JP2003010687A - Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same - Google Patents

Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same

Info

Publication number
JP2003010687A
JP2003010687A JP2001202229A JP2001202229A JP2003010687A JP 2003010687 A JP2003010687 A JP 2003010687A JP 2001202229 A JP2001202229 A JP 2001202229A JP 2001202229 A JP2001202229 A JP 2001202229A JP 2003010687 A JP2003010687 A JP 2003010687A
Authority
JP
Japan
Prior art keywords
organic matter
catalyst
cobalt
oxidative decomposition
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001202229A
Other languages
Japanese (ja)
Inventor
Isao Joko
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001202229A priority Critical patent/JP2003010687A/en
Publication of JP2003010687A publication Critical patent/JP2003010687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an oxidative decomposition catalyst for organic matter having strong activity and a treatment method for organic matter-containing wastewater having excellent decomposition and removal effects of organic matter in wastewater using the catalyst. SOLUTION: The oxidative decomposition catalyst for organic matter is obtained by supporting Co and Cu on an inorganic porous carrier having ion exchange function so that Cu/(Co+Cu) becomes 0.005-0.3 (weight ratio) by ion exchange supporting treatment. The organic matter-containing wastewater is treated by passing organic matter-containing wastewater through a packed bed of the above catalyst in the coexistence of an oxidizing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機物の酸化分解
触媒及び該触媒を用いる有機物含有排水の処理方法に関
する。さらに詳しくは、本発明は、活性の強い有機物の
酸化分解触媒及び該触媒を用いる排水中の有機物の分解
除去効果の優れた有機物含有排水の処理方法に関する。
TECHNICAL FIELD The present invention relates to an oxidative decomposition catalyst for organic substances and a method for treating organic substance-containing wastewater using the catalyst. More specifically, the present invention relates to a highly active oxidative decomposition catalyst for organic matter and a method for treating organic matter-containing wastewater having an excellent effect of decomposing and removing organic matter in wastewater using the catalyst.

【0002】[0002]

【従来の技術】化学工場や食品工場などから排出される
産業排水には、アルコール、脂肪酸、高分子化合物、界
面活性剤、溶剤などの有機物が含まれる場合が多い。有
機物を含む排水の放出は、環境汚染の原因になるので、
排水を処理して有機物を分解除去する必要がある。水中
の有機物の除去方法としては、従来より、活性汚泥処
理、過酸化水素やオゾンなどの酸化剤による酸化処理、
燃焼処理などが行われている。活性汚泥処理は、微生物
を利用するために運転条件などが複雑になりやすく、排
水の水質の変動などにより、処理効果が著しく変化する
場合がある。また、生分解性の低い有機性成分の処理が
困難である。酸化剤による酸化処理では、高濃度の有機
物を完全に除去しようとすると、理論量よりも過剰の酸
化剤が必要になり、経済的に不利である。燃焼処理は、
加熱のためのエネルギーを多量に必要とし、経済的に不
利になるのみならず、炭酸ガスの排出量の増大などによ
る環境汚染につながってしまう。このために、有機物含
有排水の処理方法の改良の試みが続けられている。本発
明者らは、先に特公昭58−8307号公報において、
有機性汚水の脱色及び有機物除去方法として、有機性汚
水と、担体にコバルトイオン及び/又はニッケルイオン
を接触させ、さらに塩素剤を接触させて得られる触媒と
を、塩素剤の存在下に接触させる方法を提案した。この
方法は、屎尿又は屎尿処理水を脱窒処理した有機性汚水
の処理に優れた効果を発揮するが、さらに活性の強い触
媒の開発が望まれていた。
2. Description of the Related Art Industrial wastewater discharged from chemical factories, food factories and the like often contains organic substances such as alcohols, fatty acids, polymer compounds, surfactants and solvents. The discharge of wastewater containing organic matter causes environmental pollution.
It is necessary to treat the wastewater to decompose and remove organic substances. As a method for removing organic matter from water, conventionally, activated sludge treatment, oxidation treatment with an oxidizing agent such as hydrogen peroxide or ozone,
Combustion processing is performed. In the activated sludge treatment, operating conditions are likely to be complicated because microorganisms are used, and the treatment effect may be significantly changed due to fluctuations in the quality of wastewater. Further, it is difficult to treat organic components having low biodegradability. Oxidizing treatment with an oxidizing agent is economically disadvantageous in that an attempt is made to completely remove a high-concentration organic substance, since an excessive amount of the oxidizing agent is required in excess of the theoretical amount. The burning process is
It requires a large amount of energy for heating, which is not economically disadvantageous, but also leads to environmental pollution due to an increase in carbon dioxide emission. For this reason, attempts are being made to improve the method for treating wastewater containing organic substances. The present inventors previously disclosed in Japanese Patent Publication No. 58-8307.
As a method for decolorizing and removing organic matter from organic wastewater, the organic wastewater is brought into contact with a catalyst obtained by contacting a carrier with cobalt ions and / or nickel ions and then with a chlorine agent in the presence of a chlorine agent. Suggested a method. This method exerts an excellent effect in treating human waste or organic wastewater obtained by denitrifying treated human waste water, but it has been desired to develop a more active catalyst.

【0003】[0003]

【発明が解決しようとする課題】本発明は、活性の強い
有機物の酸化分解触媒及び該触媒を用いる排水中の有機
物の分解除去効果の優れた有機物含有排水の処理方法を
提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly active oxidative decomposition catalyst for organic matter and a method for treating wastewater containing organic matter, which is excellent in decomposition and removal effect of organic matter in wastewater using the catalyst. It was made.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、従来のコバルト担
持触媒に少量の銅を共存させることにより、触媒活性が
顕著に強化されることを見いだし、この知見に基づいて
本発明を完成するに至った。すなわち、本発明は、
(1)イオン交換機能を有する無機多孔質担体に、Co
とCuを、Cu/(Co+Cu)が0.005〜0.3
(重量比)となるようにイオン交換担持処理してなるこ
とを特徴とする有機物の酸化分解触媒、(2)無機多孔
質担体が、ゼオライト又はアパタイトである第1項記載
の有機物の酸化分解触媒、(3)イオン交換担持処理後
に、CoとCuを酸化物に変換処理してなる第1項記載
の有機物の酸化分解触媒、(4)酸化物への変換を、次
亜塩素酸塩を用いて行う第3項記載の有機物の酸化分解
触媒、及び、(5)第1項、第2項、第3項又は第4項
記載の有機物の酸化分解触媒の充填層に、酸化剤共存下
で有機物含有排水を通液することを特徴とする有機物含
有排水の処理方法、を提供するものである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the coexistence of a small amount of copper in a conventional cobalt-supported catalyst markedly enhances the catalytic activity. It was found that the present invention was completed based on this finding. That is, the present invention is
(1) Co is added to the inorganic porous carrier having an ion exchange function.
And Cu, Cu / (Co + Cu) is 0.005-0.3
The oxidative decomposition catalyst for organic substances according to claim 1, wherein the oxidative decomposition catalyst for organic substances is obtained by carrying out ion-exchange loading treatment so that the (weight ratio) is (2), and the inorganic porous carrier is zeolite or apatite. (3) Oxidative decomposition catalyst of the organic substance according to item 1, which is obtained by converting Co and Cu into oxides after the ion-exchange supporting treatment, and (4) conversion into oxides using hypochlorite. In the coexistence of an oxidant in the packed bed of the oxidative decomposition catalyst of the organic substance according to the third aspect, and (5) the oxidative decomposition catalyst of the organic substance according to the first, second, third or fourth aspect. Disclosed is a method for treating organic matter-containing wastewater, which comprises passing organic matter-containing wastewater.

【0005】[0005]

【発明の実施の形態】本発明の有機物の酸化分解触媒
は、イオン交換機能を有する無機多孔質単体に、コバル
ト(Co)と銅(Cu)を、Cu/(Co+Cu)が0.
005〜0.3(重量比)となるようにイオン交換担持
処理してなる触媒である。本発明に用いるイオン交換機
能を有する無機多孔質担体に特に制限はなく、例えば、
ゼオライトなどのアルミノシリケート化合物、アパタイ
ト、ジルコニア、ジルコニウムりん酸酸化物(ZrO2
・P25)、ジルコニウム酸塩、アルミナなどを挙げる
ことができる。これらの中で、ゼオライト及びアパタイ
トを好適に用いることができる。ゼオライトは、一般式
2/nO・Al23・xSiO2・yH2Oで表される物
質であり、Mは、Na、K、Ca又はBa、nはその価
数であり、xは2〜10、yは2〜7である。ゼオライ
トは、(Al,Si)O4四面体が頂点を共有してつくる
三次元網目構造中の空孔に、アルカリ金属、アルカリ土
類金属、水分子が入った構造を有し、カチオン交換能を
有する。本発明において、使用するゼオライトに特に制
限はなく、天然ゼオライト、合成ゼオライトのいずれを
も用いることができ、例えば、ホージャサイト(X型、
Y型)、モルデナイト、ZSM−5、オフレタイト、フ
ェリエライト、エリオナイト、A型、シャバサイト、ク
リノプチロライトなどを挙げることができる。これらの
中で、ホージャサイト(X型、Y型)、モルデナイト、
A型及びクリノプチロライトを特に好適に用いることが
できる。ゼオライトのイオン交換容量は、X型が4.7m
eq/g、Y型が3.7meq/g、モルデナイトが2.3meq
/g、A型が5.5meq/g、クリノプチロライトが2.
2meq/gである。アパタイトは、りん灰石とも呼ばれ
る一般式A5(XO4)3qで表される六方晶系の鉱物であ
り、AはCa又はPb、XはAs、P又はV、ZはF、
Cl又はOHである。本発明に使用するアパタイトに特
に制限はなく、フッ素りん灰石、塩素りん灰石、水酸り
ん灰石、炭酸りん灰石のいずれをも用いることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the catalyst for oxidative decomposition of organic substances of the present invention, cobalt (Co) and copper (Cu) are added to an inorganic porous simple substance having an ion exchange function, and Cu / (Co + Cu) is 0.1.
It is a catalyst obtained by carrying out an ion-exchange supporting treatment so as to be 005 to 0.3 (weight ratio). There is no particular limitation on the inorganic porous carrier having an ion exchange function used in the present invention, for example,
Aluminosilicate compounds such as zeolite, apatite, zirconia, zirconium phosphate oxide (ZrO 2
· P 2 O 5), zirconium salts, alumina, and the like. Among these, zeolite and apatite can be preferably used. Zeolite is a substance represented by the general formula M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O, M is Na, K, Ca or Ba, and n is its valence, x Is 2 to 10 and y is 2 to 7. Zeolites have a structure in which alkali metal, alkaline earth metal, and water molecules are contained in the pores of a three-dimensional network structure formed by (Al, Si) O 4 tetrahedra sharing the apex, and the cation exchange ability is Have. In the present invention, the zeolite to be used is not particularly limited, and both natural zeolite and synthetic zeolite can be used. For example, faujasite (X type,
Y type), mordenite, ZSM-5, offretite, ferrierite, erionite, A type, chabazite, clinoptilolite and the like. Among these, faujasite (X type, Y type), mordenite,
Type A and clinoptilolite can be particularly preferably used. Zeolite has an ion exchange capacity of 4.7 m for type X
eq / g, Y type 3.7 meq / g, mordenite 2.3 meq
/ G, A type is 5.5 meq / g, clinoptilolite is 2.
It is 2 meq / g. Apatite is a hexagonal mineral represented by the general formula A 5 (XO 4 ) 3 Z q , which is also called apatite, where A is Ca or Pb, X is As, P or V, Z is F,
Cl or OH. The apatite used in the present invention is not particularly limited, and any of fluoroapatite, chlorapatite, hydroxyapatite and carbonate apatite can be used.

