JP2003009430A - Method and apparatus for remotely monitoring electrical device and method and apparatus for estimating power consumption utilizing the same - Google Patents

Method and apparatus for remotely monitoring electrical device and method and apparatus for estimating power consumption utilizing the same

Info

Publication number
JP2003009430A
JP2003009430A JP2001185676A JP2001185676A JP2003009430A JP 2003009430 A JP2003009430 A JP 2003009430A JP 2001185676 A JP2001185676 A JP 2001185676A JP 2001185676 A JP2001185676 A JP 2001185676A JP 2003009430 A JP2003009430 A JP 2003009430A
Authority
JP
Japan
Prior art keywords
current
change
intensity ratio
estimated
current change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185676A
Other languages
Japanese (ja)
Other versions
JP4454001B2 (en
Inventor
Yasushi Shinohara
靖志 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001185676A priority Critical patent/JP4454001B2/en
Publication of JP2003009430A publication Critical patent/JP2003009430A/en
Application granted granted Critical
Publication of JP4454001B2 publication Critical patent/JP4454001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow estimating individual currents consumed by a plurality of devices based only on a total current. SOLUTION: An apparatus for estimating power consumption is provided with a total current meter 11 for measuring a total load current to an electric supply line 2 of a customer 1, a fast fourier transform apparatus 12 for transforming the total load current into a fundamental wave and higher harmonic waves of the total load current, a temporal difference apparatus 13 for finding changes of the currents of the fundamental wave and the higher harmonic waves in the converted current, an independent component analyzing apparatus 14 for separating the changes of the currents into components estimated as groups of the devices respectively having the same intensity ratio of higher harmonic wave based on independent component analysis, and an apparatus 15 for separating signals per device for estimating an operating status (the change of the current) per device 3 to be monitored based on a waveform of the change of the current per component of the same intensity ratio of higher harmonic wave. The changes of the currents of the fundamental wave and the higher harmonic waves are separated into the components estimated as the groups of the devices respectively having the same intensity ratio of higher harmonic wave based on the independent component analysis. The change of the consumed current per device to be monitored is estimated based on the waveform of the change of the current per the same intensity ratio of higher harmonic wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力需要家(電気
の使用者)が使用している複数の電気機器の消費電流が
合算された総消費電流に基づいて、個別の機器の可動状
況並びに消費電流を推定できる遠隔電気機器監視方法及
び装置並びにそれを利用した消費電力推定方法及び装置
に関するものである。さらに詳述すると、本発明は、複
数の電気機器の機器別可動状況(消費電流)並びに消費
電力を非侵入的な手法で推定するのに好適な遠隔電気機
器監視方法及び装置並びに電気機器の消費電力推定方法
及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operating status of individual appliances based on the total current consumption obtained by adding up the current consumption of a plurality of electric appliances used by electric power consumers (users of electricity). The present invention relates to a remote electric device monitoring method and device capable of estimating consumption current, and a power consumption estimation method and device using the same. More specifically, the present invention provides a remote electric device monitoring method and device suitable for estimating the operating status (current consumption) and power consumption of each of a plurality of electric devices by a non-intrusive method, and the consumption of the electric device. The present invention relates to a power estimation method and device.

【0002】[0002]

【技術用語】本明細書において、「非侵入的」とは、給
電線引込口付近一箇所に測定センサーを設置するもの
で、給電線下流の分岐回路毎に測定センサーを取り付け
たり、回路に接続されている電気機器毎に測定センサー
を取り付けたりしない状態のことをいう。また、インバ
ータ機器とはインバータを搭載し、機器の動作を低出力
から高出力まで連続的に変化させ得るものをいう。この
インバータ機器の消費電力は出力に応じて小さい値から
大きい値まで連続的に変化する。更に、ノンインバータ
機器とは、インバータを搭載せず機器の動作が単にオン
とオフのように限られた状態をとるものをいう。このノ
ンインバータ機器の消費電力は、オンオフ動作に対応し
て限定された値をとる。
[Technical terms] In this specification, "non-invasive" means that a measurement sensor is installed at one place near the feed line inlet, and a measurement sensor is attached to each branch circuit downstream of the feed line or connected to the circuit. It refers to a state in which a measurement sensor is not attached to each of the electric devices. Further, an inverter device is a device equipped with an inverter and capable of continuously changing the operation of the device from low output to high output. The power consumption of this inverter device continuously changes from a small value to a large value according to the output. Further, the non-inverter device refers to a device which does not have an inverter and whose operation is limited to ON and OFF. The power consumption of the non-inverter device has a limited value corresponding to the on / off operation.

【0003】[0003]

【従来の技術】工場や家庭内の各機器の動作状況の監視
は、電力機器の効率的利用を進める上で不可欠である。
複数の機器の動作状況を把握するための確実な方法は、
各機器に動作状況の計測装置およびその計測情報の伝送
装置を設置して、情報を集めることである。しかし、計
測装置、伝送装置の設置は対象となる機器数が多くなる
とコスト高の要因となる。また、計測装置や伝送装置が
環境条件などによって設置できない場合もある。特に、
一般家庭などの電力需要家では、家屋内にセンサー類を
設置することは困難である。このため、このような個別
の計測装置や情報収集装置などを設置することなく、機
器の総消費電流から、個別機器の消費電流やその変化な
ど機器の動作状況を推定する監視技術が望まれている。
2. Description of the Related Art Monitoring the operating status of each device in a factory or a home is essential for promoting efficient use of power devices.
A reliable method to understand the operating status of multiple devices is
It is to collect information by installing a measuring device for operating conditions and a transmitting device for the measured information in each device. However, the installation of the measurement device and the transmission device increases the cost when the number of target devices increases. In addition, the measuring device and the transmission device may not be installed depending on environmental conditions. In particular,
It is difficult for electric power consumers such as general households to install sensors inside the house. Therefore, there is a demand for a monitoring technology that estimates the operating status of a device such as the current consumption of an individual device and its change from the total current consumption of the device without installing such an individual measuring device or information collecting device. There is.

【0004】このような電気機器の動作状態を非侵入的
に推定するモニタリングシステムとしては、従来、MI
T(Massachusetts Institute of Technology ; 米国)
で開発されたアルゴリスムを用いてEPRI(Electric
Power Research Institute;米国) が装置化しているも
のがある。このモニタリングシステムは、電気機器のオ
ン・オフ動作を電力需要家の総電力負荷カーブのステッ
プ状の時間変化として捉え、電気機器の定格消費電力及
び力率に基づいてオンあるいはオフとなった電気機器の
特定と動作状態の推定を行うものである。したがって、
単純なオン・オフ動作を行う電気機器についてはその特
定と動作状態の推定をおこなうことができる。
Conventionally, as a monitoring system for non-intrusively estimating the operating state of such an electric device, MI has been used.
T (Massachusetts Institute of Technology; USA)
EPRI (Electric) using the algorithm developed in
Power Research Institute (USA) has been instrumentalized. This monitoring system captures the on / off operation of electric equipment as a stepwise time change of the total power load curve of an electric power consumer, and the electric equipment turned on or off based on the rated power consumption and power factor of the electric equipment. Is specified and the operating state is estimated. Therefore,
It is possible to identify and estimate the operating state of electric devices that perform simple on / off operations.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、最近で
は、一般家庭にも、冷暖房装置等のようなインバータ機
器が普及しており、ノンインバータ機器とインバータ機
器とが混在した状態で使用されていることが多くなって
いる。インバータ機器は、負荷の状態に応じて出力を制
御するため、消費電力もそれに応じて変化する。したが
って、消費電力の時間的推移が必ずしもステップ状では
なく、緩やかに変動したりあるいは不規則に変動したり
する。
However, recently, inverter equipment such as cooling and heating devices have become widespread in general households, and non-inverter equipment and inverter equipment are used in a mixed state. Is increasing. Since the inverter device controls the output according to the state of the load, the power consumption also changes accordingly. Therefore, the temporal change of the power consumption is not necessarily step-like, and it may fluctuate gently or irregularly.

【0006】したがって、インバータ機器やノンインバ
ータ機器が混在する状況下では、上述した従来のEPR
I開発のモニタリングシステムによっては個別の電気機
器毎の消費電力の推定が困難であるばかりか、電気機器
の動作状態の推定さえも困難である。
Therefore, in a situation in which inverter equipment and non-inverter equipment are mixed, the above-mentioned conventional EPR is used.
Depending on the monitoring system developed by I, it is difficult not only to estimate the power consumption of each individual electric device but also to estimate the operating state of the electric device.

