (en) * 2009-11-23 2011-08-17 南亚塑胶工业股份有限公司 Thermosetting epoxy resin composition
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2017057332A (en) * 2015-09-18 2017-03-23 アシザワ・ファインテック株式会社 Method for reducing the thermal expansion coefficient of resin molded body
JP2019189509A (en) * 2018-04-27 2019-10-31 株式会社日本触媒 Surface treatment silica particle, and manufacturing method of surface treatment silica particle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230185A (en) * 1991-10-29 1993-09-07 Kobe Steel Ltd Electrically insulating composite sheet material having excellent flexibility
JPH08146641A (en) * 1994-11-24 1996-06-07 Canon Inc Electrophotographic photoreceptor and electrophotographic device
JPH1112267A (en) * 1997-06-18 1999-01-19 Sumitomo Chem Co Ltd Production of polyhydric phenol compound, epoxy resin composition and product using the same
JPH1160912A (en) * 1997-08-27 1999-03-05 Toshiba Corp Resin composition for casting, and insulation spacer comprising the resin composition
JP2000191489A (en) * 1998-12-28 2000-07-11 Hakusui Tech Co Ltd Ultrafine, particulate zinc oxide silicone dispersion, its production and ultraviolet screening cosmetic
JP2000239536A (en) * 1998-12-24 2000-09-05 Tokuyama Corp Cationic resin-modified silica dispersion and its production
JP2000247626A (en) * 1999-02-23 2000-09-12 Denki Kagaku Kogyo Kk Production of superfine powdery silica
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2002146233A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface-treated fine spherical silica powder and resin composition
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP2003149855A (en) * 2001-11-14 2003-05-21 Denki Kagaku Kogyo Kk Hydrophobic silica fine powder, method for manufacturing the same and its use

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230185A (en) * 1991-10-29 1993-09-07 Kobe Steel Ltd Electrically insulating composite sheet material having excellent flexibility
JPH08146641A (en) * 1994-11-24 1996-06-07 Canon Inc Electrophotographic photoreceptor and electrophotographic device
JPH1112267A (en) * 1997-06-18 1999-01-19 Sumitomo Chem Co Ltd Production of polyhydric phenol compound, epoxy resin composition and product using the same
JPH1160912A (en) * 1997-08-27 1999-03-05 Toshiba Corp Resin composition for casting, and insulation spacer comprising the resin composition
JP2000239536A (en) * 1998-12-24 2000-09-05 Tokuyama Corp Cationic resin-modified silica dispersion and its production
JP2000191489A (en) * 1998-12-28 2000-07-11 Hakusui Tech Co Ltd Ultrafine, particulate zinc oxide silicone dispersion, its production and ultraviolet screening cosmetic
JP2000247626A (en) * 1999-02-23 2000-09-12 Denki Kagaku Kogyo Kk Production of superfine powdery silica
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2002146233A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface-treated fine spherical silica powder and resin composition
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP2003149855A (en) * 2001-11-14 2003-05-21 Denki Kagaku Kogyo Kk Hydrophobic silica fine powder, method for manufacturing the same and its use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052357A (en) * 2004-08-16 2006-02-23 Denki Kagaku Kogyo Kk Filler and method for producing the same
JP2007235773A (en) * 2006-03-03 2007-09-13 Totoku Electric Co Ltd Heat-resistant self-fusing wire and heat-resistant voice coil for speaker
JP5421786B2 (en) * 2008-01-31 2014-02-19 積水化学工業株式会社 Resin composition and laminated resin film using the same
WO2009096507A1 (en) * 2008-01-31 2009-08-06 Sekisui Chemical Co., Ltd. Resin composition and multilayer resin film employing the same
CN101784614A (en) * 2008-01-31 2010-07-21 积水化学工业株式会社 Resin composition and multilayer resin film employing the same
TWI395787B (en) * 2008-01-31 2013-05-11 Sekisui Chemical Co Ltd Resin composition and laminated resin film using the same
JP2010150407A (en) * 2008-12-25 2010-07-08 Ajinomoto Co Inc Method for producing resin composition varnish
CN101704991B (en) * 2009-11-23 2011-08-17 南亚塑胶工业股份有限公司 Thermosetting epoxy resin composition
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2017057332A (en) * 2015-09-18 2017-03-23 アシザワ・ファインテック株式会社 Method for reducing the thermal expansion coefficient of resin molded body
JP2019189509A (en) * 2018-04-27 2019-10-31 株式会社日本触媒 Surface treatment silica particle, and manufacturing method of surface treatment silica particle
JP7063710B2 (en) 2018-04-27 2022-05-09 株式会社日本触媒 Method for producing surface-treated silica particles and surface-treated silica particles

Also Published As

Publication number Publication date
JP5037760B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
JP2020097515A (en) Method for surface modification of submicron silicon fine powder
JP5037760B2 (en) Epoxy resin varnish for resin substrates
JP2002275356A (en) Filler for epoxy resin, and epoxy resin composition
JP5862467B2 (en) Method for producing silica composite particles
JP5274809B2 (en) Manufacturing method of low dielectric constant film
JP2004315300A (en) Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
CN112537921B (en) Phenolic resin coated chopped carbon fiber composite powder for laser 3D printing and preparation method thereof
WO2018212279A1 (en) Composite particle material, production method therefor, composite particle material slurry, and resin composition
Matsubayashi et al. A facile method of synthesizing size-controlled hollow cyanoacrylate nanoparticles for transparent superhydrophobic/oleophobic surfaces
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
JP2001342010A (en) Inorganic hollow particle and its manufacturing method
CN108299579A (en) A kind of graphene/nanometer silica/Polystyrene Hybrid Material and its preparation method and application
CN117482858A (en) Silicon-zirconium composite aerogel and preparation method thereof
JP6564551B1 (en) Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
TW201518442A (en) Surface modified silica nanowires composite and method of preparing the same
WO2023002884A1 (en) Composite copper nanoparticles, and method for producing composite copper nanoparticles
TW202407016A (en) Liquid composition, prepreg, metal substrate with resin, wiring board, and silica particles
KR100468050B1 (en) Process for silica particles with spherical shape
JP4459845B2 (en) Silica slurry, production method and use thereof
JP2015189638A (en) surface-modified silica powder and slurry composition
CN114350260A (en) Fluorine release coating with wear resistance and high stability and preparation method thereof
KR20210071613A (en) High shielding composition for applying wearable device and manufacturing method thereof
JP7219842B1 (en) Composite copper nanoparticles and method for producing composite copper nanoparticles
CN110755692A (en) Preparation method of polyvinyl alcohol composite bone scaffold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees