JP2003012710A - Resin composition having low dielectric loss tangent, cured product of the same, prepreg using the same composition, laminated plate and multilayered printed board - Google Patents

Resin composition having low dielectric loss tangent, cured product of the same, prepreg using the same composition, laminated plate and multilayered printed board

Info

Publication number
JP2003012710A
JP2003012710A JP2001201227A JP2001201227A JP2003012710A JP 2003012710 A JP2003012710 A JP 2003012710A JP 2001201227 A JP2001201227 A JP 2001201227A JP 2001201227 A JP2001201227 A JP 2001201227A JP 2003012710 A JP2003012710 A JP 2003012710A
Authority
JP
Japan
Prior art keywords
cured product
same
resin composition
molecular weight
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001201227A
Other languages
Japanese (ja)
Other versions
JP4550324B2 (en
Inventor
Satoru Amo
天羽  悟
Shinji Yamada
真治 山田
Takao Ishikawa
敬郎 石川
Takao Miwa
崇夫 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001201227A priority Critical patent/JP4550324B2/en
Publication of JP2003012710A publication Critical patent/JP2003012710A/en
Application granted granted Critical
Publication of JP4550324B2 publication Critical patent/JP4550324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition having a low dielectric constant and a low dielectric loss tangent, which is nonvolatile, is excellent in solubility and compatibility with various resins and contains a crosslinking agent, expresses good heat resistance and flexibility after curing the same, and provide a cured product of the same, a prepreg, a laminated plate and a multilayered printed board using the same. SOLUTION: The resin composition comprises a crosslinking ingredient having several styrene groups expressed by the formula (wherein R expresses a hydrocarbon skeleton; R<1> s are the same or mutually different and express each H or a 1-20C hydrocarbon group; R<2> , R<3> and R<4> are the same or different and express each H or a 1-6C alkyl; (m) is 1-4 integer; (n) is >=2 integer) and having <=1000 weight average molecular weight and a polymer. The resin composition gives the cured product having >=170 deg.C glass transition temperature by curing the same at 180 deg.C for 100 minutes or having >=500 MPa elastic modulus at 170 deg.C. The cured product of the same, the prepreg, the laminated plate and the multilayered printed board using the resin composition are also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高周波信号に対応す
るための誘電損失の小さなプリント配線板、導体付積層
板、プリプレグならびにそれらを製造するために用いる
低誘電正接樹脂組成物及びその硬化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board having a low dielectric loss for dealing with high frequency signals, a laminated board with a conductor, a prepreg, a low dielectric loss tangent resin composition used for producing them, and a cured product thereof. .

【0002】[0002]

【従来の技術】近年、PHS、携帯電話等の情報通信機
器の信号帯域、コンピューターのCPUクロックタイム
はGHz帯に達し、高周波数化が進行している。電気信
号の誘電損失は、回路を形成する絶縁体の比誘電率の平
方根、誘電正接及び使用される信号の周波数の積に比例
する。そのため、使用される信号の周波数が高いほど誘
電損失が大きくなる。誘電損失は電気信号を減衰させて
信号の信頼性を損なうので、これを抑制するために絶縁
体には誘電率及び誘電正接の小さな材料を選定する必要
がある。絶縁体の低誘電率化及び低誘電正接化には分子
構造中の極性基の除去が有効であり、フッ素樹脂、硬化
性ポリオレフィン、シアネートエステル系樹脂、硬化性
ポリフェニレンオキサイド、アリル変性ポリフェニレン
エーテル、ジビニルベンゼン又はジビニルナフタレンで
変性したポリエーテルイミド等が提案されている。
2. Description of the Related Art In recent years, the signal band of information communication devices such as PHS and mobile phones and the CPU clock time of computers have reached the GHz band, and higher frequencies have been in progress. The dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulator forming the circuit, the dissipation factor and the frequency of the signal used. Therefore, the higher the frequency of the signal used, the larger the dielectric loss. Since the dielectric loss attenuates the electric signal and impairs the reliability of the signal, it is necessary to select a material having a small dielectric constant and a small dielectric loss tangent for the insulator in order to suppress it. Removal of polar groups in the molecular structure is effective for lowering the dielectric constant and lowering the dielectric loss tangent of insulators. Fluororesin, curable polyolefin, cyanate ester resin, curable polyphenylene oxide, allyl-modified polyphenylene ether, divinyl. Polyetherimides modified with benzene or divinylnaphthalene have been proposed.

【0003】ポリテトラフルオロエチレン(PTFE)
に代表されるフッ素樹脂は、誘電率及び誘電正接がとも
に低く、高周波信号を扱う基板材料に使用されている。
しかし、PTFEは熱可塑性樹脂であるため、成形加工
時の膨張収縮が大きく、扱いにくい材料であった。ま
た、フッ素樹脂に架橋性及び溶解性を付与する提案も種
々行われているが、それらの材料は総じて高価で、特性
的にはPTFEに及ばないものが多い。これに対して、
有機溶剤に可溶で取り扱い易い、非フッ素系の低誘電率
で低誘電正接の樹脂が種々検討されてきた。例えば、特
開平8−208856号記載のポリブタジエン等のジエ
ン系ポリマーをガラスクロスに含浸して過酸化物で硬化
した例;特開平10−158337号記載の如く、ノル
ボルネン系付加型重合体にエポキシ基を導入し、硬化性
を付与した環状ポリオレフィンの例;特開平11−12
4491号記載の如く、シアネートエステル、ジエン系
ポリマー及びエポキシ樹脂を加熱してBステージ化した
例;特開平9−118759号記載のポリフェニレンオ
キサイド、ジエン系ポリマー及びトリアリルイソシアネ
ートからなる変性樹脂の例;特開平9−246429号
記載のアリル化ポリフェニレンエーテル及びトリアリル
イソシアネート等からなる樹脂組成物の例;特開平5−
156159号記載のポリエーテルイミドと、スチレ
ン、ジビニルベンゼン又はジビニルナフタレンとをアロ
イ化した例;特開平5−78552号記載のジヒドロキ
シ化合物とクロロメチルスチレンからウイリアムソン反
応で合成した、例えばヒドロキノンビス(ビニルベンジ
ル)エーテルとノボラックフェノール樹脂からなる樹脂
組成物の例など多数が挙げられる。前述の例の多くに
は、架橋剤又は架橋助剤としてジビニルベンゼンを含ん
でもよいとの記述があった。これは、ジビニルベンゼン
が構造中に極性基を有しておらず、その硬化物の誘電率
及び誘電正接が低いこと、ならびに熱分解温度が350
℃以上と高いことに起因する。しかし、ジビニルベンゼ
ン硬化物は非常に脆いため、硬化時に硬化物にひび割れ
が生じ易いという欠点を有していた。そのため、通常ジ
ビニルベンゼンの添加量は、他の樹脂成分に比べて低く
設定されていた。ジビニルベンゼンを主たる架橋剤に使
用している特開平5−156159号公報の例でも樹脂
全体の9%程度の添加量である。同公報記載のジビニル
ナフタレンも硬化物の脆さという点ではジビニルベンゼ
ンと同様の問題を有している。また、ジビニルベンゼン
は揮発性を有しているため、硬化する際に揮発してしま
い硬化物の特性コントロールが難しいという欠点を有し
ていた。これに対して、特開平5−78552号公報で
はヒドロキノンビス(ビニルベンジル)エーテル等のビ
ススチレン化合物が不揮発性であり、柔軟性の高い硬化
物を与えることを明らかにしている。しかし、一般的に
アルキレンエーテル基は、アルキレン基及びアリーレン
基に比べて誘電率、誘電正接及び耐熱性の観点で不利で
ある。スチレン基間を結合する構造にはアルキレン基及
びアリーレン基等の炭化水素系の骨格が好ましい。スチ
レン基間をエチレン基で結合した多官能スチレン化合物
の例としては特開平9−208625号公報記載の1,
2−ビス(ビニルフェニル)エタン、Makromol.
Chem.vol.187、23頁(1986)記載の
側鎖にビニル基を有するジビニルベンゼンオリゴマーが
ある。しかし、これらの報告では、機械強度、耐熱性、
誘電率又は誘電正接に関する検討はなされていなかっ
た。
Polytetrafluoroethylene (PTFE)
The fluororesin typified by 1) has a low dielectric constant and a low dielectric loss tangent, and is used as a substrate material for handling high frequency signals.
However, since PTFE is a thermoplastic resin, it has a large expansion and contraction during molding and is a difficult material to handle. Further, various proposals have been made for imparting crosslinkability and solubility to fluororesins, but those materials are generally expensive and many of them are inferior to PTFE in terms of characteristics. On the contrary,
Various non-fluorine-based resins having a low dielectric constant and a low dielectric loss tangent, which are soluble in an organic solvent and are easy to handle, have been studied. For example, an example in which a glass cloth is impregnated with a diene-based polymer such as polybutadiene described in JP-A-8-208856 and cured with a peroxide; as described in JP-A-10-158337, an norbornene-based addition type polymer has an epoxy group. Examples of cyclic polyolefins having introduced thereinto and imparting curability; JP-A-11-12
As described in 4491, an example in which a cyanate ester, a diene-based polymer and an epoxy resin are heated to B-stage; an example of a modified resin composed of polyphenylene oxide, a diene-based polymer and triallyl isocyanate described in JP-A-9-118759; Examples of resin compositions comprising allylated polyphenylene ether and triallyl isocyanate described in JP-A-9-246429;
Examples of alloying polyetherimide described in JP-A-156159 with styrene, divinylbenzene or divinylnaphthalene; synthesized by Williamson reaction from dihydroxy compound described in JP-A-5-78552 and chloromethylstyrene, for example, hydroquinone bis (vinyl There are many examples such as a resin composition comprising a benzyl) ether and a novolac phenol resin. Many of the above examples have described that divinylbenzene may be included as a cross-linking agent or co-agent. This is because divinylbenzene does not have a polar group in its structure, and its cured product has a low dielectric constant and dielectric loss tangent, and a thermal decomposition temperature of 350.
This is due to the high temperature above ℃. However, since the divinylbenzene cured product is extremely brittle, it has a drawback that the cured product is likely to crack during curing. Therefore, the amount of divinylbenzene added is usually set lower than that of other resin components. In the example of JP-A-5-156159 in which divinylbenzene is used as the main crosslinking agent, the addition amount is about 9% of the total resin. The divinylnaphthalene described in the publication also has the same problem as divinylbenzene in terms of brittleness of a cured product. In addition, since divinylbenzene is volatile, it has a drawback that it is hard to control the properties of the cured product because it is volatilized during curing. On the other hand, JP-A-5-78552 discloses that a bisstyrene compound such as hydroquinone bis (vinylbenzyl) ether is non-volatile and gives a cured product having high flexibility. However, in general, the alkylene ether group is more disadvantageous than the alkylene group and the arylene group in terms of dielectric constant, dielectric loss tangent and heat resistance. A hydrocarbon-based skeleton such as an alkylene group and an arylene group is preferable for the structure that bonds the styrene groups. Examples of polyfunctional styrene compounds in which styrene groups are bonded with ethylene groups are described in JP-A-9-208625.
2-bis (vinylphenyl) ethane, Makromol.
Chem. vol. 187, page 23 (1986), there is a divinylbenzene oligomer having a vinyl group in the side chain. However, in these reports, mechanical strength, heat resistance,
No studies have been made on the permittivity or loss tangent.

【0004】[0004]

【発明が解決しようとする課題】従来、それを含む組成
物の硬化後の誘電率及び誘電正接を低いものとしうる架
橋剤として使用されていたジビニルベンゼンは、揮発性
であること、及びその硬化物が脆いこと等の欠点を有し
ていた。本発明の目的は、誘電率及び誘電正接が低く、
不揮発性で、溶解性及び各種樹脂との相溶性に優れ、そ
の上、硬化後の耐熱性及び柔軟性が良好な架橋剤を含
む、樹脂組成物、その硬化物ならびに該組成物を用いた
プリプレグ、積層板及び多層プリント基板を提供するこ
とにある。
Divinylbenzene, which has hitherto been used as a cross-linking agent capable of lowering the dielectric constant and dielectric loss tangent after curing of a composition containing it, is volatile and its curing property. It had drawbacks such as being fragile. The object of the present invention is to have a low dielectric constant and dielectric loss tangent,
A resin composition, a cured product thereof, and a prepreg using the composition, which is non-volatile, has excellent solubility and compatibility with various resins, and further includes a crosslinking agent having good heat resistance and flexibility after curing. To provide a laminated board and a multilayer printed circuit board.

【0005】[0005]

【課題を解決するための手段】本発明は、以下の発明を
包含する。 (1)下記一般式:
The present invention includes the following inventions. (1) The following general formula:

【化3】 (式中、Rは炭化水素骨格を表し、R1は、同一又は異
なって、水素原子又は炭素数1〜20の炭化水素基を表
し、R2、R3及びR4は、同一又は異なって、水素原子
又は炭素数1〜6のアルキル基を表し、mは1〜4の整
数、nは2以上の整数を表す。)で示される複数のスチ
レン基を有する重量平均分子量1000以下の架橋成分
と、高分子量体とを含有する樹脂組成物であって、該樹
脂組成物を180℃、100分で硬化させて得られる硬
化物のガラス転移温度が170℃以上であるか、又は該
硬化物の170℃における弾性率が500MPa以上で
ある樹脂組成物。 (2)スチレン基を重合しうる硬化触媒及びスチレン基
の重合を抑制しうる重合禁止剤の少なくとも一方を更に
含有する前記(1)に記載の組成物。 (3)前記架橋成分及び高分子量体の合計100重量部
に対して、前記硬化触媒の添加量が0.0005〜10
重量部であり、前記重合禁止剤の添加量が0.0005
〜5重量部である前記(2)に記載の組成物。 (4)前記高分子量体のガラス転移温度が170℃以上
である前記(1)〜(3)のいずれかに記載の組成物。 (5)前記高分子量体が、ブタジエン、イソプレン、ス
チレン、メチルスチレン、エチルスチレン、ジビニルベ
ンゼン、アクリル酸エステル、アクリロニトリル、N−
フェニルマレイミド及びN−ビニルフェニルマレイミド
の少なくとも一種からなる重合体、置換基を有していて
もよいポリフェニレンオキサイド、ならびに脂環式構造
を有するポリオレフィンからなる群から選ばれる少なく
とも一種の樹脂である前記(1)〜(4)のいずれかに
記載の組成物。 (6)下記一般式:
[Chemical 3] (In the formula, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m is an integer of 1 to 4, and n is an integer of 2 or more.), A crosslinking component having a plurality of styrene groups and having a weight average molecular weight of 1000 or less. And a high molecular weight polymer, wherein the cured product obtained by curing the resin composition at 180 ° C. for 100 minutes has a glass transition temperature of 170 ° C. or higher, or the cured product. Of the resin composition having an elastic modulus at 170 ° C. of 500 MPa or more. (2) The composition according to (1), further containing at least one of a curing catalyst capable of polymerizing a styrene group and a polymerization inhibitor capable of suppressing the polymerization of the styrene group. (3) The amount of the curing catalyst added is 0.0005 to 10 with respect to 100 parts by weight of the total of the crosslinking component and the high molecular weight material.
The amount of the polymerization inhibitor added is 0.0005 parts by weight.
The composition according to (2) above, which is 5 parts by weight. (4) The composition according to any one of (1) to (3), wherein the high molecular weight polymer has a glass transition temperature of 170 ° C. or higher. (5) The high molecular weight compound is butadiene, isoprene, styrene, methylstyrene, ethylstyrene, divinylbenzene, acrylic ester, acrylonitrile, N-
At least one resin selected from the group consisting of a polymer consisting of at least one of phenylmaleimide and N-vinylphenylmaleimide, a polyphenylene oxide which may have a substituent, and a polyolefin having an alicyclic structure ( The composition according to any one of 1) to (4). (6) The following general formula:

【化4】 (式中、Rは炭化水素骨格を表し、R1は、同一又は異
なって、水素原子又は炭素数1〜20の炭化水素基を表
し、R2、R3及びR4は、同一又は異なって、水素原子
又は炭素数1〜6のアルキル基を表し、mは1〜4の整
数、nは2以上の整数を表す。)で示される複数のスチ
レン基を有する重量平均分子量1000以下の架橋成分
と、高分子量体とを含有する樹脂組成物を硬化させて得
られる硬化物であって、ガラス転移温度が170℃以上
であるか、又は170℃における弾性率が500MPa
以上である硬化物。 (7)前記(1)〜(5)のいずれかに記載の組成物の
硬化物。 (8)前記(1)〜(5)のいずれかに記載の組成物
を、有機又は無機のクロス又は不織布に含浸させ、乾燥
させてなるプリプレグ。 (9)前記(8)に記載のプリプレグの硬化物。 (10)前記(8)に記載のプリプレグ又はその硬化物
の両面又は片面に導体層が設置されてなる積層板。 (11)前記(10)に記載の積層板の導体層に配線加
工を施した後、プリプレグを介して該積層板を積層接着
してなる多層プリント基板。
[Chemical 4] (In the formula, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m is an integer of 1 to 4, and n is an integer of 2 or more.), A crosslinking component having a plurality of styrene groups and having a weight average molecular weight of 1000 or less. Which is a cured product obtained by curing a resin composition containing a polymer and a high molecular weight polymer, and has a glass transition temperature of 170 ° C. or higher, or an elastic modulus at 170 ° C. of 500 MPa.
The cured product that is the above. (7) A cured product of the composition according to any one of (1) to (5). (8) A prepreg obtained by impregnating an organic or inorganic cloth or nonwoven fabric with the composition according to any one of (1) to (5) and drying the composition. (9) A cured product of the prepreg according to (8) above. (10) A laminated board having conductor layers provided on both surfaces or one surface of the prepreg or the cured product thereof described in (8). (11) A multilayer printed circuit board obtained by wiring the conductor layers of the laminated board according to (10) above, and laminating and adhering the laminated boards through a prepreg.

【0006】(作用)ジビニルベンゼンの硬化物の耐熱性
が高く、その誘電率及び誘電正接が低いことはすでに述
べた。本発明により、スチレン基を複数有する重量平均
分子量が1000以下で不揮発性の炭化水素骨格の架橋
成分と、高分子量体とを含有する樹脂組成物が、硬化時
にひび割れせず、誘電率及び誘電正接が低い硬化物を与
えることが明らかとなった。スチレン基間をアルキレン
基のような柔軟な炭化水素骨格で結合しているため、硬
化時のひび割れが生じないものである。また、硬化後の
ガラス転移温度が170℃以上であるか、又は硬化後の
170℃における弾性率が500MPa以上である低誘
電正接樹脂組成物は、金ワイヤボンディング、はんだ付
等の高温での加工プロセスにおいて変形が小さいので、
マルチチップモジュール、多層プリント基板等の電子部
品のための絶縁材料に適する。
(Function) It has already been described that the cured product of divinylbenzene has high heat resistance and low dielectric constant and dielectric loss tangent. According to the present invention, a resin composition containing a cross-linking component of a nonvolatile hydrocarbon skeleton having a plurality of styrene groups and a weight average molecular weight of 1,000 or less and a high molecular weight substance does not crack during curing, and has a dielectric constant and a dielectric loss tangent. Was found to give a low cured product. Since the styrene groups are bonded by a flexible hydrocarbon skeleton such as an alkylene group, cracks do not occur during curing. Further, a low dielectric loss tangent resin composition having a glass transition temperature after curing of 170 ° C. or higher, or an elastic modulus at 170 ° C. after curing of 500 MPa or higher is processed at high temperatures such as gold wire bonding and soldering. Since the deformation is small in the process,
It is suitable as an insulating material for electronic components such as multi-chip modules and multilayer printed circuit boards.

【0007】[0007]

【発明の実施の形態】本発明の樹脂組成物及びその硬化
物について説明する。本発明の樹脂組成物は、下記一般
式:
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition of the present invention and its cured product will be described. The resin composition of the present invention has the following general formula:

【化5】 (式中、Rは炭化水素骨格を表し、R1は、同一又は異
なって、水素原子又は炭素数1〜20の炭化水素基を表
し、R2、R3及びR4は、同一又は異なって、水素原子
又は炭素数1〜6のアルキル基を表し、mは1〜4の整
数、nは2以上の整数を表す。)で示される複数のスチ
レン基を有する重量平均分子量1000以下の架橋成分
と、高分子量体とを含有する樹脂組成物であって、該樹
脂組成物を180℃、100分で硬化させて得られる硬
化物のガラス転移温度が170℃以上であるか、又は該
硬化物の170℃における弾性率が500MPa以上で
ある樹脂組成物であり、前記硬化物のガラス転移温度が
170〜300℃であるか、又は該硬化物の170℃に
おける弾性率が500〜3000MPaであることが好
ましい。
[Chemical 5] (In the formula, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m is an integer of 1 to 4, and n is an integer of 2 or more.), A crosslinking component having a plurality of styrene groups and having a weight average molecular weight of 1000 or less. And a high molecular weight polymer, wherein the cured product obtained by curing the resin composition at 180 ° C. for 100 minutes has a glass transition temperature of 170 ° C. or higher, or the cured product. Of the resin composition having an elastic modulus at 170 ° C. of 500 MPa or more, the glass transition temperature of the cured product is 170 to 300 ° C., or the elastic modulus of the cured product at 170 ° C. is 500 to 3000 MPa. Is preferred.

【0008】本発明の硬化物は、前記架橋成分と、高分
子量体とを含有する樹脂組成物を硬化させて得られる硬
化物であって、ガラス転移温度が170℃以上である
か、又は170℃における弾性率が500MPa以上で
ある硬化物であり、ガラス転移温度が170〜300℃
であるか、又は170℃における弾性率が500〜30
00MPaであることが好ましい。
The cured product of the present invention is a cured product obtained by curing a resin composition containing the above-mentioned crosslinking component and a high molecular weight substance, and has a glass transition temperature of 170 ° C. or higher, or 170. It is a cured product having an elastic modulus at 500C of 500 MPa or more and a glass transition temperature of 170 to 300C.
Or the elastic modulus at 170 ° C. is 500 to 30
It is preferably 00 MPa.

【0009】なお、本明細書中において、ガラス転移温
度とは、昇温速度5℃/分の条件で動的粘弾性特性を観
測した際に、損失弾性率と貯蔵弾性率の比であるtan
δがピークとなる温度を示すものであり、弾性率とは同
条件で測定した170℃における弾性率を示すものであ
る。誘電率及び誘電正接が低く、ガラス転移温度が高
く、高温下における弾性率が高い本発明の樹脂組成物の
硬化物を絶縁層に使用するプリント基板を使用すること
により、電気信号の誘電損失を低く押さえ、かつ金ワイ
ヤボンディング、ハンダ付等の高温での加工プロセスに
おける変形を抑制することができる。
In the present specification, the glass transition temperature is the ratio of the loss elastic modulus to the storage elastic modulus when observing the dynamic viscoelastic property under the condition of the temperature rising rate of 5 ° C./min.
The temperature at which δ reaches a peak is shown, and the elastic modulus is the elastic modulus at 170 ° C. measured under the same conditions. Dielectric loss of electric signals can be reduced by using a printed board having a low dielectric constant and a low dielectric loss tangent, a high glass transition temperature, and a cured product of the resin composition of the present invention having a high elastic modulus at a high temperature for an insulating layer. It is possible to suppress the deformation to a low level and suppress deformation in a high temperature working process such as gold wire bonding and soldering.

【0010】前記式において、Rで表される炭化水素骨
格は、該架橋成分の重量平均分子量が1000以下とな
るものであれば特に制限はない。即ち、Rで表される炭
化水素骨格は、スチレン基における置換基、R1、R2
3及びR4の有無及びその大きさ、m及びnの数に応じ
て適宜選択することができるが、一般には炭素数1〜6
0であり、好ましくは炭素数2〜30である。Rで表さ
れる炭化水素骨格は、直鎖状又は分枝状のいずれでもよ
く、また、脂環式構造、芳香族環構造等の環構造を1つ
以上含んでいてもよく、更に、ビニレン、エチニレン等
の不飽和結合を含んでいてもよい。
In the above formula, the hydrocarbon skeleton represented by R is not particularly limited as long as the weight average molecular weight of the crosslinking component is 1000 or less. That is, the hydrocarbon skeleton represented by R has a substituent in the styrene group, R 1 , R 2 ,
It can be appropriately selected depending on the presence or absence of R 3 and R 4 , their size, and the numbers of m and n, but generally, the number of carbon atoms is 1 to 6.
It is 0, and preferably has 2 to 30 carbon atoms. The hydrocarbon skeleton represented by R may be linear or branched, and may contain one or more ring structures such as an alicyclic structure and an aromatic ring structure. , Ethynylene, etc. may be included.

【0011】Rで表される炭化水素骨格としては、例え
ば、エチレン、トリメチレン、テトラメチレン、メチル
トリメチレン、メチルテトラメチレン、ペンタメチレ
ン、メチルペンタメチレン、シクロペンチレン、シクロ
ヘキシレン、フェニレン、フェニレンジエチレン、キシ
リレン、1−フェニレン−3−メチルプロペニレン等が
挙げられる。
Examples of the hydrocarbon skeleton represented by R include ethylene, trimethylene, tetramethylene, methyltrimethylene, methyltetramethylene, pentamethylene, methylpentamethylene, cyclopentylene, cyclohexylene, phenylene, phenylenediethylene, Examples include xylylene and 1-phenylene-3-methylpropenylene.

【0012】前記式において、R1で表される炭化水素
基としては、炭素数1〜20、好ましくは炭素数1〜1
0の、直鎖状もしくは分枝状のアルキル基、例えばメチ
ル、エチル、n−プロピル、イソプロピル、n−ブチ
ル、イソブチル、s−ブチル、ペンチル、ヘキシル、デ
シル、エイコシル;炭素数2〜20、好ましくは炭素数
2〜10の、直鎖状もしくは分枝状のアルケニル基、例
えばビニル、1−プロペニル、2−プロペニル、2−メ
チルアリル;アリール基、例えばフェニル、ナフチル、
ベンジル、フェネチル、スチリル、シンナミルが挙げら
れる。
In the above formula, the hydrocarbon group represented by R 1 has 1 to 20 carbon atoms, preferably 1 to 1 carbon atoms.
0, linear or branched alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, pentyl, hexyl, decyl, eicosyl; 2 to 20 carbon atoms, preferably Is a linear or branched alkenyl group having 2 to 10 carbon atoms such as vinyl, 1-propenyl, 2-propenyl, 2-methylallyl; aryl group such as phenyl, naphthyl,
Examples include benzyl, phenethyl, styryl and cinnamyl.

【0013】前記式において、nが2以上の整数である
ことからR1は複数存在し、mが2〜4の整数である場
合も、R1は複数存在するが、そのような複数存在する
1は同一でも異なっていてもよく、その結合位置も同
一でも異なっていてもよい。前記式において、R2、R3
又はR4で表されるアルキル基としては、炭素数1〜6
の直鎖状もしくは分枝状のアルキル基、例えばメチル、
エチル、n−プロピル、イソプロピル、n−ブチル、イ
ソブチル、ヘキシルが挙げられる。前記式において、置
換されていてもよいビニル基[(R3)(R4)C=C
(R 2)−]は、ベンゼン環上、Rに対して、好ましく
はメタ位又はパラ位に存在する。
In the above formula, n is an integer of 2 or more.
From that, R1Is present, and m is an integer of 2 to 4,
Also, R1There are multiple, but there are multiple such
R1May be the same or different, and their bonding positions are also the same.
It may be one or different. In the above formula, R2, R3
Or RFourThe alkyl group represented by has 1 to 6 carbon atoms.
A linear or branched alkyl group of, for example, methyl,
Ethyl, n-propyl, isopropyl, n-butyl, a
Examples include sobutyl and hexyl. In the above formula,
Optionally substituted vinyl group [(R3) (RFour) C = C
(R 2)-] Is preferably relative to R on the benzene ring.
Exists in the meta position or the para position.

【0014】本発明に用いる架橋成分としては、複数の
(置換されていてもよい)スチレン基を有する重量平均
分子量1000以下の多官能性モノマーが好ましい。ス
チレン基は反応性が高く、誘電率及び誘電正接が非常に
低い。架橋成分の骨格には誘電率及び誘電正接の観点か
ら炭化水素骨格を採用することが好ましい。これによっ
て、スチレン基の低誘電率性及び低誘電正接性を損なう
ことなく、該架橋成分に不揮発性及び柔軟性を付与する
ことができる。また、重量平均分子量1000以下の架
橋成分を選択することによって、比較的低い温度で溶融
流動性を示し、有機溶媒への溶解性もよくなるため、成
形加工及びワニス化が容易になる。架橋成分の重量平均
分子量が大きすぎると、溶融流動性が低くなり、成形加
工の際に架橋が生じて成形不良となる場合がある。該架
橋成分の重量平均分子量は1000以下であれば制限は
ないが、好ましくは200〜500である。
The crosslinking component used in the present invention is preferably a polyfunctional monomer having a plurality of (optionally substituted) styrene groups and a weight average molecular weight of 1,000 or less. Styrene groups are highly reactive and have a very low dielectric constant and loss tangent. A hydrocarbon skeleton is preferably used as the skeleton of the crosslinking component from the viewpoint of dielectric constant and dielectric loss tangent. This makes it possible to impart nonvolatility and flexibility to the crosslinking component without impairing the low dielectric constant and low dielectric loss tangent of the styrene group. Further, by selecting a cross-linking component having a weight average molecular weight of 1,000 or less, it exhibits melt flowability at a relatively low temperature and has good solubility in an organic solvent, which facilitates molding and varnishing. If the weight average molecular weight of the cross-linking component is too large, the melt fluidity may be low, and cross-linking may occur during molding, resulting in poor molding. The weight average molecular weight of the crosslinking component is not limited as long as it is 1,000 or less, but preferably 200 to 500.

【0015】架橋成分の好ましい例としては、1,2−
ビス(p−ビニルフェニル)エタン、1,2−ビス(m
−ビニルフェニル)エタン、1−(p−ビニルフェニ
ル)−2−(m−ビニルフェニル)エタン、1,4−ビ
ス(p−ビニルフェニルエチル)ベンゼン、1,4−ビ
ス(m−ビニルフェニルエチル)ベンゼン、1,3−ビ
ス(p−ビニルフェニルエチル)ベンゼン、1,3−ビ
ス(m−ビニルフェニルエチル)ベンゼン、1−(p−
ビニルフェニルエチル)−4−(m−ビニルフェニルエ
チル)ベンゼン、1−(p−ビニルフェニルエチル)−
3−(m−ビニルフェニルエチル)ベンゼン及び側鎖に
ビニル基を有するジビニルベンゼン重合体(オリゴマ
ー)等が挙げられる。これらの架橋成分は2種以上組み
合わせて使用することもできる。
Preferred examples of the crosslinking component are 1,2-
Bis (p-vinylphenyl) ethane, 1,2-bis (m
-Vinylphenyl) ethane, 1- (p-vinylphenyl) -2- (m-vinylphenyl) ethane, 1,4-bis (p-vinylphenylethyl) benzene, 1,4-bis (m-vinylphenylethyl) ) Benzene, 1,3-bis (p-vinylphenylethyl) benzene, 1,3-bis (m-vinylphenylethyl) benzene, 1- (p-
Vinylphenylethyl) -4- (m-vinylphenylethyl) benzene, 1- (p-vinylphenylethyl)-
Examples thereof include 3- (m-vinylphenylethyl) benzene and a divinylbenzene polymer (oligomer) having a vinyl group in its side chain. These cross-linking components may be used in combination of two or more.

【0016】本発明に好ましく用いられる架橋成分の合
成方法としては、特開平11−60519号公報に記載
の方法で合成されたハロゲノアルキルスチレンをグリニ
ャール反応によって種々のハロゲン化物とカップリング
する方法、Makromol.Chem.vol.18
7、23頁(1986)記載の側鎖にビニル基を有する
ジビニルベンゼンオリゴマーの合成方法が挙げられる
が、これらに限定されない。このようにして得られた架
橋成分は、特に硬化触媒を添加しなくとも180℃以下
の比較的低い温度で架橋し、耐熱性が高く、誘電率及び
誘電正接の低い硬化物を与える。しかし、該架橋成分を
高分子量体と組み合わせずに単独で使用した場合には、
プリプレグ化した際のタックフリー性が得られない場合
や、また、硬化後に十分な機械強度を得られない場合が
ある。
As a method for synthesizing the crosslinking component preferably used in the present invention, Makromol, which is a method of coupling halogenoalkylstyrene synthesized by the method described in JP-A No. 11-60519 with various halides by Grignard reaction, is described. . Chem. vol. 18
7, 23 (1986), a method for synthesizing a divinylbenzene oligomer having a vinyl group in its side chain can be mentioned, but not limited thereto. The cross-linking component thus obtained cross-links at a relatively low temperature of 180 ° C. or lower without adding a curing catalyst, and gives a cured product having high heat resistance and a low dielectric constant and dielectric loss tangent. However, when the crosslinking component is used alone without being combined with a high molecular weight substance,
In some cases, the tack-free property of the prepreg cannot be obtained, or in some cases, sufficient mechanical strength cannot be obtained after curing.

【0017】本発明では前述の架橋成分と高分子量体と
を組み合わせることによって、タックフリー性及び硬化
物の機械強度の向上を図ることを特徴としている。本発
明に使用される高分子量体は、そのガラス転移温度が1
70℃以上であるか、又は170℃における弾性率が5
00MPa以上であり、かつワニス化が容易な可溶性ポ
リマーであることが好ましく、ガラス転移温度が170
〜300℃であるか、又は170℃における弾性率が5
00〜3000MPaであることが更に好ましい。高分
子量体が硬化性を有する場合には、硬化後のガラス転移
温度が170℃以上であるか又は170℃における弾性
率が500MPa以上であることが好ましく、硬化後の
ガラス転移温度が170〜300℃であるか又は170
℃における弾性率が500〜3000MPaであること
が更に好ましい。このような高分子量体の具体的な例と
しては、ブタジエン、イソプレン、スチレン、メチルス
チレン、エチルスチレン、ジビニルベンゼン、アクリル
酸エステル(例えば、アクリル酸メチル、アクリル酸ブ
チル、アクリル酸フェニルなど)、アクリロニトリル及
びN−フェニルマレイミドから選択される単量体とN−
ビニルフェニルマレイミドとの共重合体、置換基を有し
ていてもよいポリフェニレンオキサイドならびに脂環式
構造を有するポリオレフィン等が挙げられるが、これら
に限定されない。本発明に用いる架橋成分は殆どの有機
溶媒に可溶であるため、種々の高分子量体と混合し、均
一なワニスを得ることができる。前記有機溶媒として
は、例えば、アセトン、メチルエチルケトン、メチルイ
ソブチルケトン等のケトン類、トルエン、キシレン等の
芳香族炭化水素類、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミド等のアミド類、ジエチル
エーテル、エチレングリコールモノメチルエーテル、プ
ロピレングリコールモノメチルエーテル、テトラヒドロ
フラン、ジオキサン等のエーテル類、メタノール、エタ
ノール、イソプロパノール等のアルコール類等が挙げら
れ、これらの有機溶剤は単独で、又は2種以上混合して
用いることができる。ブタジエン、イソプレン及びアク
リル酸エステルなどのゴム状成分は、それを含む樹脂組
成物の硬化物に柔軟性及び接着性を付与し、かつ塗膜に
平滑性を付与する。スチレン、エチルスチレン及び/又
はアクリロニトリルは、先のゴム状成分と共重合するこ
とによって、その硬化物の耐熱性を向上させる働きを有
する。ジビニルベンゼン及び/又はN−ビニルフェニル
マレイミドを用い、公知のイオン重合法によって、側鎖
に官能基を有する高分子量体を合成することができる。
特にN−ビニルフェニルマレイミドは、アニオン重合に
よってマレイミド基のみが、カチオン重合によってスチ
レン基のみが重合するため、各種単量体との共重合が容
易であり、その共重合体のガラス転移温度は高い。ま
た、側鎖に官能基を有する高分子量体は、前記架橋成分
と反応するため、該高分子量体と架橋成分とを含む樹脂
組成物は硬化後の相分離がおさえられ、強固な硬化物を
与える。ポリフェニレンオキサイド及び脂環式構造を有
するポリオレフィンは耐熱性ポリマーであり、前記架橋
成分とアロイ化することによって、硬化物に柔軟性及び
接着性を付与し、その機械強度を向上させることができ
る。これらの高分子量体は単独で用いても、複合して用
いてもよい。例えば、ポリフェニレンオキサイドとポリ
ブタジエンとを組合せるのが好ましい。
The present invention is characterized by improving the tack-free property and the mechanical strength of the cured product by combining the above-mentioned cross-linking component and the high molecular weight substance. The polymer used in the present invention has a glass transition temperature of 1
70 ° C or higher, or an elastic modulus at 170 ° C of 5
It is preferably a soluble polymer having a pressure of at least 00 MPa and easily varnishing, and has a glass transition temperature of 170.
~ 300 ° C, or 170 ° C has an elastic modulus of 5
More preferably, it is from 00 to 3000 MPa. When the high molecular weight material has curability, the glass transition temperature after curing is preferably 170 ° C. or higher, or the elastic modulus at 170 ° C. is preferably 500 MPa or higher, and the glass transition temperature after curing is 170 to 300. ℃ or 170
It is more preferable that the elastic modulus at ° C is 500 to 3000 MPa. Specific examples of such high molecular weight compounds include butadiene, isoprene, styrene, methylstyrene, ethylstyrene, divinylbenzene, acrylic acid esters (eg, methyl acrylate, butyl acrylate, phenyl acrylate, etc.), acrylonitrile. And a monomer selected from N-phenylmaleimide and N-
Examples thereof include, but are not limited to, a copolymer with vinylphenyl maleimide, a polyphenylene oxide which may have a substituent, and a polyolefin having an alicyclic structure. Since the crosslinking component used in the present invention is soluble in most organic solvents, it can be mixed with various high molecular weight substances to obtain a uniform varnish. Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, aromatic hydrocarbons such as toluene and xylene, N, N-dimethylformamide, and the like.
Examples include amides such as N, N-dimethylacetamide, diethyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethers such as tetrahydrofuran and dioxane, alcohols such as methanol, ethanol, and isopropanol, and organic solvents of these. Can be used alone or in combination of two or more. The rubber-like component such as butadiene, isoprene and acrylic acid ester imparts flexibility and adhesiveness to the cured product of the resin composition containing it and imparts smoothness to the coating film. Styrene, ethylstyrene, and / or acrylonitrile have the function of improving the heat resistance of the cured product by copolymerizing with the rubber-like component. Using divinylbenzene and / or N-vinylphenylmaleimide, a high molecular weight compound having a functional group in the side chain can be synthesized by a known ionic polymerization method.
In particular, N-vinylphenylmaleimide is easy to copolymerize with various monomers because only maleimide group is polymerized by anionic polymerization and only styrene group is polymerized by cationic polymerization, and the glass transition temperature of the copolymer is high. . Further, since the high molecular weight compound having a functional group in the side chain reacts with the crosslinking component, the resin composition containing the high molecular weight compound and the crosslinking component is suppressed from phase separation after curing, and a strong cured product is obtained. give. Polyphenylene oxide and polyolefin having an alicyclic structure are heat-resistant polymers, and by being alloyed with the above-mentioned cross-linking component, it is possible to impart flexibility and adhesiveness to the cured product and improve its mechanical strength. These high molecular weight compounds may be used alone or in combination. For example, it is preferable to combine polyphenylene oxide and polybutadiene.

【0018】本発明の組成物には、その硬化物の機械強
度の向上、熱膨張係数の低減、誘電率の調整、軽量化又
は表面粗化によるめっき配線との接着力の向上等の目的
のために充填剤を添加することができる。機械強度の向
上のためには、硼酸アルミニウムウィスカー又はカーボ
ン繊維等の繊維状の充填剤を添加することが好ましい。
熱膨張係数の低減のためには、酸化珪素等の粒径の異な
る球状充填剤を高い割合で充填することが好ましい。誘
電率の調整においては、誘電率の高い酸化チタンを添加
して誘電率を高めるか、又は誘電率の低い硼珪酸ガラス
バルーンを添加することによって誘電率を低減させるの
が好ましい。表面粗化のためには、炭酸カルシウム、水
酸化マグネシウムのような、アルカリ水溶液に可溶な充
填剤を添加することが好ましい。これら充填剤は単独で
も又は複合して用いてもよい。
The composition of the present invention is used for the purpose of improving the mechanical strength of the cured product, reducing the coefficient of thermal expansion, adjusting the dielectric constant, and improving the adhesive strength with plated wiring due to weight reduction or surface roughening. Fillers can be added for this purpose. In order to improve mechanical strength, it is preferable to add a fibrous filler such as aluminum borate whiskers or carbon fibers.
In order to reduce the coefficient of thermal expansion, it is preferable to fill spherical fillers having different particle diameters such as silicon oxide at a high ratio. In adjusting the dielectric constant, it is preferable to add titanium oxide having a high dielectric constant to increase the dielectric constant or to add borosilicate glass balloon having a low dielectric constant to reduce the dielectric constant. For surface roughening, it is preferable to add a filler soluble in an alkaline aqueous solution, such as calcium carbonate or magnesium hydroxide. These fillers may be used alone or in combination.

【0019】本発明の樹脂組成物に含まれる架橋成分、
高分子量体及び充填剤の添加量に関しては特に制限はな
いが、架橋成分が5〜95重量部、高分子量体が95〜
5重量部、充填剤が70〜5重量部の範囲で添加するの
が好ましい。前記組成範囲内で、成膜性の付与、強度の
向上、熱膨張係数の低減、誘電率の調整、軽量化及び表
面粗化によるめっき配線との接着力の向上等の目的に応
じて組成を調整することができる。より好ましい組成と
しては、架橋成分が50〜95重量部、高分子量体が5
0〜5重量部、充填剤が70〜5重量部であり、更に好
ましい組成としては、架橋成分が50〜80重量部、高
分子量体が50〜20重量部、充填剤が70〜5重量部
であり、この組成範囲により架橋性の官能基を持たない
高分子量体を用いた場合にもその硬化物の耐溶剤性が保
たれる。
A crosslinking component contained in the resin composition of the present invention,
There is no particular limitation on the amount of the high molecular weight material and the filler added, but the crosslinking component is 5 to 95 parts by weight, and the high molecular weight material is 95 to
It is preferable to add 5 parts by weight and the filler in the range of 70 to 5 parts by weight. Within the above composition range, a composition is selected according to the purpose such as imparting film-forming properties, improving strength, reducing thermal expansion coefficient, adjusting dielectric constant, improving adhesion to plated wiring by weight reduction and surface roughening. Can be adjusted. As a more preferable composition, the crosslinking component is 50 to 95 parts by weight and the high molecular weight component is
0 to 5 parts by weight, the filler is 70 to 5 parts by weight, and more preferable composition is 50 to 80 parts by weight of the crosslinking component, 50 to 20 parts by weight of the high molecular weight component, and 70 to 5 parts by weight of the filler. With this composition range, the solvent resistance of the cured product is maintained even when a high molecular weight polymer having no crosslinkable functional group is used.

【0020】本発明の樹脂組成物は硬化触媒を添加しな
くとも加熱のみによって硬化することができるが、硬化
効率の向上を目的として、スチレン基を重合しうる硬化
触媒を添加することができる。その添加量には特に制限
はないが、硬化触媒の残基が誘電特性に悪影響を与える
恐れがあるので、前記架橋成分及び高分子量体の合計1
00重量部に対して、0.0005〜10重量部とする
ことが望ましい。硬化触媒を前記範囲で添加することに
より、スチレン基の重合反応が促進され、低温で強固な
硬化物を得ることができる。スチレン基の重合を開始し
うるカチオン又はラジカル活性種を、熱又は光によって
生成する硬化触媒の例を以下に示す。カチオン重合開始
剤としては、BF4、PF6、AsF6、SbF6を対アニ
オンとするジアリルヨードニウム塩、トリアリルスルホ
ニウム塩及び脂肪族スルホニウム塩が挙げられ、旭電化
工業製SP−70、172、CP−66、日本曹達製C
I−2855、2823、三新化学工業製SI−100
L及びSI−150L等の市販品を使用することができ
る。ラジカル重合開始剤としては、ベンゾイン及びベン
ゾインメチルのようなベンゾイン系化合物、アセトフェ
ノン及び2,2−ジメトキシ−2−フェニルアセトフェ
ノンのようなアセトフェノン系化合物、チオキサントン
及び2,4−ジエチルチオキサントンのようなチオキサ
ンソン系化合物、4,4’−ジアジドカルコン、2,6
−ビス(4’−アジドベンザル)シクロヘキサノン及び
4,4’−ジアジドベンゾフェノンのようなビスアジド
化合物、アゾビスイソブチルニトリル、2、2−アゾビ
スプロパン、m,m’−アゾキシスチレン及びヒドラゾ
ンのようなアゾ化合物、ならびに2,5−ジメチル−
2,5−ジ(t−ブチルパーオキシ)ヘキサン及び2,
5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘ
キシン−3、ジクミルパーオキシドのような有機過酸化
物等が挙げられる。特に、官能基を持たない化合物の水
素引き抜きを生じさせ、架橋成分と高分子量体間の架橋
をもたらしうる有機過酸化物又はビスアジド化合物を添
加することが望ましい。
The resin composition of the present invention can be cured only by heating without adding a curing catalyst, but a curing catalyst capable of polymerizing a styrene group can be added for the purpose of improving curing efficiency. The addition amount is not particularly limited, but since the residue of the curing catalyst may adversely affect the dielectric properties, the total amount of the crosslinking component and the high molecular weight compound is 1
0.0005 to 10 parts by weight is desirable with respect to 00 parts by weight. By adding the curing catalyst in the above range, the polymerization reaction of the styrene group is promoted, and a strong cured product can be obtained at low temperature. Examples of curing catalysts that generate cation or radical active species capable of initiating the polymerization of styrene groups by heat or light are shown below. Examples of the cationic polymerization initiator include diallyliodonium salts having BF 4 , PF 6 , AsF 6 , and SbF 6 as counter anions, triallyl sulfonium salts and aliphatic sulfonium salts, and Asahi Denka Kogyo SP-70, 172, CP-66, Nippon Soda C
I-2855, 2823, Sanshin Chemical Industry SI-100
Commercial products such as L and SI-150L can be used. Examples of the radical polymerization initiator include benzoin compounds such as benzoin and benzoinmethyl, acetophenone compounds such as acetophenone and 2,2-dimethoxy-2-phenylacetophenone, and thioxanthone compounds such as thioxanthone and 2,4-diethylthioxanthone. Compound, 4,4'-diazidochalcone, 2,6
-Bis (4'-azidobenzal) cyclohexanone and bisazide compounds such as 4,4'-diazidobenzophenone, azobisisobutylnitrile, 2,2-azobispropane, m, m'-azoxystyrene and hydrazone Azo compounds, and 2,5-dimethyl-
2,5-di (t-butylperoxy) hexane and 2,
Examples thereof include 5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 and organic peroxides such as dicumyl peroxide. In particular, it is desirable to add an organic peroxide or a bisazide compound which can cause hydrogen abstraction of a compound having no functional group and can bring about crosslinking between the crosslinking component and the high molecular weight substance.

【0021】本発明の樹脂組成物には、保存安定性を増
すために重合禁止剤を添加することもできる。その添加
量は、誘電特性、硬化時の反応性を著しく阻害しないよ
うな範囲であることが好ましく、前記架橋成分及び高分
子量体の合計100重量部に対して、0.0005〜5
重量部とすることが望ましい。重合禁止剤を前記範囲で
添加すると、保存時の余計な架橋反応を抑制することが
でき、また、硬化時に著しい硬化障害をもたらすことも
ない。重合禁止剤の例としては、ハイドロキノン、p−
ベンゾキノン、クロラニル、トリメチルキノン、4−t
−ブチルピロカテコール等のキノン類及び芳香族ジオー
ル類が挙げられる。
A polymerization inhibitor may be added to the resin composition of the present invention in order to increase storage stability. The addition amount is preferably in a range that does not significantly impair the dielectric properties and the reactivity during curing, and is 0.0005 to 5 with respect to 100 parts by weight of the total of the crosslinking component and the high molecular weight body.
It is desirable to use parts by weight. When the polymerization inhibitor is added within the above range, an excessive crosslinking reaction during storage can be suppressed, and no significant curing trouble is caused during curing. Examples of the polymerization inhibitor include hydroquinone and p-
Benzoquinone, chloranil, trimethylquinone, 4-t
And quinones such as butylpyrocatechol and aromatic diols.

【0022】本発明の樹脂組成物は、有機又は無機のク
ロス又は不織布に含浸し、乾燥させることによりプリプ
レグとして用いることができる。プリプレグの基材につ
いては特に制限はなく、各種ガラスクロス、ガラス不織
布、アラミド不織布及び多孔質PTFE等を用いること
ができる。プリプレグは、樹脂組成物を用いて作製した
ワニスに、基材となるクロス又は不織布を浸し、その後
これを乾燥することにより作製される。含浸後の乾燥条
件は樹脂組成物によるが、例えば溶媒としてトルエンを
使用した場合は、80〜130℃で30〜90分程度乾
燥するのが好ましい。
The resin composition of the present invention can be used as a prepreg by impregnating an organic or inorganic cloth or nonwoven fabric and drying it. The base material of the prepreg is not particularly limited, and various glass cloths, glass non-woven fabrics, aramid non-woven fabrics, porous PTFE and the like can be used. The prepreg is produced by immersing a cloth or a non-woven fabric as a base material in a varnish produced by using a resin composition, and then drying this. Drying conditions after impregnation depend on the resin composition, but when toluene is used as a solvent, for example, it is preferable to dry at 80 to 130 ° C. for about 30 to 90 minutes.

【0023】本発明のプリプレグに電解銅箔等の導体箔
を重ね、加熱プレス加工することによって、表面に導体
層を有する積層板を作製することができる。銅箔の厚さ
は、12〜36μm程度であるのが好ましい。加圧プレ
ス加工の条件は、樹脂組成物によるが、例えば高分子量
体として環状ポリオレフィンを使用した場合には、12
0〜180℃、1.0〜5MPaで1〜3時間成形する
のが好ましい。
By laminating a conductor foil such as an electrolytic copper foil on the prepreg of the present invention and subjecting it to hot pressing, a laminate having a conductor layer on its surface can be produced. The copper foil preferably has a thickness of about 12 to 36 μm. The condition of pressure pressing depends on the resin composition, but when cyclic polyolefin is used as the high molecular weight substance, for example, 12
It is preferable to perform molding at 0 to 180 ° C. and 1.0 to 5 MPa for 1 to 3 hours.