【0007】この問題を解決するため、本願出願人等
は、インバータ機器およびノンインバータ機器を含む複
数の電気機器の動作状況を推定する技術として、各電気
機器のオン・オフなど動作状態を変えた場合の総電流の
高調波に基づいて、ラージマージンクラシファイアなど
の推定アルゴリズムを用いて、事前に、総電流の各高調
波の実効電流および位相から各機器別に動作状態を推定
するシステムを提案した(特願2000−111271号)。
In order to solve this problem, the applicant of the present application changed the operating state of each electric device such as on / off as a technique for estimating the operating condition of a plurality of electric devices including an inverter device and a non-inverter device. Based on the harmonics of the total current, we proposed a system that estimates the operating status of each device in advance from the effective current and phase of each harmonic of the total current using an estimation algorithm such as a large margin classifier ( Japanese Patent Application No. 2000-111271).

【0008】しかし、本手法では、事前に、想定される
監視対象機器についての各動作状態で動作させた時の総
電流の高調波データを多数用意する必要があり、全くの
未知の監視対象機器を対象とすることはできない。この
ため、計測した総電流の中に未知の監視対象機器分が含
まれる場合には、未知の電気機器あるいは電気機器群が
動作していることとその消費電力がどの程度であるかと
いうことを包括的に推定することしかできないため、こ
の未知の電気機器が増加すると、電気機器の動作状況の
監視が事実上困難になってくる。そこで、あらかじめ想
定されていない電気機器あるいは各電力需要家毎の固有
の監視対象機器の種別が多様であったり、対象機器の入
れ替えが生じたりする場合には、多数の機器の各動作状
態でのデータを事前に準備して、推定アルゴリズムの学
習による動作状態判定システムの作り直しが必要とな
る。
However, in this method, it is necessary to prepare in advance a large amount of harmonic data of the total current when the assumed monitored device is operated in each operating state, which is an unknown unknown monitored device. Can not be targeted. Therefore, if the measured total current includes an unknown monitored device, the unknown electric device or electric device group should be operating and its power consumption. Since it is only possible to make a comprehensive estimate, it becomes virtually difficult to monitor the operating status of the electric devices as the number of unknown electric devices increases. Therefore, if there are various types of monitoring target devices that are unique to each electric appliance or power consumer that is not assumed in advance, or if the target devices are replaced, the It is necessary to prepare the data in advance and recreate the operation state determination system by learning the estimation algorithm.

【0009】本発明は、ノンインバータ機器及びインバ
ータ機器等が混在する状況下において、電力需要家が使
用している複数の電気機器の個別の動作状態を非侵入的
に推定可能とする遠隔電気機器監視方法及び装置並びに
それを利用した消費電力推定方法及び装置を提供するこ
とを目的としている。更に、本発明は、事前にデータ収
集を行って監視対象機器別の動作状態判別システムを構
成しなくても、総電流のみから、複数の機器の個別の消
費電流を推定可能とする遠隔電気機器モニタリングシス
テムを提供することを目的としている。
The present invention is a remote electric device which enables non-intrusive estimation of individual operating states of a plurality of electric devices used by electric power consumers in a situation where non-inverter devices and inverter devices are mixed. An object of the present invention is to provide a monitoring method and device, and a power consumption estimation method and device using the same. Furthermore, the present invention makes it possible to estimate individual consumption currents of a plurality of devices from only total currents without having to collect data in advance to configure an operation state determination system for each device to be monitored. It is intended to provide a monitoring system.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者は、電力需要家において設置されている電
気機器の消費電流の変化が、他の電機器の消費電流の変
化とは独立に変動する点に着目して、独立成分分析など
の推定手段による信号分離技術を応用することにより、
電力需要家の給電線の1点例えば監視対象機器が接続さ
れる給電線引き込み口での総負荷電流の測定結果から、
接続された各電気機器の個別の動作状況と消費電流を推
定することを考えた。
In order to achieve such an object, the present inventor has found that a change in the consumption current of an electric device installed in a power consumer is independent of a change in the consumption current of another electric device. Focusing on the point that changes to, by applying the signal separation technology by the estimation means such as independent component analysis,
From the measurement result of the total load current at one point of the power supply line of the power consumer, for example, the power supply line inlet to which the monitored device is connected,
We considered estimating individual operating conditions and current consumption of each connected electric device.

【0011】すなわち、請求項1記載の発明は、電力需
要家が使用している複数の電気機器の個別の消費電流を
推定する遠隔モニタリングシステムにおいて、電力需要
家の給電線に設置した測定センサから得られた総電流の
各高調波の実効電流を入力として、信号分離アルゴリズ
ムを基に、当該電力需要家が使用している複数の電気機
器の機器別の消費電流を推定手段として備えるようにし
ている。即ち、本発明の遠隔電気機器監視方法は、電力
需要家が使用している複数の電気機器の可動状況を推定
する遠隔電気機器監視方法において、前記電力需要家の
給電線から総負荷電流を測定し、該総負荷電流をその基
本波並びに高調波毎の電流に変換すると共に、該基本波
並びに高調波毎の電流の時間差分をとって電流変化デー
タを作成し、これら基本波並びに高調波毎の電流変化を
独立成分分析により同一高調波強度比率を持つ機器群と
して推定される成分毎に分離し、この同一高調波強度比
率成分毎の電流変化の波形から前記監視対象機器の機器
別の消費電流変化を推定することを特徴とする。
That is, according to the first aspect of the invention, in a remote monitoring system for estimating individual current consumption of a plurality of electric appliances used by an electric power consumer, a measuring sensor installed on a power supply line of the electric power consumer is used. With the effective current of each harmonic of the total current obtained as input, based on the signal separation algorithm, the consumption current for each device of the multiple electric devices used by the power consumer is provided as an estimation means. There is. That is, the remote electric device monitoring method of the present invention is a remote electric device monitoring method for estimating the operating status of a plurality of electric devices used by a power consumer, and measures the total load current from the power supply line of the power consumer. Then, the total load current is converted into a current for each of the fundamental wave and the harmonics, and current change data is created by taking a time difference between the currents for the fundamental wave and the harmonics. The current change of each component is estimated by independent component analysis as a component estimated as a device group having the same harmonic intensity ratio, and the current change waveform for each component of the same harmonic intensity ratio is used to calculate the consumption of the monitored device by device. It is characterized by estimating a current change.

【0012】また、この遠隔電気機器監視方法は、例え
ば請求項4記載の発明にかかる電力需要家が使用してい
る複数の電気機器の可動状況を推定する遠隔電気機器監
視装置によって実現される。この遠隔電気機器監視装置
は、電力需要家の給電線から総負荷電流を測定する総電
流センサと、総負荷電流から当該総負荷電流の基本波並
びに高調波の電流に変換する周波数成分変換装置と、総
負荷電流の基本波並びに高調波毎の電流の時間差分をと
って電流変化を求める時間差分装置と、該電流変化を独
立成分分析により同一の高調波強度比を持つ機器群とし
て推定される成分毎に分離する独立成分分析装置と、同
一高調波強度比率成分毎の電流変化の波形から監視対象
機器の機器別の可動状況(電流変化)を推定する機器別
信号分離装置とを備えるようにしている。
Further, this remote electric equipment monitoring method is realized by, for example, a remote electric equipment monitoring apparatus for estimating the operating condition of a plurality of electric equipment used by an electric power consumer according to the invention of claim 4. This remote electrical equipment monitoring device includes a total current sensor that measures a total load current from a power supply line of an electric power consumer, and a frequency component conversion device that converts the total load current into a fundamental wave and a harmonic current of the total load current. , A time difference device that obtains a current change by obtaining a time difference between currents of fundamental waves and harmonics of total load current, and the current change is estimated as a device group having the same harmonic intensity ratio by independent component analysis. An independent component analyzer that separates each component, and a device-separated device that estimates the operating status (current change) of the monitored device by device from the waveform of the current change for each component of the same harmonic intensity ratio are provided. ing.

【0013】インバータ回路ならびに整流回路を内蔵す
る機器からは、固有の高調波を出している。各機器の各
時刻における高調波の実効電流自身は、例えば、起動時
刻が同じ機器の間では、時間経過にしたがって増加する
など、全体として類似の動きをする場合がある。しか
し、各高調波の実効電流の変化(時間微分)は、たと
え、同時刻に起動した機器同士でも、特別の同期機構が
働かない限り、統計的な独立性が高い(これを個別機器
電流変化の統計的独立性という)。また、各機器の各高
調波の実効電流(変化)の強度比は時間的にほぼ安定し
ている。かつ、強度比は、個別機器または類似高調波特
性を持つ機器群(例えば、高調波を出さない機器群)で
固有である。このため、総電流の各高調波の実効電流変
化の加重和により、各戸別機器の電流変化を推定するこ
とが可能となる(これを個別機器電流変化の線形性とい
う)。なお、各機器群固有の高調波比と、総電流の各高
調波の加重は、逆行列の関係にある。
A device incorporating the inverter circuit and the rectifier circuit emits a unique harmonic. The harmonic effective current itself of each device at each time point may behave in a similar manner as a whole, for example, between the devices having the same start time, the harmonic currents increase with time. However, the change in the effective current of each harmonic (time derivative) is highly statistically independent even if the devices activated at the same time do not operate a special synchronization mechanism. Called statistical independence). Further, the intensity ratio of the effective current (change) of each harmonic of each device is almost stable with time. In addition, the intensity ratio is unique to an individual device or a device group having similar harmonic characteristics (for example, a device group that does not emit harmonics). Therefore, it is possible to estimate the current change of each device by the weighted sum of the effective current change of each harmonic of the total current (this is called linearity of individual device current change). Note that the harmonic ratio unique to each device group and the weight of each harmonic of the total current have an inverse matrix relationship.

【0014】以上の個別機器電流変化の線形性と独立性
に基づいて、総電流の高調波から推定した各機器の個別
電流変化の間の統計的独立性が最大となるような加重を
推定することにより、固有の高調波強度比を持つ各機器
群の電流変化を推定できる。
On the basis of the linearity and independence of the individual device current change as described above, the weighting that maximizes the statistical independence between the individual current changes of each device estimated from the harmonics of the total current is estimated. As a result, it is possible to estimate the current change of each device group having a unique harmonic intensity ratio.

【0015】また、請求項1あるいは4記載の発明にお
いて、固有の高調波強度比を持つ機器群の電流変化がひ
とつにまとまって分離される場合に、個別機器の電流変
化の強度レベルに関する動作特性モデルに基づいて、同
一高調波強度比を持つ各機器の個別の電流変化を分離す
ることが可能である。即ち、請求項2記載の発明は、請
求項1記載の遠隔電気機器監視方法において、同一高調
波強度比率成分毎の電流変化のうち、同一高調波強度比
を示す機器の成分を監視対象機器の電流変化強度に関す
る情報に基づいてさらに分離して個別の機器の電流変化
を推定するようにしている。また、請求項5記載の発明
は、請求項4記載の遠隔電気機器監視装置において、同
一高調波強度比率成分毎の電流変化のうち、同一高調波
強度比を示す機器の成分を監視対象機器の電流変化強度
に関する情報に基づいてさらに分離して個別の機器の電
流変化を推定するようにしている。
Further, in the invention according to claim 1 or 4, when the current change of the device group having a unique harmonic intensity ratio is separated into one and is separated, the operating characteristic relating to the intensity level of the current change of the individual device. Based on the model, it is possible to separate individual current changes for each device with the same harmonic intensity ratio. That is, according to the invention of claim 2, in the remote electric device monitoring method according to claim 1, among the current changes for each component of the same harmonic intensity ratio, the component of the device exhibiting the same harmonic intensity ratio is monitored. The current change of each individual device is estimated by further separating based on the information on the current change intensity. Further, the invention according to claim 5 is the remote electric device monitoring device according to claim 4, wherein among the current changes for each component of the same harmonic intensity ratio, the component of the device exhibiting the same harmonic intensity ratio is monitored. The current change of each individual device is estimated by further separating based on the information on the current change intensity.

【0016】更に、請求項1または2記載の遠隔電気機
器監視方法並びに請求項4または5記載の遠隔電気機器
監視装置において出力される同一の高調波強度比率を示
す機器群として推定される成分毎に分離された電流変化
は機器別であるため、請求項3ないし6に記載の発明の
ように、これら電流変化から消費電流を求め消費電力を
推定することができる。
Further, each component estimated as a device group showing the same harmonic intensity ratio output in the remote electric device monitoring method according to claim 1 or 2 and the remote electric device monitoring device according to claim 4 or 5. Since the change in the current separated by 2 is device-specific, the power consumption can be estimated by obtaining the current consumption from these current changes as in the invention according to claims 3 to 6.

【0017】[0017]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0018】図1に、本発明の遠隔電気機器監視方法の
一実施形態の概要を示す。この遠隔電気機器監視方法
は、電力需要家が使用している複数の電気機器の可動状
況を推定するものであって、電力需要家の給電線から総
負荷電流を測定し、該総負荷電流をその基本波並びに高
調波毎の電流に変換すると共に、該基本波並びに高調波
毎の電流の時間差分をとって電流変化データを作成し、
これら基本波並びに高調波毎の電流変化を独立成分分析
により同一高調波強度比率を持つ機器群として推定され
る成分毎に分離し、この同一高調波強度比率成分毎の電
流変化の波形から監視対象機器の機器別の電流変化を出
力し、機器別の動作状態を推定可能としている。
FIG. 1 shows an outline of one embodiment of the remote electric equipment monitoring method of the present invention. This remote electric equipment monitoring method is for estimating the operating status of a plurality of electric equipment used by an electric power consumer, measuring the total load current from the power supply line of the electric power consumer, and measuring the total load current. While converting to the current for each of the fundamental wave and harmonics, current change data is created by taking the time difference of the current for each of the fundamental wave and harmonics,
These fundamental and harmonic current changes are separated by the independent component analysis for each component estimated as a group of devices with the same harmonic intensity ratio, and the current change waveform for each component with the same harmonic intensity ratio is monitored. The current change of each device can be output to estimate the operating state of each device.

【0019】ここで、総消費電流のみから個別機器の消
費電流を分離推定することは、より一般的には、複数の
信号源からの信号が合算されて1箇所で1つの信号とし
て計測されている時に、その計測信号から各信号源の信
号を分離し、その変化を追跡すること、すなわち、「信
号分離追跡」の手法の一つであると考えられる。そこで
は、「信号源」が機器に、「一箇所で計測される信号」
が総電流に、「各信号源の信号」が「機器個別の電流
(電流変化)」に対応することとなる。
Here, the separate estimation of the current consumption of each individual device from only the total current consumption is more generally performed by adding signals from a plurality of signal sources and measuring them as one signal at one location. It is considered to be one of the methods of "signal separation tracking" by separating the signal of each signal source from the measured signal and tracking the change during the measurement. There, the "signal source" is the device and the "signal measured at one place".
Corresponds to the total current, and the "signal of each signal source" corresponds to the "current (current change) of each device".

【0020】そこで、まず各機器の消費電力の総和とな
る総電流を高いサンプルレートで計測し、計測された総
電流をフーリエ変換を行って、各周波数(総負荷電流の
基本波とその高調波)の実効電流値の時系列に変換す
る。そして、独立性に基づく信号分離を行う。各機器の
電流は、各機器固有の自律的な変化をする。言い換えれ
ば、他の機器の電流変化とは独立に変動する。また、各
機器の動作は複数の周波数帯に同時に変化を与えるがど
の周波数帯に強く変化がでるかなどは機器毎に異なる。
従って、複数の周波数帯で同時に生じる独立な電流変化
を分析することで、各機器個別の消費電流を復元するこ
とが原理的に可能となる。この性質により、機器固有の
動作モデルがなくても機器個別の消費電流を復元するこ
とが可能となる。
Therefore, first, the total current, which is the sum of the power consumption of each device, is measured at a high sample rate, and the measured total current is subjected to Fourier transform to obtain each frequency (the fundamental wave of the total load current and its harmonics). ) Is converted into a time series of the effective current value. Then, signal separation based on independence is performed. The current of each device changes autonomously unique to each device. In other words, it fluctuates independently of current changes of other devices. Further, the operation of each device changes in a plurality of frequency bands at the same time, but the frequency band in which the change is strong varies depending on the device.
Therefore, by analyzing independent current changes that occur simultaneously in a plurality of frequency bands, it is possible in principle to restore the current consumption of each device. Due to this property, it is possible to restore the current consumption of each device without a device-specific operation model.

【0021】ただし、監視対象機器の定格電流などが事
前に判明している場合や、継続して総電流の監視を行い
適切に機器電流を復元している場合には、機器固有の動
作特性モデルを構成することができる。動作特性モデル
は,機器の実効電流I(t)の変化量(I(t+1)-I(t));以
下、電流変化と呼ぶ)の取りえる値の確率分布によって
表現することができる。
However, when the rated current or the like of the monitored device is known in advance, or when the total current is continuously monitored and the device current is appropriately restored, the operating characteristic model peculiar to the device is obtained. Can be configured. The operating characteristic model can be represented by the probability distribution of the value that can be taken by the amount of change in the effective current I (t) of the device (I (t + 1) -I (t); hereinafter called current change). .

【0022】本発明では,機器固有の動作特性モデルが
利用できる場合は、これを利用して、推定精度の向上を
はかる。機器個別の動作特性モデルを使用する場合に
は、動作している機器の挙動特性に合致した動作特性モ
デルを使用するほうが、分離精度が向上する。このた
め、継時的に機器の動作追跡を行うためには、図3のス
テップ2で利用する機器動作特性モデルの選択を行う必
要がある。本実施形態では、同時に多数の機器の動作が
変化しないとの仮定の元で、利用する機器動作特性モデ
ルを選択して、ステップ2に戻る。
In the present invention, when an operating characteristic model peculiar to a device is available, it is used to improve the estimation accuracy. When using the operation characteristic model of each device, the separation accuracy is improved by using the operation characteristic model that matches the behavior characteristic of the operating device. Therefore, in order to continuously track the operation of the device, it is necessary to select the device operation characteristic model used in step 2 of FIG. In this embodiment, under the assumption that the operations of many devices do not change at the same time, the device operation characteristic model to be used is selected, and the process returns to step 2.

【0023】以上が信号追跡アプローチの概要である。
以下では、各ステップで使用するアルゴリズムについて
概説する。
The above is an outline of the signal tracking approach.
The following outlines the algorithm used in each step.

【0024】〔独立性に基づく信号分離〕信号分離手法
は、標準的な独立成分分析手法を基本に、機器の動作特
性を加味した分離が行えるよう拡張したものである。
[Signal Separation Based on Independence] The signal separation method is an extension of the standard independent component analysis method so that the separation considering the operation characteristics of the device can be performed.

【0025】独立成分分析手法は、複数地点での同時録
音から各音源から出ている音を分離するなど、観測信号
から信号源の信号波形を推定する手法である。その適用
にあたっては、下記「線形性」並びに「独立性」の2つ
の仮定が成立する必要がある。
The independent component analysis method is a method of estimating the signal waveform of the signal source from the observed signal, such as separating the sound emitted from each sound source from the simultaneous recording at a plurality of points. In applying it, the following two assumptions of "linearity" and "independence" must be satisfied.

【0026】「線形性仮説1」 (1)総電流の第k高調波電流変化量 dIi(t) は、各機
器の第k高調波電流変化量dSk,i(t)の和として表され
る。 dIk(t)=Σj dIk,j(t)(電流値、電流変化量を、複素数
表示している場合は厳密に成立) (2)機器iの第k高調波電流変化量dSk,i(t)は、機器i
の規格化高調波電流変化量 dSi*(t) の一定倍 Ak,i dSk,i(t)=Ak,i・dS*i(t) すなわち、 dIk(t)=Σj Ak,i・dS*i(t) 行列表現では、 dI = A・dS* ただし、dI = (dIk(t) ), A=(Ak,i), dS*=(dS*i(t)) として表される。つまり、「線形性仮説1」は、Aの逆
行列が存在するとき、下記の「線形性仮説2」と同値で
ある。
"Linearity Hypothesis 1" (1) The kth harmonic current variation dIi (t) of the total current is expressed as the sum of the kth harmonic current variation dSk, i (t) of each device. . dIk (t) = Σj dIk, j (t) (strictly established when the current value and current change amount are displayed in complex numbers) (2) kth harmonic current change amount dSk, i (t of device i ) Is the device i
Normalized harmonic current variation dSi * (t) constant times Ak, i dSk, i (t) = Ak, i ・ dS * i (t) That is, dIk (t) = Σj Ak, i ・ dS * In the i (t) matrix representation, dI = A · dS * where dI = (dIk (t)), A = (Ak, i), dS * = (dS * i (t)). That is, the "linearity hypothesis 1" has the same value as the following "linearity hypothesis 2" when the inverse matrix of A exists.

【0027】「線形性仮説2」 (1)機器i の規格化高調波電流変化量 dS*i(t) は、
総電流の各高調波電流変化量 dIk(t) の一定倍 Bk,i
の和である。 dSi*(t) =Σk Bi,k・dIk(t) 行列表現では, dS*=B・dI ただし、dI = (dIk(t) ), B=(B,i,k), dS*=(dS*i(t)) (2) 機器i の第k高調波電流変化量dSk,i(t)は、機
器i の規格化高調波電流変化量 dSi*(t) の一定倍 Ak,
i dSk,i(t)=Ak,i・dS*i(t) ただし、 Ak,i は、Bの逆行列の(k,i)成分である。な
お、行列Aを「混合行列」、行列Bを「分離行列」と呼
ぶ。
"Linearity Hypothesis 2" (1) The normalized harmonic current variation dS * i (t) of device i is
Constant multiple of each harmonic current variation dIk (t) of total current Bk, i
Is the sum of dSi * (t) = Σk Bi, k ・ dIk (t) In the matrix representation, dS * = B ・ dI where dI = (dIk (t)), B = (B, i, k), dS * = ( dS * i (t)) (2) The kth harmonic current variation dSk, i (t) of equipment i is a constant multiple of the normalized harmonic current variation dSi * (t) of equipment i Ak,
i dSk, i (t) = Ak, i * dS * i (t) where Ak, i is the (k, i) component of the inverse matrix of B. The matrix A is called a “mixing matrix” and the matrix B is called a “separation matrix”.

【0028】線形性仮説の下では、分離行列Bが既知で
あれば,総電流の高調波電流変化量から、機器の規定化
高調波電流変化量が推定できる。ただし、周波数強度A
k,iの比率が同一の機器は、逆行列が存在しないため区
別できない。このため厳密には、周波数強度の比率が同
一の機器群を,仮想的に一つの機器として扱う。
Under the linearity hypothesis, if the separation matrix B is known, the specified harmonic current change amount of the device can be estimated from the harmonic current change amount of the total current. However, frequency strength A
Devices with the same ratio of k and i cannot be distinguished because there is no inverse matrix. Therefore, strictly speaking, a device group having the same frequency intensity ratio is virtually treated as one device.

【0029】「独立性」各信号源たる機器の電流波形は
互いに独立である。即ち、機器の電流変化量の独立性
は、各機器の動作(スイッチオン、オフや動作モード変
化)が他の機器の動作と無関係、独立に行われることに
由来する。
"Independence" The current waveform of each signal source device is independent of each other. That is, the independence of the amount of change in the current of a device is derived from the fact that the operation of each device (switch on / off or change of operation mode) is performed independently of the operation of other devices.

【0030】数学的には,機器i,jの電流変化量 dS* i
(t), dS* j(t) の独立性は、 ・時刻tに機器i の電流変化量 dS* i(t) = x となる確
率Pr(dS* i=x), ・時刻tに機器 jの電流変化量dS* j(t)=y となる確率P
r(dS* j=y)、 ・時刻tに機器i の電流変化量 dS* i(t) = x かつ機器
jの電流変化量dS* j(t)=y となる 確率Pr(dS* i=x,dS* j=y) とするとき、 Pr(dS* i=x,dS*j=y)=Pr(dS* i=x)・Pr
(dS* j=y)が成立することである。このとき、推定さ
れた各信号源の信号を、独立成分と呼ぶ。
Mathematically, the current change amount dS * i of the devices i and j
The independence of (t), dS * j (t) is as follows: Probability that the current change amount dS * i (t) = x of device i at time t Pr (dS * i = x), Probability P of current change amount dS * j (t) = y of j
r (dS * j = y), ・ Current change amount of device i at time t dS * i (t) = x and device
When Pr (dS * i = x, dS * j = y) is the probability that the current change amount of j is dS * j (t) = y, Pr (dS * i = x, dS * j = y) = Pr (dS * i = x) Pr
(dS * j = y) holds. At this time, the estimated signal of each signal source is called an independent component.

【0031】この標準的独立成分分析は、信号源固有の
特性モデルを持たず、観測信号が独立な信号源からの信
号の線形の重ね合わせであることのみを仮定して、各信
号源の信号の独立性を示す指標(独立性指標)を最大化
する分離行列Bを求めることで、信号源Sを推定する。
即ち、本発明では、線形性仮説2における分離行列Bが
不明の場合でも、機器の電流変化量の独立性に着目し
て,独立成分分析手法を適用することで、推定される機
器の高調波電流量の間の独立性指標を最大とする分離行
列Bを求めるようとするものである。さらに、線形性仮
説2(2)に従い、周波数強度の行列である、分離行列
Bの逆行列Aを求めることで,周波数強度比率が同一の機
器群別の基本波電流変化量を推定する。
This standard independent component analysis has no source-specific characteristic model, and only assumes that the observed signal is a linear superposition of signals from independent sources, The signal source S is estimated by obtaining the separation matrix B that maximizes the index (independence index) indicating the independence of.
That is, according to the present invention, even if the separation matrix B in the linearity hypothesis 2 is unknown, by focusing on the independence of the current change amount of the device and applying the independent component analysis method, it is possible to estimate the harmonics of the device. The separation matrix B that maximizes the independence index between the current amounts is obtained. Further, according to the linearity hypothesis 2 (2), a separation matrix, which is a matrix of frequency intensity,
By obtaining the inverse matrix A of B, the fundamental current variation for each device group with the same frequency intensity ratio can be estimated.

【0032】これによって、総電流の高調波電流変化か
ら、周波数強度比が同一機器群別の基本電流量変化を推
定できる。 〔機器動作特性モデルによる精度向上〕上述の標準的な
独立成分分析は信号源固有の特性モデルは持たず、信号
の特性は完全に未知であるとしているため、似た特性を
もつ信号源が混信する場合がある。そこで、機器別の電
流変化量の比率、機器の電流変化の定格が既知の場合
は、その情報に基づいて、上述の標準的な独立成分分析
で得られた基本電流変化量を機器別の電流変化に分離す
ることで、機器別の電流変化量を推定できる。
As a result, it is possible to estimate the change in the basic current amount for each device group having the same frequency intensity ratio from the change in the harmonic current of the total current. [Improvement of accuracy by device operating characteristic model] The standard independent component analysis described above does not have a characteristic model peculiar to a signal source, and the characteristic of the signal is completely unknown, so signal sources with similar characteristics may interfere. There is a case. Therefore, if the ratio of the current change amount of each device and the rating of the current change of the device are known, the basic current change amount obtained by the standard independent component analysis described above is used as the current of each device based on that information. By separating into changes, it is possible to estimate the amount of change in current for each device.

【0033】提案手法では、各信号源(機器)固有の動
作特性モデルを、取りうる信号レベルSi(t)の確率分布
Pri(s)として与え、これを使用して分離精度を向上
させる。
In the proposed method, an operating characteristic model peculiar to each signal source (device) is given as a probability distribution Pr i (s) of possible signal levels S i (t), and this is used to improve separation accuracy. .

【0034】機器の消費電流の電流変化は、特定の値の
周りに極端に集中する傾向がある。たとえば、オン・オ
フ型機器では、0か定格値のいずれかとなる。インバー
タ機器などでも同様の傾向が生じる。
The current variation of the current consumption of the device tends to be extremely concentrated around a certain value. For example, in an on / off type device, it is either 0 or the rated value. A similar tendency occurs in inverter equipment.

【0035】分離精度向上には,2つの手段を取る。第
1に、独立成分分析で最大化する独立性指標を動作特性
モデルに基づいて最適化する。得られた独立性指標を最
大化することで、機器特性ににあった信号分離を行う。
Two measures are taken to improve the separation accuracy. First
First, the independence index maximized by independent component analysis is optimized based on the behavioral characteristic model. By maximizing the obtained independence index, signal separation suitable for device characteristics is performed.

【0036】第2に、分離した独立成分に対して機器固
有の動作特性モデルを使用して、対応する機器の信号を
分離する。これは、信号レベルを除いた動作特性が類似
しているため混信が生じている場合の信号分離に有効で
ある。
Second, the device-specific operating characteristic model is used for the separated independent components to separate the signals of the corresponding devices. This is effective for signal separation when interference occurs because the operation characteristics are similar except for the signal level.

【0037】図2に本発明の遠隔電気機器監視方法を実
現する装置の一実施形態を示す。この遠隔電気機器監視
装置は、基本的には、電力需要家1の給電線2から総負
荷電流を測定する総電流センサ11と、総負荷電流から
当該総負荷電流の基本波並びに高調波の電流に変換する
周波数成分変換装置12と、総負荷電流の基本波並びに
高調波毎の電流の時間差分をとって電流変化を求める時
間差分装置13と、該電流変化を独立成分分析により同
一の高調波強度比を持つ機器群として推定される成分毎
に分離する独立成分分析装置14と、同一高調波強度比
率成分毎の電流変化の波形から監視対象機器3の機器別
の可動状況(電流変化)を推定する機器別信号分離装置
15とを備えている。
FIG. 2 shows an embodiment of an apparatus for implementing the remote electric equipment monitoring method of the present invention. This remote electric device monitoring device is basically a total current sensor 11 that measures a total load current from a power supply line 2 of an electric power consumer 1, and a total current and a fundamental wave and a harmonic current of the total load current. A frequency component conversion device 12 for converting into a frequency component, a time difference device 13 for obtaining a current change by taking a time difference between the fundamental wave of the total load current and the current of each harmonic, and the same harmonic by the independent component analysis of the current change. The independent component analysis device 14 that separates each component estimated as a device group having an intensity ratio, and the movement status (current change) of each device of the monitored device 3 from the waveform of the current change for each same harmonic intensity ratio component. And a device-specific signal separation device 15 for estimating.

【0038】測定センサー11は、非侵入的なシステム
にするために、電力需要家1の引込線2の引込口付近に
一箇所のみ設置されている。測定センサー11は、電流
を得るもので例えば変流器で構成されている。本実施形
態においては、単相三線式引き込み線を使用する日本国
内における一般電力需要家について実施する場合を例に
挙げているので、A相用の計器用変流器並びにB相用の
計器用変流器とから構成されている。例えば、A相用並
びにB相用の計器用変流器には貫通型を使用するものと
すると、計器用変流器はA相に流れる電流を一次側で測
定して二次側からA相の電流と相似の電流 を出力し、
また計器用変流器はB相に流れる電流を一次側で測定し
て二次側からB相の電流と相似の電流を出力する。これ
ら電流は、周波数成分変換装置たる高速フーリエ変換装
置12に入力される。
The measuring sensor 11 is installed only at one place near the service entrance of the service line 2 of the power consumer 1 in order to make the system non-invasive. The measurement sensor 11 obtains an electric current and is composed of, for example, a current transformer. In the present embodiment, the case where it is carried out for a general electric power consumer in Japan that uses a single-phase three-wire service wire is taken as an example, and therefore, for a current transformer for an A-phase instrument and for a B-phase instrument. It is composed of a current transformer. For example, if a through-type current transformer is used for the A-phase and B-phase measuring instruments, the measuring current transformer measures the current flowing in the A-phase on the primary side and measures the current flowing from the secondary side to the A-phase. Output a current similar to the current of
The current transformer for measuring instrument measures the current flowing in the B-phase on the primary side and outputs a current similar to the B-phase current from the secondary side. These currents are input to the fast Fourier transform device 12, which is a frequency component converter.

【0039】高速フーリエ変換装置12は、測定センサ
ー11で検出した総負荷電流から総負荷電流の基本波並
びに高調波毎の電流に関するデータを取り出すものであ
る。具体的には、図示していないが、例えばアナログ/
デジタル(A/D)変換器と、高速フーリエ変換器とか
ら構成され、測定センサー11から入力されたA相及び
B相の電流I,IをA/D変換器でデジタルデ
ータに変換してから、高速フーリエ変換器で高調波電流
データIA(1−13),IB(1−13)を得るよう
にされている。ここで、電流データIA1、IB1はそ
れぞれ総負荷電流の基本波の電流を示し、電流データI
A(2−13)、IB(2−13)は添字(2−13)
が高調波の次数即ち2次から13次を表す高調波の電流
をそれぞれ示し、給電線に供給される交流電力の基本周
波数にその次数の数値を乗ずることでその高調波のもつ
周波数を表す。例えば、基本周波数が50Hzの場合、
3次高調波電流とは150Hzの周波数成分のみをもつ
電流成分のことを指す。高調波は一般に奇数次のものが
卓越して現れ、偶数次のものは小さいため、ここでは基
本波並びに奇数次の高調波データを時間差分装置13に
入力として与えている。
The fast Fourier transform device 12 extracts data on the fundamental wave of the total load current and the current for each harmonic from the total load current detected by the measurement sensor 11. Although not specifically shown, for example, analog /
It is composed of a digital (A / D) converter and a fast Fourier transformer, and converts the A-phase and B-phase currents I A and I B input from the measurement sensor 11 into digital data by the A / D converter. Then, the fast Fourier transformer is used to obtain the harmonic current data IA (1-13) and IB (1-13) . Here, the current data I A1 and I B1 respectively indicate the current of the fundamental wave of the total load current, and the current data I A1 and I B1
A (2-13) and IB (2-13) are subscripts (2-13)
Denote the harmonic orders, that is, the currents of the harmonics representing the 2nd to 13th orders, respectively, and the frequency of the harmonics is expressed by multiplying the fundamental frequency of the AC power supplied to the feeder line by the numerical value of the order. For example, if the fundamental frequency is 50Hz,
The third harmonic current refers to a current component having only a frequency component of 150 Hz. In general, odd-numbered harmonics are predominant, and even-numbered harmonics are small, so that the fundamental wave and odd-numbered harmonic data are input to the time difference device 13 here.

【0040】時間差分装置13は、フーリエ変換器12
で変換された総負荷電流の基本波と高調波毎の時間差分
をとって電流電流変化量を求めて出力するものである。
The time difference device 13 includes a Fourier transformer 12
The time difference between the fundamental wave and the harmonic wave of the total load current converted in step S1 is taken to obtain and output the amount of change in current and current.

【0041】この独立成分分析装置14は、電流変化を
独立成分分析により同一の高調波強度比を持つ機器群と
して推定される成分毎に分離するもので、図3〜図5の
アルゴリズムを実行するコンピュータによって独立成分
分析を実行するものである。また、機器別信号分離装置
15は、同一高調波強度比率成分毎の電流変化の波形か
ら監視対象機器3の機器別の可動状況(電流変化)を推
定するもので、図6のアルゴリズムを実行するコンピュ
ータによって独立成分分析を実行するものである。
The independent component analysis device 14 separates the current change into each component estimated as a device group having the same harmonic intensity ratio by the independent component analysis, and executes the algorithm of FIGS. 3 to 5. Independent component analysis is performed by a computer. The device-based signal separation device 15 estimates the movable condition (current change) of the monitored device 3 for each device from the waveform of the current change for each identical harmonic intensity ratio component, and executes the algorithm of FIG. 6. Independent component analysis is performed by a computer.

【0042】図3〜図6に一例を標準的アルゴリズム及
び動作特性モデルを用いたアルゴリズムによって、周波
数強度比率が同じ機器群別の基本波電流変化量の推定を
行う。
3 to 6 show an example of a standard algorithm and an algorithm using an operating characteristic model for estimating the fundamental wave current variation for each device group having the same frequency intensity ratio.

【0043】まず、総電流の1次(基本波)〜第13次
(高調波)までの奇数次高調波の電流値dIk(t)=
Ik(t)−Ik(t−1)を入力する(ステップS
1)。
First, the current value dIk (t) of odd-numbered harmonics from the first (fundamental wave) to the thirteenth (harmonic) of the total current =
Input Ik (t) -Ik (t-1) (step S
1).

【0044】次いで分離行列B=( Bi,k )の初期値を
設定する(ステップS2)。設定は、以下による。Uを
ランダムなn次回転行列,総電流の第1〜第n高調波電
流変化量dIk(t)の共分散行列の固有値分解を固有値分解
V・D・Vt とするとき、B= U・D-1/2・V とする。共分
散行列は共分散 Σt (dIk(t)-dIkの平均)・(dIl(t)-dIl
の平均)/Tを要素とする。
Then , the initial value of the separation matrix B = (B i, k ) is set (step S2). The settings are as follows. U is a random n-th rotation matrix, and the eigenvalue decomposition of the covariance matrix of the first to nth harmonic current variation dIk (t) of the total current is performed.
When V ・ D ・ Vt, B = U ・ D-1 / 2 ・ V. The covariance matrix is the covariance Σ t (mean of dI k (t) -dI k ) ・ (dI l (t) -dI l
Is the average) / T.

【0045】次いで、機器群別の規格化電流変化量 dS
*i(t)=ΣiBi,k・dIk(t) の推定を行う(ステップS
3)。
Next, the normalized current change amount dS for each device group
* i (t) = Σ i B i, k · dI k (t) is estimated (step S
3).

【0046】次いで、機器別群の規格化電流変化量の独
立性指標IND(dS*)が改善するように、分離行列Bを自然
勾配法、または、不動点独立成分分析により改善する
(ステップS4)。ここで、本発明で使用する独立成分
分析手法としては、各種の独立成分分析手法を使用でき
る。電流変化量dS*i,dS*jが独立な時に最大となる独立
性指標IND(dS*)としては、一般に ・ Σit dS* i(t)4 /T-3)2 :各機器のクルトシスの平方和 ・ Σit log(cosh(πdS* i))/T)2 の平方和が使用される。
Then, the separation matrix B is improved by the natural gradient method or the fixed point independent component analysis so that the independence index IND (dS * ) of the standardized current change amount of each device group is improved (step S4). ). Here, various independent component analysis methods can be used as the independent component analysis method used in the present invention. In general, Σ it dS * i (t) 4 / T-3) 2 : each as the independence index IND (dS * ) that is maximum when the current variation dS * i, dS * j is independent. The sum of squares of the instrument's Kurtosis. The sum of squares of Σ it log (cosh (πdS * i )) / T) 2 is used.

【0047】ここで、オンオフ動作など機器の大きな電
流変化量の推定精度を高めるためには、クルトシスの和
を指標として使用することが有効である。また、本発明
では、監視対象機器の電流記録が既にある場合、これら
の波形に対する分離精度が高い独立性IND(dS)を、図4
に示すアルゴリズムによって決定し、その指標を使用す
ることで、監視対象機器の分離精度を高める。
Here, it is effective to use the sum of Kurtosis as an index in order to improve the estimation accuracy of a large amount of current change of the device such as on / off operation. Further, according to the present invention, when the current record of the monitored device is already present, the independence IND (dS) with high separation accuracy for these waveforms is set as shown in FIG.
The accuracy of separation of monitored devices is increased by using the index determined by the algorithm shown in.

【0048】独立性指標を最大化するアルゴリズムとし
ては、 ・ IND(dS)の不動点を求める不動点独立成分分析
(Fixed Point ICA) ・ IND(dS)がクルトシスの平方和の場合に高速な
JADE アルゴリズム ・ IND(dS)の山登り法を改良した、自然勾配方向
への山登り法(特に、オンライン更新に適する)があ
る。
The algorithm for maximizing the independence index is as follows: Fixed point independent component analysis for finding the fixed point of IND (dS)
(Fixed Point ICA) ・ High speed when IND (dS) is Kurtosis sum of squares.
There is a hill climbing method (especially suitable for online update) in the natural gradient direction that is an improvement of the hill climbing method of JADE algorithm / IND (dS).

【0049】本発明で、独立性指標IND(dS)をアルゴ
リズムXにより求めた場合は、自然勾配法による更新を
行う(図5の分離行列更新アルゴリズム)を使用する。
In the present invention, when the independence index IND (dS) is obtained by the algorithm X, the update by the natural gradient method (separation matrix update algorithm of FIG. 5) is used.

【0050】次いで、分離行列Bの更新回数が設定値以
上、または、更新量が一定値以上ならステップ4へ、そ
うでないなら、ステップ6へジャンプする(ステップS
5)。
Next, if the number of updates of the separation matrix B is equal to or greater than a set value or the amount of update is equal to or greater than a fixed value, the process jumps to step 4, otherwise, jumps to step 6 (step S).
5).

【0051】次いで、混合行列Aの推定 A=Bの逆行
列とする(ステップS6)。Ak,iは各機器群の高調波
強度となる。
Next, the estimation of the mixing matrix A is made an inverse matrix of A = B (step S6). A k, i is the harmonic intensity of each device group.

【0052】次いで、各機器群の基本波電流変化量dSi
(t)の推定、つまりdSi(t)=A1,i ・dS* i(t) を実行する
(ステップS7)。
Then, the fundamental wave current variation dS i of each device group
The estimation of (t), that is, dS i (t) = A 1, i · dS * i (t) is executed (step S7).

【0053】そして、各機器群 iの基本波電流変化量 d
Si(t),基本波及び各高調波強度 Ak, i を出力する(ス
テップS8)。
Then, the fundamental current variation d of each device group i
S i (t), the fundamental wave and each harmonic intensity A k, i are output (step S8).

【0054】上述のステップ8で得られた機器群基本電
流変化量からの機器別電流変化量の推定は、例えば図6
のアルゴリズムに従って行われる。即ち、 機器群
別電流変化量 dSi(t) 機器群の第k周波数強度 Aki 対象機器jの動作時の周波数強度 Ckj (オン・オフ型機器の場合は、基本波のCkjが定格電流
値、高次のCkj=0) を入力し(ステップ9)、機器jの電流変化量推定の初
期設定 dS’(t) = 0,t=1..T を行う(ステップ1
0)。
The estimation of the device-specific current change amount from the device group basic current change amount obtained in step 8 described above can be performed by, for example, referring to FIG.
The algorithm is used. That is, the amount of change in current by device group dSi (t) k-th frequency intensity of device group Aki Frequency intensity Ckj of target device j during operation (In the case of on-off type device, Ckj of the fundamental wave is the rated current value or high Next, input Ckj = 0) (step 9), and perform initial setting dS '(t) = 0, t = 1..T for estimating the current change amount of device j (step 1).
0).

【0055】次いで、周波数強度比の一致判定を行う
(ステップ11)。これは、機器群iの周波数強度ベク
トル{Aki,k=1..n}と機器jの周波数強度ベクトル{Ckj,
k=1,..n}の角度の余弦(cos)=|Σk Aki・Ckj| /√((Σk
Aki2)(ΣkCkj2))が一定値1−ε0以下であれば、不適合
として終了する。
Next, the coincidence of the frequency intensity ratios is determined (step 11). This is the frequency intensity vector {Aki, k = 1..n} of device group i and the frequency intensity vector {Ckj, of device j.
Cosine of angle k = 1, .. n} (cos) = | Σ k A ki・ C kj | / √ ((Σ k
If A ki 2) (Σ k C kj 2)) is less than or equal to the constant value 1−ε 0 , the process ends as nonconformity.

【0056】次いで、電流変化量の一致判定を行う(ス
テップ12)。これは、機器群 iのdSi(t)が機器jの
基本波周波数強度 C1j±ε以内である時刻 t に対し
て、その電流変化は機器jによるものと判定 dS’j(t) = dSi(t), dSi(t) = 0 とする。
Then, the coincidence of the current change amounts is judged (step 12). This is because at time t when dSi (t) of device group i is within the fundamental frequency intensity C1j ± ε of device j, it is determined that the current change is due to device j dS'j (t) = dSi ( t) and dSi (t) = 0.

【0057】そして、機器jの電流変化 dS’j(t), t=
1..T並びに機器jの動作で説明できない電流変化dSi
(t), t=1..Tを出力する(ステップ13)。
Then, the current change dS'j (t), t = of the device j
1. Current change dSi that cannot be explained by the operation of T. and device j
(t), t = 1..T is output (step 13).

【0058】尚、最適独立指標の推定は図4のアルゴリ
ズムに従って、また、ステップ4の分離行列Bの更新は
については図5の最適独立性指標Gを用いた時の分離行
列更新アルゴリズムに従って行われる。
The optimum independent index is estimated according to the algorithm of FIG. 4, and the separation matrix B in step 4 is updated according to the separation matrix updating algorithm when the optimum independence index G of FIG. 5 is used. .

【0059】以上のように構成された遠隔電気機器監視
装置によると、給電線引込口付近に設置された測定セン
サー11からの未知の測定データ(電流I,I
)を高速フーリエ変換装置12から取り出して時間
差分装置13、独立成分分析装置14並びに機器別信号
分離装置15により、同じ周波数特性即ち同一比率を示
す電気機器群毎の電流変化に分離されて出力される。そ
こで、この電流変化の波形から、電気機器3(ノンイン
バータ機器、インバータ機器)の個別の動作状況と消費
電流(ひいては電力)を推定することができる。
According to the remote electric equipment monitoring apparatus configured as described above, unknown measurement data (currents I A , I A) from the measurement sensor 11 installed near the power feed line entrance is provided.
B ) is taken out from the fast Fourier transform device 12, separated by the time difference device 13, the independent component analysis device 14 and the device-specific signal separation device 15 into current changes for each electric device group having the same frequency characteristic, that is, the same ratio, and output. To be done. Therefore, from the waveform of this current change, it is possible to estimate the individual operating status and the consumed current (and thus the power) of the electric device 3 (non-inverter device, inverter device).

【0060】本願発明の有用性を確認するため、以下の
実験を行った。引き込み口の電力線で電流計が接続さ
れ、使用された総電流を秒単位で計測している状態を想
定する。この計測信号からその内訳となる各機器の毎秒
の使用電流を推定して、提案手法の有効性を検証する。
このためには、毎秒の各機器の使用電流と総電流のデー
タが必要となる。データは、負荷となる電気機器毎の使
用電流を測定する電流計と総負荷電流を測定する電流計
とを備え、総負荷電流を基本波と高調波とに変換する高
速フーリエ変換装置とから成る計測装置(図示省略)に
よって得られた。ここで、計測装置には、正弦波電源装
置(50Hz,100V,2KVA)と、個別負荷毎に
動作状態を切り替えるスイッチとを備え、インバータ機
器の電流(例えば、インバータエアコンなら室内設定温
度や設定風速を変化させることで電流を変えることがで
きる。)やノンインバータ機器の電流(例えば、白熱灯
ならば点灯する個数を増減することで電流を変えること
ができる。)を任意に設定することにより、負荷のさま
ざまな使用状況の組合せが得られるようにしている。
The following experiments were conducted to confirm the usefulness of the present invention. It is assumed that an ammeter is connected to the power line at the service entrance and the total current used is measured in seconds. The effectiveness of the proposed method is verified by estimating the used current per second of each device, which is a breakdown of the measured signal.
For this purpose, data on the current used and the total current of each device every second are required. The data includes an ammeter for measuring a current used for each electric device as a load, an ammeter for measuring a total load current, and a fast Fourier transform device for converting the total load current into a fundamental wave and a harmonic. It was obtained by a measuring device (not shown). Here, the measurement device includes a sine wave power supply device (50 Hz, 100 V, 2 KVA) and a switch that switches the operating state for each individual load, and the current of the inverter device (for example, in the case of an inverter air conditioner, the indoor set temperature or the set wind speed). Can be changed to change the current) or the current of the non-inverter device (for example, the current can be changed by increasing or decreasing the number of incandescent lamps to be lit). We are trying to obtain various combinations of load usage.

【0061】各機器の毎秒の電流値は、各機器に接続し
た電流計を用いて計測している。各電流計の計測値は、
基本波(50Hz)成分の実効電流値となっている。一方、
総電流は、厳密には、毎秒の総電流ではない。毎秒1
回、基本波5周期分(5/50秒間)だけ総電流の計測を行
い、その高速フーリエ変換(FFT)により得られる基本
波(50Hz)から13次(650Hz)までの奇数次の高周波
成分の実効電流値、実効電圧、電圧と電流の位相角を記
録している。分析では、電圧・位相角は使用せず、実効
電流のみに着目する。
The current value per second of each device is measured by using an ammeter connected to each device. The measured value of each ammeter is
It is the effective current value of the fundamental wave (50Hz) component. on the other hand,
The total current is not strictly the total current per second. 1 per second
The total current is measured only for 5 cycles of the fundamental wave (5/50 seconds), and the fundamental wave (50Hz) to the 13th order (650Hz) of the high frequency component of the odd order obtained by the fast Fourier transform (FFT) is measured. The effective current value, effective voltage, and phase angle between voltage and current are recorded. In the analysis, the voltage and phase angle are not used, and only the effective current is focused.

【0062】計測法が異なるため、総電流値が機器の電
流計の電流値の合計と一致するとは限らない。総電流値
と各機器電流値の合計の誤差は平均 −0.1A、標準偏差
0.05Aであった。-0.1±0.4A以上の誤差となる率は0.
01%以下であった。
Since the measuring methods are different, the total current value does not always match the total current value of the ammeters of the equipment. The average error of the total current value and the total current value of each device is -0.1 A, standard deviation.
It was 0.05A. The rate of error of -0.1 ± 0.4 A or more is 0.
It was less than 01%.

【0063】実験では、表1に示す15機器を接続して
計測した。
In the experiment, 15 devices shown in Table 1 were connected and measured.

【表1】 そのうち、8機器(表1末尾欄参照)のスイッチのオン
/オフを変えた256(=28)ケースについて、約5分
間(900秒)の計測を行っている。他の7機種中、ポ
ットと冷蔵庫の2機器は、自動運転により自律的に保温
・冷却モードに入ったが、電子レンジなど5機器はオフ
状態で接続したため、消費電流はほとんどない。なお、
白熱灯は同型が5球あるが、これをオンとするケースで
は、時間経過に従い1個、2個、…、5個と順次オンに
していった。蛍光灯やインバータ蛍光灯についても同様
の操作をしている。〔電気機器波形の特徴と電流変化値
の独立性仮説〕独立性の仮定に基づく信号分離を行うた
めには、分離結果となる各波形が互いに独立、すなわ
ち、関連をもたずに変化する必要がある。しかし、この
仮説は電気機器の電流波形については必ずしも成立しな
い。
[Table 1] Among them, for 8 devices 256 changed the switch on / off (Table 1 trailing column reference) (= 2 8) cases, it is carried out measuring about 5 minutes (900 seconds). Of the seven other models, two devices, a pot and a refrigerator, entered the heat retention / cooling mode autonomously by automatic operation, but the five devices such as a microwave oven were connected in the off state, and therefore consume almost no current. In addition,
There are 5 incandescent lamps of the same type, but in the case of turning this on, one, two, ..., 5 were turned on sequentially as time passed. Similar operations are performed for fluorescent lamps and inverter fluorescent lamps. [Independence hypothesis of electric equipment waveform characteristics and current change value] In order to perform signal separation based on the assumption of independence, it is necessary for each waveform resulting from the separation to be independent of each other, that is, to change without any association. There is. However, this hypothesis does not always hold for the current waveform of electrical equipment.

【0064】一例として、エアコン2台(A1,A2)、イ
ンバータ式蛍光灯(F1)、テレビ1台(T3)をオンとし
たケース197(11000101)について、図7に示す。図
7の上段は、各機器の5分間(900秒間)の実効総電流値
のグラフである。
As an example, FIG. 7 shows a case 197 (11000101) in which two air conditioners (A1, A2), an inverter type fluorescent lamp (F1), and one TV (T3) are turned on. The upper part of FIG. 7 is a graph of the effective total current value of each device for 5 minutes (900 seconds).

【0065】エアコンA1、A2が類似した形で変化してい
ることがわかる。これは、両方のエアコンをほぼ同時に
起動した結果である。このため、独立性の仮説に基づき
分離すると、両エアコンの共通挙動の成分と差分成分と
が各独立成分となる。ほぼ同時に複数の機器のスイッチ
をつけるようなことはしばしば見受けられるので、電気
機器の電流値間に独立性を直接仮定することは難しい。
It can be seen that the air conditioners A1 and A2 are changing in a similar manner. This is the result of starting both air conditioners at about the same time. Therefore, when the components are separated based on the independence hypothesis, the component of the common behavior of both air conditioners and the difference component become the independent components. Since it is often found that multiple devices are switched at almost the same time, it is difficult to directly assume independence between electric current values of electric devices.

