JP2003009686A - Method for controlling watering machine for horticulture and method for distributing discharged liquid - Google Patents

Method for controlling watering machine for horticulture and method for distributing discharged liquid

Info

Publication number
JP2003009686A
JP2003009686A JP2001239914A JP2001239914A JP2003009686A JP 2003009686 A JP2003009686 A JP 2003009686A JP 2001239914 A JP2001239914 A JP 2001239914A JP 2001239914 A JP2001239914 A JP 2001239914A JP 2003009686 A JP2003009686 A JP 2003009686A
Authority
JP
Japan
Prior art keywords
receiving tank
liquid
solar cell
overflow pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001239914A
Other languages
Japanese (ja)
Inventor
Toshimasa Yamamoto
俊昌 山本
Kikuko Yamamoto
紀久子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001239914A priority Critical patent/JP2003009686A/en
Publication of JP2003009686A publication Critical patent/JP2003009686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the water-supplying capacity per day of a watering machine for horticulture driven by the power of a solar battery without using a pump and provide a method for distributing the water discharged from the watering machine into plural streams. SOLUTION: The operating time of a watering machine 10 for horticulture is controlled by forming a shade having a size varying by the race of the sun on a solar battery 25 with a shielding plate 27 and applying a time restriction on the generating power to enable the operation of the watering machine 10. The water discharged from the watering machine 10 for horticulture is temporarily collected in distribution tanks 70, 101, forced into the lower part of the overflow pipe of the distribution tanks 70, 101 and discharged through a plurality of uniformly arranged discharging pipes 96a, 96b, 96c, 102a, 102b, 102c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポンプなどの動機
器を使わず、太陽のエネルギーにより花や木に給水でき
る園芸用水遣機の1日当たりの排出量の制御方法と、受
槽内の水などの水溶液を簡単な構造で複数の排出管にほ
ぼ均等に排出させるサイホンの原理を利用した分配受槽
と、その分配受槽を園芸用水遣機に応用する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the daily discharge amount of a watering machine for gardening which can supply flowers and trees by the energy of the sun without using a moving device such as a pump, and water in a receiving tank. The present invention relates to a distribution receiving tank that uses the siphon principle to discharge an aqueous solution with a simple structure almost uniformly to a plurality of discharge pipes, and a technique for applying the distribution receiving tank to a garden watering machine.

【0002】[0002]

【従来の技術】従来、園芸用水遣機は水道に直接つない
だパイプからタイマーにより花木に間欠的に給水する方
法や、10リットル前後の槽からポンプとタイマーによ
り花木に間欠的に給水する方法が用いられている。ま
た、特開2000−254481「液体排出供給装置」
では、太陽電池で発生した電気エネルギーでモーターを
回転させ、このモーターの回転数を減速することによ
り、容器下部より水溶液を抜き出す柔軟性のチューブの
排出端を容器の上方より下方へゆっくり降下させて、水
溶液を排出させ花や木に給水する、ポンプを使わない液
体排出供給装置が述べられているが、上記液体排出供給
装置では稼動時間の制御方法と多数の花や木に給水する
方法には触れていない。
2. Description of the Related Art Conventionally, gardening watering machines have a method of intermittently supplying water to flowers and trees by a timer from a pipe directly connected to the water supply, and a method of intermittently supplying water to flowers and trees from a tank of around 10 liters by a pump and a timer. It is used. Also, Japanese Patent Laid-Open No. 2000-254481 "Liquid discharge supply device"
Then, by rotating the motor with the electric energy generated by the solar cell and decelerating the rotation speed of this motor, the discharge end of the flexible tube that draws the aqueous solution from the lower part of the container is slowly lowered from above the container to below. , A liquid discharge and supply device that discharges an aqueous solution and supplies water to flowers and trees without using a pump has been described, but in the above liquid discharge and supply device, the method of controlling the operating time and the method of supplying water to many flowers and trees are described. I haven't touched it.

【0003】また、1つの液体の流れを複数の流れに分
配する方法に関しては、一旦小さな受槽に貯留させた
後、ポンプにより加圧して複数の流れに分流させる方法
が一般的であるが、ポンプを使わない簡単な方法は見当
たらない。
Regarding the method of distributing one liquid stream into a plurality of streams, it is common to temporarily store it in a small receiving tank and then pressurize it with a pump to divide it into a plurality of streams. I can't find an easy way to use.

【0004】従来臭いを断つ器具に水封式トラップがあ
る。図6に水封式トラップのうち通常台所などで使われ
ている椀型トラップが示されている。トラップ外筒1の
底部中央には抜出管2が直立貫通している。抜出管2の
トラップ外筒1の内側部分にはトラップ内筒3が被せら
れている。
Conventionally, there is a water-sealed trap as a device for cutting off odor. FIG. 6 shows a bowl-shaped trap that is usually used in kitchens among the water-sealed traps. An extraction pipe 2 extends vertically through the center of the bottom of the trap outer cylinder 1. The inner part of the trap outer cylinder 1 of the extraction pipe 2 is covered with the trap inner cylinder 3.

【0005】排水4が水封液面5より上方にまで貯まる
と、排水4は増加分だけ抜出管2の内側を流下し、液面
が水封液面5に戻ると排出は停止し、水封液面5は常に
維持される。この椀型トラップ方式では、トラップ外筒
1とトラップ内筒3の隙間及びトラップ内筒3と排出管
2の隙間に滞留している排水4のため悪臭などが遮断さ
れる。
When the drainage 4 is stored above the water sealing liquid level 5, the drainage 4 flows down the inside of the extraction pipe 2 by an increment, and when the liquid level returns to the water sealing liquid level 5, the drainage is stopped, The water sealing liquid surface 5 is always maintained. In this bowl-type trap system, bad odors are blocked by the drainage 4 that is retained in the gap between the trap outer cylinder 1 and the trap inner cylinder 3 and the gap between the trap inner cylinder 3 and the discharge pipe 2.

【0006】しかるに、図6に示す椀型トラップにおい
て、抜出管2の内径が小さく排水4が充満して連続的に
流れるような場合は、トラップ外筒1とトラップ内筒3
との隙間、トラップ内筒3と抜出管2との隙間および抜
出管2の内部での流れが連続流となり、サイホンの原理
により、排水はトラップ内筒3の下端の底部液面6まで
一気に排出され水封効果は無くなる。従って、悪臭を遮
断する椀型トラップ方式では抜出管2の内径を大きく
し、サイホンの原理による水の流れが起こらないような
構造となっている。
However, in the bowl type trap shown in FIG. 6, when the inner diameter of the extraction pipe 2 is small and the drainage 4 is full and flows continuously, the trap outer cylinder 1 and the trap inner cylinder 3 are formed.
And the gap between the trap inner cylinder 3 and the extraction pipe 2 and the flow inside the extraction pipe 2 become a continuous flow, and due to the siphon principle, drainage reaches the bottom liquid level 6 at the lower end of the trap inner cylinder 3. It is discharged all at once and the water sealing effect disappears. Therefore, in the bowl-type trap system that blocks offensive odors, the inner diameter of the extraction pipe 2 is increased so that the flow of water does not occur according to the siphon principle.

【0007】本発明では椀型トラップ型の形状の受槽に
サイホンの原理による水流を起こし、上方より流下する
液体を上記受槽に一旦貯えた後、複数の流れに流量を均
等に分配できるような構造を持つ分配受槽を開発した。
According to the present invention, a water flow according to the siphon principle is generated in a bowl-shaped trap type receiving tank, the liquid flowing down from above is temporarily stored in the receiving tank, and then the flow rate can be evenly distributed among a plurality of streams. We have developed a distribution receiving tank.

【0008】[0008]

【発明が解決しようとする課題】特開2000−254
481「液体排出供給装置」記載の太陽電池を用いた園
芸用の液体排出供給装置を、下記の2つの課題を付加し
た園芸用水遣機として解決した。 (1)太陽パネルで稼動する園芸用水遣機の1日の稼動
時間を制御する簡単な方法を開発し、花や木の1日の給
水量を制御すること。 (2)1つの液体の流れを流量がほぼ均等な複数の流れ
に分配できる簡単な手段を開発し、その手段を用いて園
芸用水遣機から複数の花や木に給水できる給水方法を開
発すること。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-254
A liquid discharge / supply device for gardening using a solar cell described in 481 “liquid discharge / supply device” has been solved as a gardening watering machine to which the following two problems are added. (1) To develop a simple method to control the daily operation time of a garden watering machine that operates on solar panels, and control the daily water supply of flowers and trees. (2) Develop a simple means that can distribute one liquid stream into multiple streams with almost equal flow rates, and develop a water supply method that can supply multiple flowers and trees from a garden watering machine using that means. thing.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め本発明は次のような制御方法と分配受槽を採用した。
即ち、1日当たりの給水量の制御は、太陽の1日の運行
の特性を利用して、遮蔽体を太陽電池の受光面の上方に
翳すことにより太陽電池に影を作り、太陽電池により作
動するモーターの作動時間を減少させることで解決でき
る。
To solve the above problems, the present invention employs the following control method and distribution tank.
That is, the water supply amount per day is controlled by using the characteristics of the daily operation of the sun to shade the solar cell by holding the shield above the light-receiving surface of the solar cell and operating by the solar cell. It can be solved by reducing the operating time of the motor.

【0010】また、園芸用水遣機から排出される水溶液
を一旦、分配受槽に受けたのち、サイホンの原理により
分配受槽の水溶液を、分配受槽の下部にある複数の受槽
排出管から一気に排出し、複数の花木に給水することで
解決される。
Further, after the aqueous solution discharged from the horticultural water dispenser is once received by the distribution receiving tank, the aqueous solution in the distribution receiving tank is expelled from the plurality of receiving tank discharging pipes below the distribution receiving tank at once by the siphon principle. It is solved by supplying water to multiple flowers and trees.

【0011】[0011]

【発明の実施の形態1】本発明の園芸用水遣機の実施の
形態1を図1に示す。図1では太陽電池25で発生した
電力を動力源とした、ポンプを使わない園芸用水遣機1
0と、太陽の運行及び遮蔽体27の関係を示している。
遮蔽体27として太陽電池25の受光面と同程度の面積
の遮蔽板を使用している。
First Embodiment FIG. 1 shows a first embodiment of a watering machine for gardening according to the present invention. In FIG. 1, a watering machine 1 for gardening, which uses electric power generated by the solar cell 25 as a power source and does not use a pump.
The relationship between 0 and the operation of the sun and the shield 27 is shown.
As the shield 27, a shield plate having the same area as the light receiving surface of the solar cell 25 is used.

【0012】はじめに園芸用水遣機10の説明をする。
容器11には水などの液体12が入っている。液体12
は容器11の底部にある排出口14からチューブ端16
a,16bを介し、柔軟性のチューブ15を通って液体
供給機構50に一旦貯留した後、液体供給機構50の構
成要素である排出管57の先端より、液滴17の様に滴
となり滴下し、水遣機架台30に取り付けられた分配受
槽70に一定量溜まった後、サイホン効果により一気に
分配受槽70の下部より突き出ている3本の受槽排出管
77a、77b、77cより排出され、花や木に供給さ
れる。
First, the gardening watering machine 10 will be described.
The container 11 contains a liquid 12 such as water. Liquid 12
From the outlet 14 at the bottom of the container 11 to the tube end 16
After being temporarily stored in the liquid supply mechanism 50 through the flexible tube 15 via a and 16b, it becomes a droplet like a droplet 17 from the tip of the discharge pipe 57 which is a constituent element of the liquid supply mechanism 50. , After being accumulated in a certain amount in the distribution receiving tank 70 attached to the watering machine stand 30, it is discharged from the three receiving tank discharge pipes 77a, 77b, 77c protruding from the lower part of the distribution receiving tank 70 at once by the siphon effect. And supplied to trees.