【0024】この積層板の導体層を通常のエッチング法
によって配線加工し、これを前記プリプレグを介して複
数積層し、加熱プレス加工することによって多層化して
多層プリント基板を作製することもできる。このように
して得られた多層プリント基板は誘電正接が低いため、
誘電損失の小さな多層プリント基板となる。また、本発
明の多層プリント基板は、ガラス転移温度が高く、かつ
高温下での弾性率が高いため金ワイヤボンディング、ハ
ンダ付け等の高温での加工プロセスに十分対応できる。
It is also possible to fabricate a multilayer printed circuit board by wiring the conductor layers of this laminated plate by an ordinary etching method, laminating a plurality of the conductor layers through the prepreg, and heating and pressing to laminate them. The multilayer printed circuit board thus obtained has a low dielectric loss tangent,
It becomes a multilayer printed circuit board with small dielectric loss. Further, the multilayer printed circuit board of the present invention has a high glass transition temperature and a high elastic modulus at a high temperature, and therefore can sufficiently cope with a high temperature processing process such as gold wire bonding and soldering.

【0025】[0025]

【実施例】以下に実施例及び比較例を示して本発明を具
体的に説明するが、本発明はこれらに限定されない。な
お、以下の説明中に部とあるのは、特に断りのない限り
重量部を指す。表1〜3に本発明の実施例と比較例の組
成及びその特性を示す。以下に実施例及び比較例に使用
した試薬の名称、合成方法、ワニスの調製方法及び硬化
物の評価方法を説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following description, “parts” means “parts by weight” unless otherwise specified. Tables 1 to 3 show the compositions of the examples and comparative examples of the present invention and their characteristics. The names of reagents used in Examples and Comparative Examples, synthesis methods, varnish preparation methods, and cured product evaluation methods will be described below.

【0026】(1)1,2−ビス(ビニルフェニル)エ
タン(BVPE)の合成 1,2−ビス(ビニルフェニル)エタン(BVPE)
は、以下に示すような公知の方法で合成した。500m
lの三つ口フラスコにグリニャール反応用粒状マグネシ
ウム(関東化学製)5.36g(220mmol)をと
り、滴下ロート、窒素導入管及びセプタムキャップを取
り付けた。窒素気流下、スターラーによってマグネシウ
ム粒を攪拌しながら、系全体をドライヤーで加熱脱水し
た。乾燥テトラヒドロフラン300mlをシリンジにと
り、セプタムキャップを通じて注入した。溶液を−5℃
に冷却した後、滴下ロートを用いてビニルベンジルクロ
ライド(VBC、東京化成製)30.5g(200m
l)を約4時間かけて滴下した。滴下終了後、0℃/2
0時間、攪拌を続けた。反応終了後、反応溶液をろ過し
て残存マグネシウムを除き、エバポレーターで濃縮し
た。濃縮溶液をヘキサンで希釈し、3.6%塩酸水溶液
で1回、純水で3回洗浄し、次いで硫酸マグネシウムで
脱水した。脱水溶液をシリカゲル(和光純薬製ワコーゲ
ルC300)/ヘキサンのショートカラムに通して精製
し、真空乾燥してBVPEを得た。得られたBVPEは
m−m体(液状)、m−p体(液状)、p−p体(結
晶)の混合物であり、収率は90%であった。1H−N
MRによって構造を調べたところその値は文献値と一致
した(6H−ビニル:α−2H、6.7、β−4H、
5.7、5.2;8H−アロマティック:7.1〜7.
35;4H−メチレン:2.9)。このBVPEを架橋
成分として用いた。
(1) Synthesis of 1,2-bis (vinylphenyl) ethane (BVPE) 1,2-bis (vinylphenyl) ethane (BVPE)
Was synthesized by a known method as shown below. 500 m
5.36 g (220 mmol) of granular magnesium for Grignard reaction (manufactured by Kanto Kagaku Co., Ltd.) was placed in a 3-necked flask having a volume of 1, and a dropping funnel, a nitrogen introducing tube and a septum cap were attached. The whole system was heated and dehydrated with a dryer while stirring the magnesium particles with a stirrer under a nitrogen stream. 300 ml of dry tetrahydrofuran was taken in a syringe and injected through a septum cap. Solution at -5 ° C
After cooling to 30 ° C., 30.5 g (200 m) of vinylbenzyl chloride (VBC, manufactured by Tokyo Kasei) using a dropping funnel.
1) was added dropwise over about 4 hours. 0 ° C / 2 after dropping
Stirring was continued for 0 hours. After completion of the reaction, the reaction solution was filtered to remove residual magnesium, and concentrated with an evaporator. The concentrated solution was diluted with hexane, washed once with a 3.6% hydrochloric acid aqueous solution and three times with pure water, and then dehydrated with magnesium sulfate. The dewatered solution was passed through a short column of silica gel (Wako gel C300 manufactured by Wako Pure Chemical Industries) / hexane for purification, and vacuum dried to obtain BVPE. The obtained BVPE was a mixture of m-m form (liquid form), m-p form (liquid form) and p-p form (crystal), and the yield was 90%. 1 H-N
When the structure was examined by MR, the value was in agreement with the literature value (6H-vinyl: α-2H, 6.7, β-4H,
5.7, 5.2; 8H-aromatic: 7.1 to 7.
35; 4H-methylene: 2.9). This BVPE was used as a crosslinking component.

【0027】(2)ポリジビニルベンゼン(polyD
VB)の合成 ポリジビニルベンゼン(polyDVB)は、以下に示
すような公知の方法で合成した。520mlのジイソプ
ロピルアミンTHF溶液(ジイソプロピルアミン含有量
101g=1mol)を窒素置換した1000mlの三
つ口フラスコに入れた。11mlのn−ブチルリチウム
ヘキサン溶液(n−ブチルリチウム含有量1.9g=2
0mmol)を加えた。140mmol(18.2g)
のジビニルベンゼンを加えた。60分間室温で攪拌し
た。メタノールを加えて反応を停止した。反応溶液をエ
バポレーターで濃縮した後、冷メタノールで再沈、乾燥
してポリジビニルベンゼンを得た。収率は約50%で、
分子量は約20000であった。ポリジビニルベンゼン
は可溶性であり、側鎖にビニル基を有していた(4H−
アロマティック:6.5−7.2;3H−ビニル:5−
6.5;3H−メチレン、メチン:1−2)。このポリ
ジビニルベンゼンを比較例5の架橋成分として使用し
た。
(2) Polydivinylbenzene (polyD)
Synthesis of VB) Polydivinylbenzene (polyDVB) was synthesized by a known method as shown below. 520 ml of diisopropylamine THF solution (diisopropylamine content 101 g = 1 mol) was placed in a nitrogen-substituted 1000 ml three-necked flask. 11 ml of n-butyllithium hexane solution (n-butyllithium content 1.9 g = 2
0 mmol) was added. 140 mmol (18.2 g)
Of divinylbenzene was added. Stir for 60 minutes at room temperature. The reaction was stopped by adding methanol. The reaction solution was concentrated with an evaporator, reprecipitated with cold methanol and dried to obtain polydivinylbenzene. The yield is about 50%,
The molecular weight was about 20,000. Polydivinylbenzene was soluble and had a vinyl group in the side chain (4H-
Aromatic: 6.5-7.2; 3H-Vinyl: 5-
6.5; 3H-methylene, methine: 1-2). This polydivinylbenzene was used as the crosslinking component in Comparative Example 5.

【0028】(3)その他の試薬 その他の高分子量体、架橋成分として、以下に示すもの
を使用した。 高分子量体; Zeonor:日本ゼオン製、環状ポリオレフィン(Z
eonor1600R) PPE:アルドリッチ製、ポリ−2,6−ジメチル−
1,4−フェニレンオキシド 比較例4の架橋成分; DVB:和光純薬製、ジビニルベンゼン 硬化触媒; 25B:日本油脂製2,5−ジメチル−2,5−ビス
(t−ブチルパーオキシ)ヘキシン−3(パーヘキシン
25B) 有機不織布; クラレ製ベクトランK−9 デュポン製サーマウントE210 ガラスクロス; 日東紡製#2116
(3) Other reagents As the other high molecular weight substances and the crosslinking component, the followings were used. High molecular weight product; Zeonor: manufactured by Zeon Corporation, cyclic polyolefin (Z
eonor1600R) PPE: made by Aldrich, poly-2,6-dimethyl-
1,4-Phenylene oxide Crosslinking component of Comparative Example 4; DVB: Wako Pure Chemical Industries, Ltd. divinylbenzene curing catalyst; 25B: NOF Corporation 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne- 3 (Perhexin 25B) Organic non-woven fabric; Kuraray Vectran K-9 DuPont Surmount E210 glass cloth; Nittobo # 2116

【0029】(4)ワニスの調製方法 所定量の高分子量体、架橋成分及び硬化触媒をクロロホ
ルム又は二硫化炭素に溶解することによって樹脂組成物
のワニスを作製した。
(4) Method for preparing varnish A resin composition varnish was prepared by dissolving a predetermined amount of a high molecular weight substance, a crosslinking component and a curing catalyst in chloroform or carbon disulfide.

【0030】(5)樹脂板の作製 前記ワニスをPETフィルムに塗布して乾燥した後に、
これを剥離してテフロン(登録商標)製のスペーサー内
に所定量入れ、ポリイミドフィルム及び鏡板を介し、真
空下で、加熱及び加圧して硬化物としての樹脂板を得
た。加熱条件は、120℃/30分、150℃/30
分、180℃/100分で、プレス圧力1.5MPaの
多段階加熱とした。樹脂板の大きさは70×70×1m
mとした。
(5) Preparation of resin plate After coating the varnish on a PET film and drying it,
This was peeled off and put in a predetermined amount in a Teflon (registered trademark) spacer, and heated and pressed under vacuum through a polyimide film and a mirror plate to obtain a resin plate as a cured product. Heating conditions are 120 ° C / 30 minutes, 150 ° C / 30
Min, 180 ° C./100 minutes, and multi-stage heating was performed at a pressing pressure of 1.5 MPa. The size of the resin plate is 70 × 70 × 1m
m.

【0031】(6)プリプレグの作製 実施例において作製したプリプレグはすべて、樹脂組成
物のワニスを所定の有機不織布又はガラスクロスに含浸
して、室温にて約1時間、90℃で60分間乾燥するこ
とにより作製した。使用した基材名及び樹脂含有率(高
分子量体と架橋成分の含有率)を表3に示した。
(6) Preparation of prepregs In all the prepregs prepared in the examples, a predetermined organic non-woven fabric or glass cloth is impregnated with a varnish of the resin composition and dried at room temperature for about 1 hour and at 90 ° C. for 60 minutes. It was produced by Table 3 shows the names of the base materials used and the resin contents (contents of the high molecular weight product and the crosslinking component).

【0032】(7)プリプレグ硬化物の作製 積層板とした際のプリプレグの特性を知るため、前記の
方法で作製したプリプレグを真空下、加熱及び加圧して
模擬基板を作製した。加熱条件は120℃/30分、1
50℃/30分、180℃/100分、プレス圧力1.
5MPaの多段階加熱とした。模擬基板は70×70×
0.14〜0.3mmとした。
(7) Preparation of prepreg cured product In order to know the characteristics of the prepreg when it was made into a laminated board, the prepreg prepared by the above method was heated and pressed under vacuum to prepare a simulated substrate. Heating conditions are 120 ° C / 30 minutes, 1
50 ° C / 30 minutes, 180 ° C / 100 minutes, press pressure 1.
It was a multi-stage heating of 5 MPa. Simulated board is 70 × 70 ×
It was set to 0.14 to 0.3 mm.

【0033】(8)誘電率及び誘電正接の測定 誘電率、誘電正接は空洞共振法(アジレントテクノロジ
ー製8722ES型ネットワークアナライザー、関東電
子応用開発製空洞共振器)によって、10GHzでの値
を観測した。
(8) Measurement of dielectric constant and dielectric loss tangent The dielectric constant and dielectric loss tangent were observed at 10 GHz by a cavity resonance method (8722ES type network analyzer manufactured by Agilent Technologies, a cavity resonator manufactured by Kanto Electronics Co., Ltd.).

【0034】(9)引張強度及び伸びの測定 引張強度及び伸びは、島津製AGS−100型引張試験
機を用い、厚さ1mm、幅1mm、長さ70mmの柱状
サンプルを用い、室温、支点間距離20mm引張速度1
0mm/分の条件で測定した。
(9) Measurement of Tensile Strength and Elongation Tensile strength and elongation were measured using a Shimadzu AGS-100 type tensile tester using a columnar sample with a thickness of 1 mm, a width of 1 mm and a length of 70 mm, at room temperature and between fulcrums. Distance 20mm Tensile speed 1
The measurement was performed under the condition of 0 mm / min.

