JP2003012303A - Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier - Google Patents

Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier

Info

Publication number
JP2003012303A
JP2003012303A JP2001196577A JP2001196577A JP2003012303A JP 2003012303 A JP2003012303 A JP 2003012303A JP 2001196577 A JP2001196577 A JP 2001196577A JP 2001196577 A JP2001196577 A JP 2001196577A JP 2003012303 A JP2003012303 A JP 2003012303A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
carrier
main component
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001196577A
Other languages
Japanese (ja)
Inventor
Osamu Yamanishi
修 山西
Hidekatsu Kawazu
英勝 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001196577A priority Critical patent/JP2003012303A/en
Publication of JP2003012303A publication Critical patent/JP2003012303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen refining unit which converts CO in a hydrogen rich gas obtained by steam reforming of hydrocarbons into hydrogen at a high conversion rate by steam and oxygen, and to provide a catalyst built-in the unit, and its catalyst carrier and its production method. SOLUTION: The hydrogen refining unit which reduces CO by using a carbon monoxide reforming and hydrogen refining catalyst, receiving a supply of a reformed gas containing hydrogen gas, carbon monoxide and steam, is provided. The hydrogen refining catalyst is composed of loading a catalyst material on an extrusion integrated molding whose main component is a transition alumina containing a hydroxy group. A carrier for hydrogen refining catalyst is the extrusion integrated molding. The carrier is produced through drying and firing process after extruding the mixture of powder containing re-hydrated alumina and combustible materials as raw materials, and then retaining in a wet atmosphere or water of more than 110 deg.C and re-hydrating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素を主成分と
し、COを含有する改質ガスを精製し、CO含有量の少
ない水素リッチガスを提供する水素精製装置と水素精製
用触媒及びその担体、この担体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen purifying apparatus, a hydrogen purifying catalyst, and a carrier thereof for purifying a reformed gas containing hydrogen as a main component and containing CO to provide a hydrogen rich gas having a low CO content. The present invention relates to a method for producing the carrier.

【0002】[0002]

【従来の技術】燃料電池などの水素源として、炭化水素
もしくはアルコ−ル、エ−テルなどの燃料量の改質によ
って得られる水素リッチな改質ガスが用いられる。固体
高分子型燃料電池の場合には、電極に用いる白金触媒が
改質ガスに含まれるCOによって被毒される恐れがあ
る。燃料電池の白金電極触媒の被毒が起こると燃料電池
中で起こる水素の電気化学反応が阻害され、燃料電池の
発電効率が著しく低下するので、改質ガス中のCOを除
去する必要がある。
2. Description of the Related Art As a hydrogen source for a fuel cell or the like, a hydrogen-rich reformed gas obtained by reforming a hydrocarbon or a fuel amount such as alcohol or ether is used. In the case of a polymer electrolyte fuel cell, the platinum catalyst used for the electrode may be poisoned by CO contained in the reformed gas. When the platinum electrode catalyst of the fuel cell is poisoned, the electrochemical reaction of hydrogen that occurs in the fuel cell is hindered and the power generation efficiency of the fuel cell is significantly reduced. Therefore, it is necessary to remove CO in the reformed gas.

【0003】以下に、改質ガスにCOが存在する理由を
説明するため、燃料としてメタノ−ルを用いる場合の水
蒸気反応を示す。
In order to explain the reason why CO is present in the reformed gas, a steam reaction when methanol is used as a fuel will be shown below.

【化1】 メタノ−ルの水蒸気改質反応は、(1)式に示すメタノ-
ル分解反応と、(2)式に示すCOの変成反応とが同時
に進行し、全体として(3)式の反応がおこって二酸化
炭素を含有する水素リッチガスが生成されると考えられ
ている。これらの反応が完全におこなわれるならば最終
的にCOが生じることはない。実際に改質反応を進行さ
せるときには、上記(2)式の反応を完全におこなわせ
ることは困難であるため、燃料改質装置で改質された改
質ガス中には副生成物としてCOが微量含まれる。
[Chemical 1] The steam reforming reaction of methanol is performed by the methanol-reforming reaction represented by the formula (1).
It is considered that the hydrogen decomposition gas and the CO conversion reaction represented by the formula (2) proceed at the same time, and the reaction represented by the formula (3) occurs as a whole to generate a hydrogen-rich gas containing carbon dioxide. If these reactions are carried out completely, no CO will eventually be produced. When actually proceeding the reforming reaction, it is difficult to completely carry out the reaction of the above formula (2), so CO is a by-product in the reformed gas reformed by the fuel reformer. Included in trace amounts.

【0004】通常COを除去するためには、CO変成触
媒を設置したCO変成部でCOと水蒸気をシフト反応さ
せ、二酸化炭素と水素に転換し、CO濃度を低減させ、
その後微量の空気を入れCO選択酸化させCOを除去す
る。従来からCO変成触媒には銅-亜鉛触媒や銅-クロム
触媒が用いられ200〜230℃の反応温度でおこなわれた。
また近年酸化銅-酸化アルミニウムスピネル構造型触媒
(特開昭56-158147)や、金属酸化物にPtを担持した
触媒(特開2000-302410)も知られている。
Usually, in order to remove CO, CO and steam are subjected to a shift reaction in a CO shift section equipped with a CO shift catalyst to convert them into carbon dioxide and hydrogen to reduce the CO concentration,
After that, a small amount of air is introduced to selectively oxidize CO to remove CO. Conventionally, a copper-zinc catalyst or a copper-chromium catalyst has been used as a CO conversion catalyst, and it has been carried out at a reaction temperature of 200 to 230 ° C.
In recent years, a copper oxide-aluminum oxide spinel structure type catalyst (JP-A-56-158147) and a catalyst in which Pt is supported on a metal oxide (JP-A-2000-302410) are also known.

【0005】しかし、これら触媒はペレット状やセラミ
ク質基台または金属基台にコ−トした形態で用いられて
いる。ペレット状で使用した場合、カラム等に充填して
使用する場合、反応時の圧力損失が大きいため能力の大
きなガス供給装置が必要となる。またセラミク質基台ま
たは金属基台にコ−トした形態で用いられている。しか
しこの場合反応装置に仕込める触媒量が低下し所定の反
応率を得るため装置が大型になる。また触媒層が基台よ
り脱落する問題がある。
However, these catalysts are used in the form of pellets or coated on a ceramic base or a metal base. When used in the form of pellets or packed in a column or the like, a gas supply device having a large capacity is required because the pressure loss during the reaction is large. It is also used in a form coated on a ceramic base or a metal base. However, in this case, the amount of catalyst charged in the reactor is reduced and a predetermined reaction rate is obtained, so that the device becomes large. Further, there is a problem that the catalyst layer falls off from the base.

【0006】また特開2000-302410において酸化物担体
をハニカム状に成形し触媒とすることも提案されている
が、完全な酸化物であるαアルミナでは、比表面積が50
m2/g以上のものが得られず高活性化に限界があった。
[0006] Further, in Japanese Patent Laid-Open No. 2000-302410, it has been proposed to form an oxide carrier into a honeycomb shape to be used as a catalyst, but α-alumina which is a perfect oxide has a specific surface area of 50.
m 2 / g or more things there is a limit to the high activation not obtained.

【0007】[0007]

【発明が解決しようとする課題】以上のように、従来の
技術においては、水素精製装置における変成部のコンパ
クト化が出来ず大きな装置となったり、また満足できる
性能が得られなかった。また反応活性を向上させるため
にはガスの冷却を必要とした。
As described above, in the prior art, it was not possible to make the shift conversion section of the hydrogen purification apparatus compact and the apparatus became large, and satisfactory performance could not be obtained. Further, cooling of the gas was necessary to improve the reaction activity.

【0008】本発明は、水素精製装置の小型化のため、
CO変成器を小型化し圧力損失の少ない高活性触媒を見
出し、炭化水素等の水蒸気改質で得られた水素リッチガ
ス中のCOガスをスチ−ム及び酸素により高転化率で水
素を転化する水素精製装置の提供、および該装置に内蔵
される触媒の提供、ならびに触媒担体とその製法の提供
を目的としている。
The present invention is directed to downsizing of a hydrogen purifier,
We have found a highly active catalyst with a small CO shifter and a small pressure loss, and have been able to convert CO gas in hydrogen-rich gas obtained by steam reforming of hydrocarbons into high-conversion hydrogen by steam and oxygen. The purpose of the present invention is to provide a device, a catalyst incorporated in the device, a catalyst carrier and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、水素精製装置の小型化のため、CO
変成器を小型化し圧力損失の少ない高活性触媒を見出す
べく鋭意研究を重ねた結果、主成分が水酸基を有する遷
移アルミナ質とする押し出し一体成形体に触媒物質を担
持して成る触媒が、水素リッチガス中のCOのスチーム
及び酸素による転化に適していることを見出し本発明を
完成するに至った。
In order to solve the above-mentioned problems, the inventors of the present invention used a CO
As a result of intensive research to find a highly active catalyst with a compact converter and low pressure loss, a catalyst formed by supporting a catalytic substance on an extruded integrally formed body whose main component is a transition alumina having a hydroxyl group is a hydrogen-rich gas. They have found that they are suitable for the conversion of CO in steam and oxygen, and have completed the present invention.

【0010】すなわち、本発明の要旨は以下のとおりで
ある。 (1)水素ガスと一酸化炭素および水蒸気を含む改質ガ
スの供給を受け、一酸化炭素変成・水素精製用触媒を用
いて一酸化炭素を低減させる水素精製装置であって、前
記一酸化炭素変成・水素精製用触媒は、主成分が水酸基
を有する遷移アルミナ質とする押し出し一体成形体に触
媒物質を担持してなることを特徴とする水素精製装置。 (2)主成分が水酸基を有する遷移アルミナ質とする押
し出し一体成形体に触媒物質を担持してなることを特徴
とする水素精製用触媒。 (3)主成分が水酸基を有する遷移アルミナ質とする押
し出し一体成形体であることを特徴とする水素精製用触
媒用担体。 (4)再水和性アルミナを含む粉体と燃焼物質の混合品
を原料として押し出し成形し、その後、110℃以上の湿
潤雰囲気中または水中で保持せしめ再水和させた後、乾
燥焼成工程をおこなうことを特徴とする水素精製用触媒
用担体の製造法。
That is, the gist of the present invention is as follows. (1) A hydrogen purification apparatus that receives hydrogen gas and a reformed gas containing carbon monoxide and steam and reduces carbon monoxide by using a carbon monoxide shift / hydrogen purification catalyst, The catalyst for metamorphic / hydrogen purification is a hydrogen purification apparatus characterized in that a catalyst substance is supported on an extruded integrally molded body whose main component is a transition alumina material having a hydroxyl group. (2) A catalyst for hydrogen purification, characterized in that a catalyst substance is supported on an extruded integrally molded body whose main component is a transition alumina having hydroxyl groups. (3) A carrier for a catalyst for hydrogen purification, which is an extrusion-integrated molded body whose main component is a transition alumina having hydroxyl groups. (4) A mixture of powder containing rehydratable alumina and a combustion substance is extruded as a raw material, then held in a wet atmosphere at 110 ° C or higher or in water for rehydration, followed by a drying and firing step. A method for producing a carrier for a catalyst for hydrogen purification, which is characterized in that

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、水素を主成分としCOを含有する改質ガスを
精製し、CO含有量の少ない水素リッチガスを提供する
水素精製装置を提供するものである。本発明において水
素精製装置は、主成分が水酸基を有する遷移アルミナ質
とする押し出し一体成形体に触媒物質を担持してなる触
媒が装填されていることを必須とする。水素精製装置
は、原料供給部、変成触媒反応室、精製ガス出口を備え
ていることを必須とする。変成触媒反応室は反応温度を
一定温度に保つため加熱部を有しても良いし、熱交換器
を有しても良い。また水素精製装置内部に少量空気を供
給しCO部分酸化反応を同時に行なっても良い。水素精
製装置に供給する水素を主成分としCOを含有する改質
ガスを発生させるために用いる燃料として特に限定され
ないが、天然ガス、メタノ−ル、ガソリン等があり改質
方法も水蒸気を加える水蒸気改質や、水蒸気に空気を加
えておこなう部分酸化改質などがある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The present invention provides a hydrogen purifier that purifies a reformed gas containing hydrogen as a main component and CO to provide a hydrogen-rich gas having a low CO content. In the present invention, it is essential that the hydrogen purifying apparatus be loaded with a catalyst having a catalytic substance supported on an extruded integrally formed body whose main component is a transition alumina material having a hydroxyl group. It is essential that the hydrogen purifier be equipped with a raw material supply unit, a shift catalyst reaction chamber, and a purified gas outlet. The shift conversion catalyst reaction chamber may have a heating unit to keep the reaction temperature at a constant temperature, or may have a heat exchanger. Further, a small amount of air may be supplied to the inside of the hydrogen purifier to simultaneously carry out the CO partial oxidation reaction. The fuel used to generate the reformed gas containing hydrogen as a main component and containing CO is supplied to the hydrogen purifier, but is not particularly limited, and there are natural gas, methanol, gasoline and the like, and the reforming method is steam adding steam. There are reforming and partial oxidation reforming performed by adding air to steam.

【0012】次に本発明の担体と触媒およびその製法に
ついて述べる。本発明の触媒担体は、主成分が水酸基を
有する遷移アルミナ質であることを特徴とする。遷移ア
ルミナとはX線解析によりρ、η、γ、χ、θ形態で、
表面水酸基を結晶水の量として通常1molあたり0.02〜0.
5mol有する。表面水酸基の量は灼熱減量より求められ
る。表面水酸基を有しない酸化物であるαアルミナ形態
や、水酸基の量が灼熱減量として1%未満(0.06mol相
当)の場合、理由は定かでないがシフト反応活性は低か
った。担体表面の水酸基がシフト反応の水蒸気との親和
性を向上させているためと考えられる。
Next, the carrier and catalyst of the present invention and the method for producing the same will be described. The catalyst carrier of the present invention is characterized in that the main component is a transition alumina having a hydroxyl group. Transition alumina is in the form of ρ, η, γ, χ, θ by X-ray analysis,
The amount of water of crystallization is usually 0.02 to 0 per mol of surface hydroxyl groups.
Have 5 mol. The amount of surface hydroxyl groups is calculated from the loss on ignition. The α-alumina form, which is an oxide having no surface hydroxyl group, or the amount of hydroxyl group was less than 1% (corresponding to 0.06 mol) as the loss on ignition, the shift reaction activity was low for unknown reasons. It is considered that the hydroxyl groups on the surface of the carrier improve the affinity of the shift reaction with water vapor.

【0013】遷移アルミナ質担体は押し出し一体成形体
であることを特徴とする。形状としては、平方インチ当
たり50〜1000個の開孔を有するいわゆるハニカム構造
体、また糸状押し出し品を束ねたヌ−ドル形状や、多孔
質押し出し品であるスポンジ形状等があるが、通常ハニ
カム構造体は反応ガスの整流機構があるため推奨され
る。ハニカム構造の開孔の断面形状は特に限定されず円
状、六角状、四角状等がある。
The transitional alumina-based carrier is characterized in that it is an extruded integrally molded body. The shape includes a so-called honeycomb structure having 50 to 1000 openings per square inch, a nuddle shape obtained by bundling thread-like extruded products, a sponge shape that is a porous extruded product, etc. It is recommended because the body has a rectification mechanism for the reaction gas. The cross-sectional shape of the openings of the honeycomb structure is not particularly limited and may be circular, hexagonal, quadrangular or the like.

【0014】本発明において遷移アルミナ担体は、再水
和性アルミナを含む粉体を原料として押し出し成形しそ
の後、110℃以上の湿潤雰囲気中または水中で保持せし
め再水和させた後、乾燥焼成工程をおこなうことを特徴
とする。再水和性アルミナとは水と反応しアルミナ水和
物を生成するρアルミナや無定形アルミナ等で、工業的
にはバイヤー工程から得られる三水酸化アルミニウムで
あるギブサイト結晶水酸化アルミニウムを瞬間仮焼する
ことにより得られる。瞬間仮焼は、代表的には、焼成雰
囲気温度約500℃〜1200℃、線速度約5m/秒〜
約50m/秒の気流中に同伴させて、接触時間約0.1
秒〜約10秒の条件で灼熱減量3〜10重量%まで焼成
することにより実施される。気流中で焼成された粉末は
通常サイクロン、バグフィルター、電気集塵機等公知の
方法で気流より分離、回収される。分離、回収と同時
に、あるいはその後に冷却し再水和性アルミナを得る。
In the present invention, the transition alumina carrier is extruded from a powder containing rehydratable alumina as a raw material, and then is extruded and kept in a wet atmosphere at 110 ° C. or higher or in water for rehydration, followed by a drying and firing step. It is characterized by performing. Rehydratable alumina is ρ-alumina or amorphous alumina that reacts with water to form alumina hydrate.In industrial use, gibbsite crystal aluminum hydroxide, which is aluminum trihydroxide obtained from the Bayer process, is temporarily used. Obtained by baking. The instantaneous calcination is typically a firing atmosphere temperature of about 500 ° C. to 1200 ° C. and a linear velocity of about 5 m / sec.
Contact time of about 0.1 when entrained in an air flow of about 50 m / sec.
It is carried out by firing up to 3 to 10% by weight of ignition loss under the condition of seconds to about 10 seconds. The powder calcined in an air stream is usually separated and collected from the air stream by a known method such as a cyclone, a bag filter and an electrostatic precipitator. Simultaneously with separation and recovery, or after cooling, a rehydratable alumina is obtained.

【0015】このようにして得られた、成形に供するた
めの、すくなくとも部分的に再水和可能なアルミナは、
灼熱減量3〜10重量%、BET比表面積が100m2
/g以上、結晶形主成分はχ,ρ−アルミナである。こ
のようにして得た少なくとも部分的に再水和可能なアル
ミナは、燃焼性物質と混合した後、水と混合して押し出
し成形を行なう。
The at least partially rehydratable alumina thus obtained for use in molding is
Loss on ignition 3-10% by weight, BET specific surface area 100 m 2
/ G or more, the crystal form main component is χ, ρ-alumina. The at least partially rehydratable alumina thus obtained is mixed with combustible material and then with water for extrusion.

【0016】本発明において触媒性能を損なわない範囲
において再水和性アルミナ以外の骨材構成物は特に限定
されず、αアルミナ、シリカ、アルミナ水和物、粘土、
タルク、ベントナイト、クレ−、ケイソウ土、ゼオライ
ト、コ−ディエライト、チタニア、ジルコニア、シリカ
ゾル、アルミナゾル、ムライト、ガラス等の無機物質が
添加出来る。また強度向上剤としてセラミックファイバ
−やウィスカ−を添加しても良い。
In the present invention, the aggregate composition other than rehydratable alumina is not particularly limited as long as the catalytic performance is not impaired, and α-alumina, silica, alumina hydrate, clay,
Inorganic substances such as talc, bentonite, clay, diatomaceous earth, zeolite, cordierite, titania, zirconia, silica sol, alumina sol, mullite and glass can be added. Ceramic fibers or whiskers may be added as a strength improver.

【0017】本発明において遷移アルミナ成形体の細孔
容積を確保するため燃焼性物質を加えることを必須とす
る。燃焼性物質の例として木屑、コルク粒、石炭末、活
性炭、木炭、結晶性セルロ−ス粉末、澱粉、蔗糖、グル
コン酸、ポリエチレングリコ−ル、ポリビニルアルコ−
ル、ポリアクリルアミド、ポリエチレン、ポリスチレン
等及びこれらの混合物が挙げられる。上記燃焼性物質の
添加量が多いほど細孔容積が多くなり触媒活性が向上す
るが、添加しすぎると強度低下を起こすので強度を考慮
して添加量の調整をおこなえばよい。
In the present invention, it is essential to add a combustible substance in order to secure the pore volume of the transition alumina compact. Examples of combustible substances are wood chips, cork granules, coal dust, activated carbon, charcoal, crystalline cellulose powder, starch, sucrose, gluconic acid, polyethylene glycol, polyvinyl alcohol.
And polyacrylamide, polyethylene, polystyrene and the like, and mixtures thereof. The larger the amount of the above-mentioned combustible substance added, the larger the pore volume and the higher the catalytic activity. However, if too much is added, the strength will decrease.

【0018】再水和アルミナと骨材または燃焼性物質の
混合物は、水または水含有物質との混合混練に先立ち再
水和防止剤で部分的に、あるいは完全に被覆することを
必須とする。再水和防止剤で被覆せず、直接水または水
含有物質を接触させると再水和可能なアルミナの再水和
反応が生起し、押し出し成形機内で硬化し成形不能とな
り、目的とする押し出し成形体ができない。
The mixture of rehydrated alumina and aggregate or combustible substance must be partially or completely coated with a rehydration inhibitor prior to mixing and kneading with water or a water-containing substance. If you do not coat it with a rehydration inhibitor and directly contact water or a water-containing substance, a rehydration reaction of rehydratable alumina will occur, which will cure in the extrusion molding machine and make it impossible to mold, the target extrusion molding I can't body.

【0019】再水和防止剤としては、押し出し成形時、
水と再水和可能なアルミナが再水和反応を生起し成形不
可能となる挙動を防止できればよく、具体的には常温で
固体で加熱により液体として流失する物質や、界面活性
剤等表面を被覆する物質が良い。より具体的にはカプロ
ン酸、パルミチン酸、オレイン酸、グルコ−ル酸、カプ
リル酸、ステアリン酸、サルチル酸、トリメチル酢酸、
ラウリル酸、等の脂肪酸及びその塩類や、ラウリルアル
コ−ル、ステアリルアルコ−ル等のアルコ−ル類、アミ
ン類、芳香族化合物、天然高分子化合物等が挙げられ
る。再水和防止剤の添加は通常の混合機や粉砕機、混練
機が利用できる。
As a rehydration inhibitor, during extrusion molding,
It is only necessary to prevent the behavior of water and rehydratable alumina that cause a rehydration reaction and make it impossible to mold.Specifically, a substance that is solid at room temperature and is lost as a liquid by heating, or a surface such as a surfactant Good coating material. More specifically, caproic acid, palmitic acid, oleic acid, gluconic acid, caprylic acid, stearic acid, salicylic acid, trimethylacetic acid,
Examples thereof include fatty acids such as lauric acid and salts thereof, alcohols such as lauryl alcohol and stearyl alcohol, amines, aromatic compounds and natural polymer compounds. An ordinary mixer, a crusher, or a kneader can be used to add the rehydration inhibitor.

【0020】本発明において成形助剤として公知の粘結
剤が用いられる。例えばポリビニ−ルアルコ−ル、澱
粉、セルロ−ス等が挙げられる。
In the present invention, a known binder is used as a molding aid. Examples thereof include polyvinyl alcohol, starch, cellulose and the like.

【0021】再水和防止剤を添加された押し出し原料
は、粘結剤等とともに水あるいは水含有物質と混練して
可塑性坏土となし、押し出し成形に供される。押し出し
成形手段としては、通常の押し出し成形機が利用でき、
その機構に特に限定されるものではない。押し出し成形
機の押し出し出口にハニカム形状で押し出し出来る形状
のダイスを装着して押し出しをおこなう。ダイスとして
は特開昭48-55960号等に開示の公知のものが利用でき
る。押し出し成形体の外形およびセル形状は正方形、三
角形、六角形および円形等の幾何学形状のいずれでもよ
く、またセルの数、セルの壁の厚さ、セルの大きさ、及
び押し出し成形品の長さは任意に決定される。
The extrusion raw material to which the rehydration inhibitor is added is kneaded with water or a water-containing substance together with a binder or the like to form a plastic kneaded material, and is subjected to extrusion molding. As the extrusion molding means, an ordinary extrusion molding machine can be used,
The mechanism is not particularly limited. A die having a honeycomb shape can be attached to the extrusion outlet of the extrusion molding machine for extrusion. As the dice, known ones disclosed in JP-A-48-55960 can be used. The outer shape and cell shape of the extruded body may be any geometrical shape such as square, triangle, hexagon, and circle, and the number of cells, cell wall thickness, cell size, and extruded product length The size is arbitrarily determined.

【0022】押し出し成形された押し出し品は、次に機
械的強度を高めるため再水和処理される。再水和処理は
約110〜200℃の水蒸気中または水蒸気含有ガス中
で保持され再水和される。再水和処理前に予備水中再水
和処理することが推奨される。予備水中再水和処理は80
度以上の水中に保持することで、再水和しながら再水和
防止剤を溶解させ押し出し成形品から分離させることが
できる。予備水中再水和は再水和防止剤が溶出するため
に十分な時間があればよく、通常約1時間〜約10時間
行われる。その後110℃〜200℃の水蒸気中または
水蒸気含有ガス中で保持され再水和されることが好まし
い。再水和は一般に約10分〜1週間、好ましくは約1
時間〜約10時間行われる。この処理中に再水和性アル
ミナは実質的に完全に再水和しベーマイト結晶水酸化ア
ルミニウムになる。再水和時間が長いほど,また温度が
高いほど機械的強度が大きくなるが、200℃以上とな
ると高価な耐圧設備が必要となり経済的でない。再水和
温度が約110℃未満の場合には、得られる遷移アルミ
ナ担体の機械的強度は低い。
The extruded extrudate is then rehydrated to increase its mechanical strength. The rehydration treatment is carried out by holding in water vapor or a water vapor-containing gas at about 110 to 200 ° C. for rehydration. It is recommended to carry out a rehydration treatment in preliminary water before the rehydration treatment. Pre-water rehydration treatment is 80
By holding in water for a certain time or more, the rehydration inhibitor can be dissolved and separated from the extruded product while rehydrating. The rehydration in preliminary water may be performed for a sufficient time for the rehydration inhibitor to be eluted, and is usually performed for about 1 hour to about 10 hours. After that, it is preferably held in steam or steam-containing gas at 110 ° C to 200 ° C for rehydration. Rehydration is generally about 10 minutes to 1 week, preferably about 1
Time to about 10 hours. During this process, the rehydratable alumina is substantially completely rehydrated to boehmite crystalline aluminum hydroxide. The longer the rehydration time and the higher the temperature, the greater the mechanical strength. However, if the rehydration time is 200 ° C. or higher, expensive pressure resistant equipment is required, which is not economical. When the rehydration temperature is less than about 110 ° C, the mechanical strength of the obtained transition alumina support is low.

【0023】再水和された成形体を続いて乾燥・焼成
し,成形体中の付着水分を除き、所定の水酸基を有する
遷移アルミナ担体にする。焼成温度は通常300〜10
00℃、好ましくは400〜700℃であり,成形体製
品の目標灼熱減量、あるいは比表面積により焼成温度は
選択すればよい。焼成は燃焼ガス,電気ヒーターによる
間接加熱,赤外線加熱等で実施される。焼成に先だって
自然乾燥,熱風乾燥,真空乾燥等の方法で付着水分を除
去して置くことも可能である。
The rehydrated molded body is subsequently dried and calcined to remove the attached water in the molded body to obtain a transition alumina carrier having a predetermined hydroxyl group. The firing temperature is usually 300 to 10
The temperature is 00 ° C, preferably 400 to 700 ° C, and the firing temperature may be selected depending on the target loss on ignition of the molded product or the specific surface area. Firing is performed by combustion gas, indirect heating with an electric heater, infrared heating, or the like. It is also possible to remove the attached water by a method such as natural drying, hot air drying, or vacuum drying prior to firing.

【0024】このようにして得られた本発明の遷移アル
ミナ押し出し一体成形体は、通常BET比表面積として
約100m2/g、細孔容積として約0.30cm3/g以
上、灼熱減量1%以上の水酸基を有し形状がハニカム構
造であることを特徴とする遷移アルミナ成形体である。
The transitional alumina extruded integrally formed body of the present invention thus obtained usually has a BET specific surface area of about 100 m 2 / g, a pore volume of about 0.30 cm 3 / g or more, and an ignition loss of 1% or more. And a honeycomb structure having a hydroxyl group.

【0025】本発明の水素精製触媒は上記得られた遷移
アルミナ成形体に触媒成分を担持または含有することを
特徴とする。担持金属としては、Ni、Pd、Pt、C
o、Rh、Ir、Fe、Ru、Os等の8属元素や、C
u、Ag、Au等の1B族元素、Zn,Cd,Hgの2B
族元素の金属またはその酸化物の少なくとも1種が用い
られる。これら触媒成分の触媒担体への担持方法は、通
常の含浸方法やスプレ−方法等公知の方法が利用でき
る。また押し出し成形工程への触媒成分の添加も出来
る。
The hydrogen purification catalyst of the present invention is characterized in that the above-obtained transition alumina molded body is loaded with or contains a catalyst component. As the supporting metal, Ni, Pd, Pt, C
Group 8 elements such as o, Rh, Ir, Fe, Ru, Os, and C
1B group elements such as u, Ag, Au, 2B of Zn, Cd, Hg
At least one metal selected from the group metals and oxides thereof is used. As a method for loading these catalyst components on the catalyst carrier, a known method such as an ordinary impregnation method or a spray method can be used. It is also possible to add a catalyst component to the extrusion molding process.

【0026】[0026]

【発明の効果】以上詳述した本発明によれば、水素を主
成分とし、COを含有する改質ガスを精製し、CO含有
量の少ない水素リッチガスを提供する高活性の水素精製
触媒用担体および、水素精製触媒、並びに装置および製
造方法を見出したもので、その産業上の価値は頗る大で
ある。
According to the present invention described in detail above, a highly active carrier for a hydrogen purification catalyst for purifying a reformed gas containing hydrogen as a main component and containing CO to provide a hydrogen rich gas having a low CO content. And, the hydrogen purification catalyst, the apparatus and the manufacturing method have been found, and the industrial value thereof is extremely large.

【0027】[0027]

【実施例】以下、本発明について実施例を用いて、さら
に詳細に説明するが、本発明はかかる実施例によりその
範囲を制限されるものではない。なお、BET比表面
積、灼熱減量および細孔容積は以下の方法で測定した。 BET比表面積(m2/g):カンタクロ−ム社製直読
式比表面積測定装置モノソ−ブを用いて測定した。 灼熱減量(%):JIS-H1901に準拠し、110
0℃2時間加熱後の重量減より計算した。 細孔容積(cm3/g):Hg圧入法(カンタクローム
社製、オートスキャン33型、ポロシメーター)にて測
定した。
The present invention will be described in more detail below with reference to examples, but the scope of the present invention is not limited by the examples. The BET specific surface area, ignition loss and pore volume were measured by the following methods. BET specific surface area (m 2 / g): measured using a direct reading specific surface area measuring device Monosorb manufactured by Cantachrome. Burning loss (%): 110 according to JIS-H1901
It was calculated from the weight loss after heating at 0 ° C. for 2 hours. Pore volume (cm 3 / g): Measured by Hg press-fitting method (Cantachrome, Autoscan 33 type, porosimeter).

【0028】実施例1 バイヤ−工程から得られた乾燥ギブサイト水酸化アルミ
ニウム(水分1%以下)を、約700℃の熱ガス気流中
に投入し瞬間仮焼した。瞬間仮焼したものは灼熱原料が
7%、結晶形がχ,ρで表される再水和性アルミナであ
った。
Example 1 Dry gibbsite aluminum hydroxide (water content: 1% or less) obtained from the buyer process was put into a hot gas stream at about 700 ° C. and instantaneously calcined. The material that was instantaneously calcined was a rehydrating alumina whose burning material was 7% and whose crystal form was represented by χ and ρ.

【0029】再水和性アルミナ粉末100重量部にステ
アリン酸2重量部を加え、擂潰機で2時間混合して再水
和性アルミナの表面をステアリン酸で被覆した後コ−ジ
ェライト粉28重量部、セラミックファイバ−14重量
部、更にメチルセルロ−ス8.3重量部、水51重量部
加えて、混練機で30分間混練後、スクリュウ−型押し
出し機に供給し壁厚0.4mmで1辺2mmの正方形のセル
ユニットを有する70mm×70mmで長さ約50mm
のハニカム成形体を得た。
2 parts by weight of stearic acid was added to 100 parts by weight of the rehydratable alumina powder, and the mixture was mixed for 2 hours with a crusher to coat the surface of the rehydratable alumina with stearic acid and then 28 parts by weight of cordierite powder. Parts, 14 parts by weight of ceramic fiber, 8.3 parts by weight of methyl cellulose and 51 parts by weight of water, and after kneading with a kneading machine for 30 minutes, it is supplied to a screw-type extruder and has a wall thickness of 0.4 mm and a side of 2 mm. 70mm x 70mm with a square cell unit of about 50mm long
A honeycomb molded body of was obtained.

【0030】次いでこの押し出し成形体を約90℃の温
水に1時間浸し12時間予備再水和をおこなった。この
とき温水表面にステアリン酸が浮かびハニカム成形体か
ら除去された。ついで予備再水和ハニカムをガラス製ビ
−カ−に入れステンレス製の5リットルオ−トクレ−ブ
に移し、別に水を仕込み、130℃飽和水蒸気下で4時
間保持し、再水和せしめた。
Next, this extruded body was immersed in warm water at about 90 ° C. for 1 hour to carry out preliminary rehydration for 12 hours. At this time, stearic acid floated on the surface of the hot water and was removed from the honeycomb formed body. Next, the pre-rehydrated honeycomb was placed in a glass beaker and transferred to a stainless steel 5 liter autoclave. Water was separately charged, and the mixture was kept under saturated steam at 130 ° C for 4 hours for rehydration.

【0031】この熟成品を、電気炉に入れ500℃まで
100℃/時で昇温し2時間保持した。このようにして
得られた焼成品の結晶形を調査したところ主成分が遷移
アルミナであるγアルミナであった。このようにして得
られた遷移アルミナを主成分とする担体の物性は表1の
とおりであった。
This aged product was placed in an electric furnace and heated to 500 ° C. at 100 ° C./hour and held for 2 hours. When the crystal form of the fired product thus obtained was investigated, it was found that the main component was γ-alumina, which is transition alumina. The physical properties of the thus-obtained carrier containing transition alumina as a main component are shown in Table 1.

【0032】この遷移アルミナを主成分とする押し出し
成形体を担体として以下の方法で水素精製触媒を得た。
まず担体ハニカムを反応菅に装填できるよう12mm×
12mm長さ50mm(7.2cm3)に切り出した。
予め担体ハニカムの吸水率を求め、担持量が白金元素と
してハニカム1リットル当たり1g担持されるよう濃度を
調整したジニトジアンミン白金硝酸液を吸水率分だけ時
計皿に仕込み担体ハニカムを含浸させることで白金を担
持した。含浸品はその後150℃で2時間乾燥後、20
0℃/時の昇温速度で500℃まで昇温し、500℃で
2時間保持することで触媒を得た。
A hydrorefining catalyst was obtained by the following method using the extruded body containing the transition alumina as a main component as a carrier.
First, 12 mm × so that the carrier honeycomb can be loaded into the reaction tube.
It was cut out to a length of 12 mm and a length of 50 mm (7.2 cm 3 ).
By determining the water absorption rate of the carrier honeycomb in advance and adjusting the concentration so that the supported amount is 1 g per liter of honeycomb as the platinum element, the watch glass is impregnated with the dinitodiamine platinum nitric acid solution for the water absorption rate. Supported platinum. The impregnated product is then dried at 150 ° C for 2 hours and then 20
The temperature was raised to 500 ° C. at a heating rate of 0 ° C./hour, and the temperature was maintained at 500 ° C. for 2 hours to obtain a catalyst.

【0033】この触媒を断面が13mm×13mmの柱
状反応器に触媒ハニカムを流れ方向に2段積みで充填
し、400℃で水素中30分触媒還元後、入り口温度4
00℃で一酸化炭素1.5%、二酸化炭素12.5%、
水蒸気25%、水素37.5%、残部窒素よりなる改質
触媒モデルガスを、空間速度1600[1/hr]で導入し、
一酸化炭素転化率を測定した。その結果を表1に示す。
なお、一酸化炭素転化率は、反応器に入れるモデルガス
中のCO濃度Aと、反応器から出たガス中のCO濃度B
を測定し、下式により求めた。 一酸化炭素転化率(%)=(A−B)/A×100
This catalyst was packed in a columnar reactor having a cross section of 13 mm × 13 mm with the catalyst honeycombs stacked in two stages in the flow direction, and after catalyst reduction in hydrogen at 400 ° C. for 30 minutes, the inlet temperature was 4
Carbon monoxide 1.5%, carbon dioxide 12.5% at 00 ° C,
A reforming catalyst model gas consisting of 25% steam, 37.5% hydrogen, and the balance nitrogen was introduced at a space velocity of 1600 [1 / hr],
The carbon monoxide conversion was measured. The results are shown in Table 1.
The carbon monoxide conversion rate is the CO concentration A in the model gas put in the reactor and the CO concentration B in the gas discharged from the reactor.
Was measured and determined by the following formula. Carbon monoxide conversion rate (%) = (A−B) / A × 100

【0034】実施例2 実施例1と焼成温度を700℃で焼成した以外同様の方
法で、押し出し担体を得た。このようにして得られた焼
成品の結晶形を調査したところ主成分がγアルミナであ
った。このようにして得られた担体の物性は表1のとお
りであった。また実施例1と同様の方法でPt 1g/l担
持した触媒を作り、一酸化炭素転化率を測定した。その
結果を表1に示す。
Example 2 An extruded carrier was obtained in the same manner as in Example 1 except that the firing temperature was 700 ° C. When the crystal form of the thus obtained fired product was investigated, the main component was γ-alumina. The physical properties of the thus obtained carrier are shown in Table 1. Further, a catalyst supporting Pt 1 g / l was prepared in the same manner as in Example 1 and the carbon monoxide conversion rate was measured. The results are shown in Table 1.

【0035】比較例1 実施例1と焼成温度を1100℃で焼成した以外同様の
方法で、押し出し担体を得た。このようにして得られた
焼成品の結晶形を調査したところ主成分がαアルミナで
あった。このようにして得られた担体の物性は表1のと
おりであった。また実施例1と同様の方法でPt 1g/l
担持した触媒を作り、一酸化炭素転化率を測定した。そ
の結果を表1に示す。
Comparative Example 1 An extruded carrier was obtained in the same manner as in Example 1 except that the firing temperature was 1100 ° C. When the crystal form of the thus obtained fired product was investigated, the main component was α-alumina. The physical properties of the thus obtained carrier are shown in Table 1. Also, Pt 1 g / l was prepared by the same method as in Example 1.
A supported catalyst was prepared and the carbon monoxide conversion rate was measured. The results are shown in Table 1.

【0036】比較例2 容積2リットルのビ−カ−に0.5リットルの浄水を入
れ、これに市販の遷移アルミナ(CONDEA社製 Puralox
SCFa-250)300gを加え、攪拌しながら硝酸を添加
しpH4に調整し市販遷移アルミナを分散させスラリ−
を作製した。このスラリ−に予め500℃で2時間仮焼
させた市販の600celコ−ジェライトハニカムを浸漬後引
き上げ、500℃で2時間仮焼後、重量を測定しコ−ト
量を求めた。コ-ト量が150g/リットルとなるまで浸
漬・仮焼を繰り返しコ−ト担体を得た。この担体に実施
例1と同様の方法でPt 1g/l担持した触媒を作り、一
酸化炭素転化率を測定した。その結果を表1に示す。
Comparative Example 2 0.5 liter of purified water was placed in a beaker having a volume of 2 liter, and commercially available transition alumina (Puralox manufactured by CONDEA Co., Ltd. was used.
SCFa-250) 300g, nitric acid is added with stirring to adjust the pH to pH 4, and commercially available transition alumina is dispersed into a slurry.
Was produced. A commercially available 600 cel cordierite honeycomb which had been calcined at 500 ° C. for 2 hours was immersed in the slurry and then pulled up. After calcining at 500 ° C. for 2 hours, the weight was measured to determine the coating amount. Soaking and calcination were repeated until the coat amount reached 150 g / liter to obtain a coat carrier. A catalyst supporting Pt 1 g / l was prepared on this carrier in the same manner as in Example 1, and the carbon monoxide conversion rate was measured. The results are shown in Table 1.

【0037】比較例3 市販の600celコ−ジェライトハニカム担体に直接実施例
1と同様の方法でPt 1g/l担持した触媒を作り、一酸
化炭素転化率を測定した。その結果を表1に示す。
Comparative Example 3 Example directly on a commercially available 600cel cordierite honeycomb carrier
A catalyst carrying Pt 1 g / l was prepared in the same manner as in 1, and the carbon monoxide conversion rate was measured. The results are shown in Table 1.

【表1】 [Table 1]

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/04 B01J 35/04 301P B28B 3/20 B28B 3/20 K C04B 35/10 H01M 8/06 G H01M 8/06 C04B 35/10 B Fターム(参考) 4G030 AA36 AA61 AA66 BA34 CA01 CA04 CA10 GA01 GA07 GA08 GA14 GA21 HA18 4G040 EB31 EB32 4G054 AA06 AB09 BD02 BD19 4G069 AA01 AA08 BA01A BA01B CC26 CC40 DA06 EA19 EC02X EC03X EC03Y EC04X EC05X EC07X EC07Y EC08X EC22Y EC30 FA01 FB30 FB67 FC07 5H027 AA06 BA01 BA17 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 35/04 B01J 35/04 301P B28B 3/20 B28B 3/20 K C04B 35/10 H01M 8/06 G H01M 8 / 06 C04B 35/10 BF term (reference) 4G030 AA36 AA61 AA66 BA34 CA01 CA04 CA10 GA01 GA07 GA08 GA14 GA21 HA18 4G040 EB31 EB32 4G054 AA06 AB09 BD02 BD19 4G069 AA01 AA08 BA01A BA01B CC26 CC40 EC06XXEC03 EC03 EC05 EC02 EC03 EC03 EC02 EC03 EC02 EC03 EC03 EC03 EC02 EC03 EC02 EC03 EC03 EC03 EC03 EC22Y EC30 FA01 FB30 FB67 FC07 5H027 AA06 BA01 BA17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素ガスと一酸化炭素および水蒸気を含
む改質ガスの供給を受け、一酸化炭素変成・水素精製用
触媒を用いて一酸化炭素を低減させる水素精製装置であ
って、前記一酸化炭素変成・水素精製用触媒は、主成分
が水酸基を有する遷移アルミナ質とする押し出し一体成
形体に触媒物質を担持してなることを特徴とする水素精
製装置。
1. A hydrogen purification apparatus which receives hydrogen gas, a reformed gas containing carbon monoxide and steam, and reduces carbon monoxide by using a carbon monoxide shift / hydrogen purification catalyst. A catalyst for carbon oxide conversion / hydrogen purification is a hydrogen purification apparatus characterized in that a catalyst substance is supported on an extruded integrally formed body whose main component is a transition alumina material having a hydroxyl group.
【請求項2】 主成分が水酸基を有する遷移アルミナ質
とする押し出し一体成形体に触媒物質を担持してなるこ
とを特徴とする水素精製用触媒。
2. A catalyst for hydrogen purification, characterized in that a catalyst substance is supported on an extruded integrally formed body whose main component is a transition alumina material having a hydroxyl group.
【請求項3】 主成分が水酸基を有する遷移アルミナ質
とする押し出し一体成形体であることを特徴とする水素
精製用触媒用担体。
3. A carrier for a catalyst for hydrogen purification, which is an extrusion-integrated molded body whose main component is a transition alumina having hydroxyl groups.
【請求項4】 BET比表面積が100m2/g以上で細孔容積が
0.30cm3/g以上でハニカム形状の水酸基の含有量が灼熱
減量として5%以上含む遷移アルミナ質を主成分とする
請求項3記載の水素精製用触媒用担体。
4. A BET specific surface area of 100 m 2 / g or more and a pore volume of
4. The carrier for hydrogen purifying catalyst according to claim 3, wherein the main component is a transition alumina containing 0.30 cm 3 / g or more and having a honeycomb-shaped hydroxyl group content of 5% or more as an ignition loss.
【請求項5】 再水和性アルミナを含む粉体と燃焼性物
質の混合物質を原料として押し出し成形し、その後、11
0℃以上の湿潤雰囲気中または水中で保持せしめ再水和
させた後、乾燥焼成工程をおこなうことを特徴とする水
素精製用触媒用担体の製造法。
5. A mixture of a powder containing rehydratable alumina and a combustible substance is used as a raw material and is extruded, and thereafter, 11
A method for producing a carrier for a catalyst for hydrogen purification, which comprises holding in a moist atmosphere of 0 ° C. or higher or in water and rehydrating, followed by a drying and firing step.
JP2001196577A 2001-06-28 2001-06-28 Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier Pending JP2003012303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196577A JP2003012303A (en) 2001-06-28 2001-06-28 Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196577A JP2003012303A (en) 2001-06-28 2001-06-28 Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier

Publications (1)

Publication Number Publication Date
JP2003012303A true JP2003012303A (en) 2003-01-15

Family

ID=19034360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196577A Pending JP2003012303A (en) 2001-06-28 2001-06-28 Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier

Country Status (1)

Country Link
JP (1) JP2003012303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223837A (en) * 2006-02-22 2007-09-06 Sumitomo Chemical Co Ltd Method for producing alpha-alumina molded product, and alpha-alumina molded product
JP2008529791A (en) * 2005-02-16 2008-08-07 ビーエーエスエフ、カタリスツ、エルエルシー Water-gas shift noble metal catalyst having oxide support modified with rare earth elements
CN105618159A (en) * 2015-12-21 2016-06-01 北京化工大学 Forming method of integral cellular molecular sieve based catalyst
WO2017061382A1 (en) * 2015-10-09 2017-04-13 住友化学株式会社 Honeycomb filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529791A (en) * 2005-02-16 2008-08-07 ビーエーエスエフ、カタリスツ、エルエルシー Water-gas shift noble metal catalyst having oxide support modified with rare earth elements
JP2007223837A (en) * 2006-02-22 2007-09-06 Sumitomo Chemical Co Ltd Method for producing alpha-alumina molded product, and alpha-alumina molded product
WO2017061382A1 (en) * 2015-10-09 2017-04-13 住友化学株式会社 Honeycomb filter
CN105618159A (en) * 2015-12-21 2016-06-01 北京化工大学 Forming method of integral cellular molecular sieve based catalyst

Similar Documents

Publication Publication Date Title
CA1304068C (en) Ceramic foam catalysts, or catalyst supports, particularly for steam reforming
US7578986B2 (en) Fuel reformer catalyst and absorbent materials
EP2226308B1 (en) Molded porous article, method for production thereof, catalyst carrier, and catalyst
US7267811B2 (en) Fuel reformer catalyst and absorbent materials
RU2509725C2 (en) Composition based on cerium oxide and zirconium oxide having specific porosity, method of production and use in catalysis
CN101160170B (en) Precious metal water-gas shift catalyst with oxide support modified with rare earth elements
KR101511075B1 (en) Catalyst, production method therefor and use thereof for decomposing N2O
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
EP2216094A2 (en) CO2-Sorptive Pellets and Uses Thereof
WO1990006177A1 (en) High surface area cordierite catalyst support structures
JP5096712B2 (en) Carbon monoxide methanation method
CA2399466C (en) Catalyst for decomposing n2o, its use, and process for its production
KR101671822B1 (en) Ammonia oxidation catalysts
JP2003012303A (en) Hydrogen refining unit, hydrogen refining catalyst and its carrier, and production method of the carrier
RU2756660C1 (en) Catalytic element of a regular cellular structure for heterogeneous reactions
JP2003117400A (en) Carrier, method for producing the same and hydrogen refining catalyst using the same
RU2711605C1 (en) Method of producing alumina catalysts of the claus process and use thereof on sulfur production plants
JP2005520681A (en) Co-oxidation catalyst containing ruthenium and zinc oxide
WO2022108478A1 (en) Catalyst for heterogeneous reactions with reduced catalyst bed flow resistance
RU2368417C1 (en) Catalyst and method of converting ammonia
RU2671583C1 (en) Carbon dioxide absorber, method for preparing thereof and method for cleaning gas mixtures
TW201402195A (en) Selective catalytic reduction plate catalyst and method of making the same
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
CN114433060A (en) Catalyst for treating bromine-containing petrochemical organic waste gas and preparation method and application thereof
RU2527259C2 (en) Catalyst of obtaining element sulphur in claus process, method of its preparation and method of carrying out claus process