【0013】液体供給機構50は、園芸用水遣機10の
主要構成部分であり、容器11の液体12を排出するた
めの機構であるが、花や木などに液体12を供給するた
めの機構との意味合いから、液体供給機構と名づけた。
液体供給機構50は、円筒支柱18の内側を上方より下
方へ移動し、液体供給機構液面64が容器液面13より
も低い位置になると、液体供給機構50に貯えられてい
る液体は排出管57の先端より液滴17として排出され
る。分配受槽70に貯められた液体は3本の受槽排出管
77a、77b、77cを通って花や木にほぼ均等に排
出される。
The liquid supply mechanism 50 is a main component of the garden watering machine 10 and is a mechanism for discharging the liquid 12 in the container 11, and a mechanism for supplying the liquid 12 to flowers and trees. Therefore, it was named the liquid supply mechanism.
The liquid supply mechanism 50 moves from the upper side to the lower side inside the cylindrical column 18, and when the liquid supply mechanism liquid level 64 is lower than the container liquid level 13, the liquid stored in the liquid supply mechanism 50 is discharged from the discharge pipe. The droplet 17 is discharged from the tip of 57. The liquid stored in the distribution receiving tank 70 is almost evenly discharged to flowers and trees through the three receiving tank discharge pipes 77a, 77b, 77c.

【0014】液体供給機構50を構成する外側に突き出
た排出管57と、液体供給機構50を駆動軸22に嵌合
固定する液体供給機構固定具58が図示されているが、
これらが上下に動けるように、円筒支柱18の片側には
円筒支柱18の上端から下端に続く排出管昇降スリット
19が設けられている。
Although a discharge pipe 57 projecting to the outside of the liquid supply mechanism 50 and a liquid supply mechanism fixture 58 for fitting and fixing the liquid supply mechanism 50 to the drive shaft 22 are shown,
In order to allow these to move up and down, a discharge pipe elevating slit 19 is provided on one side of the cylindrical support column 18 from the upper end to the lower end of the cylindrical support column 18.

【0015】また、円筒支柱18の排出管昇降スリット
19の反対側の下端部分にはチューブ15を通すチュー
ブ貫通スリット21が設けられている。円筒支柱18、
排出管昇降スリット19、チューブ貫通スリット21の
位置関係を図1のA−A断面及びB−B断面に示されて
いる。
Further, a tube penetrating slit 21 through which the tube 15 is inserted is provided at the lower end portion of the cylindrical column 18 opposite to the discharge tube elevating slit 19. Cylindrical column 18,
The positional relationship between the discharge pipe elevating slit 19 and the tube penetrating slit 21 is shown in the AA cross section and the BB cross section of FIG.

【0016】太陽電池25で発生した電気エネルギー
は、電線29を通ってモーターや減速機で構成される駆
動機構23を駆動させ、モーターの回転数を所定の回転
数まで減速した後、全長に亘りオネジが切ってある駆動
軸22を回転させる。
The electric energy generated in the solar cell 25 is passed through the electric wire 29 to drive the drive mechanism 23 composed of a motor and a speed reducer to reduce the rotation speed of the motor to a predetermined rotation speed, and then to spread over the entire length. The drive shaft 22 with the external thread cut is rotated.

【0017】駆動軸22は、液体供給機構50の上部に
差し込まれている液体供給機構固定具58とかみ合って
いて、駆動軸22が右周りに回転すると、液体供給機構
50が下方に移動するようになっている。
The drive shaft 22 meshes with the liquid supply mechanism fixing member 58 inserted in the upper portion of the liquid supply mechanism 50, and when the drive shaft 22 rotates clockwise, the liquid supply mechanism 50 moves downward. It has become.

【0018】駆動軸22の回転により、液体供給機構5
0は水平方向に回転しようとするが、液体供給機構固定
具58が円筒支柱18の排出管昇降スリット19のスリ
ット端部20aにぶつかり、回転が阻止され、下方への
動きとなって表れる。
The liquid supply mechanism 5 is driven by the rotation of the drive shaft 22.
Although 0 tends to rotate in the horizontal direction, the liquid supply mechanism fixture 58 hits the slit end portion 20a of the discharge pipe elevating slit 19 of the cylindrical column 18 to prevent rotation, and appears as a downward movement.

【0019】太陽電池支柱28に固定された太陽電池2
5は、角度調節用蝶ネジ40により傾斜固定された遮蔽
体27により、受光面の一部が遮蔽体27の影で覆われ
た状態が示されている。太陽電池25は方位自在接手2
6により角度及び方位を自由に変えることが出来るが、
図では概略水平に置かれている。図1上部には日の出側
山31aから日の出太陽32aが顔を出し、日中の太陽
32bをとおり、日没側山31bに日没太陽32cとし
て隠れる太陽の運行を示している。
Solar cell 2 fixed to solar cell support 28
5 shows a state in which a part of the light-receiving surface is covered with the shadow of the shield 27 by the shield 27 that is inclined and fixed by the angle adjusting thumbscrew 40. Solar cell 25 is a universal joint 2
The angle and azimuth can be freely changed with 6,
In the figure, they are placed roughly horizontally. In the upper part of FIG. 1, the sunrise sun 32a appears from the sunrise side mountain 31a, passes through the daytime sun 32b, and the operation of the sun hidden as the sunset sun 32c in the sunset side mountain 31b is shown.

【0020】従来、市販の園芸用水遣機で花や木への給
水量の制御(給水量の増減)は、電気制御のタイマー設
定を使用したり、また別のタイプの水遣機では、槽の大
きさを変えたりするが、本発明では太陽電池25に陰影
を落とす遮蔽体27を設けることにより花や木への給水
量の制御が可能となる。図1では遮蔽体27として太陽
電池25との開度を自由に変えられる構造の遮蔽板を用
いている。
Conventionally, for controlling the amount of water supply to flowers and trees (increase / decrease of the amount of water supply) with a commercially available watering machine for gardening, an electrically controlled timer setting is used, and with another type of watering machine, a tank is used. In the present invention, it is possible to control the amount of water supplied to flowers and trees by providing the solar cell 25 with a shield 27 that casts shadows. In FIG. 1, a shield plate having a structure in which the opening degree with the solar cell 25 can be freely changed is used as the shield 27.

【0021】太陽電池25で作動する園芸用水遣機10
の稼動時間を遮蔽体27により制御できることは、園芸
用水遣機10からの排出量(=花や木の給水量)を制御
できることであり、従って、花や木の1日当たりの給水
量の制御ができる。それゆえ、容器を取替ることなく給
水量の異なる花や木の水遣りに対応できる。
A gardening watering machine 10 operated by a solar cell 25
That the operating time of the can be controlled by the shield 27 can control the discharge amount (= water supply amount of flowers and trees) from the garden watering machine 10, and therefore the control of the daily water supply amount of flowers and trees can be controlled. it can. Therefore, it is possible to handle watering of flowers and trees with different water supplies without replacing the container.

【0022】本発明の給水量の制御方法は、太陽電池2
5と太陽の運行及び遮蔽体27の関係と、花や木の水遣
りの特徴を利用している。即ち、太陽電池25は太陽光
で電力が発生するが、太陽光は平行光線であり、日の出
から日の入りまでの間でこの平行光線の水平に対する角
度が変化するので、太陽電池25と遮蔽体27の開度を
一度固定すると、その日の太陽電池25で発生する電力
と太陽の運行との関係が決まる。従って、園芸用水遣機
10の稼動時間が決定される。
The method for controlling the amount of water supply according to the present invention is the solar cell 2
5 and the relationship between the operation of the sun and the shield 27, and the characteristics of watering flowers and trees are used. That is, the solar cell 25 generates power by sunlight, but the sunlight is a parallel ray, and the angle of this parallel ray with respect to the horizontal changes from sunrise to sunset, so that the solar cell 25 and the shield 27 have different angles. Once the opening is fixed, the relationship between the power generated by the solar cell 25 on that day and the operation of the sun is determined. Therefore, the operating time of the gardening watering machine 10 is determined.

【0023】花や木の水遣りでは、花や木に供給する水
の量は厳密である必要はなく、例えば1日約500cc
程度とか、小さい鉢は半分の1日約250ccでよいと
かの概略の値でよい。また、花や木の水遣りは一般的に
1日あたりの給水量でよく、園芸用水遣機10の稼動時
間を調節することで、花や木の1日あたりの給水量の調
節が出来る。それゆえ、太陽電池25と遮蔽体27との
開度を設定することにより、園芸用水遣機10の稼動時
間が決まり、花や木の1日あたりの給水量が決まる。
In the watering of flowers and trees, the amount of water supplied to the flowers and trees does not have to be strict, for example, about 500 cc per day.
A rough value such as about 250 cc for one day or half for a small pot may be used. Further, the water supply of flowers and trees is generally sufficient, and the water supply amount of flowers and trees can be adjusted by adjusting the operating time of the garden watering machine 10. Therefore, by setting the opening between the solar cell 25 and the shield 27, the operating time of the garden watering machine 10 is determined, and the daily water supply of flowers and trees is determined.

【0024】なお、駆動軸22の回転速度は極めて遅
く、例えば、0.1r.p.mなどであり、回転してい
るのを確認するのは難しい。そのため、回転確認板24
を駆動軸22の上端に設けてある。回転確認板24は周
辺速度が大きくなるように細長いものがよく、板状で先
端が尖ったひし形状のもがよい。
The rotation speed of the drive shaft 22 is extremely low, for example, 0.1 r. p. m, etc., so it is difficult to confirm the rotation. Therefore, the rotation confirmation plate 24
Is provided on the upper end of the drive shaft 22. The rotation confirmation plate 24 is preferably elongated so that the peripheral speed is high, and is preferably plate-shaped and diamond-shaped with a sharp tip.

【0025】図2では図1で説明した遮蔽体27による
制御方式の詳細について説明する。図2(a)では比較
対照の意味で、遮蔽体27を用いない太陽電池25だけ
の場合を示してあり、図2(b)では遮蔽体27を用い
た場合である。なお、遮蔽体27としては、太陽電池2
5の受光面と同じ程度の寸法の光を通さない黒色のプラ
スチック遮蔽板を遮蔽体27として使用した。
In FIG. 2, details of the control method by the shield 27 described in FIG. 1 will be described. For the purpose of comparison and comparison, FIG. 2A shows the case where only the solar cell 25 does not use the shield 27, and FIG. 2B shows the case where the shield 27 is used. As the shield 27, the solar cell 2
As the shield 27, a black plastic shield plate that does not transmit light having the same size as the light receiving surface of No. 5 was used.

【0026】図2(a)において、太陽電池25は水平
に設置されている。太陽が日の出側山31aより日の出
太陽32aとして顔をだし、太陽の運行行路33に従
い、日没側山31bに隠れる日没太陽32cの位置まで
太陽電池25を照射することになる。従って、日の出か
ら日没までの時間帯は園芸用水遣機10(図1参照)は
稼動することになる。太陽の運行行路33に相当する角
度が遮蔽体無照射角度34である。
In FIG. 2A, the solar cell 25 is installed horizontally. The sun appears as the sunrise sun 32a from the sunrise side mountain 31a, and the solar battery 25 is irradiated to the position of the sunset sun 32c hidden in the sunset side mountain 31b according to the sun's travel route 33. Therefore, the horticultural watering machine 10 (see FIG. 1) operates during the period from sunrise to sunset. An angle corresponding to the travel route 33 of the sun is the shield non-irradiation angle 34.

【0027】図2(b)では遮蔽体27の構造と動きが
示されている。遮蔽体27は、太陽電池25の一辺に取
付けられた遮蔽体取付板43を介して角度調節用蝶ネジ
40により遮蔽体回転板41を手動で回転させ、遮蔽体
回転板41に取付られた遮蔽体27を、任意に傾斜固定
できるようになっている。図において日の出太陽32a
が日の出側山31aより顔をだし、日中の太陽32bの
位置になるまでの太陽の運行行路35では太陽電池25
が遮蔽体27の影に覆われる部分である太陽電池陰影部
分38が大きいので園芸用水遣機10(図1参照)を稼
動できる程の電力は発生しない。
FIG. 2B shows the structure and movement of the shield 27. The shield 27 is attached to the shield rotating plate 41 by manually rotating the shield rotating plate 41 with the angle adjusting thumbscrew 40 via the shield mounting plate 43 attached to one side of the solar cell 25. The body 27 can be arbitrarily tilted and fixed. In the figure sunrise sun 32a
Is exposed from the sunrise side mountain 31a, and the solar battery 25 is in the sun's operation path 35 until it reaches the position of the sun 32b during the day.
Since the solar cell shaded portion 38, which is a portion covered by the shadow of the shield 27, is large, electric power sufficient to operate the garden watering machine 10 (see FIG. 1) is not generated.

【0028】太陽が日中の太陽32bの位置より日没側
に傾くと、太陽電池25の太陽により照射される部分で
ある太陽電池照射部分39が徐々に大きくなり園芸用水
遣機10(図1参照)を稼動できる程の電力を発生する
ようになる。図2(b)において日中の太陽32bから
日没太陽32cまでの遮蔽体有照射角度37に相当する
太陽の運行行路36では、園芸用水遣機10(図1参
照)が稼動し花や木に給水ができる。
When the sun tilts toward the sunset side from the position of the sun 32b in the daytime, the solar cell irradiation portion 39, which is the portion of the solar cell 25 irradiated by the sun, gradually becomes larger, and the garden watering machine 10 (see FIG. 1). Will generate enough power to operate. In FIG. 2 (b), the horticultural watering machine 10 (see FIG. 1) operates and flowers and trees are operated in the sun operation path 36 corresponding to the shielded irradiation angle 37 from the sun 32 b during the day to the sun 32 c at sunset. Can be supplied with water.

【0029】図2(c)には、遮蔽体27と太陽電池2
5の関係を図2(b)の矢印Aの方向から見た場合を示
している。遮蔽体27は遮蔽体回転板41、蝶ネジ取付
板45を介して遮蔽体取付板43に取付けられている。
一方、角度調節用蝶ネジ40は、遮蔽体回転板41と蝶
ネジ取付板45を重ねて貫通し、回転板固定ナット44
で締め付けられるようになっている。
In FIG. 2C, the shield 27 and the solar cell 2 are shown.
2 shows a case where the relationship of No. 5 is viewed from the direction of arrow A in FIG. The shield 27 is attached to the shield mounting plate 43 via the shield rotating plate 41 and the thumbscrew mounting plate 45.
On the other hand, the angle adjusting thumbscrew 40 passes through the shield rotating plate 41 and the thumbscrew mounting plate 45 in an overlapping manner and penetrates the rotating plate fixing nut 44.
It can be tightened with.

【0030】角度調節用蝶ネジ40と回転板固定ナット
44を指でつかみ、締め具合を少し緩め、角度調節用蝶
ネジ40を任意に回転させ、遮蔽体27と太陽電池25
の開度を任意に設定したのち、角度調節用蝶ネジ40と
回転板固定ナット44を指で締め、遮蔽体27を固定す
ることにより遮蔽体27と太陽電池25の開度が固定さ
れる。
The angle adjusting thumbscrew 40 and the rotary plate fixing nut 44 are grasped with fingers, the tightening is loosened a little, and the angle adjusting thumbscrew 40 is arbitrarily rotated to shield the shield 27 and the solar cell 25.
After arbitrarily setting the opening degree, the angle adjustment thumbscrew 40 and the rotary plate fixing nut 44 are finger-tightened, and the shielding body 27 is fixed, whereby the opening degrees of the shielding body 27 and the solar cell 25 are fixed.

【0031】遮蔽体27の種類としては図2に示したよ
うな、板状の遮蔽体27がよく、他の例として、例えば
カメラに使うフードのような、太陽電池25を包み込む
筒状でもよいが、種々の実験から、フードの長さをかな
り長くする必要があることと制御できる幅が小さいこ
と、更には機構が案外面倒であり、本発明の自然エネル
ギーを用いた簡単な機構による園芸用水遣機の開発、の
趣旨に反するなどの理由で採用しなかった。
As the kind of the shield 27, a plate-like shield 27 as shown in FIG. 2 is preferable, and as another example, a cylindrical shape for enclosing the solar cell 25 such as a hood used for a camera may be used. However, from various experiments, it is necessary to considerably lengthen the length of the hood, the width that can be controlled is small, and further, the mechanism is unwieldy, and the horticultural water with a simple mechanism using the natural energy of the present invention is used. It was not adopted because it was against the purpose of the development of the equipment.

【0032】また、太陽電池25を水平に置いた場合の
園芸用水遣機10(図1参照)の稼動時間よりも短い稼
動時間にする方法には、別の方法として太陽電池25を
傾斜することも考えられるが、種々の実験結果から、傾
斜して太陽の直射光が入らなくても、散乱光により発生
する太陽電池25の電力で園芸用水遣機10(図1参
照)が稼動する場合があり、実際上制御が極めて困難で
あることが判明した。特に、快晴の日は散乱光もかなり
強く園芸用水遣機10(図1参照)が稼動する場合が多
く、傾斜させる方法は採用しなかった。
As a method of making the operating time shorter than the operating time of the garden watering machine 10 (see FIG. 1) when the solar cell 25 is placed horizontally, another method is to tilt the solar cell 25. From various experimental results, there is a case where the garden watering machine 10 (see FIG. 1) is operated by the electric power of the solar cell 25 generated by the scattered light even if the direct light of the sun does not enter at an inclination. Yes, it turns out that control is extremely difficult in practice. In particular, on sunny days, scattered light is considerably strong, and the gardening watering machine 10 (see FIG. 1) is often operated. Therefore, the tilting method was not adopted.

【0033】種々の検討より、太陽電池25は水平に固
定し、角度調節用蝶ネジ40により、太陽電池25との
開度を変更できる板状の遮蔽体27を設けて、この遮蔽
体27により太陽電池25上に陰影を落とす方法が簡単
で確実であることが判った。この方法であれば快晴の日
でも散乱光を遮断でき望みの制御が可能である。
According to various studies, the solar cell 25 is fixed horizontally, and a plate-shaped shield 27 that can change the opening degree with the solar cell 25 is provided by the angle adjusting thumbscrew 40. It has been found that the method of casting shadows on the solar cell 25 is simple and reliable. With this method, scattered light can be blocked even on a sunny day, and desired control can be performed.

【0034】図2の例では、本発明の板状の遮蔽体27
と太陽電池25の開度の調節には角度調節用蝶ネジ40
を使用したが、この方法に限定したわけではなく、要は
板状の遮蔽体により太陽電池の受光面上に陰影を作り、
園芸用水遣機の稼動時間を調節できればよい。
In the example of FIG. 2, the plate-shaped shield 27 of the present invention is used.
And the angle adjustment thumbscrew 40 to adjust the opening of the solar cell 25.
However, it is not limited to this method, the point is to make a shade on the light receiving surface of the solar cell with a plate-shaped shield,
It is sufficient if the operating time of the garden watering machine can be adjusted.

【0035】図3には図1で説明した液体供給機構50
の詳細を示している。図3(a)には、図3(b)のA
−A断面を上からみた液体供給機構50の横断面図を示
している。図3(b)には液体供給機構50の縦断面図
を示している。液体供給機構50は容器11(図1参
照)から排出される液体12を花や木などの他所へ供給
するための機構である。また、液体供給機構50の構成
要素である液体供給機構固定具58は液体供給機構50
を駆動軸22に嵌合せて固定させる鋏状の器具である。
FIG. 3 shows the liquid supply mechanism 50 described with reference to FIG.
Shows the details of. In FIG. 3A, A in FIG.
The cross-sectional view of the liquid supply mechanism 50 which looked at the -A cross section from the top is shown. FIG. 3B shows a vertical sectional view of the liquid supply mechanism 50. The liquid supply mechanism 50 is a mechanism for supplying the liquid 12 discharged from the container 11 (see FIG. 1) to other places such as flowers and trees. Further, the liquid supply mechanism fixture 58, which is a component of the liquid supply mechanism 50, is
Is a scissor-like instrument that fits and is fixed to the drive shaft 22.

【0036】液体供給機構50は外筒51、流入管5
2、駆動軸誘導管53、切欠部54、天板55、天板貫
通口56、排出管57及び液体供給機構固定具58から
構成されていて、液体供給機構固定具58は固定具柄5
9a,59b,支点60、スプリング61、固定具先端
充填物62a、62b、半割れメネジ63a,63bか
ら構成されている。
The liquid supply mechanism 50 includes an outer cylinder 51 and an inflow pipe 5.
2, a drive shaft guide tube 53, a cutout portion 54, a top plate 55, a top plate through hole 56, a discharge pipe 57, and a liquid supply mechanism fixing tool 58, and the liquid supply mechanism fixing tool 58 is the fixing device pattern 5.
9a, 59b, a fulcrum 60, a spring 61, fixing tool tip fillings 62a, 62b, and half-split female threads 63a, 63b.

【0037】図3(a)には液体供給機構固定具58と
駆動軸22の嵌合機構が示されている。液体供給機構5
0の外筒51の中心に駆動軸22が通っている。外筒5
1には液体供給機構固定具58を差し込めるような、切
欠部54がある。鋏み状の液体供給機構固定具58は2
本の固定具柄59a、59b、支点60、スプリング6
1により液体供給機構固定具58の先端部分の固定具先
端充填物62a、62bを締め付ける構造になってい
る。固定具先端充填物62aと固定具先端充填物62b
の合せ面の中間部分には半割れメネジ63a、63bが
切られている。半割れメネジ63a、63bの大きさ
は、駆動軸22に切られているオネジに対するメネジで
あり、両者は噛合うようになっている。
FIG. 3A shows a fitting mechanism of the liquid supply mechanism fixing tool 58 and the drive shaft 22. Liquid supply mechanism 5
The drive shaft 22 passes through the center of the outer cylinder 51 of 0. Outer cylinder 5
1 has a notch 54 into which a liquid supply mechanism fixture 58 can be inserted. The scissors-shaped liquid supply mechanism fixture 58 has two
Book fixtures 59a, 59b, fulcrum 60, spring 6
1 has a structure for tightening the fixture tip fillers 62a and 62b at the tip portion of the liquid supply mechanism fixture 58. Fixing tool tip filling material 62a and fixing tool tip filling material 62b
Half-split female threads 63a and 63b are cut in the middle portion of the mating surface. The sizes of the half-split female threads 63a and 63b are female threads for the male thread cut on the drive shaft 22, and the two are in mesh with each other.

【0038】図3(b)において、外筒51の下端の中
心より偏心した位置に、液体供給機構50に流入する液
体を導入する短管状の流入管52が設けられている。外
筒51の下端の中心部には、駆動軸22が液体に濡れな
いように駆動軸22を隔離する円筒状の駆動軸誘導管5
3が設けられている。
In FIG. 3B, a short tubular inflow pipe 52 for introducing the liquid flowing into the liquid supply mechanism 50 is provided at a position eccentric from the center of the lower end of the outer cylinder 51. At the center of the lower end of the outer cylinder 51, a cylindrical drive shaft guide tube 5 that isolates the drive shaft 22 so that the drive shaft 22 does not get wet with liquid.
3 is provided.

【0039】外筒51の上端は円板状の天板55で閉じ
られている。天板55の中心には天板貫通口56があ
り、駆動軸22が貫通できるようになっている。外筒5
1の上部には側壁の1部を取り除いたような切欠部54
が設けられていて、鋏み状の液体供給機構固定具58が
差し込めるようになっている。
The upper end of the outer cylinder 51 is closed by a disk-shaped top plate 55. There is a top plate through hole 56 at the center of the top plate 55 so that the drive shaft 22 can pass therethrough. Outer cylinder 5
The upper part of 1 has a notch 54 which is formed by removing a part of the side wall.
Is provided so that the scissor-shaped liquid supply mechanism fixing tool 58 can be inserted.

【0040】太陽電池25で発生した電気エネルギーで
駆動軸22が右周りに回転すると、液体供給機構固定具
58も右周りに回転しようとするが、固定具柄59aが
少し回転した後、図1に示される排出管昇降スリット1
9のスリット端部20aにぶつかり、回転が出来なくな
り液体供給機構固定具58自身が下方移動する。
When the drive shaft 22 rotates clockwise by the electric energy generated by the solar cell 25, the liquid supply mechanism fixture 58 also tries to rotate clockwise, but after the fixture handle 59a rotates a little, as shown in FIG. Discharge pipe lifting slit 1 shown in
It hits the slit end 20a of 9 and cannot rotate, and the liquid supply mechanism fixture 58 itself moves downward.

【0041】天板55は液体供給機構固定具58に載っ
た状態となっているが、外筒51は天板55と接合され
ているので、駆動軸22が右廻りに回転して、液体供給
機構固定具58が下方へ移動すると、液体供給機構50
全体が液体供給機構固定具58と同じ速度で下方へ移動
することになる。
Although the top plate 55 is mounted on the liquid supply mechanism fixture 58, the outer cylinder 51 is joined to the top plate 55, so that the drive shaft 22 rotates clockwise to supply the liquid. When the mechanism fixture 58 moves downward, the liquid supply mechanism 50
The whole will move downward at the same speed as the liquid supply mechanism fixture 58.

【0042】液体供給機構50の内部の液体12は、図
1に示す容器11の液体12とチューブ15を介して連
通管の様に通じていて、液体供給機構50がゆっくりと
降下すると、容器11の液体12がチューブ15を通っ
て液体供給機構50に流入し、液体供給機構液面64が
上昇することになる。液体供給機構液面64が上昇し、
排出管57の中に充満すると、液体12は排出管57の
先端から排出される。
The liquid 12 inside the liquid supply mechanism 50 communicates with the liquid 12 of the container 11 shown in FIG. 1 via a tube 15 like a communication pipe, and when the liquid supply mechanism 50 slowly descends, the container 11 The liquid 12 flows into the liquid supply mechanism 50 through the tube 15, and the liquid level 64 of the liquid supply mechanism rises. The liquid supply mechanism liquid level 64 rises,
When the discharge pipe 57 is filled with the liquid 12, the liquid 12 is discharged from the tip of the discharge pipe 57.

【0043】液体12が液体供給機構50の排出管57
より流出する直前かまたは流出が止まった時点では、容
器11の液面13(図1参照)と液体供給機構液面64
はほぼ同じレベルで釣合っている状態である。このよう
な状態から液体供給機構50が降下すると、液面13と
排出管57の位置差が増加し、液体12が液体供給機構
50に流れ込むが、駆動軸22の回転が0.1r.p.
m程度と極めて低速であり、液体供給機構50の降下速
度も10mm/h以下程度と極めて低速度の場合は、液
体供給機構50が降下した距離だけ容器11の液面が減
少し、減少した液深さに相当する容器11の液体が排出
管57から排出される。
The liquid 12 is the discharge pipe 57 of the liquid supply mechanism 50.
Immediately before the outflow or when the outflow stops, the liquid level 13 (see FIG. 1) of the container 11 and the liquid level 64 of the liquid supply mechanism.
Are in balance at about the same level. When the liquid supply mechanism 50 descends from such a state, the positional difference between the liquid surface 13 and the discharge pipe 57 increases, and the liquid 12 flows into the liquid supply mechanism 50, but the rotation of the drive shaft 22 is 0.1 r.s. p.
When the liquid supply mechanism 50 has an extremely low speed of about 10 m / h or less and the liquid supply mechanism 50 has an extremely low speed of about 10 mm / h or less, the liquid level of the container 11 decreases by the distance the liquid supply mechanism 50 descends, and the decreased liquid The liquid in the container 11 corresponding to the depth is discharged from the discharge pipe 57.

【0044】例えば、駆動軸22がM4のオネジであ
り、半割れメネジ63a、63bがM4のメネジである
ならば、M4のネジのピッチは0.7mmであるから、
駆動軸22が1回転すると、液体供給機構50は0.7
mm降下することになり、排出管57も0.7mm降下
することになる。
For example, if the drive shaft 22 is an M4 male screw and the half-split female screws 63a and 63b are M4 female screws, the pitch of the M4 screw is 0.7 mm.
When the drive shaft 22 makes one rotation, the liquid supply mechanism 50 becomes 0.7.
Therefore, the discharge pipe 57 is also lowered by 0.7 mm.

【0045】例えば、容器11の内径を16.5cmと
して、駆動軸22の回転数を0.1r.p.mとするな
らば、液体供給機構50は1時間当たり4.2mm
(0.7mm×6)降下するので、容器11の液面も1
時間当たり4.2mm降下する。従って、1時間当たり
の排出量は約90cc(0.785×16.5cm×1
6.5cm×0.42cm)となる。
For example, when the inner diameter of the container 11 is 16.5 cm, the rotation speed of the drive shaft 22 is 0.1 r.p.m. p. If m, the liquid supply mechanism 50 is 4.2 mm per hour.
(0.7 mm × 6), so the liquid level in the container 11 is 1
It drops 4.2 mm per hour. Therefore, the amount discharged per hour is about 90 cc (0.785 x 16.5 cm x 1).
6.5 cm × 0.42 cm).

【0046】液体供給機構50を駆動軸22に沿って上
下する時は、液体供給機構固定具58の固定具柄59
a、固定具柄59bを指で抑え、駆動軸22と液体供給
機構固定具58の嵌合を外した状態で、手で液体供給機
構50を任意の位置に持っていき、再び液体供給機構固
定具58の固定具柄59a、固定具柄59bを指で抑
え、液体供給機構固定具58と駆動軸22を嵌合せて、
液体供給機構50を駆動軸22に固定する。例えば、液
体供給機構50が下端に達したら、上記の操作で液体供
給機構50を駆動軸22の上部へ移動させる事ができ
る。
When the liquid supply mechanism 50 is moved up and down along the drive shaft 22, a fixture handle 59 of the liquid supply mechanism fixture 58.
a, holding the fixture handle 59b with fingers, with the drive shaft 22 and the liquid supply mechanism fixture 58 disengaged, manually bring the liquid supply mechanism 50 to an arbitrary position and fix the liquid supply mechanism again Hold the fixture pattern 59a and the fixture pattern 59b of the tool 58 with fingers, fit the liquid supply mechanism fixture 58 and the drive shaft 22, and
The liquid supply mechanism 50 is fixed to the drive shaft 22. For example, when the liquid supply mechanism 50 reaches the lower end, the liquid supply mechanism 50 can be moved to the upper part of the drive shaft 22 by the above operation.

【0047】なお、液体供給機構50が駆動軸22の下
端に達したら、更に下方に移動しようとする力が発生し
ないように、駆動軸22の下端部分はネジが切り取って
あり、駆動軸22は空周りするようになっている。
When the liquid supply mechanism 50 reaches the lower end of the drive shaft 22, the lower end portion of the drive shaft 22 is threaded so that the force for further moving downward is not generated. It is designed to go around the sky.

【0048】図4には図1で説明した分配受槽70が描
かれている。図4(a)には図4(b)に描かれている
分配受槽70のA−A断面の横断面図が描かれている。
図4(b)には分配受槽70の縦断面図が示されてい
る。図4(c)には図4(b)にB−Bで示されている
分配受槽70の横断面図が示されている。
FIG. 4 shows the distribution receiving tank 70 described in FIG. FIG. 4A shows a cross-sectional view of the distribution receiving tank 70 taken along the line AA of FIG. 4B.
FIG. 4B shows a vertical sectional view of the distribution receiving tank 70. FIG. 4C shows a cross-sectional view of the distribution receiving tank 70 indicated by BB in FIG. 4B.

【0049】図4(a)において、受槽外枠71は断面
が矩形状の容器であり、受槽内筒72と受槽溢流管74
とは同心円状に配置されていて、両者の間には内筒溢流
管隙間75が存在する。受槽内筒72は4つの受槽内筒
固定板83a,83b,83c,83dにより受槽外枠
71の空間部分に固定されている。また、受槽溢流管7
4の内側には3本の排出管77a,77b,77cの1
部が見える。
In FIG. 4A, the receiving tank outer frame 71 is a container having a rectangular cross section, and the receiving tank inner cylinder 72 and the receiving tank overflow pipe 74 are provided.
And are arranged concentrically, and an inner cylinder overflow pipe gap 75 exists between them. The receiving tank inner cylinder 72 is fixed to the space portion of the receiving tank outer frame 71 by four receiving tank inner cylinder fixing plates 83a, 83b, 83c, and 83d. Also, the receiving tank overflow pipe 7
One of the three discharge pipes 77a, 77b, 77c is provided inside
I can see the part.

【0050】図4(b)において、外枠71の内部に
は,上端が閉じ下端が解放している受槽内筒72が設け
られている。該下端と受槽外枠71の底部との間には底
部隙間73が存在するように、受槽内筒72は受槽外枠
71の内部の空間に固定されている。
In FIG. 4 (b), inside the outer frame 71, a receiving tank inner cylinder 72 having an upper end closed and a lower end opened is provided. The receiving tub inner cylinder 72 is fixed to a space inside the receiving tub outer frame 71 so that a bottom gap 73 exists between the lower end and the bottom of the receiving tub outer frame 71.

【0051】受槽外枠71の底部中央には受槽外枠71
の内部に突き出た受槽溢流管74が設けられている。受
槽内筒72と受槽溢流管74の隙間が内筒溢流管隙間7
5である。受槽内筒72と受槽溢流管74は同心円状に
配置されていることが重要であり、それ故、内筒溢流管
隙間75は円環状となる。
The receiving tank outer frame 71 is provided at the center of the bottom of the receiving tank outer frame 71.
A receiving tank overflow pipe 74 protruding inside is provided. The gap between the receiving tank inner cylinder 72 and the receiving tank overflow pipe 74 is the inner cylinder overflow pipe gap 7
It is 5. It is important that the receiving tank inner cylinder 72 and the receiving tank overflow pipe 74 are arranged concentrically, and therefore the inner cylinder overflow pipe gap 75 is annular.

【0052】受槽溢流管74の上端と受槽内筒72の閉
じられた上端の間には上部隙間76がある。受槽溢流管
74の中間部分より下方には3本の受槽排出管77a、
77b、77cが押し込まれている。3本の受槽排出管
77a、77b、77cはチューブなどに接続される
が、接続し易いように、2本の受槽排出管77a、77
cは外側に曲げてある。
There is an upper gap 76 between the upper end of the receiving tank overflow pipe 74 and the closed upper end of the receiving tank inner cylinder 72. Below the middle portion of the receiving tank overflow pipe 74, three receiving tank discharge pipes 77a,
77b and 77c are pushed in. The three receiving tank discharge pipes 77a, 77b, 77c are connected to tubes or the like, but for the sake of easy connection, two receiving tank discharge pipes 77a, 77c are provided.
c is bent outward.

【0053】容器11の液体12(図1参照)はチュー
ブ15を通って、図3に示される液体供給機構50の排
出管57の先端より滴下し、分配受槽70に集められる
が、分配受槽70の液深さが上部液面78に達すると、
液体12は底部隙間73、内筒溢流管隙間75、上部隙
間76を通り受槽溢流管74の内部を溢流液80となっ
て流下し、受槽排出管77a、77b、77cから排出
される。
The liquid 12 (see FIG. 1) in the container 11 passes through the tube 15 and drips from the tip of the discharge pipe 57 of the liquid supply mechanism 50 shown in FIG. 3 and is collected in the distribution receiving tank 70. When the liquid depth of reaches the upper liquid surface 78,
The liquid 12 passes through the bottom gap 73, the inner cylinder overflow pipe gap 75, and the upper gap 76, flows down inside the receiving tank overflow pipe 74 as the overflow liquid 80, and is discharged from the receiving tank discharge pipes 77a, 77b, 77c. .

【0054】分配受槽70の特徴は、滴下した液体を一
定量集めた後、液体の深さによる圧力だけで液体の排出
が始まると、液位の最下点である下部液面79に達する
までサイホンの原理により、連続的に排出が起こり、複
数の排出管からほぼ均等の排出量が得られるような構造
であることである。
A feature of the distribution receiving tank 70 is that after a certain amount of the dropped liquid is collected and the discharge of the liquid starts only by the pressure due to the depth of the liquid, it reaches the lowermost liquid level 79 which is the lowest point of the liquid level. According to the siphon principle, discharge is continuously generated, and the structure is such that a substantially uniform discharge amount can be obtained from a plurality of discharge pipes.

【0055】液体12は底部隙間73、内筒溢流管隙間
75、上部隙間76を通り、受槽溢流管74を下って3
本の受槽排出管77a、77b、77cに入り込むが、
この時、3本の受槽排出管77a、77b、77cに均
等に流れ込むことが必要である。そのためには、液体1
2が受槽溢流管74を流れ下る際に、液体12が受槽溢
流管74の内壁の全面に亘って下り落ちることが必要で
ある。
The liquid 12 passes through the bottom gap 73, the inner cylinder overflow pipe gap 75, and the upper gap 76, and goes down the receiving tank overflow pipe 74 to 3
Enter the receiving tank discharge pipes 77a, 77b, 77c of the book,
At this time, it is necessary to evenly flow into the three receiving tank discharge pipes 77a, 77b, 77c. To do this, liquid 1
When the liquid 2 flows down the receiving tank overflow pipe 74, the liquid 12 needs to fall down over the entire inner wall of the receiving tank overflow pipe 74.

【0056】そのためには、液体12が流れる底部隙間
73、内筒溢流管隙間75、上部隙間76及び受槽溢流
管74のうち、受槽溢流管74での圧力損失が大きいよ
うな構造とする事が必要である。具体的には、受槽溢流
管74の断面積よりも、底部隙間73、内筒溢流管隙間
75、上部隙間76の3つの隙間の流動断面積を大きく
することである。このようにすることにより、液体12
は上記3つの隙間は小さい抵抗で流れ、受槽溢流管74
へは溢れるようにして溢流液80として流れ込み、受槽
溢流管74を充満して流れ、受槽溢流管74の内壁全面
を通って流れ落ちる。
To this end, of the bottom gap 73, the inner cylinder overflow pipe gap 75, the upper gap 76 and the receiving tank overflow pipe 74 through which the liquid 12 flows, the pressure loss in the receiving tank overflow pipe 74 is large. It is necessary to do. Specifically, the flow cross-sectional areas of the three gaps of the bottom gap 73, the inner cylinder overflow pipe gap 75, and the upper gap 76 are made larger than the cross-sectional area of the receiving tank overflow pipe 74. By doing so, the liquid 12
The above three gaps flow with a small resistance, and the receiving tank overflow pipe 74
To overflow into the receiving tank overflow pipe 74 and flow through the entire inner wall of the receiving tank overflow pipe 74.

【0057】受槽溢流管74の断面積が大きい場合は、
液体12が受槽溢流管74の内壁の全面を濡らさず、筋
状になって流れ落ちることになり、受槽排出管77a、
77b、77cに均等に流入しない。特に、水の場合は
表面張力が大きく水流が筋状になりやすいので、受槽溢
流管74の内径等の寸法・形状は重要である。
When the cross-sectional area of the receiving tank overflow pipe 74 is large,
The liquid 12 does not wet the entire inner wall of the receiving tank overflow pipe 74 and flows down in the form of streaks, so that the receiving tank discharge pipe 77a,
It does not evenly flow into 77b and 77c. In particular, in the case of water, the surface tension is large and the water flow tends to be streaky, so the size and shape of the receiving tank overflow pipe 74, such as the inner diameter, are important.

【0058】また、上部隙間76は受槽内筒72の上部
と受槽溢流管74の上端との隙間であるが、この隙間が
短いと、圧力損失が大きくなるので流量が少なくなる。
従って、受槽溢流管74の流量も少なくなり、内側全面
を通って流れ落ちることは難しくなる。それゆえ、上部
隙間を大きくするか、図4(b)に示すように受槽内筒
72の上部をドーム状にするのがよい。
The upper clearance 76 is a clearance between the upper part of the receiving tank inner cylinder 72 and the upper end of the receiving tank overflow pipe 74. If this clearance is short, the pressure loss becomes large and the flow rate becomes small.
Therefore, the flow rate of the receiving tank overflow pipe 74 also decreases, and it becomes difficult to flow down through the entire inner surface. Therefore, it is preferable to increase the upper clearance or to make the upper part of the receiving tank inner cylinder 72 into a dome shape as shown in FIG. 4B.

【0059】更に、受槽排出管の配置や形状もまた、均
等な流れを起こすには注意が必要である。複数の受槽排
出管は同一内径、同一外径とし、受槽溢流管74の内壁
に沿って等間隔に並べ、かつ複数の受槽排出管の上端を
同じレベルにすることが必要である。
Further, the arrangement and shape of the receiving tank discharge pipe must be careful so as to cause a uniform flow. It is necessary that the plurality of receiving tank discharge pipes have the same inner diameter and the same outer diameter, are arranged at equal intervals along the inner wall of the receiving tank overflow pipe 74, and the upper ends of the plurality of receiving tank discharge pipes are at the same level.

【0060】なお、多くの実験によれば、図4(b)に
示すように、受槽溢流管74の中間部分より下の部分の
内径を中間部分より上の部分の内径より大きくして、複
数の受槽排出管を中間の段差81のところまで差し込
み、段差81により複数の受槽排出管の流動断面積の一
部が隠れる程度とするのがよく、好ましくは、受槽排出
管の中心より外側が隠れる程度にすると、より正確な均
等流れとなる。
According to many experiments, as shown in FIG. 4 (b), the inner diameter of the portion below the middle portion of the receiving tank overflow pipe 74 is made larger than the inner diameter of the portion above the middle portion, It is preferable to insert a plurality of receiving tank discharge pipes up to an intermediate step 81 so that a part of the flow cross-sectional area of the plurality of receiving tank discharge pipes is hidden by the step 81. If it is hidden, a more accurate uniform flow will be obtained.

【0061】図4(c)には、3本の受槽排出管77
a、77b、77cが段差81より下の部分の受槽溢流
管74に挿入されているところが示されている。また、
2本の受槽排出管77a、77cは外側に曲げられ、真
中の受槽溢流管74bは真直であることが示されてい
る。また、3本の受槽排出管77a、77b、77cの
外側と受槽溢流管74の内側との隙間である溢流管排出
管隙間82a,82b,82cは、エポキシ充填材等で
埋めてあり、液体12が該隙間から漏れ出ないようにな
っている。
FIG. 4C shows three receiving tank discharge pipes 77.
It is shown that a, 77b and 77c are inserted into the receiving tank overflow pipe 74 below the step 81. Also,
It is shown that the two receiving tank discharge pipes 77a and 77c are bent outward, and the central receiving tank overflow pipe 74b is straight. Further, overflow pipe discharge pipe gaps 82a, 82b, 82c, which are gaps between the outsides of the three receiving tank discharge pipes 77a, 77b, 77c and the inside of the receiving tank overflow pipe 74, are filled with epoxy filler or the like, The liquid 12 does not leak out from the gap.

【0062】図4の分配受槽70では受槽排出管は3本
であり、分配受槽70に流入する液体12を3つの流れ
に分配しているが、受槽排出管は3本に限定されるもの
でなく、より多数の受槽排出管も可能である。しかし、
受槽排出管の内径が2mm以下では目詰まりが起こり易
いことなどを考慮して決定すべきだが、実用上は5本以
下が良い。
In the distribution receiving tank 70 of FIG. 4, there are three receiving tank discharge pipes, and the liquid 12 flowing into the distribution receiving tank 70 is distributed into three streams, but the number of receiving tank discharge pipes is limited to three. However, a larger number of receiving tank discharge pipes are also possible. But,
When the inner diameter of the receiving tank discharge pipe is 2 mm or less, it should be decided in consideration that clogging is likely to occur, but in practice, 5 or less is preferable.

【0063】[0063]

【発明の実施の形態2】本発明の制御方法と分配受槽を
使用した園芸用水遣機の実施の形態2を図5で説明す
る。図5では家庭の庭先のフラワースタンド95に適用
した場合である。
Second Embodiment A second embodiment of a watering machine for gardening using the control method and the distribution receiving tank of the present invention will be described with reference to FIG. FIG. 5 shows a case where the present invention is applied to the flower stand 95 at the garden of a home.

【0064】図5において、園芸用水遣機10は、図1
で説明した園芸用水遣機と同じタイプであり、角度調節
用蝶ネジ40により傾斜角度を変化できる遮蔽体27に
より発生電力を制御できる太陽電池25を使用してい
る。日の出側山91aから日の出太陽94aが顔を出
し、時間が経過し、日没側山91bの樹木93のある住
宅街に日没太陽94cとして隠れるが、図では住宅92
に隠れようとしている。遮蔽体27で園芸用水遣機10
が稼動できる程度の電力を発生する太陽の位置は、日中
の太陽94bから日没太陽94cまでであることを示し
ている。
In FIG. 5, the garden watering machine 10 is shown in FIG.
The solar battery 25 is of the same type as the garden watering machine described above, and the generated electric power can be controlled by the shield 27 whose tilt angle can be changed by the angle adjusting thumbscrew 40. The sunrise sun 94a emerges from the sunrise side mountain 91a, and as time passes, it is hidden as the sunset sun 94c in the residential area with the trees 93 of the sunset side mountain 91b.
Trying to hide in. Gardening watering machine 10 with shield 27
Indicates that the position of the sun that generates enough power to operate is from the sun 94b during the day to the sun 94c at sunset.