【0035】(10)ガラス転移温度(Tg)、弾性率 Tg、弾性率は、アイティー計測制御製DVA−200
型粘弾性測定装置(DMA)を用いて、tanδのピー
ク位置、170℃における弾性率を観測して求めた。サ
ンプル形状及び支点間距離は引張強度用サンプルと同じ
であり、昇温速度は5℃/分とした。
(10) Glass transition temperature (Tg), elastic modulus Tg, and elastic modulus are DVA-200 manufactured by IT Measurement Control Co., Ltd.
It was determined by observing the elastic modulus at 170 ° C. at the peak position of tan δ using a viscoelasticity measuring apparatus (DMA). The sample shape and the distance between fulcrums were the same as those of the tensile strength sample, and the temperature rising rate was 5 ° C / min.

【0036】(11)ピール強度 ピール強度測定用サンプルは、各樹脂組成物を電解銅箔
(18μm)の粗面上に樹脂板の作製方法と同様の条件
で樹脂層を形成して作製した。樹脂層は厚さ2mm、大
きさは70×70mmとした。樹脂層上の電解銅箔を幅
10mmに切断して、そのピール強度を測定した。
(11) Peel Strength A sample for peel strength measurement was prepared by forming each resin composition on a rough surface of an electrolytic copper foil (18 μm) to form a resin layer under the same conditions as in the method for preparing a resin plate. The resin layer had a thickness of 2 mm and a size of 70 × 70 mm. The electrolytic copper foil on the resin layer was cut into a width of 10 mm, and its peel strength was measured.

【0037】[比較例1]比較例1は、高分子量体とし
ての環状ポリオレフィン樹脂Zeonorのみからなる
樹脂組成物の例である。この組成物の硬化物は、所定量
のペレットを金属製のスペーサー内に入れ、ポリイミド
フィルム及び鏡板を介して真空下、加熱及び加圧するこ
とにより樹脂板として作製した。加熱条件は260℃/
30分、プレス圧力1.5MPaとした。樹脂板は70
×70×1mmとした。この樹脂板は、誘電率が2.2
0、誘電正接が0.0007とどちらも非常に低く、T
gは185℃、弾性率は1190MPaとどちらも高
い。ただし、本樹脂は硬化性を有していないため有機溶
剤中で膨潤する。また、成形時の加熱温度は260℃程
度必要であった。
Comparative Example 1 Comparative Example 1 is an example of a resin composition consisting only of cyclic polyolefin resin Zeonor as a high molecular weight material. A cured product of this composition was prepared as a resin plate by putting a predetermined amount of pellets into a metal spacer and heating and pressurizing under vacuum through a polyimide film and a mirror plate. Heating condition is 260 ℃ /
The pressing pressure was 1.5 MPa for 30 minutes. Resin plate is 70
It was set to × 70 × 1 mm. This resin plate has a dielectric constant of 2.2.
0, the dielectric loss tangent is 0.0007, which are both very low.
g is 185 ° C. and the elastic modulus is 1190 MPa, which are both high. However, since this resin does not have curability, it swells in an organic solvent. Further, the heating temperature at the time of molding was required to be about 260 ° C.

【0038】[比較例2]比較例2は、高分子量体とし
てのPPEのみからなる樹脂組成物の例である。この組
成物の硬化物は、所定量の樹脂粉末を金属製のスペーサ
ー内に入れ、ポリイミドフィルム及び鏡板を介して真空
下、加熱及び加圧することにより樹脂板として作製し
た。加熱条件は320℃/30分、プレス圧力1.5M
Paとした。樹脂板は70×70×1mmとした。この
樹脂板は、誘電率が2.41、誘電正接が0.0022
と非常に低く、Tgは229℃、弾性率は2000MP
aとどちらも高い。ただし、本樹脂は硬化性を有してい
ないため有機溶剤中で膨潤する。また、成形温度は32
0℃程度必要であった。
Comparative Example 2 Comparative Example 2 is an example of a resin composition consisting only of PPE as a high molecular weight material. A cured product of this composition was produced as a resin plate by placing a predetermined amount of resin powder in a metal spacer and heating and pressurizing it through a polyimide film and a mirror plate under vacuum. Heating conditions are 320 ° C / 30 minutes, press pressure 1.5M
It was Pa. The resin plate was 70 × 70 × 1 mm. This resin plate has a dielectric constant of 2.41 and a dielectric loss tangent of 0.0022.
Very low, Tg is 229 ℃, elastic modulus is 2000MP
Both are high. However, since this resin does not have curability, it swells in an organic solvent. The molding temperature is 32
About 0 ° C was necessary.

【0039】[比較例3]比較例3は、架橋成分1,2
−ビス(ビニルフェニル)エタン(BVPE)及びBV
PEの重量に対して1wt%の硬化触媒25Bを含んで
なる樹脂組成物の例である。この組成物の硬化物は、テ
フロンスペーサーを貼り付けた二枚のガラス板の間に無
溶剤の状態で樹脂組成物を注入して密閉し、加熱して硬
化することにより樹脂板として作製した。加熱条件は1
20℃/30分、150℃/30分、180℃/100
分の多段階加熱とした。樹脂板は70×70×1mmと
した。作製した樹脂板は、誘電率が2.56、誘電正接
が0.0017と低く、Tgが400℃以上であり、弾
性率は2590MPaとどちらも高い。硬化性を有して
いるため耐溶剤性にも優れる。硬化温度は180℃と比
較的低い。しかし、引張強度が31.2MPa、伸びが
2%と小さい点で問題を有する。
[Comparative Example 3] In Comparative Example 3, the crosslinking components 1 and 2 were used.
-Bis (vinylphenyl) ethane (BVPE) and BV
It is an example of a resin composition containing 1 wt% of the curing catalyst 25B with respect to the weight of PE. A cured product of this composition was prepared as a resin plate by injecting the resin composition in a solvent-free state between two glass plates to which a Teflon spacer was attached, sealing the mixture, and heating and curing. The heating condition is 1
20 ° C / 30 minutes, 150 ° C / 30 minutes, 180 ° C / 100
Minute multi-stage heating. The resin plate was 70 × 70 × 1 mm. The produced resin plate has a low dielectric constant of 2.56, a low dielectric loss tangent of 0.0017, a Tg of 400 ° C. or higher, and a high elastic modulus of 2590 MPa. Since it has curability, it has excellent solvent resistance. The curing temperature is relatively low at 180 ° C. However, it has a problem in that the tensile strength is as small as 31.2 MPa and the elongation is as small as 2%.

【0040】[実施例1〜3]実施例1〜3は、高分子
量体であるZeonorと架橋成分であるBVPEをそ
れぞれ異なった配合比で含み、更に樹脂成分の重量に対
して1wt%の硬化触媒25Bを含んでなる樹脂組成物
の例である。これらの組成物の硬化物は、溶媒に二硫化
硫黄を使用してワニスを調製し、上述の方法で樹脂板と
して作製した。各実施例から明らかなように、各樹脂板
の誘電率及び誘電正接は非常に低く、誘電率は2.27
〜2.35であり、誘電正接は0.0013〜0.00
17であった。その他の特性は添加した高分子量体の特
性が反映され、引張強度が68〜79MPa、伸びが2
1〜28%、Tgが178〜183℃、弾性率が100
0〜1130MPa、ピール強度が0.7〜1.2N/
mと優れた値を示した。本樹脂組成物は硬化性を有する
ため耐溶剤性も優れている。また、成形温度は180℃
であり、低い温度での成形が可能であった。
Examples 1 to 3 In Examples 1 to 3, Zeonor, which is a high molecular weight substance, and BVPE, which is a cross-linking component, are contained in different blending ratios, and further, 1% by weight of the resin component is cured. It is an example of a resin composition containing a catalyst 25B. Cured products of these compositions were prepared as a resin plate by preparing a varnish using sulfur disulfide as a solvent and using the method described above. As is clear from each example, the dielectric constant and dielectric loss tangent of each resin plate are very low, and the dielectric constant is 2.27.
Is about 2.35, and the dielectric loss tangent is 0.0013 to 0.00.
It was 17. The other properties reflect the properties of the added high molecular weight polymer, and the tensile strength is 68 to 79 MPa and the elongation is 2
1-28%, Tg 178-183 ° C, elastic modulus 100
0 ~ 1130MPa, peel strength 0.7 ~ 1.2N /
It showed an excellent value of m. Since the present resin composition has curability, it has excellent solvent resistance. The molding temperature is 180 ℃
Therefore, molding at a low temperature was possible.

【0041】[実施例4〜6]実施例4〜6は、高分子
量体であるPPEと架橋成分であるBVPEをそれぞれ
異なった配合比で含み、更に樹脂成分の重量に対して1
wt%の硬化触媒25Bを含んでなる樹脂組成物の例で
ある。これらの樹脂組成物の硬化物は、溶媒にクロロホ
ルムを使用してワニスを調製し、上述の方法で樹脂板と
して作製した。各実施例から明らかなように本樹脂組成
物の誘電率及び誘電正接は非常に低く、誘電率は2.4
3〜2.45であり、誘電正接は0.0017〜0.0
019であった。その他の特性は添加した高分子量体の
特性が反映され、引張強度が63〜82MPa、伸びが
26〜47%、Tgが210〜225℃、弾性率が24
70〜2530MPa、ピール強度が0.7〜1.2N
/mと優れた値を示した。本樹脂組成物は硬化性を有す
るため耐溶剤性にも優れている。また、成形温度は18
0℃であり、低い温度での成形が可能であった。前記比
較例1〜3及び実施例1〜6の結果を、以下の表1に示
す;
[Examples 4 to 6] In Examples 4 to 6, PPE, which is a high molecular weight polymer, and BVPE, which is a cross-linking component, are contained in different blending ratios, and 1 to the weight of the resin component is added.
It is an example of a resin composition containing a wt% curing catalyst 25B. Cured products of these resin compositions were prepared as resin plates by preparing a varnish using chloroform as a solvent and using the method described above. As is clear from each example, the dielectric constant and dielectric loss tangent of this resin composition are very low, and the dielectric constant is 2.4.
3 to 2.45 and the dielectric loss tangent is 0.0017 to 0.0.
It was 019. The other properties reflect the properties of the added high molecular weight polymer, the tensile strength is 63 to 82 MPa, the elongation is 26 to 47%, the Tg is 210 to 225 ° C., and the elastic modulus is 24.
70-2530 MPa, peel strength 0.7-1.2N
/ M, which was an excellent value. Since the resin composition has curability, it has excellent solvent resistance. The molding temperature is 18
It was 0 ° C, and molding at a low temperature was possible. The results of Comparative Examples 1 to 3 and Examples 1 to 6 are shown in Table 1 below.

【0042】[0042]

【表1】 [Table 1]

【0043】[比較例4]比較例4は、DVB及びDV
Bの重量に対して1wt%の硬化触媒25Bを含むが、
高分子量体を含まない樹脂組成物の例である。この組成
物の硬化物は、溶媒を使用せずに、上述の方法で樹脂板
として作製した。この樹脂板は非常に脆く、硬化時及び
冷却時にひび割れが生じて、評価できなかった。
[Comparative Example 4] In Comparative Example 4, DVB and DV are used.
Including 1 wt% of the curing catalyst 25B based on the weight of B,
It is an example of a resin composition containing no high molecular weight material. A cured product of this composition was produced as a resin plate by the above method without using a solvent. This resin plate was very brittle and cracked during curing and cooling and could not be evaluated.

【0044】[比較例5]比較例5は分子量が約200
00のPolyDVBを架橋成分として、PPEを高分
子量体としてそれぞれ50重量部含み、更に樹脂成分の
重量に対して1wt%の硬化触媒25Bを含んでなる樹
脂組成物の例である。この組成物の硬化物は、溶媒にク
ロロホルムを使用してワニスを調製し、上述の方法で樹
脂板として作製した。この樹脂板は架橋剤の分子量が大
きいため、溶融流動性が不十分となり、成形板が作製で
きないことが確認された。
Comparative Example 5 Comparative Example 5 has a molecular weight of about 200.
No. 00 PolyDVB as a cross-linking component, PPE as a high molecular weight component in an amount of 50 parts by weight, and 1 wt% of the curing catalyst 25B based on the weight of the resin component. The hardened | cured material of this composition prepared the varnish using chloroform as a solvent, and produced it as a resin plate by the above-mentioned method. It was confirmed that this resin plate had insufficient melt fluidity because the molecular weight of the cross-linking agent was large, and a molded plate could not be produced.

【0045】[比較例6]比較例6は、高分子量体とし
てのPPE及び架橋成分としてのBVPEをそれぞれ5
0重量部含み、更に硬化触媒を樹脂成分の合計重量に対
して20wt%と過剰に含んでなる樹脂組成物の例であ
る。この組成物の硬化物は、溶媒にクロロホルムを使用
してワニスを調製し、上述の方法で樹脂板として作製し
た。この樹脂板は、硬化触媒を過剰に加えたため、誘電
率が2.6、誘電正接が0.003と増加した。また、
硬化速度が速いため成形時の流動性が低下して樹脂板の
形、厚さが不均一になった。
[Comparative Example 6] In Comparative Example 6, PPE as a high molecular weight polymer and BVPE as a cross-linking component were each added to 5 parts.
It is an example of a resin composition containing 0 part by weight and further containing a curing catalyst in an excess of 20 wt% with respect to the total weight of the resin components. The hardened | cured material of this composition prepared the varnish using chloroform as a solvent, and produced it as a resin plate by the above-mentioned method. This resin plate had an increased dielectric constant of 2.6 and a dielectric loss tangent of 0.003 due to the excessive addition of the curing catalyst. Also,
Since the curing speed was high, the fluidity at the time of molding was lowered, and the shape and thickness of the resin plate became uneven.

【0046】[実施例7及び8]実施例7及び8は、高
分子量体としてのPPE及び架橋成分としてのBVPE
をそれぞれ50重量部含み、更に硬化触媒25Bを樹脂
成分の重量に対してそれぞれ10wt%又は5wt%含
んでなる樹脂組成物の例である。この組成物の硬化物
は、溶媒にクロロホルムを使用してワニスを調製し、上
述の方法で樹脂板として作製した。この樹脂板は、硬化
触媒量が10wt%以下であれば、成形不良は発生しな
い。また、誘電率は2.43、誘電正接は0.0018
〜0.0019であり、著しい特性低下は認められなか
った。前記比較例4〜6及び実施例7〜8の結果を以下
の表2に示す;
Examples 7 and 8 In Examples 7 and 8, PPE as a high molecular weight substance and BVPE as a crosslinking component were used.
Is an example of a resin composition containing 50 parts by weight of each of the above and further containing 10 wt% or 5 wt% of the curing catalyst 25B with respect to the weight of the resin component. The hardened | cured material of this composition prepared the varnish using chloroform as a solvent, and produced it as a resin plate by the above-mentioned method. If the amount of the curing catalyst is 10 wt% or less, this resin plate does not cause defective molding. Also, the dielectric constant is 2.43 and the dielectric loss tangent is 0.0018.
It was ~ 0.0019, and no remarkable deterioration in properties was observed. The results of Comparative Examples 4 to 6 and Examples 7 to 8 are shown in Table 2 below;

【0047】[0047]

【表2】 [Table 2]

【0048】[実施例9〜11]表3には、本発明の樹
脂組成物に各種基材を含浸させて作製したプリプレグの
構成及び誘電特性を示した。作製したプリプレグは何れ
もタックフリー性を有する。プリプレグの作製には、実
施例5で調製した樹脂組成物、すなわち、高分子量体と
してのPPE及び架橋成分としてのBVPEをそれぞれ
50重量部ならびに樹脂成分の重量に対して1wt%の
硬化触媒25Bを含んでなる樹脂組成物を使用した。プ
リプレグは、有機溶媒としてクロロホルムを使用してワ
ニスを調製し、このワニスを所定の有機不織布又はガラ
スクロスに含浸して、室温にて約1時間、90℃で60
分間乾燥することにより作製した。各基材名及び樹脂含
有率を表3に示した。前記のように作製したプリプレグ
を、真空下、加熱及び加圧して硬化させ模擬基板を作製
した。加熱条件は120℃/30分、150℃/30
分、180℃/100分、プレス圧力1.5MPaの多
段階加熱とした。模擬基板は70×70×0.14〜
0.3mmとした。ガラスクロス(#2116)を基材
とする実施例9の模擬基板は、誘電率が3.12、誘電
正接が0.0038、有機不織布(K−9)を基材とす
る実施例10の模擬基板は誘電率2.51、誘電正接が
0.0027、E210を基材とする実施例11の模擬
基板は誘電率2.61、誘電正接0.0024であっ
た。何れも良好な誘電特性を有する。前記実施例9〜1
1の結果を以下の表3に示す;
[Examples 9 to 11] Table 3 shows the constitution and dielectric properties of prepregs prepared by impregnating the resin composition of the present invention with various base materials. All the prepared prepregs have tack-free properties. To prepare the prepreg, 50 parts by weight of each of the resin composition prepared in Example 5, that is, PPE as a high molecular weight substance and BVPE as a crosslinking component, and 1 wt% of the curing catalyst 25B with respect to the weight of the resin component were used. A resin composition comprising was used. The prepreg is a varnish prepared by using chloroform as an organic solvent, impregnating the varnish into a predetermined organic non-woven fabric or glass cloth, and then at room temperature for about 1 hour at 90 ° C. for 60 hours.
It was made by drying for a minute. Table 3 shows each substrate name and resin content. The prepreg prepared as described above was heated and pressed under vacuum to be cured to prepare a simulated substrate. Heating conditions are 120 ° C / 30 minutes, 150 ° C / 30
Min, 180 ° C./100 minutes, and multi-stage heating with a pressing pressure of 1.5 MPa. Simulated substrate is 70 × 70 × 0.14〜
It was 0.3 mm. The simulated substrate of Example 9 using glass cloth (# 2116) as a base material has a dielectric constant of 3.12, a dielectric loss tangent of 0.0038, and an organic non-woven fabric (K-9) as a base material of Example 10. The substrate had a dielectric constant of 2.51, a dielectric loss tangent of 0.0027, and the simulated substrate of Example 11 based on E210 had a dielectric constant of 2.61 and a dielectric loss tangent of 0.0024. Both have good dielectric properties. Examples 9 to 1
The results of 1 are shown in Table 3 below;

【0049】[0049]

【表3】 [Table 3]

【0050】[実施例12]実施例9で作製したプリプ
レグの両面に電解銅箔の粗面を張り付け、真空下、加
圧、加熱して両面銅張積層板を作製した。加熱条件は1
20℃/30分、150℃/30分、180℃/100
分、プレス圧力1.5MPaとした。銅箔とプリプレグ
は良好な接着性を示した。これにより多層プリント基板
の作製が可能となった。
[Example 12] Rough surfaces of electrolytic copper foil were attached to both surfaces of the prepreg prepared in Example 9, and pressed and heated under vacuum to prepare a double-sided copper-clad laminate. The heating condition is 1
20 ° C / 30 minutes, 150 ° C / 30 minutes, 180 ° C / 100
Min, the press pressure was 1.5 MPa. The copper foil and the prepreg showed good adhesion. This made it possible to fabricate a multilayer printed circuit board.

【0051】[実施例13]以下に本発明の多層プリン
ト基板の作成例を示す。(A)実施例12で得た両面銅
張積層板の片面にフォトレジスト(日立化成製HS42
5)をラミネートして全面に露光した。次いで残る銅表
面にフォトレジスト(日立化成製HS425)をラミネ
ートしてテストパターンを露光し、未露光部分のフォト
レジストを1%炭酸ナトリウム液で現像した。(B)硫
酸5%、過酸化水素5%のエッチング液で露出した銅箔
をエッチング除去して、両面銅張積層板の片面に導体配
線を形成した。(C)3%水酸化ナトリウム溶液で残存
するフォトレジストを除去し、片面に配線を有する配線
基板を得た。同様にして2枚の配線基板を作製した。
(D)二枚の配線基板の配線側の面に実施例9のプリプ
レグを挟み、真空下、加熱、加圧して多層化した。加熱
条件は120℃/30分、150℃/30分、180℃
/100分、プレス圧力1.5MPaの多段階加熱とし
た。(E)作製した多層板の両面の外装銅にフォトレジ
スト(日立化成製HS425)をラミネートしてテスト
パターンを露光し、未露光部分のフォトレジストを1%
炭酸ナトリウム液で現像した。(F)硫酸5%、過酸化
水素5%のエッチング液で露出した銅箔をエッチング除
去し、3%水酸化ナトリウム溶液で残存するフォトレジ
ストを除去して外装配線を形成した。(G)内層配線と
外装配線を接続するスルーホールをドリル加工で形成し
た。(H)配線基板をめっき触媒のコロイド溶液に浸し
て、スルーホール内、基板表面に触媒を付与した。
(I)めっき触媒の活性化処理の後、無電解めっき(日
立化成製CUST2000)により、約1μmの種膜を
設けた。(J)フォトレジスト(日立化成製HN92
0)を配線基板の両面にラミネートした。(K)スルー
ホール部及び配線基板の端部をマスクして露光後、3%
炭酸ナトリウムで現像して開孔部を設置した。(L)配
線基板の端部に電極を設置して電解めっきによってスル
ー部分にめっき銅を約18μm形成した。(M)電極部
分を切断除去し、残存するフォトレジストを5%水酸化
ナトリウム水溶液で除去した。(N)硫酸5%、過酸化
水素5%のエッチング液に配線基板を浸して約1μmエ
ッチングして種膜を除去し多層配線板を作製した。本多
層配線板を200℃のハンダリフロー槽に10分間、2
88℃ハンダ槽に1分保持したが、樹脂界面、配線の剥
離等は生じなかった。
[Embodiment 13] An example of producing the multilayer printed circuit board of the present invention will be described below. (A) Photoresist (HS42 manufactured by Hitachi Chemical Co., Ltd.) was formed on one surface of the double-sided copper-clad laminate obtained in Example 12.
5) was laminated and exposed on the entire surface. Then, a photoresist (HS425 manufactured by Hitachi Chemical Co., Ltd.) was laminated on the remaining copper surface to expose the test pattern, and the photoresist in the unexposed portion was developed with a 1% sodium carbonate solution. (B) The exposed copper foil was removed by etching with an etching solution containing 5% sulfuric acid and 5% hydrogen peroxide to form a conductor wiring on one surface of the double-sided copper-clad laminate. (C) The remaining photoresist was removed with a 3% sodium hydroxide solution to obtain a wiring board having wiring on one surface. Two wiring boards were produced in the same manner.
(D) The prepreg of Example 9 was sandwiched between the wiring-side surfaces of two wiring boards, and heated and pressed under vacuum to form a multilayer structure. The heating conditions are 120 ° C / 30 minutes, 150 ° C / 30 minutes, 180 ° C.
/ 100 minutes, multi-stage heating with a press pressure of 1.5 MPa. (E) A photoresist (HS425 manufactured by Hitachi Chemical Co., Ltd.) is laminated on the exterior copper on both sides of the produced multilayer board to expose the test pattern, and the photoresist in the unexposed portion is 1%.
It was developed with a sodium carbonate solution. (F) The exposed copper foil was removed by etching with an etching solution containing 5% sulfuric acid and 5% hydrogen peroxide, and the remaining photoresist was removed with a 3% sodium hydroxide solution to form exterior wiring. (G) A through hole for connecting the inner layer wiring and the outer wiring was formed by drilling. (H) The wiring board was dipped in a colloidal solution of a plating catalyst to apply the catalyst to the board surface in the through holes.
(I) After the activation treatment of the plating catalyst, a seed film of about 1 μm was provided by electroless plating (CUST2000 manufactured by Hitachi Chemical Co., Ltd.). (J) Photoresist (HN92 manufactured by Hitachi Chemical
0) was laminated on both sides of the wiring board. (K) After exposure by masking the through hole and the end of the wiring board, 3%
It was developed with sodium carbonate and an opening was provided. (L) Electrodes were set at the ends of the wiring board, and electrolytic copper plating was performed to form plated copper in a thickness of about 18 μm. (M) The electrode portion was cut off and the remaining photoresist was removed with a 5% aqueous sodium hydroxide solution. (N) A wiring board was immersed in an etching solution containing 5% sulfuric acid and 5% hydrogen peroxide, and was etched by about 1 μm to remove the seed film, thereby producing a multilayer wiring board. Place this multilayer wiring board in a solder reflow bath at 200 ° C for 10 minutes, 2
After being held in a 88 ° C. solder bath for 1 minute, no resin interface, peeling of wiring, etc. occurred.

【0052】[0052]

【発明の効果】本発明によれば、誘電率、誘電正接が低
く、ガラス転移温度が高く、引張強度、伸びの大きな硬
化物が得られる。本樹脂組成物は、高周波用電気部品の
絶縁材料に好適であり、高周波信号用配線基板、及びそ
れに用いられるプリプレグへの応用が可能である。
According to the present invention, a cured product having a low dielectric constant and a low dielectric loss tangent, a high glass transition temperature, and a large tensile strength and elongation can be obtained. The resin composition is suitable as an insulating material for high-frequency electrical components, and can be applied to a high-frequency signal wiring board and a prepreg used for the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】多層配線板作製時のプロセスを現わす模式図で
ある。
FIG. 1 is a schematic view showing a process for manufacturing a multilayer wiring board.

【符号の説明】[Explanation of symbols]

1…電解銅箔、2…樹脂基板、3…フォトレジスト、4
…プリプレグ、5…内層配線、6…外層配線、7…スル
ーホール、8…めっき触媒、9…種膜、10…開孔部、
11…電極、12…めっき銅
1 ... Electrolytic copper foil, 2 ... Resin substrate, 3 ... Photoresist, 4
... prepreg, 5 ... inner layer wiring, 6 ... outer layer wiring, 7 ... through hole, 8 ... plating catalyst, 9 ... seed film, 10 ... open hole portion,
11 ... Electrode, 12 ... Plated copper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 57:00 C08L 57:00 (72)発明者 石川 敬郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三輪 崇夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4F072 AB29 AD02 AD03 AD05 AD09 AG03 AL13 4J011 PA54 PA64 PA65 PA69 PA70 PC02 4J026 AA11 AA17 AA18 AA42 AA49 AA57 AA68 AA69 BA07 DB15 GA07 5E346 AA06 AA12 AA15 AA22 BB01 CC02 CC08 CC31 DD02 DD31 EE02 EE06 EE07 EE09 GG28 HH06 HH18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 57:00 C08L 57:00 (72) Inventor Keiro Ishikawa 7-1, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Takao Miwa 7-1 Omika-cho, Hitachi City, Ibaraki Prefecture F-term inside Hitachi Research Laboratory Hitachi Ltd. (reference) 4F072 AB29 AD02 AD03 AD05 AD09 AG03 AL13 4J011 PA54 PA64 PA65 PA69 PA70 PC02 4J026 AA11 AA17 AA18 AA42 AA49 AA57 AA68 AA69 BA07 DB15 GA07 5E346 AA06 AA12 AA15 AA22 BB01 CC02 CC08 CC31 DD02 DD31 EE02 EE06 EE07 EE09 HGG28 H06 HGG18 H06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式: 【化1】 (式中、Rは炭化水素骨格を表し、R1は、同一又は異
なって、水素原子又は炭素数1〜20の炭化水素基を表
し、R2、R3及びR4は、同一又は異なって、水素原子
又は炭素数1〜6のアルキル基を表し、mは1〜4の整
数、nは2以上の整数を表す。)で示される複数のスチ
レン基を有する重量平均分子量1000以下の架橋成分
と、高分子量体とを含有する樹脂組成物であって、該樹
脂組成物を180℃、100分で硬化させて得られる硬
化物のガラス転移温度が170℃以上であるか、又は該
硬化物の170℃における弾性率が500MPa以上で
ある樹脂組成物。
1. The following general formula: (In the formula, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m is an integer of 1 to 4, and n is an integer of 2 or more.), A crosslinking component having a plurality of styrene groups and having a weight average molecular weight of 1000 or less. And a high molecular weight polymer, wherein the cured product obtained by curing the resin composition at 180 ° C. for 100 minutes has a glass transition temperature of 170 ° C. or higher, or the cured product. Of the resin composition having an elastic modulus at 170 ° C. of 500 MPa or more.
【請求項2】 スチレン基を重合しうる硬化触媒及びス
チレン基の重合を抑制しうる重合禁止剤の少なくとも一
方を更に含有する請求項1に記載の組成物。
2. The composition according to claim 1, further comprising at least one of a curing catalyst capable of polymerizing a styrene group and a polymerization inhibitor capable of suppressing the polymerization of the styrene group.
【請求項3】 前記架橋成分及び高分子量体の合計10
0重量部に対して、前記硬化触媒の添加量が0.000
5〜10重量部であり、前記重合禁止剤の添加量が0.
0005〜5重量部である請求項2に記載の組成物。
3. A total of 10 of the crosslinking component and the high molecular weight substance.
The addition amount of the curing catalyst is 0.000 with respect to 0 part by weight.
5 to 10 parts by weight, and the amount of the polymerization inhibitor added is 0.
The composition according to claim 2, which is from 0005 to 5 parts by weight.
【請求項4】 前記高分子量体のガラス転移温度が17
0℃以上である請求項1〜3のいずれか1項に記載の組
成物。
4. The glass transition temperature of the polymer is 17
The composition according to any one of claims 1 to 3, which has a temperature of 0 ° C or higher.
【請求項5】 前記高分子量体が、ブタジエン、イソプ
レン、スチレン、メチルスチレン、エチルスチレン、ジ
ビニルベンゼン、アクリル酸エステル、アクリロニトリ
ル、N−フェニルマレイミド及びN−ビニルフェニルマ
レイミドの少なくとも一種からなる重合体、置換基を有
していてもよいポリフェニレンオキサイド、ならびに脂
環式構造を有するポリオレフィンからなる群から選ばれ
る少なくとも一種の樹脂である請求項1〜4のいずれか
1項に記載の組成物。
5. The polymer, wherein the high molecular weight polymer is at least one of butadiene, isoprene, styrene, methylstyrene, ethylstyrene, divinylbenzene, acrylic acid ester, acrylonitrile, N-phenylmaleimide and N-vinylphenylmaleimide, The composition according to any one of claims 1 to 4, which is at least one resin selected from the group consisting of a polyphenylene oxide which may have a substituent and a polyolefin having an alicyclic structure.
【請求項6】 下記一般式: 【化2】 (式中、Rは炭化水素骨格を表し、R1は、同一又は異
なって、水素原子又は炭素数1〜20の炭化水素基を表
し、R2、R3及びR4は、同一又は異なって、水素原子
又は炭素数1〜6のアルキル基を表し、mは1〜4の整
数、nは2以上の整数を表す。)で示される複数のスチ
レン基を有する重量平均分子量1000以下の架橋成分
と、高分子量体とを含有する樹脂組成物を硬化させて得
られる硬化物であって、ガラス転移温度が170℃以上
であるか、又は170℃における弾性率が500MPa
以上である硬化物。
6. The following general formula: (In the formula, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m is an integer of 1 to 4, and n is an integer of 2 or more.), A crosslinking component having a plurality of styrene groups and having a weight average molecular weight of 1000 or less. Which is a cured product obtained by curing a resin composition containing a polymer and a high molecular weight polymer, and has a glass transition temperature of 170 ° C. or higher, or an elastic modulus at 170 ° C. of 500 MPa.
The cured product that is the above.
【請求項7】 請求項1〜5のいずれか1項に記載の組
成物の硬化物。
7. A cured product of the composition according to claim 1.
【請求項8】 請求項1〜5のいずれか1項に記載の組
成物を、有機又は無機のクロス又は不織布に含浸させ、
乾燥させてなるプリプレグ。
8. An organic or inorganic cloth or nonwoven fabric is impregnated with the composition according to any one of claims 1 to 5,
A dried prepreg.
【請求項9】 請求項8に記載のプリプレグの硬化物。9. A cured product of the prepreg according to claim 8. 【請求項10】 請求項8に記載のプリプレグ又はその
硬化物の両面又は片面に導体層が設置されてなる積層
板。
10. A laminated board having conductor layers provided on both sides or one side of the prepreg according to claim 8 or a cured product thereof.
【請求項11】 請求項10に記載の積層板の導体層に
配線加工を施した後、プリプレグを介して該積層板を積
層接着してなる多層プリント基板。
11. A multilayer printed circuit board, which is obtained by wiring a conductor layer of the laminated board according to claim 10 and then laminating and adhering the laminated board through a prepreg.
JP2001201227A 2001-07-02 2001-07-02 Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition Expired - Fee Related JP4550324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201227A JP4550324B2 (en) 2001-07-02 2001-07-02 Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201227A JP4550324B2 (en) 2001-07-02 2001-07-02 Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition

Publications (2)

Publication Number Publication Date
JP2003012710A true JP2003012710A (en) 2003-01-15
JP4550324B2 JP4550324B2 (en) 2010-09-22

Family

ID=19038229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201227A Expired - Fee Related JP4550324B2 (en) 2001-07-02 2001-07-02 Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition

Country Status (1)

Country Link
JP (1) JP4550324B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517595A2 (en) * 2003-09-19 2005-03-23 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate sheet and printed wiring board using the same and method for production thereof
US7193009B2 (en) 2002-08-26 2007-03-20 Hitachi, Ltd. Electronic device using low dielectric loss tangent insulators for high frequency signals
JP2007096159A (en) * 2005-09-30 2007-04-12 Alaxala Networks Corp Multilayer printed wiring board
KR100867661B1 (en) 2006-12-27 2008-11-10 전자부품연구원 Thermally Curable Resin Composition Having Low Dielectric Constant and Low Dielectric Loss in High Frequency Range
JP2009267201A (en) * 2008-04-28 2009-11-12 Sumitomo Bakelite Co Ltd Resin composition for circuit, prepreg and laminate sheet
US7638564B2 (en) 2005-10-04 2009-12-29 Hitachi Chemical Co., Ltd. Low dielectric loss tangent-resin varnish, prepreg, laminated sheet, and printed wiring board using the varnish
US8115105B2 (en) 2008-01-15 2012-02-14 Hitachi Chemical Co., Ltd. Prepreg and its application products for low thermal expansion and low dielectric tangent
CN113574102A (en) * 2019-03-27 2021-10-29 松下知识产权经营株式会社 Prepreg, metal foil-clad laminate, and wiring board
WO2024202454A1 (en) * 2023-03-24 2024-10-03 三井化学株式会社 Prepreg, printed wiring board, and electronic component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193009B2 (en) 2002-08-26 2007-03-20 Hitachi, Ltd. Electronic device using low dielectric loss tangent insulators for high frequency signals
US7273900B2 (en) 2003-09-19 2007-09-25 Hitachi Chemical Company, Ltd. Resin composition, prepreg, laminate sheet and printed wiring board using the same and method for production thereof
CN100355829C (en) * 2003-09-19 2007-12-19 日立化成工业株式会社 Resin composition, prepreg, laminate sheet and printed wiring board using the same
EP1517595A3 (en) * 2003-09-19 2008-04-02 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate sheet and printed wiring board using the same and method for production thereof
EP1517595A2 (en) * 2003-09-19 2005-03-23 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate sheet and printed wiring board using the same and method for production thereof
US8420210B2 (en) 2003-09-19 2013-04-16 Hitachi Chemical Company, Ltd. Resin composition, prepreg, laminate sheet and printed wiring board using the same and method for production thereof
JP2007096159A (en) * 2005-09-30 2007-04-12 Alaxala Networks Corp Multilayer printed wiring board
US7638564B2 (en) 2005-10-04 2009-12-29 Hitachi Chemical Co., Ltd. Low dielectric loss tangent-resin varnish, prepreg, laminated sheet, and printed wiring board using the varnish
KR100867661B1 (en) 2006-12-27 2008-11-10 전자부품연구원 Thermally Curable Resin Composition Having Low Dielectric Constant and Low Dielectric Loss in High Frequency Range
US8115105B2 (en) 2008-01-15 2012-02-14 Hitachi Chemical Co., Ltd. Prepreg and its application products for low thermal expansion and low dielectric tangent
JP2009267201A (en) * 2008-04-28 2009-11-12 Sumitomo Bakelite Co Ltd Resin composition for circuit, prepreg and laminate sheet
CN113574102A (en) * 2019-03-27 2021-10-29 松下知识产权经营株式会社 Prepreg, metal foil-clad laminate, and wiring board
WO2024202454A1 (en) * 2023-03-24 2024-10-03 三井化学株式会社 Prepreg, printed wiring board, and electronic component

Also Published As

Publication number Publication date
JP4550324B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR100857259B1 (en) High safety varnish resin having a low dissipation factor and wiring board material using thereof
JP4325337B2 (en) Resin composition, prepreg, laminate and multilayer printed wiring board using the same
JP4613977B2 (en) Prepreg including thin-layer quartz glass cloth and wiring board using the same
JP4467816B2 (en) Low dielectric loss tangent resin composition, curable film, cured product, electrical component using the same, and production method thereof
JP5138267B2 (en) Prepreg, multilayer substrate and electronic component using the same
JP5093059B2 (en) Resin composition, prepreg, laminate and printed circuit board
CN109912958B (en) Thermosetting resin composition, prepreg, laminate, and printed circuit board
JP5181221B2 (en) Low thermal expansion low dielectric loss prepreg and its application
KR100920612B1 (en) Anisotropic conductive film composition and anisotropic conductive film using the same
JP3801117B2 (en) Low dielectric loss tangent film and wiring film
JP2003012710A (en) Resin composition having low dielectric loss tangent, cured product of the same, prepreg using the same composition, laminated plate and multilayered printed board
JP2004083681A (en) Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same
JP4876778B2 (en) Curable resin composition, curable film and film excellent in storage stability
JP2004087638A (en) Heat-resistant porous resin multilayer substrate
JP4134835B2 (en) High dielectric constant, low dielectric loss tangent composite material composition, curable film, cured product and process for producing the same
JP3938500B2 (en) Low dielectric loss tangent method, low dielectric loss tangent resin composition and electrical component using the same
JP2005041914A (en) Resin composition containing rubber component and film and electric part using the same
JP4499344B2 (en) Resin composition and prepreg, laminate and multilayer printed circuit board using the same
TWI815938B (en) Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
JPS63156835A (en) Laminated board
JPH0149379B2 (en)
JP2002371163A (en) Resin composition for material expressing low specific dielectric constant and low dielectric loss tangent in high frequency zone and cured product of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070731

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees