JP2003011075A - Gravity center velocity control method for leg type moving machine - Google Patents

Gravity center velocity control method for leg type moving machine

Info

Publication number
JP2003011075A
JP2003011075A JP2001195893A JP2001195893A JP2003011075A JP 2003011075 A JP2003011075 A JP 2003011075A JP 2001195893 A JP2001195893 A JP 2001195893A JP 2001195893 A JP2001195893 A JP 2001195893A JP 2003011075 A JP2003011075 A JP 2003011075A
Authority
JP
Japan
Prior art keywords
velocity
gravity
link
gravity center
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001195893A
Other languages
Japanese (ja)
Inventor
Tomomichi Sugihara
知道 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001195893A priority Critical patent/JP2003011075A/en
Publication of JP2003011075A publication Critical patent/JP2003011075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gravity center velocity control method highly speedily and precisely finding the sensitivity of the gravity center velocity relative to a whole joint angular velocity necessary for highly precisely operating the gravity center velocity of the leg type moving machine, or a complicated freedom degree nonlinear system. SOLUTION: A relative position and attitude of a link (ground link) stationary to environment at present out of constitution links to a basal link and a relative position of the gravity center to the basal link are found using a model including geometric information such as relative positional relations between respective links of the leg type moving machine and dynamic information such as positions of the gravity centers of the respective links. A sensitivity matrix of the gravity center velocity relative to the respective joint angular velocity is strictly calculated based thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、脚式移動機械の重
心速度制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to velocity control of the center of gravity of a legged mobile machine.

【0002】[0002]

【従来の技術】基底リンクに連結された剛体多リンクか
らなる多脚機構を持つ機械(以下、脚式移動機械と呼
ぶ)は地面に固定点を持たないため、転倒を避けつつ動
作を継続することを目的としたバランス維持制御が不可
欠となる。そのようなバランス制御は、瞬間的に全身の
重心速度を操作することで為され、しかも動作が俊敏さ
を増すに伴って、より高い操作精度が要求されるように
なる。しかし脚式移動機械は一般的に多自由度から成る
複雑な非線形系であり、重心速度を精度良く制御するこ
とは極めて困難である。このような困難な問題である脚
式移動機械の重心速度制御方法として従来は、脚の質量
を無視し基底リンクの重心運動のみで近似するもの(通
商産業省工業技術院機械技術研究所技術報告171,199
6)、ニューラル・ネットワークを用いるもの(第6回日
本ロボット学会学術講演会予稿集,pp.117-118,1988)、
各関節角速度に対する感度を数値差分により近似的に求
めるもの(日本ロボット学会誌,Vol.17,No.2,pp.268-27
4,1999)などが用いられていたが、いずれも精度や汎用
性、計算量の点で問題があった。
2. Description of the Related Art A machine having a multi-leg mechanism composed of rigid multi-links connected to a base link (hereinafter referred to as a legged mobile machine) does not have a fixed point on the ground, and therefore continues to operate while avoiding a fall. Balance maintenance control for that purpose is essential. Such balance control is performed by instantaneously manipulating the velocity of the center of gravity of the whole body, and as the agility of the motion increases, higher manipulation accuracy is required. However, legged mobile machines are generally complicated nonlinear systems with multiple degrees of freedom, and it is extremely difficult to control the center-of-gravity velocity with high accuracy. As a method of controlling the center-of-gravity velocity of a legged mobile machine, which is such a difficult problem, conventionally, the method of approximating only the center-of-gravity motion of the base link without ignoring the mass of the leg (Technical Report of the Institute of Mechanical Engineering, METI) 171,199
6), using neural networks (Proceedings of the 6th Annual Conference of the Robotics Society of Japan, pp.117-118, 1988),
Approximately obtaining the sensitivity to each joint angular velocity by numerical difference (Journal of the Robotics Society of Japan, Vol.17, No.2, pp.268-27)
4, 1999) was used, but all had problems in terms of accuracy, versatility, and calculation amount.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする課題
は、上記のように複雑な多自由度非線形系である一般的
な脚式移動機械の重心速度を高精度に操作するために必
要な、全関節角速度に対する重心速度の感度を、高速に
かつ高精度に求めることである。
The problem to be solved is required for operating the center of gravity speed of a general legged mobile machine, which is a complex multi-degree-of-freedom nonlinear system as described above, with high accuracy. It is to obtain the sensitivity of the center-of-gravity velocity to the total joint angular velocity at high speed and with high accuracy.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決すべく
本発明では、脚式移動機械の、各リンク間の相対的な位
置関係等の幾何学的な情報、及び各リンクの重心位置等
の力学的な情報を含んだモデル(以下、モデルと呼ぶ)
を用いて、脚式移動機械を構成するリンクの内、現在環
境に対し静止しているリンク(支持脚の足先リンクな
ど。以下、接地リンクと呼ぶ)の基底リンクに対する相
対的な位置・姿勢及び、重心の基底リンクに対する相対
的な位置を求め、それらを元に、各関節角速度に対する
重心速度の感度を厳密に算出する。
In order to solve the above problems, according to the present invention, geometric information such as a relative positional relationship between each link of a legged mobile machine, and a position of a center of gravity of each link, etc. A model that contains the mechanical information of
Of the links that make up the legged mobile machine, the relative position and orientation of the link that is currently stationary with respect to the environment (such as the toe link of the supporting leg. Also, the relative position of the center of gravity to the base link is obtained, and the sensitivity of the center of gravity velocity to each joint angular velocity is calculated strictly based on them.

【0005】[0005]

【作用】本発明により、複雑な多自由度非線形系である
脚式移動機械の重心速度と各関節角速度との間の厳密な
関係を単純な連立一次方程式で表現することが可能にな
る。それを元に、重み付き一般化逆行列等を利用して適
切な全関節角速度の目標制御量を算出し、その目標制御
量に追従するように各関節を制御することによって、重
心速度を高精度に操作するための関節角操作量を高速に
求めることが可能になる。また、遊脚足先の速度や全身
の重心回りの角運動量を指定された値に保つなど、重心
速度以外の種々の拘束条件も同時に連立方程式として表
現され付加される場合には、それらをまとめて一つの連
立方程式とし同様の解法を用いることによって、拘束条
件を満たしつつ重心速度を高精度に操作することが可能
になる。更に本発明は、特定の機構に限定せず一般的な
脚式移動機械に応用が可能であり、十分な汎用性と実用
性を有している。
According to the present invention, it becomes possible to express a strict relationship between the center-of-gravity velocity and each joint angular velocity of a legged mobile machine, which is a complex multi-degree-of-freedom nonlinear system, by a simple simultaneous linear equation. Based on this, a weighted generalized inverse matrix is used to calculate the appropriate target control amount for all joint angular velocities, and each joint is controlled so as to follow the target control amount. It becomes possible to obtain the joint angle operation amount for accurate operation at high speed. Also, if various constraint conditions other than the center-of-gravity velocity are added at the same time by being expressed as simultaneous equations, such as maintaining the velocity of the tip of the toe of the swing leg or the angular momentum around the center of gravity of the whole body at the specified values, summarize them when they are added simultaneously. By using the same solution method as one simultaneous equation, it becomes possible to operate the center-of-gravity velocity with high accuracy while satisfying the constraint condition. Furthermore, the present invention can be applied to general legged mobile machines without being limited to a specific mechanism, and has sufficient versatility and practicality.

【0006】[0006]

【実施例】以下、脚式移動機械として一般的な多脚型ロ
ボットを例にとり、本発明の実施例を説明する。なお、
以下においては説明のため、慣性系に固定された座標系
(以下、絶対座標系と呼ぶ)と、ロボットの基底リンク
に固定された座標系(以下、全身座標系と呼ぶ)と、各
リンク毎に固定された座標系(以下、リンク座標系と呼
ぶ)を区別して用いる。特にリンク座標系の内、地面に
安定に接地しているリンク(支持脚の足先リンクなど)
に固定された座標系を接地座標系と呼ぶ。一般的な多脚
型ロボットの構造と絶対座標系、全身座標系、接地座標
系三者の関係を
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below by taking a general multi-legged robot as a legged mobile machine as an example. In addition,
For the purpose of explanation, a coordinate system fixed to the inertial system (hereinafter referred to as an absolute coordinate system), a coordinate system fixed to the robot base link (hereinafter referred to as a whole body coordinate system), and each link The coordinate system fixed to (hereinafter, referred to as a link coordinate system) is used separately. Especially in the link coordinate system, a link that is stably grounded on the ground (such as a toe link of a supporting leg)
The coordinate system fixed at is called the touchdown coordinate system. The relationship between the structure of a general multi-legged robot and the absolute coordinate system, whole body coordinate system, and ground coordinate system