【0065】園芸用水遣機10が稼動し、容器の水は円
筒支柱18の内部を降下する液体供給機構の排出管57
より液滴17となって、滴下し、角型の分配受槽70に
貯められる。一定量溜まったのち、水は3本の分岐チュ
ーブ96a、96b、96cを通ってほぼ均等に排出さ
れるが、分岐チューブ96aは鉢97の花98に給水さ
れる。分岐チューブ96cは鉢99の花100に給水さ
れる。分岐チューブ96bはもう1つの角型分配受槽1
01に一旦受けたのち3本の分岐チューブ102a、1
02b、102cにより、大型の角型プランター103
の3つの花104a,104b,104cの3ヶ所にほ
ぼ均等に給水される。
When the gardening watering machine 10 is operated, the water in the container descends inside the cylindrical support 18 and the discharge pipe 57 of the liquid supply mechanism.
As a result, the droplets 17 become droplets, which are dropped and stored in the rectangular distribution receiving tank 70. After a certain amount of water is stored, the water is discharged almost uniformly through the three branch tubes 96a, 96b, 96c, and the branch tube 96a is supplied to the flower 98 of the pot 97. The branch tube 96c supplies water to the flower 100 of the pot 99. The branch tube 96b is another rectangular distribution receiving tank 1
01 branch, then three branch tubes 102a, 1
02b, 102c, large square planter 103
The three flowers 104a, 104b, 104c are watered almost uniformly.

【0066】図5の実施の形態2では、遮蔽体27を用
いることにより、太陽電池25による園芸用水遣機10
の稼動時間を制御しているところを示している。また、
本発明の分配受槽を2段重ねで使用することにより、容
器内の水は5つの給水口に分配されたことになる。
In the second embodiment shown in FIG. 5, by using the shield 27, the gardening watering machine 10 using the solar cell 25 is provided.
It shows that the operating time of is controlled. Also,
By using the distribution receiving tank of the present invention in a two-tier stack, the water in the container is distributed to the five water supply ports.

【0067】[0067]

【実施例】実施の形態1の実施例を示す。 ・ 液体は水 ・ 容器は、有効水深24cm、内径16.5cmのポ
リエチレンタンク(5リットル容量) ・ 太陽電池は市販のシリコン単結晶型(ソーラーテッ
ク社製)で、縦10cm×横7.5cm、Voc(解放
電圧):1.5V、Isc(短絡電流):400mAを
1枚使用 ・ 太陽電池で駆動するモーターは市販(ソーラーテッ
ク社製)の直流小型モーターH158(ソーラーテック
社製、1.5V×40mA,1200r.p.m)を使
用。実測値では上記太陽電池の発生電圧が1.1V以上
で作動し、0.3Vで停止する。 ・ 減速機は減速比6740の5段減速機を使用 ・ 駆動軸はM4のネジ(長さ300mm)を使用 ・ 液体供給機構の外筒は外径25mm、内径21m
m、長さ60mmのアクリルパイプ製。上端、下端はア
クリル板で製作した。流入管、駆動軸誘導管、排出管は
外径5mm、内径4mmの真鍮管を使用、それぞれの長
さは、流入管が20mm、駆動軸誘導管が40mm、排
出管が60mmである。また、排出管は排出管の中心を
外筒の下端より15mmの位置に設けた。 ・ 液体供給機構固定具はアルミ製の洗濯鋏を改良。先
端のプラスチック製の固定具先端充填物の中心部分の合
わせ目にM4のメネジをタップで製作した。 ・ チューブはシリコン製で長さ40cm、外径7m
m、内径5mmを用いた。 ・ 遮蔽体は10cm×8cm×3mm(厚)のアクリ
ル板を黒く塗った板を遮蔽体として用いた。太陽電池の
10cmの辺を支点として、遮蔽体を手動で任意の角度
に固定できるような構造とした。 ・分配受槽は70mm(横)×35mm(縦)×80m
m(深さ)の矩形容器の底部中央に長さ50mm外径1
2mmで上端から35mmまでが内径5mm、上端より
35mmから下端までの15mmを内径10mmのアル
ミパイプを30mmだけ上記矩形容器の底部から内側に
垂直に突き出るように挿入した。矩形容器に突き出た長
さ30mmのアルミパイプを、内径16mm外径18m
mで先端が半球状で真直部分の長さが30mmのアクリ
ル筒を同心円状に被せ、アクリル筒の下端と矩形容器の
底部との隙間を5mmとなるようにアクリル筒を矩形容
器の内部に固定した。 ・アルミパイプの内径10mmの部分に3本の真鍮パイ
プ(内径3mm、外径4mm、長さ35mm)を正三角
形に束ねアルミパイプに押し込み、隙間はエポキシ樹脂
で埋めた。3本の真鍮パイプのうち2本はチューブを差
込易いように下端部分を外側に少し曲げた。
EXAMPLE An example of the first embodiment will be shown.・ Liquid is water ・ Container is a polyethylene tank with an effective water depth of 24 cm and an inner diameter of 16.5 cm (5 liter capacity) ・ Solar cell is a commercially available silicon single crystal type (manufactured by Solartec), length 10 cm x width 7.5 cm, Voc (release voltage): 1.5 V, Isc (short-circuit current): Use one 400 mA-The motor driven by a solar cell is a commercially available (manufactured by Solar Tech) DC small motor H158 (manufactured by Solar Tech, 1.5 V). X40 mA, 1200 rpm) was used. As a measured value, the generated voltage of the solar cell operates at 1.1 V or more and stops at 0.3 V.・ The reduction gear uses a 5-step reduction gear with a reduction ratio of 6740. ・ The drive shaft uses an M4 screw (length 300 mm). ・ The outer cylinder of the liquid supply mechanism has an outer diameter of 25 mm and an inner diameter of 21 m.
Made of acrylic pipe with m and length of 60 mm. The upper and lower ends were made of acrylic plates. A brass pipe having an outer diameter of 5 mm and an inner diameter of 4 mm is used as the inflow pipe, the drive shaft guide pipe, and the discharge pipe. The lengths of the inflow pipe, the drive shaft guide pipe, and the discharge pipe are 20 mm, 40 mm, and 60 mm, respectively. Further, the discharge pipe was provided at the position where the center of the discharge pipe was 15 mm from the lower end of the outer cylinder. -The liquid supply mechanism fixture is an improved aluminum washing scissors. A plastic fixture at the tip was produced by tapping an M4 female screw at the joint at the center of the tip filler.・ The tube is made of silicon and has a length of 40 cm and an outer diameter of 7 m
m and an inner diameter of 5 mm were used. As the shield, a plate in which an acrylic plate of 10 cm × 8 cm × 3 mm (thickness) was painted black was used as the shield. The shield was constructed so that the shield could be manually fixed at an arbitrary angle with the side of 10 cm of the solar cell as a fulcrum.・ Distribution tank is 70mm (horizontal) x 35mm (vertical) x 80m
50 mm length in the center of the bottom of a rectangular container of m (depth)
An aluminum pipe having an inner diameter of 5 mm from the upper end to 35 mm and an inner diameter of 15 mm from the upper end to 35 mm to the lower end was inserted so as to vertically project inward from the bottom of the rectangular container by 30 mm by 30 mm. An aluminum pipe with a length of 30 mm protruding into a rectangular container, with an inner diameter of 16 mm and an outer diameter of 18 m
Concentric with an acrylic cylinder with a hemispherical tip and a hemispherical tip and a straight length of 30 mm, and fix the acrylic cylinder inside the rectangular container so that the gap between the lower end of the acrylic cylinder and the bottom of the rectangular container is 5 mm. did. -Three brass pipes (inner diameter: 3 mm, outer diameter: 4 mm, length: 35 mm) were bundled into an equilateral triangle in an 10 mm inner diameter portion of the aluminum pipe and pushed into the aluminum pipe, and the gap was filled with epoxy resin. Two of the three brass pipes had their lower ends bent slightly outward so that the tube could be easily inserted.

【0068】以上の条件の元、5月中旬の快晴日に、発
明者の庭先で実験を行った。最初に太陽電池の受光面を
水平かつ受光面の長軸を概略太陽の運行に平行に固定
し、遮蔽板を使用しない場合の実験を行った。排出管か
ら水が排出する直前の状態(容器液面と排出管の位置レ
ベルが同一の状態)としてから実験を開始した。この実
験では園芸用水遣機の稼動する時間は7時間(10:0
0〜17:00)であった。13:00での太陽電池の
出力値は、1.5V、280mAであった。7時間での
液体供給機構の降下距離は52mmであり、時間当たり
7.4mmの降下速度であった。また、1日当たりの排
水量は実測値で1115ccであったが、液体供給機構
の降下距離からの排水量は、1175cc(0.785
×(16.5cm)×5.2cm)と算出される。実
測値と算出値との差異は,園芸での水遣では充分許容さ
れるものと思われる。
Under the above conditions, an experiment was conducted in the garden of the inventor on a sunny day in mid May. First, an experiment was conducted in which the light receiving surface of the solar cell was fixed horizontally and the long axis of the light receiving surface was fixed substantially parallel to the operation of the sun, and no shield was used. The experiment was started from the state immediately before the water was discharged from the discharge pipe (the liquid level of the container and the position level of the discharge pipe were the same). In this experiment, the horticultural watering machine operates for 7 hours (10: 0
It was 0 to 17:00). The output value of the solar cell at 13:00 was 1.5 V and 280 mA. The descending distance of the liquid supply mechanism in 7 hours was 52 mm, and the descending speed was 7.4 mm per hour. In addition, the drainage amount per day was 1115 cc in the measured value, but the drainage amount from the descending distance of the liquid supply mechanism was 1175 cc (0.785 cc).
It is calculated as × (16.5 cm) 2 × 5.2 cm). The difference between the measured value and the calculated value is considered to be well tolerated for watering in gardening.

【0069】次に同じ装置を用い、晴れの程度が同じ日
に、遮蔽板と太陽電池との開度を45度とする以外同じ
条件で実験を行った。なお、遮蔽板と太陽電池との開口
部分を日没太陽の方向に向けた。11:05〜15:0
5の4時間だけ園芸用水遣機が稼動し、この間での液体
供給機構の降下距離は28mmであった。13:00で
の太陽電池の出力値は、1.5V、150mAであっ
た。1時間当たり7mmの降下速度であった。また、1
日当たりの排水量は実測値は555ccであり、液体供
給機構の降下距離からの排水量は、598cc(0.7
85×(16.5cm)×2.8cm)と算出され
る。実測値と算出値との差異は、遮蔽板無しの場合の実
験同様、園芸での水遣では充分許容されるものと思われ
Next, an experiment was conducted using the same device under the same conditions except that the opening between the shielding plate and the solar cell was set to 45 degrees on the same day of fineness. The openings of the shielding plate and the solar cell were directed toward the sunset sun. 11:05 to 15: 0
The horticultural watering machine was operated only for 4 hours of 5 and the descent distance of the liquid supply mechanism during this period was 28 mm. The output value of the solar cell at 13:00 was 1.5 V and 150 mA. The rate of descent was 7 mm per hour. Also, 1
The actual amount of drainage per day is 555 cc, and the amount of drainage from the descent distance of the liquid supply mechanism is 598 cc (0.7
It is calculated as 85 x (16.5 cm) 2 x 2.8 cm). The difference between the measured value and the calculated value is considered to be well tolerated for watering in gardening, as in the experiment without the shield.

【0070】分配受槽は水が60〜70cc貯まると、
サイホンの原理により約10秒の短い秒数で一気に3本
の受槽排出管より流出した。液体供給機構の降下速度を
概略7mm/hとすると、園芸用水遣機の水の排出量速
度は、150cc/h(1時間当たり0.785×(1
6.5cm)×0.7cm)となるから、1時間に
2.1回〜2.5回の割合で分配受槽の受槽排出管より
水が流出していることが判る。また、3本の受槽排出管
の流量のバラツキを測定したところ、20%程度であ
り、園芸の水遣として許容できる範囲であると思われ
る。
When the distribution receiving tank stores 60 to 70 cc of water,
Due to the siphon principle, it spilled out of three receiving tank discharge pipes in a short time of about 10 seconds. Assuming that the descent rate of the liquid supply mechanism is approximately 7 mm / h, the water discharge rate of the garden watering machine is 150 cc / h (0.785 × (1
6.5 cm) 2 × 0.7 cm), it can be seen that water flows out from the receiving tank discharge pipe of the distribution receiving tank at a rate of 2.1 to 2.5 times per hour. Moreover, when the variation in the flow rate of the three receiving tank discharge pipes was measured, it was about 20%, which seems to be within the range acceptable for watering in gardening.

【0071】分配受槽を水平に対して30度以内の傾き
で設置した場合でも、3本の受槽排出管からは、水平に
設置した場合とほぼ同等の排出量が得られることが実験
で示された。この事から、本発明の分配受槽は構造が簡
単であり、かつ、設置時の取扱いが簡単であることが判
った。
Experiments have shown that even when the distribution receiving tank is installed at an inclination of 30 degrees or less with respect to the horizontal, the discharge amount obtained from the three receiving tank discharge pipes is almost the same as that when installed horizontally. It was From this, it was found that the distribution receiving tank of the present invention has a simple structure and is easy to handle at the time of installation.

【0072】実施例の結果から同じ程度の晴の天候で
は、遮蔽体の有無による太陽電池の発生電力には差があ
るが、液体供給機構の降下速度には大きな差は無いこ
と、また園芸用水遣機の稼動時間には、はっきりとした
差が出たことが判る。この事実から、太陽電池に遮蔽体
を設けることにより、園芸用水遣機の稼動時間の制御が
可能であり、従って、園芸用水遣機の1日当たりの排水
量(=花木への1日当たりの給水量)を制御できること
が判る。
From the results of the examples, in the same degree of fine weather, there is a difference in the generated power of the solar cell depending on the presence or absence of the shield, but there is no great difference in the descending speed of the liquid supply mechanism, and the garden water. It can be seen that there was a clear difference in the operating time of the equipment. From this fact, it is possible to control the operating time of the garden watering machine by providing a shield on the solar cell, and therefore the amount of drainage of the gardening water machine per day (= the amount of water supply to the flowering tree per day). It turns out that you can control.

【0073】また、分配受槽は簡単な構造であり、滴下
する水を貯め、一気に復数の流れに分配できるので、水
を一度に供給するのが良いとされる園芸の水遣に便利な
器具であることが判った。
Further, since the distribution receiving tank has a simple structure and can store the dripping water and distribute it to the reciprocal flow at once, it is convenient to supply water at one time, which is a convenient tool for watering gardening. Was found.

【0074】[0074]

【参考例】実施例で使用した太陽電池と遮蔽板を使い、
快晴の日(5月)に照射実験を行い、電力値(電圧、電
流)を測定した。太陽電池は水平に置き、太陽電池の長
軸を太陽の運行と平行とした。遮蔽板を使用した場合と
使用しない場合について測定した。遮蔽板と太陽電池の
開度は45度とし、開口部分を日没太陽の方向に向け
た。なお、測定は数日に亘り行った。測定結果を表1に
示す。
[Reference example] Using the solar cell and the shielding plate used in the examples,
An irradiation experiment was conducted on a clear day (May), and the power value (voltage, current) was measured. The solar cell was placed horizontally and the long axis of the solar cell was parallel to the operation of the sun. The measurement was performed with and without the shield plate. The opening of the shielding plate and the solar cell was 45 degrees, and the opening was directed toward the sunset sun. The measurement was performed for several days. The measurement results are shown in Table 1.

【0075】[0075]

【表1】 [Table 1]

【0076】上記の表から園芸用水遣機の稼動開始から
停止まで、太陽電池の電力値(電圧、電流)は大きく変
化するが、液体供給機構の降下速度の変化は小さいこと
が判る。また、同じ稼動時期では、電力値は遮蔽板が有
る方が小さい(太陽電池の受光面積は遮蔽板の影により
小さくなるので)が、遮蔽体の有無による液体供給機構
の降下速度の差は極めて小さいことが判る。液体供給機
構の降下量は園芸用水遣機の水の排出量に比例している
のであるから、太陽電池で発生する電力が天候や朝、
昼、晩により変化しても、更に遮蔽板の有無で変化して
も、園芸用水遣機が稼動している限り、1時間当たりの
花や木の給水量という観点からは、大きな差異は生じて
ないことが判る。
From the above table, it can be seen that the power value (voltage, current) of the solar cell changes greatly from the start to the stop of the garden watering machine, but the change in the descent rate of the liquid supply mechanism is small. Also, at the same operating time, the power value is smaller with the shield plate (since the light receiving area of the solar cell is smaller due to the shadow of the shield plate), but the difference in the descending speed of the liquid supply mechanism due to the presence or absence of the shield is extremely large. It turns out to be small. Since the amount of drop of the liquid supply mechanism is proportional to the amount of water discharged from the garden watering machine, the power generated by the solar cell is
Regardless of whether it changes day or night or with or without a shielding plate, as long as the garden watering machine is operating, there will be a large difference from the viewpoint of the water supply amount of flowers and trees per hour. I understand that it is not.

【0077】[0077]

【発明の効果】太陽電池の受光面に遮蔽体により任意の
大きさの陰影を作り、太陽電池の発生電力を制御するこ
とにより、園芸用水遣機の稼動開始の時期や稼動停止の
時期が制御出来る構成としたので、1日当たりの園芸用
水遣機の稼動時間を制御することが可能となる。従っ
て、園芸用水遣機から花や木への1日当たりの給水量を
自由に制御できることになり、同一の園芸用水遣機であ
っても1日当たりの給水量の異なる花木への給水計画が
可能となる。
EFFECTS OF THE INVENTION A shade of arbitrary size is formed on the light receiving surface of a solar cell by controlling the power generated by the solar cell, thereby controlling the start time and stop time of the garden watering machine. Since the configuration is possible, it becomes possible to control the operating time of the garden watering machine per day. Therefore, it is possible to freely control the daily water supply amount from the garden watering machine to the flowers and trees, and it is possible to plan the water supply to the flowers and trees having different daily water supply amounts even with the same gardening watering machine. Become.

【0078】本発明の分配受槽は1つの液体の流れをほ
ぼ均等な流量の複数の流れに分配する事ができる構成と
したので、園芸用水遣機に適用することにより、園芸用
水遣機より排出される1つの流れを複数の流れに分岐で
き、複数の花や木に給水できることや、1つの大きな鉢
に複数の給水ポイントを設けること等が可能となる。
Since the distribution receiving tank of the present invention has a structure capable of distributing one liquid flow into a plurality of flows having substantially equal flow rates, it can be discharged from a gardening water dispenser by applying it to a gardening water dispenser. It is possible to branch one flow into a plurality of flows, to supply water to a plurality of flowers and trees, and to provide a plurality of water supply points in one large pot.

【0079】本発明の分配受槽は水位による圧力で分配
受槽内の水を複数の流れとして排出できる構成としたの
で、水の流れは上から下となるので、フラワースタンド
95のように階段状の花壇がよく、他の例としてマンシ
ョンのベランダや玄関前の階段などに好適に使用され
る。
Since the distribution receiving tank of the present invention is constructed so that the water in the distribution receiving tank can be discharged as a plurality of streams under the pressure of the water level, the flow of water is from top to bottom. The flower bed is often used, and as another example, it is preferably used for the balcony of the apartment or the stairs in front of the entrance.

【0080】太陽電池の電力を使用することにより、家
庭用電源のコンセントが無い場所での複数の鉢に給水が
できる構成としたので、ベランダや屋外などの電気が利
用できない場所での園芸をが楽しむことが可能となる。
By using the electric power of the solar cell, it is possible to supply water to a plurality of pots in a place where there is no outlet for household power, so gardening can be performed in a place where electricity cannot be used, such as a veranda or the outdoors. It becomes possible to enjoy.

【0081】本発明の分配受槽では、流入する液体を一
定量貯めた後、サイホンの原理を利用して複数の流れに
分配できる構成としたので、分配受槽の取付け時の水平
度が厳密である必要が無く、簡単に取り扱えることが可
能となった。
In the distribution receiving tank of the present invention, the inflowing liquid is stored in a fixed amount, and then the liquid can be distributed into a plurality of flows by utilizing the principle of the siphon. Therefore, the levelness at the time of mounting the distribution receiving tank is strict. It became possible to handle it easily without the need.

【0082】本発明の分配受槽では、例えば滴のような
極めて微量な流れでも、ポンプなどの動力を使用せず
に、サイホンの原理による簡単な機構で、ほぼ均等な流
量の複数の流れに分配できる構成としたので、応用範囲
は広く、園芸用水遣機以外にも応用が可能である。
In the distribution receiving tank of the present invention, even a very small amount of flow such as a drop is distributed to a plurality of flows having substantially equal flow rates by a simple mechanism based on the siphon principle without using power of a pump or the like. Since it can be configured, it has a wide range of applications and can be applied to applications other than gardening watering machines.

【0083】従来の園芸用水遣機(特開2000−25
4481「液体排出供給装置」)記載の太陽電池を用い
た園芸用の液体排出供給装置は、自然の摂理に基づき、
太陽エネルギーを利用した装置であり、太陽電池は最小
単位のセル(1.5V,400mA)で充分であるる
が、本発明の太陽電池の発生電力の制御方法と、分配受
槽では、最小単位の太陽電池を簡単な構造で更に細かく
制御できる構成としたので、複雑、多彩な花や木の給水
計画が可能となる。
A conventional watering machine for gardening (Japanese Patent Laid-Open No. 2000-25-25
4481 "Liquid discharge and supply device"), a liquid discharge and supply device for gardening using a solar cell is based on a natural law.
It is a device that utilizes solar energy, and a solar cell requires a minimum unit cell (1.5 V, 400 mA). However, in the method for controlling the generated power of the solar cell of the present invention and the distribution tank, the minimum unit Since the solar cell has a simple structure and can be controlled in more detail, complex and diverse water and tree water supply plans are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の遮蔽体による制御方法の説明図であ
る。
FIG. 2 is an explanatory diagram of a control method using a shield according to the present invention.

【図3】液体供給機構の説明図である。FIG. 3 is an explanatory diagram of a liquid supply mechanism.

【図4】本発明の分配受槽の説明図である。FIG. 4 is an explanatory diagram of a distribution receiving tank of the present invention.

【図5】本発明の実施の形態2の説明図である。FIG. 5 is an explanatory diagram of the second embodiment of the present invention.

【図6】従来例の椀型トラップである。FIG. 6 is a bowl-shaped trap of a conventional example.

【符号の説明】[Explanation of symbols]

1‥‥‥トラップ外筒 2‥‥‥抜出管 3‥‥‥トラップ内筒 4‥‥‥排水 5‥‥‥封水液面 6‥‥‥底部液面 10‥‥‥園芸用水遣機 11‥‥‥容器 12‥‥‥液体 13‥‥‥容器液面 14‥‥‥排出口 15‥‥‥チューブ 16a,16b‥‥‥チューブ端 17‥‥‥液滴 18‥‥‥円筒支柱 19‥‥‥排出管昇降スリット 20a,20b‥‥‥スリット端部 21‥‥‥チューブ貫通スリット 22‥‥‥駆動軸 23‥‥‥駆動機構 24‥‥‥回転確認板 25‥‥‥太陽電池 26‥‥‥方位自在継手 27‥‥‥遮蔽体 28‥‥‥太陽電池支柱 29‥‥‥電線 30‥‥‥水遣機架台 31a‥‥‥日の出側山 31b‥‥‥日没側山 32a‥‥‥日の出太陽 32b‥‥‥日中の太陽 32c‥‥‥日没太陽 33‥‥‥太陽の運行行路 34‥‥‥遮蔽体無照射角度 35‥‥‥太陽の運行行路 36‥‥‥太陽の運行行路 37‥‥‥遮蔽体有照射角度 38‥‥‥太陽電池陰影部分 39‥‥‥太陽電池照射部分 40‥‥‥角度調節用蝶ネジ 41‥‥‥遮蔽体回転板 42‥‥‥遮蔽角度 43‥‥‥遮蔽体取付板 44‥‥‥回転板固定ナツト 45‥‥‥蝶ネジ取付板 50‥‥‥液体供給機構 51‥‥‥外筒 52‥‥‥流入管 53‥‥‥駆動軸誘導管 54‥‥‥切欠部 55‥‥‥天板 56‥‥‥天板貫通口 57‥‥‥排出管 58‥‥‥液体供給機構固定具 59a,59b‥‥‥固定具柄 60‥‥‥支点 61‥‥‥スプリング 62a,62b‥‥‥固定具先端充填物 63a,63b‥‥‥半割れメネジ 64‥‥‥液体供給機構液面 70‥‥‥分配受槽 71‥‥‥受槽外枠 72‥‥‥受槽内筒 73‥‥‥底部隙間 74‥‥‥受槽溢流管 75‥‥‥内筒溢流管隙間 76‥‥‥上部隙間 77a,77b,77c‥‥‥受槽排出管 78‥‥‥上部液面 79‥‥‥下部液面 80‥‥‥溢流液 81‥‥‥段差 82a,82b,82c‥‥‥溢流管排出管隙間 83a,83b,83c,83d‥‥‥受槽内筒固定板 91a‥‥‥日の出側山 91b‥‥‥日没側山 92‥‥‥住宅 93‥‥‥樹木 94a‥‥‥日の出太陽 94b‥‥‥日中の太陽 94c‥‥‥日没太陽 95‥‥‥フラワースタンド 96a,96b,96c‥‥‥分岐チューブ 97‥‥‥鉢 98‥‥‥花 99‥‥‥鉢 100‥‥‥花 101‥‥‥分配受槽 102a,102b,102c‥‥‥分岐チューブ 103‥‥‥角型プランター 104a,104b,104c‥‥‥花 1… Trap outer cylinder 2… Extraction tube 3 ………… Trap inner cylinder 4… Drainage 5 ... Liquid level of sealing water 6 ... bottom liquid level 10 ... gardening watering machine 11 ... Container 12 ... liquid 13 ……… Container surface 14 Ejection port 15 tube 16a, 16b ... Tube end 17 ... Droplet 18 ... Cylindrical support 19 Ejection pipe lifting slit 20a, 20b ... Slit end 21 ... Slit through tube 22 ... Drive shaft 23 ... Drive mechanism 24 ... Rotation confirmation plate 25 ... solar cell 26 Orientation universal joint 27 ... Shield 28 ………… Solar support 29 ... Electric wire 30 ... watering machine stand 31a ... sunrise mountain 31b ... Sunset side mountain 32a ... sunrise sun 32b ... the sun in the daytime 32c ... sunset sun 33 ‥‥‥ The solar service route 34 ‥‥‥ Shield No irradiation angle 35 ‥‥‥ The service route of the sun 36 ‥‥‥ The sun travels 37 ... Shielding irradiation angle 38 ........ Solar cell shaded area 39 ... Solar cell irradiation area 40 ..... Angle adjustment thumbscrew 41 ... Shield rotating plate 42 ... Shielding angle 43 ... Shield mounting plate 44 ... Rotating plate fixed nut 45 ・ ・ ・ ・ ・ ・ Thumbscrew mounting plate 50 ... Liquid supply mechanism 51 ... Outer cylinder 52 ... Inflow pipe 53 ... Drive shaft induction tube 54 ... Notch 55 ... Top plate 56 ... Top plate through hole 57 Exhaust pipe 58 ........ Liquid supply mechanism fixing tool 59a, 59b ... Fixing handle 60 ... 61 ... Spring 62a, 62b ... Fixing tool tip filling material 63a, 63b ... Half-split female thread 64 ... Liquid supply mechanism Liquid level 70 ···· Distribution tank 71 ... Outer frame of receiving tank 72 ... Receptacle inner cylinder 73 ... Bottom gap 74 ... Receiving tank overflow pipe 75 ........ Inner pipe overflow pipe gap 76 ... Top gap 77a, 77b, 77c ... Receiving tank discharge pipe 78 ... upper liquid level 79 ... lower liquid level 80 ... overflow liquid 81 ... Step 82a, 82b, 82c ... overflow pipe discharge pipe gap 83a, 83b, 83c, 83d ... Retaining vessel inner cylinder fixing plate 91a ... Mountain at sunrise 91b ... Mountain on the sunset side 92 ... residence 93 ... Tree 94a ... sunrise sun 94b ... day sun 94c ... sunset sun 95 Flower stand 96a, 96b, 96c ... Branching tube 97 ... bowl 98 ... flowers 99 ... bowl 100 ... flowers 101 ・ ・ ・ Distribution receiving tank 102a, 102b, 102c ... Branching tube 103 ... Square planter 104a, 104b, 104c ... Flowers

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽電池で発生する電力で稼動する、ポン
プを使わない園芸用水遣機において、板状の遮蔽体を該
太陽電池の上方に設け、太陽光で照射される該太陽電池
の受光面積を,該遮蔽体の影により任意の割合で減少さ
せることにより、該園芸用水遣機の稼動時間を任意に減
少させ、該園芸用水遣機の1日当たりの水溶液排出量を
制御する園芸用水遣機の水溶液の排出量の制御方法。
1. A horticultural watering machine which does not use a pump and which is operated by electric power generated by a solar cell, wherein a plate-shaped shield is provided above the solar cell and the solar cell receives light received by sunlight. By decreasing the area by the shadow of the shield at an arbitrary rate, the operation time of the garden watering machine can be arbitrarily reduced, and the amount of aqueous solution discharged per day of the gardening water machine is controlled. Of controlling the discharge amount of the aqueous solution of the machine.
【請求項2】液体が流入する受槽の底部に、液体を排出
するための有限長の受槽溢流管を直立貫通させ、該受槽
の内側部分の該受槽溢流管に上端が閉じ下端が開放して
いて内径が該受槽溢流管の外径より大きい受槽内筒を被
せた受槽であって、該受槽内の液体は該受槽内筒の下端
と該受槽の底部内面との隙間、該受槽内筒の内面と該受
槽溢流管の外面との隙間、及び該受槽内筒の上部内面と
該受槽溢流管の上端との隙間を流れ該受槽溢流管から排
出する受槽において、前記受槽溢流管の下部に前記受槽
溢流管の内径より小さい外径を持つ受槽排出管を複数本
差込み、前記受槽溢流管の内側と該受槽排出管との隙間
を水漏れが無いように塞いだ、受槽に流入する液体を複
数の流れに分配排出する分配受槽。
2. A receiving tank overflow pipe of a finite length for discharging the liquid is vertically passed through a bottom portion of the receiving tank into which the liquid flows, and an upper end is closed and an lower end is opened at the inside of the receiving tank overflow pipe. A receiving tank having an inner diameter larger than the outer diameter of the receiving tank overflow pipe, wherein the liquid in the receiving tank is a gap between the lower end of the receiving tank inner cylinder and the inner surface of the bottom of the receiving tank. Flowing through the gap between the inner surface of the receiving tank inner cylinder and the outer surface of the receiving tank overflow pipe, and the gap between the upper inner surface of the receiving tank inner cylinder and the upper end of the receiving tank overflow pipe, and discharging from the receiving tank overflow pipe In the receiving tank, insert a plurality of receiving tank discharge pipes having an outer diameter smaller than the inner diameter of the receiving tank overflow pipe into the lower part of the receiving tank overflow pipe, and leak water through the gap between the inside of the receiving tank overflow pipe and the receiving tank discharge pipe. A distribution receiving tank that is closed so that the liquid flowing into the receiving tank is distributed and discharged into multiple streams.
【請求項3】太陽電池で発生する電力で稼動する、ポン
プを使わない園芸用水遣機の排出液を、請求項2記載の
分配受槽に受け、しかる後に複数の花や木に給水する園
芸用水遣機の排出液の分配方法。
3. A horticultural water which receives the discharged liquid of a horticultural watering machine which does not use a pump and which is operated by electric power generated by a solar cell, into the distribution receiving tank according to claim 2, and then supplies a plurality of flowers and trees with water. Distributing method of effluent from the machine.
JP2001239914A 2001-07-04 2001-07-04 Method for controlling watering machine for horticulture and method for distributing discharged liquid Pending JP2003009686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239914A JP2003009686A (en) 2001-07-04 2001-07-04 Method for controlling watering machine for horticulture and method for distributing discharged liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239914A JP2003009686A (en) 2001-07-04 2001-07-04 Method for controlling watering machine for horticulture and method for distributing discharged liquid

Publications (1)

Publication Number Publication Date
JP2003009686A true JP2003009686A (en) 2003-01-14

Family

ID=19070602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239914A Pending JP2003009686A (en) 2001-07-04 2001-07-04 Method for controlling watering machine for horticulture and method for distributing discharged liquid

Country Status (1)

Country Link
JP (1) JP2003009686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594490A (en) * 2016-03-03 2016-05-25 杨志恒 Outdoor flower display stand with tent
JP2017192368A (en) * 2016-04-22 2017-10-26 株式会社クボタケミックス Solar cell unit for field electrical apparatus and field electric actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594490A (en) * 2016-03-03 2016-05-25 杨志恒 Outdoor flower display stand with tent
JP2017192368A (en) * 2016-04-22 2017-10-26 株式会社クボタケミックス Solar cell unit for field electrical apparatus and field electric actuator

Similar Documents

Publication Publication Date Title
JP3787628B2 (en) Intermittent automatic irrigation system
US7644537B1 (en) Unattended plant watering system
EP2048303B1 (en) Hydroelectric system
WO2016015152A1 (en) Assembly for vertical plant array
DE29505751U1 (en) Plant care device
CA2937730A1 (en) Portable water feeder
JP2003009686A (en) Method for controlling watering machine for horticulture and method for distributing discharged liquid
AU2013311431B2 (en) Improvements in water storage devices and apparatuses therefor
CN210746744U (en) Automatic irrigate three-dimensional planting equipment
CN111802047A (en) New forms of energy intelligence irrigation equipment
JP6170291B2 (en) Automatic watering equipment
FR2657496A1 (en) Automatic watering device for house plants
CN210746233U (en) Solar intelligent flowerpot
US7086199B2 (en) Automatic liquid delivery system with time-delay release mechanism
CN211861340U (en) Novel fixed watering of fruit tree for multi-functional orchard device
CN211458387U (en) Green building formula structure of afforestation integral type
DE2645994A1 (en) Watering of plant vessels - using cylinders with in root clumps and connected via piping system with water feed which maintains cylinder water level
CN210841290U (en) But afforestation spray set that multi-angle was adjusted
US4770345A (en) Irrigation control valve system
CN214046874U (en) Gardens maintenance is with adding medicine drip irrigation device
CN215912813U (en) Intelligent timing and quantitative sprinkling irrigation device for maintenance
EP2343965A1 (en) Plant cultivation apparatus with uniform fluid dispensing system
CN114868548B (en) Gardens are with ration intelligent flowers rack that waters
CN220068461U (en) Water-saving irrigation device for municipal garden
CN217657473U (en) Gold tea is planted with driping irrigation device