JP2003009558A - Method and apparatus for power generation - Google Patents

Method and apparatus for power generation

Info

Publication number
JP2003009558A
JP2003009558A JP2001228722A JP2001228722A JP2003009558A JP 2003009558 A JP2003009558 A JP 2003009558A JP 2001228722 A JP2001228722 A JP 2001228722A JP 2001228722 A JP2001228722 A JP 2001228722A JP 2003009558 A JP2003009558 A JP 2003009558A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
power
magnetizing
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001228722A
Other languages
Japanese (ja)
Inventor
Keiichiro Asaoka
敬一郎 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAOKA Keiichiro
Original Assignee
ASAOKA Keiichiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAOKA Keiichiro filed Critical ASAOKA Keiichiro
Priority to JP2001228722A priority Critical patent/JP2003009558A/en
Publication of JP2003009558A publication Critical patent/JP2003009558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for power generation by which large output power can be taken out against input by causing the running magnetic path having a high magnetic flux density held by a permanent magnet to exhibit high electromagnetically induc tion by opening and closing the magnetic path by generating alternating magnetic fluxes by means of magnetizing coils by inputting a small quantity of AC power to the coils. SOLUTION: The device for power generation (generator) is constituted by alternately arranging a suitable number of magnetization units and output units and connecting both ends of the arranged body to each other. In each magnetization unit, a permanent magnet magnetized to a required magnetic flux density is held in a closed magnetic path by means of a yoke composed of a soft magnetic body having high magnetic permeability and a magnetizing coil generating alternating magnetic fluxes which move forward or backward in the direction of the magnetic fluxes generated from the permanent magnet in the close magnetic path almost at an equal magnetic flux density to that of the magnet is provided on one side of the yoke. In each output unit, an induction yoke composed of the soft magnetic body having high magnetic permeability is provided in contact with the adjacent magnetization unit and an induction coil from which induced power is taken out is provided on one side of the yoke. By the method and apparatus for power generation, required AC power is inputted to the magnetizing coils and large output power is taken out from the inputted AC power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は産業用若しくは家庭用の
電力使用に際して、入力電力に比べて大きな出力電力を
得ることの可能な発電方法及び発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method and a power generation device capable of obtaining output power larger than input power when using industrial or household power.

【0002】[0002]

【従来技術】現在産業用電力を初め、家庭用電力は専ら
電力会社からの給電に依拠しているものであって、電力
消費量は既に膨大量に亘っているものの産業用電力にお
いては情報機器類の大幅な導入が予定され、更に家庭用
電力においても二次家電製品と称される食器乾燥機や洗
濯乾燥機、給湯器、電磁調理器類の普及や洗浄便器や空
調設備類の普及、及び在宅介護機器類の増加等により電
力供給は逼迫した状況に置かれている。ところで現状に
おける電力供給においては、膨大量の電力が極めて広範
囲に亘って消費されるため発電設備における発電量は少
なくとも数十万kw以上の規模が不可欠とされ、且この
発電手段としては極めて大型多重で且強力な磁束密度の
永久磁石よりなるローターを多数の発電コイルに近接さ
せ且高速で回転させるものであるから、該ローターを回
転させるために水力発電においては膨大な水量と落差エ
ネルギー確保のためのダムの建設が必要となり、更には
火力や原子力発電においては膨大量で且加圧加熱蒸気の
生成のための石炭石油或いは燃料ウランの確保と保存施
設の整備はもとより発電に係る安全住の確保とともに、
騒音や振動或いは燃焼排ガスや焼却灰或いは温排水等環
境面の制約も大きく、従って仮令発電設備を建設するに
しても消費地からは極めて遠隔な過疎地に限定され、莫
大な発電設備費用に加えて消費地までの送電設備費用や
送電コストも莫大なものが強いられること等により新た
な電力の供給は重大な問題に直面している。
2. Description of the Related Art At present, household electric power including industrial electric power is mainly dependent on electric power supplied from electric power companies, and the electric power consumption is already enormous. Is expected to be widely introduced, and in household electric power, the spread of tableware dryers, washing and drying machines, water heaters, electromagnetic cookers and washing toilets and air conditioning equipment, which are also called secondary home appliances, And the supply of electric power is in a tight situation due to an increase in home care equipment. By the way, in the current power supply, an enormous amount of power is consumed over an extremely wide range, so that it is indispensable for the power generation facility to generate at least a few hundred thousand kW or more. In addition, as this power generation means, an extremely large multiplex is required. In addition, since a rotor made of a permanent magnet with a strong magnetic flux density is rotated close to a large number of magneto coils and is rotated at high speed, in order to rotate the rotor, in hydroelectric power generation, to secure a huge amount of water and head energy. It is necessary to construct a dam for the power plant, and in the case of thermal power and nuclear power generation, it is necessary to secure coal oil or fuel uranium for the generation of pressurized heated steam and to develop a storage facility and secure safe housing for power generation. With
Environmental restrictions such as noise and vibration, combustion exhaust gas, incineration ash, and hot drainage are large, so even if a temporary power generation facility is constructed, it will be limited to a depopulated area that is extremely remote from the consumption area, adding to the enormous power generation equipment cost. Therefore, the supply of new electricity is facing a serious problem due to the enormous cost of transmission equipment to the consumption area and the transmission cost.

【0003】かかる背景に鑑み、一つの解決策として太
陽光エネルギーの利用による太陽光発電が積極的に試み
られているものの、太陽光発電は発電効率に著しく劣る
ばかりか、設置場所における日照時間を初め天候に大き
く影響され、更には発電が昼間のため大容量の充電設備
を付帯させねばならず、且産業用電力の如く比較的大電
力を使用する場合では発電のための太陽電力パネルも拡
大な面積のものが必要となり、都市部においては設備ス
ペースの面からも使用不能の問題があり、せいぜい家庭
用電力に利用される程度に過ぎない。他方における解決
策としては消費電力の少ない産業機器類や家電製品或い
は照明器具等所謂省エネルギー省電力製品の開発も積極
的に進められているものの、消費電力の削減に伴って電
動モーターの力率や照明器具等の照度低下が依然として
発生し、現状においては十分な省エネルギー省電力製品
の実現までには至っていない。
In view of the above background, as one solution, solar power generation using solar energy has been actively attempted. However, not only is solar power generation significantly inferior in power generation efficiency, but also the sunshine duration at the installation site is reduced. At first, it is greatly affected by the weather, and since the power generation is in the daytime, a large-capacity charging facility must be attached, and when relatively large power is used like industrial power, solar power panels for power generation are also expanded. A large area is required, and there is a problem that it cannot be used in terms of equipment space in urban areas, and it is only used for household power at best. On the other hand, as a solution, although the development of so-called energy-saving and power-saving products such as low power consumption industrial equipment, home appliances and lighting equipment is being actively promoted, power factor of electric motors and The illuminance of lighting fixtures etc. still decreases, and at the present time, sufficient energy-saving and power-saving products have not been realized.

【0004】発明者等はかかる問題を解決するため鋭意
研究を重ねた結果、今日においては永久磁石における技
術開発が進みアルニコ磁石においては残留磁束密度が1
1.5KG最大エネルギー積で11.0MGOe、サマ
リウムコバルト磁石においては残留磁束密度で8.2乃
至11.2KG、最大エネルギー積が16乃至32MG
Oe、更にNd鉄磁石では残留磁束密度が10.5乃至
13MG、最大エネルギー積では30乃至55MGOe
に昇るものが開発上市されていること、並びにかかる高
残留磁束密度を有する永久磁石を高透磁率で軟磁性体か
らなるヨークで挟持させることにより走磁路の閉磁路化
が形成されること、及び電磁石においては僅かな電力に
より高い磁束密度の磁力を発生しえ且電流の付加方向に
より発生する磁束方向を自在に変化しえることに着目す
るとともに、永久磁石による高磁束密度の閉磁路内にお
ける磁束方向に対して、該永久磁石の磁束密度と略等し
い磁束密度で且逆方向及び1頃方向に交番磁束を磁化コ
イルで発生させることにより、ヨークの閉磁路が開磁路
化され連接される軟磁性体に永久磁石の磁束密度並びに
磁化コイルにより発生した磁束密度とが高い電磁誘導作
用を以って電磁誘導されることを究明し本発明に至っ
た。
As a result of intensive studies conducted by the inventors of the present invention in order to solve such a problem, technical development in permanent magnets has advanced today, and residual magnetic flux density in alnico magnets is 1
The maximum energy product of 1.5 KG is 11.0 MGOe, and the residual magnetic flux density of samarium-cobalt magnet is 8.2 to 11.2 KG, and the maximum energy product is 16 to 32 MG.
Oe, and the residual magnetic flux density of 10.5 to 13 MG for the Nd iron magnet and 30 to 55 MGOe for the maximum energy product.
Is developed and put on the market, and by closing a permanent magnet having such a high residual magnetic flux density with a yoke made of a soft magnetic material with a high magnetic permeability, a closed magnetic path is formed in the running magnetic path, In addition, paying attention to the fact that the electromagnet can generate a magnetic force with a high magnetic flux density with a small amount of electric power and can freely change the magnetic flux direction generated by the addition direction of the current, and in a closed magnetic circuit with a high magnetic flux density by a permanent magnet. The closed magnetic circuit of the yoke is formed into an open magnetic circuit and connected by generating alternating magnetic flux in the reverse direction and in the direction of about 1 with a magnetic flux density substantially equal to the magnetic flux density of the permanent magnet with respect to the magnetic flux direction. The inventors have found that the magnetic flux density of the permanent magnet and the magnetic flux density generated by the magnetizing coil are electromagnetically induced in the soft magnetic material by a high electromagnetic induction action, and the present invention has been accomplished.

【0005】[0005]

【発明が解決しようとする課題】即ち本発明は永久磁石
の保持する高い磁束密度の走磁路を、僅かな交流電力の
入力により磁化コイルで交番磁束を発生させて走磁路の
開磁路化及び閉磁路化により高い電磁誘導作用を発揮さ
せ、入力に対して大きな出力電力を取出す発電方法及び
発電装置を提供することにある。
That is, according to the present invention, an open magnetic circuit of a magnetic flux path having a high magnetic flux density held by a permanent magnet is generated by generating alternating magnetic flux with a magnetizing coil by inputting a small amount of AC power. It is to provide a power generation method and a power generation device that exert a high electromagnetic induction effect by making the magnetic pole and the closed magnetic circuit and obtain a large output power with respect to the input.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
めに本発明が採用した技術的手段は、所要の磁束密度に
着磁された永久磁石を高透磁率で且軟磁性体からなるヨ
ークで挟み閉磁路に保持させるとともに該閉磁路内の永
久磁石の磁束密度に略等しく而もその磁束方向と逆行及
び順同するように交番磁束を発生させて磁路を開磁若し
くは閉磁させることにより強力な電磁誘導をなさしむる
ための磁化コイルが該ヨークの一側に設けられた磁化ユ
ニットと、該磁化ユニットに連接して高透磁率で軟磁性
体からなる誘導ヨークを配置させ、且該誘導ヨークの一
側に電磁誘導による誘起電力を取出すための誘導コイル
が設けられた出力ユニットとを適宜数交互に連接閉結し
て、磁化コイルに所要の交流電力を入力し誘導コイルよ
り入力電力より大きな出力電力を取出す発電方法及び発
電装置の構成に存するものであり、更には適宜数の磁化
ユニットと出力ユニットとで構成される発電装置を一単
位として、その複数単位を直列に連結し、より大きな電
力を出力させる発電装置の構成に存する。
In order to solve the above-mentioned problems, the technical means adopted by the present invention is a yoke composed of a permanent magnet magnetized to a required magnetic flux density and having a high magnetic permeability and a soft magnetic material. The magnetic flux density of the permanent magnets in the closed magnetic circuit is substantially equal to the magnetic flux density of the permanent magnets in the closed magnetic circuit, and an alternating magnetic flux is generated so as to be reverse to and in the same order as the magnetic flux direction to open or close the magnetic circuit. A magnetizing unit for providing strong electromagnetic induction is provided on one side of the yoke, and an induction yoke made of a soft magnetic material having high magnetic permeability is connected to the magnetizing unit. An appropriate number of alternating output units that have an induction coil for extracting induced power from electromagnetic induction on one side of the induction yoke are connected and closed, and the required AC power is input to the magnetizing coil and the input power is input from the induction coil. Greater than A power generation method and a power generation device for extracting various output powers, further, a power generation device including an appropriate number of magnetizing units and output units as one unit, and connecting the plurality of units in series, It exists in the configuration of the power generation device that outputs a large amount of electric power.

【0007】[0007]

【作用】本発明は上述の如き構成を用いてなるため以下
のような作用を有する。即ち所要の磁束密度に着磁され
てなる永久磁石を挟んで高速磁率で軟磁性体からなるヨ
ークが形成されてなるため永久磁石の磁束が該ヨーク内
を一方向に走磁して閉磁路を形成するとともに、該ヨー
クの一側面に該閉磁路内の永久磁石の磁束密度に略等し
く而もその磁束方向と逆行及び順行する交番磁束を発生
する磁化コイルが設けられた磁化ユニットが形成される
ため、僅かな交流電力の入力でも閉磁路内の永久磁石の
磁束方向と逆行する磁束方向の磁束が付加されて磁極反
撥作用により開磁路化され、且該磁化ユニットに連接し
て高透磁率で且軟磁性体からなる誘導ヨークが形成さ
れ、更に該誘導ヨークの一側には誘起電力を取出すため
の誘導コイルが形成された出力ユニットが設けられてな
るから、永久磁石による磁束並びに磁化コイルにより発
生した磁束が出力ユニットの誘導ヨークに電磁誘導され
るとともに、磁化ユニットと出力ユニットが適宜数交互
に且閉結されて全体が一体的に環形状の如く連接されて
なるものであるから、それぞれの磁化ユニットと出力ユ
ニットとの間の電磁誘導が連接された全体に周回磁路を
形成する作用が働き、該周回磁路形成に伴う相互作用が
加重されて強力な電磁誘導がなされることとなる。加え
て磁化コイルによる順方向の磁束が付加されると磁化ユ
ニット内の磁束密度が著しく高まり且閉磁路化されるた
め、誘導ヨーク内の磁束は連接する磁化ユニットのヨー
クに強力に吸磁されることとが相俟って誘導ヨークには
強力な電磁誘導作用が働く結果、誘導コイルからは磁化
コイルへの入力電力に対して大きな出力電力が取出せる
こととなる。更に磁化ユニットと出力ユニットからなる
本発明を一単位として、適宜数直列に併設することによ
り入力電力に比べて極めて大きな出力電力を得ることが
できる。
The present invention has the following actions because it has the above-mentioned configuration. That is, since a yoke made of a soft magnetic material with a high magnetic susceptibility is formed sandwiching a permanent magnet magnetized to a required magnetic flux density, the magnetic flux of the permanent magnet runs in the yoke in one direction to form a closed magnetic path. At the same time as forming the magnetizing unit, a magnetizing unit is formed on one side surface of the yoke, the magnetizing coil generating an alternating magnetic flux that is substantially equal to the magnetic flux density of the permanent magnet in the closed magnetic circuit and that is reverse to and forward of the magnetic flux direction. Therefore, even if a small amount of AC power is input, a magnetic flux in the magnetic flux direction opposite to the magnetic flux direction of the permanent magnet in the closed magnetic circuit is added to form an open magnetic circuit due to the magnetic pole repulsion action, and it is connected to the magnetizing unit and has a high permeability. Since an induction yoke having a magnetic susceptibility and made of a soft magnetic material is formed, and an output unit provided with an induction coil for extracting an induced electric power is provided on one side of the induction yoke, the magnetic flux and the magnetization by the permanent magnet are formed. Koi The magnetic flux generated by is electromagnetically induced in the induction yoke of the output unit, and an appropriate number of magnetizing units and output units are alternately closed and the whole is integrally connected like a ring. The electromagnetic induction between each magnetizing unit and the output unit acts to form a circulating magnetic path in the entire connection, and the interaction associated with the formation of the circulating magnetic path is weighted to provide strong electromagnetic induction. Becomes In addition, when a forward magnetic flux is added by the magnetizing coil, the magnetic flux density in the magnetizing unit is significantly increased and a closed magnetic circuit is formed, so that the magnetic flux in the induction yoke is strongly absorbed by the yoke of the magnetizing unit connected to it. Together with this, a strong electromagnetic induction action acts on the induction yoke, so that a large output power can be extracted from the induction coil with respect to the input power to the magnetizing coil. Further, by appropriately arranging a plurality of units of the present invention including a magnetizing unit and an output unit in series, extremely large output power can be obtained as compared with input power.

【0008】[0008]

【実施例】以下に本発明実施例を図とともに詳細に説明
すれば、図1は本発明発電方法の説明図であって、磁化
ユニット1は所要の磁束密度に着磁された永久磁石1A
を挟んで高透磁率で軟磁性体からなるヨーク1Bが形成
されてなるもので、該ヨーク1Bにより永久磁石1Aの
磁束10Aが該ヨーク1B内を一方向に走磁されて閉磁
路が保持される。そして該ヨーク1Bの一側には、閉磁
路内を走磁する永久磁石1Aの磁束密度に略等しく、且
その磁束方向と逆行及び順行するように交番磁束を発生
させる磁化コイル1Cが設けられている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an explanatory view of the power generation method of the present invention, in which a magnetizing unit 1 is a permanent magnet 1A magnetized to a required magnetic flux density.
A yoke 1B made of a soft magnetic material having a high magnetic permeability is formed with the magnetic flux 10A of the permanent magnet 1A magnetized in one direction in the yoke 1B by the yoke 1B to maintain a closed magnetic path. It On one side of the yoke 1B, there is provided a magnetizing coil 1C that generates an alternating magnetic flux so as to be approximately equal to the magnetic flux density of the permanent magnet 1A that magnetizes in the closed magnetic circuit, and to be reverse and forward to the magnetic flux direction. ing.

【0009】かかる場合における永久磁石1Aは、その
着磁された磁束密度更に詳しくは最大エネルギー積を電
磁誘導による誘起電力として利用するうえから当然に磁
束密度や最大エネルギー積の大きなものが好適であり、
具体的にはアルニコ磁石(残留磁束密度8.2乃至1
1.5KG、最大エネルギー積11.0MGOe)や、
サマリウムコバルト磁石(残留磁束密度8.2乃至1
1.2KG、最大エネルギー積16乃至32MGOe)
或いはネオジウム鉄ボロン磁石(残留磁束密度10.5
乃至13.0KG、最大エネルギー積30乃至55MG
Oe)等が望まれる。更にヨーク1Bは飽和磁束密度や
透磁率が高く、保磁率やヒステリシス損が低く且交番磁
界中での磁化損失が少ないこと等が要請されることか
ら、好ましくは方向性硅素鋼帯やパーマロイ等の使用が
望まれる。
In such a case, the permanent magnet 1A is naturally preferable to have a large magnetic flux density and a maximum energy product in order to use the maximum energy product as the induced power by electromagnetic induction. ,
Specifically, alnico magnets (residual magnetic flux density 8.2 to 1
1.5 KG, maximum energy product 11.0 MGOe),
Samarium cobalt magnet (residual magnetic flux density 8.2 to 1
1.2 KG, maximum energy product 16 to 32 MGOe)
Or neodymium iron boron magnet (residual magnetic flux density 10.5
To 13.0 KG, maximum energy product 30 to 55 MG
Oe) etc. are desired. Further, the yoke 1B is required to have a high saturation magnetic flux density and a high magnetic permeability, a low coercivity and a low hysteresis loss, and a low magnetization loss in an alternating magnetic field. Therefore, it is preferable to use a directional silicon steel strip or a permalloy. Use is desired.

【0010】そして磁化コイル1Cは、永久磁石1Aか
らヨーク1B内を一方向に走磁する磁束密度に略等しい
磁束密度で且その磁束方向と逆行する磁束の発生により
磁束反撥に伴う開磁路化による放磁、及び順行する磁束
の発生による磁束の加重と閉磁路化による吸磁所謂交番
磁束の発生により電磁誘導をなさしめるものである。 積〔m〕、〔T〕は10Gを示す)により、更に磁化
力においては磁化力の公式即 磁化回路の長さを表す)を用い、具体的には永久磁石1
Aの磁束密度やヨーク1B内を走磁する磁束密度、ヨー
ク1Bの断面積、磁気回路における漏磁率、巻線抵抗や
交流電源の周波数等を考慮し決定される。加えて該磁化
コイル1Cには交番磁束の発生のため、当然に交流電源
1Dが連結され入力される。
The magnetizing coil 1C is made into an open magnetic circuit due to the repulsion of the magnetic flux due to the generation of a magnetic flux having a magnetic flux density substantially equal to the magnetic flux density that runs in one direction from the permanent magnet 1A to the inside of the yoke 1B, and is reverse to the magnetic flux direction. The electromagnetic induction is performed by the demagnetization by the magnetic field and the weighting of the magnetic flux due to the generation of the forward magnetic flux and the generation of the so-called alternating magnetic flux due to the closed magnetic circuit. The product [m 2 ], [T] indicates 10 G), and (Representing the length of the magnetizing circuit) is used, specifically, the permanent magnet 1
It is determined in consideration of the magnetic flux density of A, the magnetic flux density of magnetism in the yoke 1B, the cross-sectional area of the yoke 1B, the leakage factor in the magnetic circuit, the winding resistance, the frequency of the AC power supply, and the like. In addition, since an alternating magnetic flux is generated in the magnetizing coil 1C, the AC power source 1D is naturally connected and input.

【0011】かくしてなる磁化ユニット1に連接して出
力ユニット2が配設される。この出力ユニット2は磁化
ユニット1の磁化コイル1Cにより発生される交番磁束
により、永久磁石1Aの磁束方向との逆行による反撥開
磁路化及び永久磁石1Aの磁束方向との順行による磁束
加重と閉磁化に伴う電磁誘導をなさしめるために、高透
磁率で軟磁性体からなる誘導ヨーク2Aを有するもの
で、該誘導ヨーク2Aは望ましくは磁化ユニット1を形
成する永久磁石1A及びヨーク1B全体の形状並びに断
面積と略同等のものが好適である。そして該誘導ヨーク
2Aの一側には磁化ユニット1による電磁誘導に伴う誘
起電力を取出すための誘導コイル2Bが形成されてい
る。この誘導コイル2Bの形成に際しては誘導ヨーク2
Aの電磁誘導に伴う磁束密度が判明すれば誘導電圧の公
式即ちe〔V〕=Blυ(但しe〔V〕誘起電圧、B
〔T〕又は〔wb/m〕磁束密度、l〔m〕有効導体
長、υ〔m/s〕導体の移動速度)を考慮し形成されれ
ば良い。
An output unit 2 is arranged so as to be connected to the magnetizing unit 1 thus formed. The output unit 2 is made to have a repulsion-open magnetic path by alternating with the magnetic flux direction of the permanent magnet 1A by the alternating magnetic flux generated by the magnetizing coil 1C of the magnetizing unit 1, and magnetic flux weighting is performed by the forward magnetic flux direction of the permanent magnet 1A. And an induction yoke 2A made of a soft magnetic material having a high magnetic permeability in order to perform electromagnetic induction associated with closed magnetization. The induction yoke 2A is preferably the permanent magnet 1A forming the magnetization unit 1 and the entire yoke 1B. It is preferable that the shape and the cross-sectional area are substantially the same. An induction coil 2B is formed on one side of the induction yoke 2A so as to extract the induced electric power due to the electromagnetic induction by the magnetizing unit 1. When forming the induction coil 2B, the induction yoke 2
If the magnetic flux density associated with the electromagnetic induction of A is known, the formula of the induced voltage, that is, e [V] = B1υ (where e [V] induced voltage, B
It may be formed in consideration of [T] or [wb / m 2 ] magnetic flux density, 1 [m] effective conductor length, and ν [m / s] conductor moving speed).

【0012】加えて本発明において肝要なことは、かく
してなる磁化ユニット1及び出力ユニット2を適宜数交
互に連接配設させるとともに、その端縁が閉結されて全
体が環状若しくは角状に一体的に連接させることにあ
る。無論本発明発電装置においては、かかる磁化ユニッ
ト1並びに出力ユニット2を適宜数交互に且全体を環状
若しくは角状に閉結連接させるための適宜の連接具(図
示せず)が使用されるもので、当然に該連接具は電磁誘
導作用の及ばぬ非磁性体の素材が採用される。そしてこ
の磁化ユニット1及び出力ユニット2が適宜数交互に連
接し閉結された構成とする所以は磁化ユニット1による
開磁路化による放磁及び閉磁路化による吸磁に伴う電磁
誘導作用に相互作用が働き、より強力な電磁誘導作用が
実現されることによるもので、かかる電磁誘導作用を図
2乃至図4において説明する。
In addition, what is essential in the present invention is that the magnetizing units 1 and the output units 2 thus formed are connected alternately in an appropriate number and the edges thereof are closed so that the whole is integrally formed in an annular or angular shape. To connect to. Of course, in the power generator of the present invention, an appropriate connecting tool (not shown) is used to connect and close the magnetizing units 1 and the output units 2 in an appropriate number and in an annular or angular shape. Of course, the connecting tool is made of a non-magnetic material that does not exert an electromagnetic induction effect. The magnetizing unit 1 and the output unit 2 are connected so as to be appropriately connected alternately and closed, so that the magnetizing unit 1 has a mutual effect on the electromagnetic induction caused by the demagnetization by the opening magnetic circuit and the absorption by the closing magnetic circuit. This is because the action works and a stronger electromagnetic induction action is realized, and the electromagnetic induction action will be described with reference to FIGS. 2 to 4.

【0013】図2は磁化ユニット1と出力ユニット2間
の開磁路における電磁誘導の説明図であって、図2にお
いて所要の磁束密度に着磁された永久磁石1Aを挟んで
形成されたヨーク1Bの一側に設けた磁化コイル1Cに
図示する方向に交流電源1Dの電流が流れた場合には該
磁化コイル1Cの磁化作用によりヨーク1Bには▲N
▼、▲S▼の磁極が発生し、磁化コイル1Cで発生した
磁束11Aは図示する方向に磁束が働くものの永久磁石
1Aからの磁束10A方向とヨーク1B内に反撥が発生
し、永久磁石1Aの磁束10Aのみの閉磁路が開磁路化
され連接する出力ユニット2の誘導ヨーク2Aに放磁さ
れて該誘導ヨーク2Aの連接面には、それぞれ反対磁極
に磁化される。而して磁化ユニット1には交流電源1D
が接続され入力されるものであるから、瞬時に図3に示
す方向の電流が入力される。即ち磁化コイル1Cに入力
される電流方向が変ることにより、磁化コイル1Cの磁
化作用によりヨーク1Bには▲S▼、▲N▼の磁極が発
生し磁束方向が永久磁石1Aの磁束10Aと順行するた
め閉磁路化され、且ヨーク1B内を走磁する磁束密度が
加重されるため、出力ユニット2の誘導ヨーク2Aに磁
化された磁束は磁化ユニット1のヨーク1Bに吸磁され
る。そして入力される交流電源1Dは通常50若しくは
60HZのサイクルで電流方向が変化するため、この電
流方向の変化に伴い磁化ユニット1のヨーク1Bの開磁
路による放磁、及び閉磁路による吸磁を繰返すことによ
り、連接された出力ユニット2の誘導ヨーク2Aに電磁
誘導がなされる。
FIG. 2 is an explanatory view of electromagnetic induction in an open magnetic circuit between the magnetizing unit 1 and the output unit 2, and a yoke formed by sandwiching a permanent magnet 1A magnetized to a required magnetic flux density in FIG. When the current from the AC power supply 1D flows in the direction shown in the drawing to the magnetizing coil 1C provided on one side of the magnet 1B, the magnetizing action of the magnetizing coil 1C causes ▲ N to appear on the yoke 1B.
The magnetic poles ▼ and ▲ S are generated, and the magnetic flux 11A generated in the magnetizing coil 1C acts in the direction shown in the figure, but repulsion occurs in the direction of the magnetic flux 10A from the permanent magnet 1A and in the yoke 1B. The closed magnetic circuit of only the magnetic flux 10A is made into an open magnetic circuit and is demagnetized by the induction yoke 2A of the output unit 2 which is connected, and the connection surface of the induction yoke 2A is magnetized to have opposite magnetic poles. Thus, the magnetizing unit 1 has an AC power supply 1D
Is connected and input, a current in the direction shown in FIG. 3 is instantaneously input. That is, when the direction of the current input to the magnetizing coil 1C is changed, the magnetizing action of the magnetizing coil 1C causes the magnetic poles of ▲ S ▼ and ▲ N ▼ to be generated in the yoke 1B, and the magnetic flux direction goes forward with the magnetic flux 10A of the permanent magnet 1A. For this reason, the magnetic flux density is changed to a closed magnetic circuit and magnetizes in the yoke 1B, so that the magnetic flux magnetized by the induction yoke 2A of the output unit 2 is absorbed by the yoke 1B of the magnetizing unit 1. Since the input AC power supply 1D normally changes its current direction in a cycle of 50 or 60 HZ, the yoke 1B of the magnetizing unit 1 is demagnetized by the open magnetic path and magnetized by the closed magnetic path in accordance with the change in the current direction. By repeating the electromagnetic induction, the induction yoke 2A of the connected output unit 2 is electromagnetically induced.

【0014】更に本発明ではかかる磁化ユニット1B及
び出力ユニット2が適宜数連接され且端縁が図4に示す
如く閉結された構成からなるもので、互いに隣接する磁
化ユニット1と出力ユニット2の間では前述の如き電磁
誘導が働くものであるが、それぞれの磁化ユニット1の
磁化コイル1C、1C…により永久磁石1A、1A‥の
磁束方向と逆行する磁束を発生し開磁路化による放磁に
伴い、出力ユニット2、2…の誘導ヨーク2A、2A…
が磁化された場合には、図5に示す如く適宜数の磁化ユ
ニット1及び出力ユニット2とが交互に連接され且端縁
が閉結された全体に亘って周回磁路3が形成される状態
となるため、磁化ユニット1の開磁路化に伴う放磁に際
し、かかる周回磁路3形成に係る相互作用による促進力
が働き、特に永久磁石1A、1A…の磁束とともに磁化
コイル1Cからの発生磁束も効果的に放磁され出力ユニ
ット2、2…の誘導ヨーク2A、2A…の磁化が高めら
れる。
Further, according to the present invention, the magnetizing unit 1B and the output unit 2 are connected in an appropriate number and the edges are closed as shown in FIG. As described above, the electromagnetic induction works between them, but the magnetizing coils 1C, 1C, ... Of the respective magnetizing units 1 generate magnetic fluxes that are opposite to the magnetic flux directions of the permanent magnets 1A, 1A. , The induction yokes 2A, 2A ... Of the output units 2, 2 ...
Is magnetized, an appropriate number of magnetizing units 1 and output units 2 are alternately connected as shown in FIG. 5 and the circulating magnetic path 3 is formed over the whole with the edges closed. Therefore, at the time of demagnetization accompanying the opening of the magnetizing unit 1, an accelerating force due to the interaction associated with the formation of the orbiting magnetic path 3 acts, and particularly the magnetic flux of the permanent magnets 1A, 1A ... Generates from the magnetizing coil 1C. The magnetic flux is also effectively released and the magnetization of the induction yokes 2A, 2A ... Of the output units 2, 2 ... Is increased.

【0015】そして磁化コイル1C、1C…における発
生磁束が永久磁石1A、1A…の磁束方向と順行する場
合には、磁化ユニット1、1…が大きな磁束密度を以っ
て閉磁路化するため、磁化の高められた出力ユニット
2、2…の誘導ヨーク2A、2A…の磁束が急激に吸磁
されるため、かかる放磁、吸磁の交番により、出力ユニ
ット2.2には高い電磁誘導効果が生じ従って誘導コイ
ル2B、2B…からは入力に比べ大きな電力を得ること
ができる。
If the generated magnetic flux in the magnetizing coils 1C, 1C ... goes in the direction of the magnetic flux of the permanent magnets 1A, 1A ..., the magnetizing units 1, 1 ... Form a closed magnetic circuit with a large magnetic flux density. , The magnetic fluxes of the induction yokes 2A, 2A ... Of the output units 2, 2 ... With high magnetization are rapidly absorbed, and due to the alternation of demagnetization and absorption, the output unit 2.2 has a high electromagnetic induction. As a result, a large electric power can be obtained from the induction coils 2B, 2B, ...

【0016】而して本発明は発電方法及び発電装置に係
るもので、その利用範囲も産業用或いは家庭用電力の如
く高圧高電流が要請されるものから各種機器類や頑具等
小電力のもの、及び入力としても産業用や家庭用電力の
使用を初め太陽電池や乾電池等の利用も考慮される必要
がある。他方永久磁石1Aの磁束密度や最大エネルギー
積には自づと限度があるため小電力の発電には特段の問
題もないが、大電力の発電に際しては図6に示すように
磁化ユニット1及び出力ユニット2とを適宜数交互に連
接配設し且端縁を閉結させた構成を一単位として、その
適宜数の単位を直列に連結させた構成のもので対処する
ことが望まれる。当然のことながら入力電源に太陽電池
や乾電池等直流を使用する場合には、交流変換装置(イ
ンバーター)を介在させて使用される。
Therefore, the present invention relates to a power generation method and a power generation device, and the range of use thereof is such that industrial or household power is required to have a high voltage and high current, and therefore various equipments and hard tools such as small power can be used. It is necessary to consider not only the use of electric power for industrial and household purposes but also the use of solar cells and dry cells as input. On the other hand, since the magnetic flux density and the maximum energy product of the permanent magnet 1A have their own limits, there is no particular problem in generating small power, but when generating large power, as shown in FIG. It is desired to deal with a configuration in which an appropriate number of units 2 are alternately connected to each other and the edges are closed as one unit, and an appropriate number of units are connected in series. As a matter of course, when a direct current such as a solar battery or a dry battery is used as an input power source, an alternating current conversion device (inverter) is interposed.

【0017】[0017]

【発明の効果】本発明は以上説明した如く所要の磁束密
度に着磁されてなる永久磁石を、高透磁率で軟磁性体か
らなるヨークで挟み、永久磁石の磁束方向を一方向に走
磁させて閉磁路を保持させ、且ヨークの一側にヨーク内
を走磁する永久磁石の磁束に略等しく且その磁束方向に
逆行及び順行する交番磁束を発生しえる磁化コイルが設
けられてなる磁化ユニットと、該磁化ユニットに連接し
て配設される高透磁率で軟磁性体からなる誘導ヨーク、
及び該誘導ヨークの一側に電磁誘導に伴う誘起電力を取
出す誘導コイルが設けられた出力ユニットとが、適宜数
交互に連接配設されたうえその端縁が閉結された構成か
らなるため、磁化ユニットの磁化コイルに僅かな交流電
力を入力させるのみでヨーク内を走磁する永久磁石の強
い磁束に対して逆行及び順行する交番磁束が発生され、
磁化ユニットの走磁路の開磁路化及び閉磁路化がなさ
れ、開磁路化に際しては永久磁石の磁束に加えて磁化コ
イルによる発生磁束も放磁されて連接する出力ユニット
に磁化され、且閉磁路化に際しては磁化ユニット内の走
磁磁束が著しく高まるため、出力ユニットの磁化された
磁束が急激に吸磁され、これらが交流電力の周波数に従
って交番されるから、出力ユニットには高い電磁誘導効
果が生じ而も磁化ユニットも出力ユニットとが適宜数交
互に連接配設されたうえその端縁が閉結された構成のた
め、磁化ユニットの開磁路化による出力ユニットへの磁
化に伴い、構成全体を周回する磁路形成が生じこの周回
磁路形成による相互作用により、磁化ユニットから出力
ユニットへの放磁が一段と促進され強い電磁誘導が働
く。従って使用すべき交流電源とその周波数及び所望す
る出力電力に基づき具体的磁路設計をなすことにより入
力電力に比べて数倍乃至数十倍の出力電力を得ることが
でき、且本発明は発電装置も小型で簡単に作成しえるた
め極めて安価に実現でき、而も発電に際しても振動や騒
音の発生や排ガス廃棄物の発生等環境を阻害する危険も
無いこと等とも相俟って省エネルギー省電力化に大きく
寄与する発電方法及び発電装置である。
As described above, according to the present invention, a permanent magnet magnetized to have a required magnetic flux density is sandwiched by a yoke made of a soft magnetic material having a high magnetic permeability, and the magnetic flux of the permanent magnet runs in one direction. And a closed magnetic circuit is maintained, and a magnetizing coil is provided on one side of the yoke that is capable of generating an alternating magnetic flux that is approximately equal to the magnetic flux of a permanent magnet that runs inside the yoke and that is reverse and forward in the direction of the magnetic flux. A magnetizing unit and an induction yoke made of a soft magnetic material having a high magnetic permeability, which is arranged so as to be connected to the magnetizing unit,
And an output unit provided with an induction coil for extracting the induced electric power associated with electromagnetic induction on one side of the induction yoke, and the configuration is such that an appropriate number of them are alternately connected and the edges thereof are closed. By inputting a small amount of AC power to the magnetizing coil of the magnetizing unit, an alternating magnetic flux is generated that is reverse and forward with respect to the strong magnetic flux of the permanent magnet that runs in the yoke.
The running magnetic path of the magnetizing unit is opened and closed, and when the magnetic path is opened, not only the magnetic flux of the permanent magnet but also the magnetic flux generated by the magnetizing coil is released and magnetized to the connected output unit, and Since the magnetic flux in the magnetizing unit increases significantly when the magnetic circuit is closed, the magnetized magnetic flux in the output unit is rapidly absorbed, and these are alternating according to the frequency of the AC power. As a result, the magnetizing unit and the output unit are alternately connected to each other in an appropriate number and the edges thereof are closed, so that the magnetizing unit is magnetized to the output unit by opening the magnetic path. The formation of a magnetic path that circulates the entire structure occurs, and the interaction due to the formation of the circular magnetic path further promotes the demagnetization from the magnetizing unit to the output unit, thereby exerting strong electromagnetic induction. Therefore, by making a specific magnetic path design based on the AC power source to be used, its frequency, and the desired output power, it is possible to obtain output power that is several times to several tens of times higher than the input power, and the present invention is for generating power. Since the device is small and easy to make, it can be realized at extremely low cost, and there is no danger of disturbing the environment such as generation of vibration and noise and generation of exhaust gas waste during power generation. It is a power generation method and a power generation device that greatly contribute to realization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明発電方法の説明図である。FIG. 1 is an explanatory diagram of a power generation method of the present invention.

【図2】開磁路における電磁誘導の説明図である。FIG. 2 is an explanatory diagram of electromagnetic induction in an open magnetic circuit.

【図3】閉磁路における吸磁の説明図である。FIG. 3 is an explanatory diagram of magnetic absorption in a closed magnetic circuit.

【図4】本発明発電装置の例示図である。FIG. 4 is an exemplary view of a power generator of the present invention.

【図5】周回磁路形成の説明図である。FIG. 5 is an explanatory diagram of forming a circulating magnetic path.

【図6】高電力発電のための本発明の連結説明図であ
る。
FIG. 6 is a connection explanatory view of the present invention for high power generation.

【符号の説明】[Explanation of symbols]

1 磁化ユニット 1A 永久磁石 1B ヨーク 1C 磁化コイル 1D 交流電源 10A 永久磁石の磁束 11A 磁化コイルによる発生磁束 2 出力ユニット 2A 誘導ヨーク 2B 誘導コイル 3 周回磁路 4 本発明装置 1 Magnetization unit 1A permanent magnet 1B York 1C magnetizing coil 1D AC power supply 10A Magnetic flux of permanent magnet 11A Magnetic flux generated by magnetizing coil 2 output units 2A induction yoke 2B induction coil 3 loop magnetic circuit 4 Inventive device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所要の磁束密度に着磁された永久磁石が
高透磁率軟磁性体からなるヨークで閉磁路に保持され、
且該閉磁路内の永久磁石の磁束密度に略等しく而もその
磁束方向と逆行及び順行する交番磁束を発生させ、磁路
の開閉による強力な電磁誘導体をなさしめる磁化コイル
が該ヨークの一側に設けられた磁化ユニットと、磁化ユ
ニットに連接して高透磁率軟磁性体からなる誘導ヨーク
の一側に電磁誘導による誘導電力を取出す誘導コイルが
設けられた出力ユニットとを適宜数交互に連接閉結さ
せ、磁化コイルに所要の交流電力を入力し以って該入力
電力により大きな出力電力を取出すことを特徴とする発
電方法。
1. A permanent magnet magnetized to a required magnetic flux density is held in a closed magnetic circuit by a yoke made of a high magnetic permeability soft magnetic material,
In addition, a magnetizing coil that is approximately equal to the magnetic flux density of the permanent magnet in the closed magnetic circuit and that generates an alternating magnetic flux that is reverse to or in the direction of the magnetic flux and that forms a strong electromagnetic induction by opening and closing the magnetic circuit is one of the yokes. The magnetizing unit provided on the side and the output unit having an induction coil connected to the magnetizing unit and provided on one side of the induction yoke made of a high-permeability soft magnetic material to extract induction power by electromagnetic induction are alternately arranged. A power generation method, which is characterized by connecting and closing, and inputting a required AC power to a magnetizing coil to extract a large output power from the input power.
【請求項2】 所要の磁束密度に着磁された永久磁石を
挟んで高透磁率で軟磁性体からなるヨークにより永久磁
石の磁束が閉磁路に保持され、且該ヨークの一側に閉磁
路内の永久磁石の磁束と略等しく而も永久磁石の磁束方
向に対し逆行及び順行する交番磁束を発生せしめる磁化
コイルが形成されてなる磁化ユニットと、該磁化ユニッ
トに連接されて使用される高透磁率で軟磁性体からなる
誘導ヨークの一側に磁化ユニットからの強度の電磁誘導
による大きな電力を取り出すための誘導コイルが形成さ
れた出力ユニットとが、適宜数交互に且非磁性体からな
る連結具により連結され閉結された構成よりなる発電装
置。
2. A magnetic flux of a permanent magnet is held in a closed magnetic circuit by a yoke made of a soft magnetic material having a high magnetic permeability with a permanent magnet magnetized to a required magnetic flux density being sandwiched, and a closed magnetic circuit is provided on one side of the yoke. The magnetic unit is formed with a magnetizing coil that generates an alternating magnetic flux that is substantially equal to the magnetic flux of the permanent magnet in the interior of the magnet, and that reverses and advances in the direction of the magnetic flux of the permanent magnet. An output unit in which an induction coil for extracting a large amount of electric power due to strong electromagnetic induction from a magnetizing unit is formed on one side of an induction yoke made of a soft magnetic material having a magnetic permeability, and an appropriate number of them are alternately composed of a non-magnetic material. A power generation device having a configuration in which it is connected and closed by a connecting tool.
【請求項3】 磁化ユニットと出力ユニットから構成さ
れる発電装置を一単位とし、その複数単位が直列に連結
される請求項2記載の発電装置。
3. The power generator according to claim 2, wherein a power generator including a magnetizing unit and an output unit is set as one unit, and the plurality of units are connected in series.
JP2001228722A 2001-06-22 2001-06-22 Method and apparatus for power generation Pending JP2003009558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228722A JP2003009558A (en) 2001-06-22 2001-06-22 Method and apparatus for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228722A JP2003009558A (en) 2001-06-22 2001-06-22 Method and apparatus for power generation

Publications (1)

Publication Number Publication Date
JP2003009558A true JP2003009558A (en) 2003-01-10

Family

ID=19061183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228722A Pending JP2003009558A (en) 2001-06-22 2001-06-22 Method and apparatus for power generation

Country Status (1)

Country Link
JP (1) JP2003009558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071102A1 (en) * 2005-12-06 2007-06-28 David Lo A three-dimensional permanent-magnetic repulsion power machine
CN106655892A (en) * 2016-10-20 2017-05-10 周建平 Electromagnetically controlled permanent-magnet magnetic power machine
CN111327083A (en) * 2019-12-06 2020-06-23 横琴英飞铂智能科技有限公司 Magnetic energy acquisition method, device and circuit for anti-magnetic saturation power transmission line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071102A1 (en) * 2005-12-06 2007-06-28 David Lo A three-dimensional permanent-magnetic repulsion power machine
CN106655892A (en) * 2016-10-20 2017-05-10 周建平 Electromagnetically controlled permanent-magnet magnetic power machine
CN106655892B (en) * 2016-10-20 2018-12-18 周建平 Electromagnetic Control permanent magnetic energy engine
CN111327083A (en) * 2019-12-06 2020-06-23 横琴英飞铂智能科技有限公司 Magnetic energy acquisition method, device and circuit for anti-magnetic saturation power transmission line
CN111327083B (en) * 2019-12-06 2024-03-19 横琴英飞铂智能科技有限公司 Anti-magnetic saturation transmission line magnetic energy acquisition method, device and circuit

Similar Documents

Publication Publication Date Title
Farrok et al. A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion
Bashir et al. Harvesting oceanic wave energy by a linear generator using high graded N28EH permanent magnets
JP2003009558A (en) Method and apparatus for power generation
Molla et al. Use of high flux density ferromagnetic cores in linear generators for oceanic wave energy conversion
Özdemir et al. Permanent magnet wind generators: neodymium vs. ferrite magnets
Jiang et al. Design of a novel linear permanent magnet vibration energy harvester
Huang et al. Comparison of electromagnetic performance of SCPM wind power generators with different topologies
Molla et al. Translator optimization of a linear electrical generator for harvesting oceanic wave energy
Molla et al. J material based lightweight linear electrical generator with improved dynamics for harvesting oceanic wave energy
Cipriani et al. A ferrite tubular linear permanent magnet generator (FTLPMG) analysis and design
Molla et al. Water cooled chiller based HVAC system used in a linear generator for oceanic wave energy conversion
CN104319975A (en) Single-groove unipolar cylindrical moving-magnet linear alternating-current generator
CN108964401A (en) A kind of wave electric power system based on the embedded cylindrical linear generator of the poly- magnetic of multilayer
JP2003079128A (en) Power generating method and power generating apparatus
CN206323279U (en) A kind of resonance self-loopa generator
JP2003102164A (en) Power generating method and power generator
JPH11204353A (en) Static-magnet type generator
RU2210839C1 (en) Electrochemical thermomagnetic power- generating system
Vinoth et al. Experimental Design And Optimization Of Free Energy Generator By Using Neodymium Magnets
JP3242321U (en) Gravity Wheel Magnetic Energy Internal Cycle Generator
Naing Design and Simulation of Permanent Magnet Linear Generator for Wave Energy Power Plant
CN111541313B (en) Mixed magnetic pole zero sequence magnetic regulation memory motor and magnetic regulation method thereof
RU2160493C1 (en) Electromagnetic turbine
CN211127340U (en) Novel generator
Lee et al. Design and Development of a Small-Scale Mechanical Energy Conversion Device