【図1】に示すShown in Figure 1

【0007】以下において、nはロボットの全自由度
数、θはロボットの全関節角ベクトル(n×1ベクトル)
である。系の安定な接地状態が確保されているなら
ば、重心xGはθの関数となる。このときJG=∂xG
/∂θなる行列(3×n行列)が存在し、重心速度をv
G、関節角速度をωとすれば、次式が成り立つ。
In the following, n is the total number of degrees of freedom of the robot, θ is the total joint angle vector of the robot (n × 1 vector)
Is. If a stable grounding state of the system is secured, the center of gravity xG is a function of θ. At this time JG = ∂xG
/ ∂θ matrix (3 × n matrix) exists and
If G and the joint angular velocity are ω, the following equation holds.

【数1】 このJGは、各関節角速度に対する重心速度の感度を表
す行列(以下、全身重心Jacobianと呼ぶ)である。
[Equation 1] This JG is a matrix (hereinafter referred to as the whole body center of gravity Jacobian) that represents the sensitivity of the center of gravity velocity to each joint angular velocity.

【0008】JGは次のようにして求める。まず、i番
目リンク重心の全身座標系から見た相対並進速度に関す
るJacobian 0JGiを全てのリンクに関して求める。こ
のためには例えば文献「ロボット工学の基礎(川崎晴
久,森北出版,1991)」等にある方法を利用すれば良い。
これら及び各リンク質量miを用いて、全身座標系にお
ける重心速度に関するJacobian 0JGを次式から求め
る。
JG is obtained as follows. First, the Jacobian 0JGi regarding the relative translational velocity viewed from the whole body coordinate system of the center of gravity of the i-th link is obtained for all links. For this purpose, for example, the method described in the document “Basics of Robotics (Haruhisa Kawasaki, Morikita Publishing, 1991)” and the like may be used.
Using these and each link mass mi, Jacobian 0JG regarding the velocity of the center of gravity in the whole body coordinate system is obtained from the following equation.

【数2】 また、F番目のリンクが接地している(例えば、F番目
のリンクが支持脚の足先リンクであるなど)ならば、全
身座標系から見た接地座標系の相対運動から、絶対座標
系から見た重心の速度を次式より求めることが可能であ
る。
[Equation 2] If the Fth link is in contact with the ground (for example, the Fth link is the toe link of the support leg), the relative motion of the ground contact coordinate system seen from the whole body coordinate system, and the absolute coordinate system It is possible to obtain the velocity of the center of gravity seen from the following equation.

【数3】 ただし上式において、R0は絶対座標系からみた基底リ
ンクの姿勢行列(即ち絶対座標系に対する全身座標系の
姿勢変換行列、3×3行列)、0JFは全身座標系にお
けるF番目リンク座標系原点の相対並進速度に関するJa
cobian(3×n行列)、0xGは全身座標系における重
心の位置ベクトル、0pFは全身座標系における接地リ
ンク原点の位置ベクトル、0JωFは全身座標系におけ
るF番目リンク座標系の相対回転速度に関するJacobian
(3×n行列)である。
[Equation 3] However, in the above equation, R0 is the posture matrix of the base link viewed from the absolute coordinate system (that is, the posture transformation matrix of the whole body coordinate system with respect to the absolute coordinate system, 3 × 3 matrix), and 0JF is the origin of the Fth link coordinate system in the whole body coordinate system. Ja concerning relative translational velocity
cobian (3 × n matrix), 0xG is the position vector of the center of gravity in the whole body coordinate system, 0pF is the position vector of the ground link origin in the whole body coordinate system, and 0JωF is the relative rotation speed of the Fth link coordinate system in the whole body coordinate system.
(3 × n matrix).

【0009】0JF及び0JωFは、例えば文献「ロボ
ット工学の基礎(川崎晴久,森北出版,1991)」等にある
ような方法から求められる。また[a×]は、一般的な
ベクトルa=[ax ay az]に対し次式で定義さ
れる外積行列である。
[0009] 0JF and 0JωF are obtained from a method such as that in the document "Basics of Robotics (Haruhisa Kawasaki, Morikita Publishing, 1991)" and the like. Further, [a ×] is an outer product matrix defined by the following equation with respect to a general vector a = [ax ay az].

【数4】 [Equation 4]

【0010】以上の事柄より、JGは次式から求めるこ
とが可能である。
From the above matters, JG can be obtained from the following equation.

【数5】 [Equation 5]

【0011】ロボットの全身動作は、重心速度を操作す
ると同時に、例えば両脚を地面に固定する、または遊脚
足先速度、(上半身を有しているならば)作業を行う手
先速度、重心回りの角運動量などを指定された値に保つ
など、様々なタスクを遂行するにあたって付加される拘
束条件を満たすことによって生成される。そのような拘
束条件は、関節角空間における拘束条件及び非関節角空
間における拘束条件の二種類に分類出来る。前者は特定
の関節角群θfの目標速度refωfが直接与えられた
もので、この場合、ωをωf及び残りの関節角群の速度
ωuに分け、ωuによって全身重心を制御する。後者
は、直接関節角の目標値を指定するのでなく、手先や足
先の位置・姿勢、重心回りの角運動量など、幾何的また
は力学的な物理量を制御するための拘束条件で、一般的
に次のような等式によって表すことが出来る。
The whole body motion of the robot is such that, while operating the center-of-gravity speed, for example, both legs are fixed to the ground, or the tip speed of the swing leg, the hand speed of the work (if having an upper body), the center-of-gravity rotation, and the like. It is generated by satisfying additional constraint conditions for performing various tasks, such as keeping the angular momentum at a specified value. Such constraint conditions can be classified into two types: constraint conditions in the joint angle space and constraint conditions in the non-joint angle space. In the former case, the target velocity refωf of a specific joint angle group θf is directly given. In this case, ω is divided into ωf and the velocity ωu of the remaining joint angle group, and the whole body center of gravity is controlled by ωu. The latter does not directly specify the target value of the joint angle, but is a constraint condition for controlling geometrical or mechanical physical quantities such as the position and posture of the hands and feet, the angular momentum around the center of gravity, and is generally It can be represented by the following equation:

【数6】 但し、JC=∂Φ/∂θ、c=∂Φ/∂tである。[Equation 6] However, JC = ∂Φ / ∂θ and c = ∂Φ / ∂t.

【0012】今、厳密な目標重心速度がrefvGで与
えられているならば、それに対応する全関節角速度の目
標値をrefωとおくと次式が成り立つ。
Now, if a strict target center-of-gravity velocity is given by refvG, the following equation is established when the corresponding target value of all joint angular velocities is set to refω.

【数7】 上式において、便宜上ω=[ωuT ωfT]Tとしても
問題なく、ωuの目標値をrefωuとおき、JG及び
JCをωf、ωuそれぞれに対応する部分行列[JGu
JGf]及び[JCu JCf]に分解すると、次式
が導かれる。
[Equation 7] In the above equation, there is no problem even if ω = [ωuT ωfT] T is set for convenience, the target value of ωu is set to refωu, and JG and JC are submatrices [JGuu corresponding to ωf and ωu, respectively.
When decomposed into [JGf] and [JCu JCf], the following equation is derived.

【数8】 但し、Ju=[JGuT JCuT]T、v=[(ref
vG−JGf refωf)T (c−JCf refω
f)T]Tである。
[Equation 8] However, Ju = [JGuT JCuT] T, v = [(ref
vG-JGf refωf) T (c-JCf refω
f) T] T.

【0013】更に上式において、Juのrankがrである
とき、Juから独立なr本の行を抜き出して新たにJr
uを作り、またそれぞれの行に対応するvの成分を抜き
出してvrを作れば、次式が成り立つ。
Further, in the above equation, when the rank of Ju is r, r independent lines are extracted from Ju and a new Jr is newly extracted.
If u is created and the component of v corresponding to each row is extracted to create vr, the following equation holds.

【数9】 [Equation 9]

【0014】上式において、Jruのrank rとωuの
次元は必ずしも一致しないが、例えばJruの重み付き
一般化逆行列Jru#を用いれば、次式のように全関節
角速度の目標値refωuを得ることが出来る。
In the above equation, the rank r of Jru and the dimension of ωu do not necessarily match. However, if the weighted generalized inverse matrix Jru # of Jru is used, the target value refωu of all joint angular velocities is obtained by the following equation. You can

【数10】 上式から求まるrefωuをrefωfとまとめてre
fωとすれば、全関節角の目標速度が求まる。
[Equation 10] Refωu obtained from the above equation is combined with refωf and re
If fω, the target speed of all joint angles can be obtained.

【0015】なお、次式のように制御周期Δtで積分し
てΔrefθを求め、現在の関節角ベクトルθに足しこ
むことで、角速度でなく角度として全関節角の目標値r
efθを得ることも可能である。
It should be noted that as shown in the following equation, Δrefθ is obtained by integrating with the control period Δt and added to the current joint angle vector θ, so that the target value r of all joint angles is expressed as an angle instead of an angular velocity.
It is also possible to obtain efθ.

【数11】 上式において、Δtが十分小さければ、Δrefθ=r
efωΔtなどとしてもよい。
[Equation 11] In the above equation, if Δt is sufficiently small, Δrefθ = r
It may be efωΔt or the like.

【0016】一般的な多脚型ロボットにおいては、接地
リンクFは支持脚の交換等に伴って推移するが、その都
度Fを適切に交換すれば問題ない。
In a general multi-legged robot, the grounding link F changes with the replacement of the supporting legs, etc. However, if the F is replaced appropriately each time, there is no problem.

【0017】また一般的な多脚型ロボットにおいては、
多脚支持状態のように接地リンクが複数存在する場合が
多いが、この場合、それらの接地リンクのうち任意のリ
ンクFを一つ選択すれば良い。
Further, in a general multi-legged robot,
In many cases, there are a plurality of ground links as in the multi-leg support state, in which case one of the ground links may be selected.

【0018】[0018]

【発明の効果】以上に説明したように本発明では、脚式
移動機械における重心速度の、各関節角に対する感度を
厳密に求めることが可能になる。またそれを用いて、脚
式移動機械の重心速度を、同時に付加された種々の拘束
条件を満たしつつ、瞬間的に非常に高い精度で操作する
ことが可能になる。更に本発明は、特定の機構に限定さ
れず、一般的な脚式移動機械に適用出来る十分な汎用性
と実用性を有している。
As described above, according to the present invention, the sensitivity of the velocity of the center of gravity of the legged mobile machine to each joint angle can be obtained exactly. Further, by using it, it becomes possible to instantaneously operate the center-of-gravity velocity of the legged mobile machine with extremely high accuracy while satisfying various constraint conditions added at the same time. Further, the present invention is not limited to a specific mechanism and has sufficient versatility and practicality applicable to a general legged mobile machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】地面に固定点を持たない脚式移動機械の例とし
て一般的な多脚型ロボットの構造と、絶対座標系、全身
座標系、接地座標系を示した図である。
FIG. 1 is a diagram showing a structure of a general multi-legged robot as an example of a legged mobile machine having no fixed points on the ground, an absolute coordinate system, a whole body coordinate system, and a ground coordinate system.

【符号の説明】[Explanation of symbols]

Σw 絶対座標系 Σ0 全身座標系 ΣF 接地座標系 Σw absolute coordinate system Σ0 whole body coordinate system ΣF Grounding coordinate system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基底リンクに連結された剛体多リンクか
らなる多脚機構を持つ機械において、各関節角速度に対
する重心速度の感度を、機械の物理モデルを用いて厳密
に求める手法。
1. A method of rigorously determining the sensitivity of the center-of-gravity velocity to each joint angular velocity in a machine having a multi-leg mechanism composed of rigid multi-links connected to a base link, using a physical model of the machine.
【請求項2】 基底リンクに連結された剛体多リンクか
らなる多脚機構を持つ機械において、各関節角速度に対
する重心速度の感度を、機械の物理モデルを用いて厳密
に求めることにより、重心速度を実時間で高精度に操作
するための手法。
2. In a machine having a multi-leg mechanism composed of rigid multi-links connected to a base link, the sensitivity of the center-of-gravity velocity to each joint angular velocity is rigorously determined using a physical model of the machine to determine the center-of-gravity velocity. A method for high-precision operation in real time.
【請求項3】 基底リンクに連結された剛体多リンクか
らなる多脚機構を持つ機械において、各関節角速度に対
する重心速度の感度を、機械の物理モデルを用いて厳密
に求め、更に足先速度を指定の値に保つなどの動作に付
加された拘束条件を記述した行列と併せて用いることに
より、それらの拘束条件を満たしつつ重心速度を実時間
で高精度に操作するための手法。
3. In a machine having a multi-leg mechanism composed of rigid multi-links connected to a base link, the sensitivity of the center-of-gravity velocity to each joint angular velocity is rigorously determined using a physical model of the machine, and the toe velocity is further determined. A method for manipulating the center-of-gravity velocity in real time with high precision by using it together with a matrix that describes constraint conditions added to actions such as keeping it at a specified value.
JP2001195893A 2001-06-28 2001-06-28 Gravity center velocity control method for leg type moving machine Pending JP2003011075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195893A JP2003011075A (en) 2001-06-28 2001-06-28 Gravity center velocity control method for leg type moving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195893A JP2003011075A (en) 2001-06-28 2001-06-28 Gravity center velocity control method for leg type moving machine

Publications (1)

Publication Number Publication Date
JP2003011075A true JP2003011075A (en) 2003-01-15

Family

ID=19033798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195893A Pending JP2003011075A (en) 2001-06-28 2001-06-28 Gravity center velocity control method for leg type moving machine

Country Status (1)

Country Link
JP (1) JP2003011075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214268A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Body cooperative control device, robot and robot control method
CN113433338A (en) * 2021-07-02 2021-09-24 乐聚(深圳)机器人技术有限公司 Robot centroid speed calculation method, device and medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214268A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Body cooperative control device, robot and robot control method
CN113433338A (en) * 2021-07-02 2021-09-24 乐聚(深圳)机器人技术有限公司 Robot centroid speed calculation method, device and medium

Similar Documents

Publication Publication Date Title
Huang et al. Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators
Henze et al. An approach to combine balancing with hierarchical whole-body control for legged humanoid robots
Caccavale et al. The Tricept robot: dynamics and impedance control
Dasgupta et al. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator
Lee et al. Position control of a Stewart platform using inverse dynamics control with approximate dynamics
JP2012081568A (en) Device and method for controlling robot, and computer program
Korayem et al. Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints
Dehio et al. Modeling and control of multi-arm and multi-leg robots: Compensating for object dynamics during grasping
Rakhsha et al. Dynamics modelling of a single-link flexible robot
Welde et al. Dynamically feasible task space planning for underactuated aerial manipulators
CN110394801A (en) A kind of joint control system of robot
Petko et al. Trajectory tracking controller of the hybrid robot for milling
WO2016181959A1 (en) Robot behavior generation method
Peng et al. Stability criteria of balanced and steppable unbalanced states for full-body systems with implications in robotic and human gait
Wszołek Modelling of mechanical systems vibrations by utilisation of GRAFSIM software
Chen et al. Design and dynamics modeling of a novel 2R1T 3-DOF parallel motion simulator
Dado et al. A generalized approach for forward and inverse dynamics of elastic manipulators
JP2003011075A (en) Gravity center velocity control method for leg type moving machine
Wee et al. An articulated-body model for a free-flying robot and its use for adaptive motion control
Mingo Hoffman et al. Robot dynamics constraint for inverse kinematics
US11472024B2 (en) Humanoid robot and its control method and computer readable storage medium
Juang Collision avoidance using potential fields
Uchiyama et al. Compensability of end-effector position errors for flexible robot manipulators
Cusumano et al. Development of tele-operation control for a free-floating robot during the grasping of a tumbling target
Moldoveanu et al. Trajectory tracking control of a two-link robot manipulator using variable structure system theory