【0006】本発明において、イオン交換機能を有する
無機多孔質担体に、コバルトと銅をイオン交換担持処理
する方法に特に制限はなく、例えば、無機多孔質担体を
コバルト塩と銅塩を含有する水溶液に浸漬することがで
き、あるいは、無機多孔質担体を充填したカラムにコバ
ルト塩と銅塩を含有する水溶液を一過式又は循環式に通
液することもできる。コバルト塩としては、例えば、塩
化コバルト、硫酸コバルト、硝酸コバルト、酢酸コバル
トなどを挙げることができる。銅塩としては、例えば、
塩化銅、硫酸銅、硝酸銅、酢酸銅などを挙げることがで
きる。コバルト塩と銅塩を含有する水溶液と接触するこ
とにより、コバルトと銅をイオン交換担持した無機多孔
質担体は、水洗によって付着するコバルトと銅を除去す
ることが好ましい。本発明において、無機多孔質担体に
イオン交換担持させるコバルト(Co)と銅(Cu)の
割合は、Cu/(Co+Cu)(重量比)として、0.0
05〜0.3であり、より好ましくは0.01〜0.25
であり、さらに好ましくは0.02〜0.2である。Cu
/(Co+Cu)(重量比)が0.005未満であって
も、0.3を超えても、有機物の酸化分解触媒としての
触媒活性が低下するおそれがある。無機多孔質担体にイ
オン交換担持させるコバルトと銅の割合は、無機多孔質
担体の固体表面と、水溶液中の金属イオンの交換平衡の
関係、すなわち固液分配係数を利用して、所定のCu/
(Co+Cu)となるように、水溶液のコバルト濃度と銅
濃度をあらかじめ実験的に定めておくことが好ましい。
本発明において、無機多孔質担体にイオン交換担持させ
るコバルトと銅の量は、コバルトと銅の合計担持量とし
て1重量%以上であることが好ましく、2重量%以上で
あることがより好ましい。コバルトと銅の合計担持量が
1重量%未満であると、有機物の酸化分解触媒としての
触媒活性が不十分となるおそれがある。イオン交換担持
させるコバルトと銅の合計担持量の上限は、使用する無
機多孔質担体のイオン交換容量により定まるが、通常は
担持量がイオン交換容量の90%未満であることが好ま
しい。コバルトと銅の合計担持量を無機多孔質担体のイ
オン交換容量の90%以上とするためには、イオン交換
操作が複雑となるおそれがある。
In the present invention, there is no particular limitation on the method of carrying out the ion exchange supporting treatment of cobalt and copper on the inorganic porous carrier having an ion exchange function. For example, the inorganic porous carrier is an aqueous solution containing a cobalt salt and a copper salt. Alternatively, an aqueous solution containing a cobalt salt and a copper salt may be passed through a column packed with an inorganic porous carrier in a transient or circulating manner. Examples of the cobalt salt include cobalt chloride, cobalt sulfate, cobalt nitrate, and cobalt acetate. As the copper salt, for example,
Examples thereof include copper chloride, copper sulfate, copper nitrate and copper acetate. It is preferable that the inorganic porous carrier carrying the ion exchange of cobalt and copper is washed with water to remove the attached cobalt and copper by contacting with an aqueous solution containing a cobalt salt and a copper salt. In the present invention, the ratio of cobalt (Co) and copper (Cu) to be ion-exchanged and supported on the inorganic porous carrier is 0.0 / Cu / (Co + Cu) (weight ratio).
05-0.3, and more preferably 0.01-0.25.
And more preferably 0.02 to 0.2. Cu
If / (Co + Cu) (weight ratio) is less than 0.005 or more than 0.3, the catalytic activity of the organic compound as an oxidative decomposition catalyst may decrease. The ratio of cobalt and copper to be ion-exchanged and supported on the inorganic porous carrier is determined based on the relationship between the solid surface of the inorganic porous carrier and the exchange equilibrium of metal ions in the aqueous solution, that is, the solid-liquid partition coefficient.
It is preferable to experimentally determine the cobalt concentration and the copper concentration of the aqueous solution so as to obtain (Co + Cu).
In the present invention, the amount of cobalt and copper to be ion-exchanged and supported on the inorganic porous carrier is preferably 1% by weight or more, and more preferably 2% by weight or more, as the total amount of cobalt and copper supported. If the total supported amount of cobalt and copper is less than 1% by weight, the catalytic activity of the organic compound as an oxidative decomposition catalyst may be insufficient. The upper limit of the total supported amount of cobalt and copper to be carried by ion exchange is determined by the ion exchange capacity of the inorganic porous carrier used, but normally the supported amount is preferably less than 90% of the ion exchange capacity. The ion exchange operation may be complicated in order to make the total supported amount of cobalt and copper 90% or more of the ion exchange capacity of the inorganic porous carrier.

【0007】本発明においては、無機多孔質担体にコバ
ルトと銅をイオン交換担持させたのち、コバルトと銅を
酸化物に変換処理することが好ましい。コバルトと銅の
酸化物への変換処理に用いる酸化剤に特に制限はなく、
例えば、次亜塩素酸塩、次亜塩素酸エステル、塩素、オ
ゾン、過酸化水素などを挙げることができる。これらの
中で、次亜塩素酸塩は、水溶液として容易に取り扱うこ
とができるので、好適に用いることができる。次亜塩素
酸塩としては、例えば、次亜塩素酸ナトリウム、次亜塩
素酸カリウム、次亜塩素酸カルシウム、次亜塩素酸バリ
ウムなどを挙げることができる。無機多孔質担体にイオ
ン交換担持されたコバルトと銅を酸化物に変換処理する
方法に特に制限はなく、例えば、コバルトと銅をイオン
交換担持した無機多孔質担体を酸化剤を含有する水溶液
に浸漬することができ、あるいは、コバルトと銅をイオ
ン交換担持した無機多孔質担体を充填したカラムに酸化
剤を含有する水溶液を一過式又は循環式に通液すること
もできる。無機多孔質担体にイオン交換担持されたコバ
ルトと銅の酸化物への変換処理に際しては、コバルトと
銅をイオン交換担持した無機多孔質担体をあらかじめア
ルカリ水溶液と接触させたのち酸化剤の水溶液と接触さ
せるか、あるいは、アルカリを含む酸化剤の水溶液と接
触させることが好ましい。コバルトと銅をアルカリと接
触させることにより水酸化物に変換し、さらに酸化剤の
作用により酸化物に変換処理することにより、酸化物へ
の変換処理を効率的に進めることができる。コバルトと
銅の酸化物への変換処理の程度に特に制限はなく、例え
ば、コバルトは、酸化コバルト(II)CoO、酸化コバル
ト(III)CoO(OH)、酸化二コバルト(III)コバルト(I
I)Co34、過酸化コバルトCoO2などに変換処理す
ることができ、銅は、酸化銅(II)Cu2O、酸化銅(III)
CuO、過酸化銅CuO2などに変換処理することがで
きる。コバルトと銅を酸化物に変換処理し、コバルトと
銅の価数を高めることにより、有機物の酸化分解触媒と
しての触媒活性を強化することができる。
In the present invention, it is preferable that the inorganic porous carrier is ion-exchanged with cobalt and copper, and then cobalt and copper are converted into oxides. There is no particular limitation on the oxidizing agent used in the conversion treatment of cobalt and copper oxides,
For example, hypochlorite, hypochlorite, chlorine, ozone, hydrogen peroxide, etc. can be mentioned. Among these, hypochlorite can be preferably used because it can be easily handled as an aqueous solution. Examples of the hypochlorite include sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, barium hypochlorite and the like. There is no particular limitation on the method for converting the cobalt and copper ion-exchanged and supported on the inorganic porous carrier into the oxide, and for example, the inorganic porous carrier ion-supported on cobalt and copper is immersed in an aqueous solution containing an oxidizing agent. Alternatively, an aqueous solution containing an oxidant can be passed through a column filled with an inorganic porous carrier in which cobalt and copper are ion-exchanged and carried in a transient or circulating manner. In the conversion treatment of cobalt and copper, which are ion-exchanged and supported on the inorganic porous carrier, into the oxide, the inorganic porous carrier, which carries ion-exchanged cobalt and copper, is contacted with an alkaline aqueous solution in advance and then contacted with an aqueous solution of an oxidizing agent. Alternatively, it is preferably contacted with an aqueous solution of an oxidizing agent containing an alkali. It is possible to efficiently proceed the conversion treatment to the oxide by converting cobalt and copper into hydroxide by bringing them into contact with an alkali and further converting into oxide by the action of the oxidizing agent. There is no particular limitation on the degree of conversion treatment of cobalt and copper into oxides. For example, cobalt may be cobalt oxide (II) CoO, cobalt oxide (III) CoO (OH), dicobalt oxide (III) cobalt (I).
I) Co 3 O 4 , cobalt peroxide CoO 2, etc. can be converted, and copper is copper (II) Cu 2 O, copper (III) oxide
It can be converted into CuO, copper peroxide CuO 2, and the like. By converting cobalt and copper into oxides and increasing the valences of cobalt and copper, it is possible to enhance the catalytic activity of the organic substance as an oxidative decomposition catalyst.

【0008】本発明の有機物含有排水の処理方法におい
ては、上記の有機物の酸化分解触媒を充填した充填層
に、酸化剤共存下で有機物含有排水を通液する。本発明
方法を適用する有機物含有排水に特に制限はなく、例え
ば、半導体用シリコン基板などのリンスに用いたアルコ
ール、界面活性剤などを含有する排水、内分泌撹乱化学
物質を含有する排水、フェノールなどを含有する化学工
場の排水、各種の有機物を含有する食品工場の排水、屎
尿処理水を脱窒処理した排水などを挙げることができ
る。本発明方法において、有機物含有排水に共存させる
酸化剤に特に制限はなく、例えば、次亜塩素酸塩、次亜
塩素酸エステル、塩素、オゾン、過酸化水素などを挙げ
ることができる。これらの中で、次亜塩素酸塩は、水溶
液として容易に取り扱うことができるので、好適に用い
ることができる。次亜塩素酸塩としては、例えば、次亜
塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カ
ルシウム、次亜塩素酸バリウムなどを挙げることができ
る。共存させる酸化剤の量は、排水中に含まれる有機物
を酸化分解するために必要な理論量の1.1〜3重量倍
であることが好ましく、1.2〜2.5重量倍であること
がより好ましい。本発明方法において、有機物の酸化分
解触媒の充填層に、酸化剤共存下で有機物含有排水を通
液する方法に特に制限はなく、例えば、上向流、下向流
のいずれとすることも可能であり、上向流の場合は、触
媒充填層を固定層とすることも、流動層とすることも可
能である。触媒充填層への有機物含有排水の通液速度に
特に制限はないが、処理水目標水質に応じて通水時の空
間速度を設定でき、おおむね空間速度として0.5〜1
0h-1であることが好ましく、1〜7h-1であることが
より好ましい。本発明の有機物の酸化分解触媒は、コバ
ルト触媒に少量の銅を共存させた触媒であり、銅の助触
媒効果のために、有機物の酸化分解に対して強い触媒活
性を有する。本発明の有機物の酸化分解触媒の充填塔
に、酸化剤共存下で有機物含有排水を通液することによ
り、効果的に排水中の有機物を酸化分解して除去するこ
とができる。
In the method for treating organic matter-containing wastewater of the present invention, the organic matter-containing wastewater is passed through the packed bed filled with the organic matter oxidative decomposition catalyst in the presence of an oxidizing agent. There is no particular limitation on the organic matter-containing wastewater to which the method of the present invention is applied, for example, alcohol used for rinsing semiconductor substrates for semiconductors, wastewater containing a surfactant, wastewater containing endocrine disrupting chemicals, phenol, etc. Examples thereof include wastewater of a chemical factory that contains it, wastewater of a food factory that contains various organic substances, and wastewater obtained by denitrifying treated human waste water. In the method of the present invention, the oxidizing agent to be coexisted with the organic matter-containing wastewater is not particularly limited, and examples thereof include hypochlorite, hypochlorite, chlorine, ozone, hydrogen peroxide and the like. Among these, hypochlorite can be preferably used because it can be easily handled as an aqueous solution. Examples of the hypochlorite include sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, barium hypochlorite and the like. The amount of the oxidant to coexist is preferably 1.1 to 3 times by weight, and preferably 1.2 to 2.5 times by weight, the theoretical amount necessary for oxidatively decomposing the organic matter contained in the waste water. Is more preferable. In the method of the present invention, there is no particular limitation on the method of passing the organic substance-containing wastewater in the coexistence of an oxidant into the packed bed of the organic substance oxidative decomposition catalyst, and for example, either an upward flow or a downward flow is possible. In the case of upward flow, the catalyst packed bed can be a fixed bed or a fluidized bed. There is no particular limitation on the rate of passage of the organic matter-containing wastewater to the catalyst packed bed, but the space velocity at the time of water passage can be set according to the target water quality of the treated water, and the space velocity is generally 0.5-1.
It is preferably 0h -1 , more preferably 1 to 7h -1 . The oxidative decomposition catalyst of an organic substance of the present invention is a catalyst in which a small amount of copper is allowed to coexist in a cobalt catalyst, and has a strong catalytic activity against the oxidative decomposition of an organic substance due to the cocatalyst effect of copper. By passing the organic substance-containing wastewater in the coexistence of the oxidizing agent into the packed column of the organic substance oxidative decomposition catalyst of the present invention, the organic substances in the wastewater can be effectively oxidatively decomposed and removed.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 比較例1(触媒の調製) 粒径0.5〜1.0mmのクリノプチロライト系天然ゼオラ
イト500gを、7.8重量%硫酸コバルト水溶液70
0mLに17時間浸漬してイオン交換担持処理したのち、
デカンテーションにより液を流しだし、さらに純水各5
00mLを用いて3回洗浄することにより、ゼオライト表
面に付着しているコバルトを完全に洗浄除去した。コバ
ルトの担持量は、2.5重量%であった。次いで、この
イオン交換担持処理によりコバルトを担持したゼオライ
トを、次亜塩素酸ナトリウム6.3重量%と水酸化ナト
リウム3.7重量%を含む水溶液500mLに5時間浸漬
してコバルトを酸化物に変換して活性化処理を行ったの
ち、純水10Lで洗浄した。 実施例1〜5(触媒の調製) 硫酸コバルト水溶液の代わりに、硫酸コバルトと硫酸銅
を含む水溶液を用いた以外は、比較例1と同様にして、
コバルトと銅の合計担持量が2.5重量%であり、コバ
ルトと銅の合計に対する銅の割合が0.02〜0.2(重
量比)である5種の触媒を調製した。 比較例2〜3(触媒の調製) 硫酸コバルト水溶液の代わりに、硫酸コバルトと硫酸銅
を含む水溶液を用いた以外は、比較例1と同様にして、
コバルトと銅の合計担持量が2.5重量%であり、コバ
ルトと銅の合計に対する銅の割合が0.4又は0.6(重
量比)である2種の触媒を調製した。 比較例4(触媒の性能評価試験) 純水にフェノール25mg/Lを溶解して調製した合成排
水を用いて、触媒の性能評価試験を行った。この合成排
水の過マンガン酸カリウムによる酸素消費量(CO
Mn)は44.0mg/Lであり、有機体炭素(TOC)
は19.1mg/Lである。内径30mmのアクリル樹脂製
カラムに、比較例1で調製した触媒250mL(充填高さ
350mm)を充填し、上記の合成排水に次亜塩素酸ナト
リウムを500mg/Lになるように添加し、流量1,3
75mL/h(SV5.5h-1)で上向流で通液した。通
液開始5時間後に処理水を採取し、水質分析を行った。
処理水のCODMnは12.0mg/L、TOCは11.9で
あり、それぞれの除去率は73%、37%であった。 実施例6(触媒の性能評価試験) 実施例1で調製した触媒について、比較例1と同様にし
て、性能評価試験を行った。処理水のCODMnは8.7m
g/L、TOCは10.4mg/Lであり、それぞれの除去
率は80%、45%であった。 実施例7〜10(触媒の性能評価試験) 実施例2〜5で調製した触媒について、比較例1と同様
にして、性能評価試験を行った。 比較例5〜6 比較例2〜3で調製した触媒について、比較例1と同様
にして、性能評価試験を行った。実施例6〜10及び比
較例4〜6の結果を、第1表に示す。また、Cu/(C
o+Cu)(重量比)と処理水のCODMnの関係を、図
1に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Comparative Example 1 (Preparation of catalyst) 500 g of clinoptilolite natural zeolite having a particle size of 0.5 to 1.0 mm was added to a 7.8 wt% cobalt sulfate aqueous solution 70.
After immersing in 0 mL for 17 hours to carry out ion exchange loading treatment,
The liquid is poured out by decantation, and then 5 parts of pure water are added.
The cobalt adhering to the zeolite surface was completely washed away by washing 3 times with 00 mL. The supported amount of cobalt was 2.5% by weight. Then, the zeolite supporting cobalt by this ion exchange supporting treatment is immersed in 500 mL of an aqueous solution containing 6.3% by weight of sodium hypochlorite and 3.7% by weight of sodium hydroxide for 5 hours to convert cobalt into an oxide. Then, after activation treatment, it was washed with 10 L of pure water. Examples 1 to 5 (Preparation of catalyst) In the same manner as in Comparative Example 1 except that an aqueous solution containing cobalt sulfate and copper sulfate was used instead of the cobalt sulfate aqueous solution,
Five kinds of catalysts having a total supported amount of cobalt and copper of 2.5% by weight and a ratio of copper to the total amount of cobalt and copper of 0.02 to 0.2 (weight ratio) were prepared. Comparative Examples 2 to 3 (Preparation of catalyst) In the same manner as in Comparative Example 1 except that an aqueous solution containing cobalt sulfate and copper sulfate was used instead of the cobalt sulfate aqueous solution,
Two kinds of catalysts having a total supported amount of cobalt and copper of 2.5% by weight and a ratio of copper to the total of cobalt and copper of 0.4 or 0.6 (weight ratio) were prepared. Comparative Example 4 (Catalyst performance evaluation test) A catalyst performance evaluation test was performed using synthetic wastewater prepared by dissolving 25 mg / L of phenol in pure water. Oxygen consumption (CO
D Mn ) is 44.0 mg / L, and organic carbon (TOC)
Is 19.1 mg / L. An acrylic resin column having an inner diameter of 30 mm was packed with 250 mL of the catalyst prepared in Comparative Example 1 (packing height 350 mm), and sodium hypochlorite was added to the above-mentioned synthetic wastewater so as to be 500 mg / L, and the flow rate was 1 , 3
An upward flow was performed at 75 mL / h (SV 5.5 h -1 ). The treated water was sampled 5 hours after the passage of the liquid, and the water quality was analyzed.
The treated water had COD Mn of 12.0 mg / L and TOC of 11.9, and the removal rates were 73% and 37%, respectively. Example 6 (Catalyst performance evaluation test) The catalyst prepared in Example 1 was subjected to a performance evaluation test in the same manner as in Comparative Example 1. COD Mn of treated water is 8.7 m
The g / L and TOC were 10.4 mg / L, and the removal rates were 80% and 45%, respectively. Examples 7 to 10 (Catalyst performance evaluation test) With respect to the catalysts prepared in Examples 2 to 5, a performance evaluation test was performed in the same manner as in Comparative Example 1. Comparative Examples 5-6 Performance evaluation tests were conducted on the catalysts prepared in Comparative Examples 2-3 in the same manner as in Comparative Example 1. The results of Examples 6 to 10 and Comparative Examples 4 to 6 are shown in Table 1. In addition, Cu / (C
The relationship between (o + Cu) (weight ratio) and COD Mn of treated water is shown in FIG.

【0010】[0010]

【表1】 [Table 1]

【0011】図1に見られるように、コバルトのみを担
持した酸化分解触媒を用いると、CODMn44.0mg/
Lの合成排水を処理した処理水のCODMnは12.0mg
/Lまでしか低下しないのに対して、少量の銅を共存さ
せることにより、処理水のCODMnは急激に低下する。
図面の曲線から推定すると、Cu/(Co+Cu)が約
0.005のとき処理水のCODMnは10mg/Lとな
り、Cu/(Co+Cu)が約0.05のとき処理水のC
ODMnは最低値の7.6mg/Lとなり、Cu/(Co+C
u)が0.05を超えると、銅の量の増加とともに処理水
のCODMnは徐々に上昇し、Cu/(Co+Cu)が約
0.3のとき処理水のCODMnは10mg/Lとなる。
As shown in FIG. 1, when the cobalt-only supported oxidative decomposition catalyst was used, COD Mn of 44.0 mg /
COD Mn of treated water obtained by treating L synthetic wastewater is 12.0 mg
The COD Mn of the treated water sharply decreases by coexisting a small amount of copper, while it decreases only to / L.
Estimated from the curve in the drawing, the COD Mn of the treated water is 10 mg / L when Cu / (Co + Cu) is about 0.005, and the COD of the treated water is C when Cu / (Co + Cu) is about 0.05.
The minimum value of OD Mn is 7.6 mg / L, and Cu / (Co + C
When u) exceeds 0.05, the COD Mn of the treated water gradually rises as the amount of copper increases, and when Cu / (Co + Cu) is about 0.3, the COD Mn of the treated water becomes 10 mg / L. .

【0012】[0012]

【発明の効果】本発明の有機物の酸化分解触媒は、コバ
ルト触媒に少量の銅を共存させた触媒であり、銅の助触
媒効果のために、有機物の酸化分解に対して強い触媒活
性を有する。本発明の有機物の酸化分解触媒の充填塔
に、酸化剤共存下で有機物含有排水を通液することによ
り、効果的に排水中の有機物を酸化分解して除去するこ
とができる。
The oxidative decomposition catalyst of an organic substance of the present invention is a catalyst in which a small amount of copper is made to coexist in a cobalt catalyst, and has a strong catalytic activity against the oxidative decomposition of an organic substance due to the cocatalyst effect of copper. . By passing the organic substance-containing wastewater in the coexistence of the oxidizing agent into the packed column of the organic substance oxidative decomposition catalyst of the present invention, the organic substances in the wastewater can be effectively oxidatively decomposed and removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、Cu/(Co+Cu)(重量比)と処理
水のCODMnの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between Cu / (Co + Cu) (weight ratio) and COD Mn of treated water.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D050 AA13 AA15 AA17 AB14 AB15 BB02 BB05 BB06 BB09 BC05 BC06 4G069 AA03 AA08 BA07A BA07B BA16A BB14A BC31A BC31B BC67A BC67B CA05 CA07 CA11 DA06 ZA34B ZD01   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D050 AA13 AA15 AA17 AB14 AB15                       BB02 BB05 BB06 BB09 BC05                       BC06                 4G069 AA03 AA08 BA07A BA07B                       BA16A BB14A BC31A BC31B                       BC67A BC67B CA05 CA07                       CA11 DA06 ZA34B ZD01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イオン交換機能を有する無機多孔質担体
に、CoとCuを、Cu/(Co+Cu)が0.005
〜0.3(重量比)となるようにイオン交換担持処理し
てなることを特徴とする有機物の酸化分解触媒。
1. An inorganic porous carrier having an ion exchange function, Co and Cu, and Cu / (Co + Cu) 0.005.
An oxidative decomposition catalyst for an organic substance, characterized by being subjected to an ion-exchange supporting treatment so as to have a weight ratio of up to 0.3 (weight ratio).
【請求項2】無機多孔質担体が、ゼオライト又はアパタ
イトである請求項1記載の有機物の酸化分解触媒。
2. The catalyst for oxidative decomposition of organic substances according to claim 1, wherein the inorganic porous carrier is zeolite or apatite.
【請求項3】イオン交換担持処理後に、CoとCuを酸
化物に変換処理してなる請求項1記載の有機物の酸化分
解触媒。
3. The catalyst for oxidative decomposition of organic substances according to claim 1, which is obtained by converting Co and Cu into oxides after the ion-exchange supporting process.
【請求項4】酸化物への変換を、次亜塩素酸塩を用いて
行う請求項3記載の有機物の酸化分解触媒。
4. The oxidative decomposition catalyst for an organic substance according to claim 3, wherein the conversion to an oxide is carried out using hypochlorite.
【請求項5】請求項1、請求項2、請求項3又は請求項
4記載の有機物の酸化分解触媒の充填層に、酸化剤共存
下で有機物含有排水を通液することを特徴とする有機物
含有排水の処理方法。
5. An organic matter containing an organic matter-containing wastewater in the presence of an oxidizing agent through a packed bed of the organic matter oxidative decomposition catalyst according to claim 1, claim 2, claim 3 or claim 4. Treatment method of contained wastewater.
JP2001202229A 2001-07-03 2001-07-03 Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same Pending JP2003010687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202229A JP2003010687A (en) 2001-07-03 2001-07-03 Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202229A JP2003010687A (en) 2001-07-03 2001-07-03 Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same

Publications (1)

Publication Number Publication Date
JP2003010687A true JP2003010687A (en) 2003-01-14

Family

ID=19039071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202229A Pending JP2003010687A (en) 2001-07-03 2001-07-03 Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same

Country Status (1)

Country Link
JP (1) JP2003010687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063368A (en) * 2011-09-15 2013-04-11 Fukuoka Institute Of Technology Promoted oxidation process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588307B2 (en) * 1978-04-17 1983-02-15 栗田工業株式会社 Method for decolorizing organic wastewater and removing organic matter
JPH03135437A (en) * 1989-10-23 1991-06-10 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPH03278837A (en) * 1990-03-27 1991-12-10 Tome Sangyo Kk Hydrogen peroxide decomposing catalyst and sterilization of contact lnes using the same catalyst
JP2000237591A (en) * 1999-02-23 2000-09-05 Kansai Research Institute Organic compound decomposing catalyst and organic compound removing method using the catalyst
JP2000254651A (en) * 1999-03-11 2000-09-19 Kurita Water Ind Ltd Electrolytic treatment and device for water containing hydrophobic organic mater
JP2000301171A (en) * 1999-04-20 2000-10-31 Kurita Water Ind Ltd Method for treating wastewater containing hydrazine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588307B2 (en) * 1978-04-17 1983-02-15 栗田工業株式会社 Method for decolorizing organic wastewater and removing organic matter
JPH03135437A (en) * 1989-10-23 1991-06-10 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPH03278837A (en) * 1990-03-27 1991-12-10 Tome Sangyo Kk Hydrogen peroxide decomposing catalyst and sterilization of contact lnes using the same catalyst
JP2000237591A (en) * 1999-02-23 2000-09-05 Kansai Research Institute Organic compound decomposing catalyst and organic compound removing method using the catalyst
JP2000254651A (en) * 1999-03-11 2000-09-19 Kurita Water Ind Ltd Electrolytic treatment and device for water containing hydrophobic organic mater
JP2000301171A (en) * 1999-04-20 2000-10-31 Kurita Water Ind Ltd Method for treating wastewater containing hydrazine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063368A (en) * 2011-09-15 2013-04-11 Fukuoka Institute Of Technology Promoted oxidation process

Similar Documents

Publication Publication Date Title
US5346876A (en) Air purifying agent and a process for producing same
Rosal et al. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide
US6132627A (en) Treatment method for water containing nitrogen compounds
Messele et al. Phenol degradation by heterogeneous Fenton-like reaction using Fe supported over activated carbon
JPH0242558B2 (en)
KR920003770B1 (en) Purifying process of exhaust gas
JPS6347681B2 (en)
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP3603701B2 (en) Method and apparatus for treating peracetic acid-containing wastewater
Choi et al. Degradation of acetone and isopropylalcohol in electronic wastewater using Fe-and Al-immobilized catalysts
JP2003010687A (en) Oxidative decomposition catalyst for organic matter and treatment method for organic matter-containing wastewater using the same
JPH0221873B2 (en)
JP2006068680A (en) Denitrating reductant composition and producing method therefor
KR100347845B1 (en) Method of removing malodor by a catalytic wet oxidation
JPH0249798B2 (en) JUKIKAGOBUTSUGANJUSUINOSHORIHOHO
JP4407165B2 (en) Treatment method for water containing oxidizable substances
JP2000254666A (en) Treatment of internal secretion disturbable material- containing water
JP2000153285A (en) Advanced oxidation method
JP4399854B2 (en) Treatment method of waste water containing hydrazine
KR100276250B1 (en) A total nitrogen and phosphorus eliminator
JP2002113463A (en) Method for treating waste liquid containing quaternary ammonium salt
JP3051918B2 (en) Photocatalyst for decomposing nitrate ion in water and method for decomposing and removing nitrate ion
JP5733757B2 (en) Accelerated oxidation treatment method
JPH10180042A (en) Treatment of hydrazine-containing steam and catalyst for same
JP2000140867A (en) Treatment of water containing cod component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111028