【0066】一方、図7の下段は、各時刻の各機器の実
効電流値の変化量(時刻tと時刻t+1での電流値の
差、以下、電流変化(量))を示す。各機器の電流変化
量の時間変化に類似性が少なく独立性が高いことがわか
る。機器の動作の全体的傾向が類似している場合でも、
エアコンが冷却動作に入る(実効電流値の立ち上がり
部)など、各機器が特定の動作モードに入るタイミング
は特別な同期機構がない限り、各機器で自律的に制御さ
れる。このため、電流変化の独立性が高くなっていると
推測できる。
On the other hand, the lower part of FIG. 7 shows the amount of change in the effective current value of each device at each time (difference in current value between time t and time t + 1, hereinafter, current change (amount)). It can be seen that there is little similarity in the time change of the current change amount of each device and the independence is high. Even if the overall behavior of the equipment is similar,
Unless a special synchronization mechanism is provided, the timing at which each device enters a specific operation mode, such as when the air conditioner enters a cooling operation (rising part of the effective current value), is autonomously controlled by each device. Therefore, it can be inferred that the independence of the current change is high.

【0067】各機器の電流変化の独立性は、各機器動作
の自律性を反映したものであり、一般的に成立する有効
な仮説であると期待できる。なお、電流変化から求めた
分離行列はそのまま実効電流に対する分離行列として使
用できる。
The independence of the current change of each device reflects the autonomy of the operation of each device and can be expected to be a generally valid and valid hypothesis. The separation matrix obtained from the current change can be used as it is as the separation matrix for the effective current.

【0068】独立性仮説の検証のために、稼動機器の実
効電流に対して標準的な独立成分分析アルゴリズムJADE
( J.F. Cardoso et. al.: “Blind beamforcing for n
on-Gaussian signals”, IEE Proceedings -F, 140(6):
362-370, 1993.)を適用した場合と、稼動機器の電流変
化に対して同じアルゴリズムを適用した場合との比較
を、全256ケースについて行った。その結果を図8に
示す。この実験では、各稼動機器の実効電流、電流変化
を分散1に正規化して入力信号として与えているので、
理想的には入力信号そのものが独立成分となる。すなわ
ち、分離行列は単位行列となるべきである。図8は、求
められた分離行列と単位行列とのずれ(対角成分の絶対
値の最小値と1との差)を示す。0は完全な分離・再現
ができていることを、1に近くなるほど、分離がうまく
いかず混信していることを意味する。
In order to verify the independence hypothesis, the standard independent component analysis algorithm JADE for the effective current of the operating equipment is used.
(JF Cardoso et. Al .: “Blind beamforcing for n
on-Gaussian signals ”, IEE Proceedings -F, 140 (6):
362-370, 1993.) and a case where the same algorithm is applied to the current change of the operating equipment are compared for all 256 cases. The result is shown in FIG. In this experiment, the effective current and current change of each operating device are normalized to variance 1 and given as an input signal.
Ideally, the input signal itself is an independent component. That is, the separation matrix should be the identity matrix. FIG. 8 shows the deviation between the obtained separation matrix and the unit matrix (difference between the minimum absolute value of the diagonal components and 1). 0 means that the separation and reproduction are complete, and the closer to 1, the more difficult the separation is and the more the interference occurs.

【0069】電流変化による場合は、混信の度合いは最
大0.57で、256ケース中217ケースで混信の度
合いが0.05以下の精度の高い分離を実現しているの
に対して、実効電流による場合には、0.9以上の混信
が半数以上の132ケースで生じている。
In the case of a change in current, the degree of interference is 0.57 at maximum, and in 217 cases out of 256 cases, the degree of interference is 0.05 or less, which realizes highly accurate separation, while the effective current According to the above, interference of 0.9 or more occurs in more than half of 132 cases.

【0070】各機器の電流変化の独立性仮説は、機器の
実効電流の分離に有効であることが確認された。
It was confirmed that the independence hypothesis of the current change of each device is effective for separating the effective current of the device.

【0071】〔機器別実効電流と線形性仮説〕次に、計
測される総電流の各周波数の実効電流と推定したい各機
器の実効電流の関係について検討する。
[Equipment-Specific Effective Current and Linearity Hypothesis] Next, the relationship between the effective current of each frequency of the measured total current and the effective current of each device to be estimated will be examined.

【0072】図9は、ケース197での各周波数成分お
よびエアコン(A1、A2)の電流変化(量)の時間変化で
ある。エアコンA1とA2が冷却モードから定常運転に切替
わった時点(図9の時刻150秒付近の点線部)に着目す
ると、両者で第3次波が同じように発生するのに対し
て、第5次波では逆向きに、また、第13次波ではエアコ
ンA2のみが強く影響していることが観察できる。このよ
うに、各機器の動作モードの変化は、各周波数成分の電
流変化値に異なる寄与をしている。従って、各周波数成
分の電流変化から各機器の電流変化を推定できる可能性
がある。ここで問題となるのは、独立成分分析で要請さ
れる「線形性」の仮定、すなわち、各信号源の波形が各
観察信号の波形の線形合成であらわされるという性質が
成立しているか否かである。
FIG. 9 is a time change of each frequency component and current change (amount) of the air conditioners (A1, A2) in the case 197. Focusing on the time point when the air conditioners A1 and A2 are switched from the cooling mode to the steady operation (the dotted line portion around the time 150 seconds in FIG. 9), the third-order wave is generated in the same way, while the fifth wave is generated. It can be observed that only the air conditioner A2 has a strong influence in the opposite direction on the next wave and on the 13th wave. As described above, the change in the operation mode of each device makes a different contribution to the current change value of each frequency component. Therefore, there is a possibility that the current change of each device can be estimated from the current change of each frequency component. The problem here is the assumption of "linearity" required for independent component analysis, that is, whether the property that the waveform of each signal source is expressed by the linear combination of the waveforms of the observed signals is satisfied. Is.

【0073】各機器からの電流の総和が総電流であるか
ら、本仮説は、機器iの各周波数での実効電流(Ij)の
比は、機器固有で、出力レベルや時間によらず一定、す
なわち、 (I1(t), I3(t),…,I13(t))=(a1, … ,a13) ・I0(t) となることを意味する。「機器の各周波数での実効電流
の比は、時間的に変化せず、機器固有の値を持つ」とい
う本仮説は、独立性仮説と同様に厳密には成立しない。
しかし、近似的に成立すれば、総電流の各周波数成分の
実効電流(電流変化)から、機器電流の電流変化の概略
が推定可能となる。
Since the sum of the currents from each device is the total current, the present hypothesis is that the ratio of the effective current (Ij) at each frequency of the device i is unique to the device and is constant regardless of the output level and time. That is, it means that (I 1 (t), I 3 (t), ..., I 13 (t)) = (a 1 , ..., A 13 ) · I 0 (t). This hypothesis that "the ratio of the effective current at each frequency of the device does not change over time and has a value unique to the device" does not hold exactly like the independence hypothesis.
However, if it holds approximately, it is possible to estimate the current change of the device current from the effective current (current change) of each frequency component of the total current.

【0074】実験では、各機器単独での基本周波数の実
効電流は計測されているが、周波数別実効電流は計測さ
れていないので、上記仮説の直接的検証は困難である。
ここでは、総電流の周波数別実効電流を用いて上記仮説
が成立したと仮定した場合の機器の基本周波数での実効
電流の予測精度を調べることで、上記仮説の成立状況を
検証する。
In the experiment, the effective current at the fundamental frequency of each device alone was measured, but the effective current for each frequency was not measured, so it is difficult to directly verify the above hypothesis.
Here, by verifying the prediction accuracy of the effective current at the fundamental frequency of the device when the above-mentioned hypothesis is assumed to be established using the effective current for each frequency of the total current, the status of establishment of the above-mentioned hypothesis is verified.

【0075】各周波数成分の実効電流値と機器の実効電
流値から、誤差の2乗平均の最小化(最小二乗法)によ
って、分離行列Bを求めた結果を図10に示す。図10
の上段は、各周波数での実効電流値から分離行列Bによ
って得た各機器の近似実効電流値である。図10の下段
は、各機器の近似実効電流値の差分値(以下、近似差分
電流)である。図7と見比べると、エアコン(A1,A2)
などについては、近似実効電流は実際の実効電流に近
く、線形性が近似的に成立していることがわかる。一
方、インバータ蛍光灯(F1)とポット(J)について
は、近似波形が実際の実効電流と大きく異なり、線形性
の仮定は良い近似を与えていない。ただし、両者の合計
値(F1+J)については、各々単独に推定するより近似
精度が改善し、近似的に線形性が成立していると考えら
れる。これは、近似差分電流値(図10)の各波形類似
性から推察されるようにインバータ蛍光灯とポットとは
類似した周波数特性(各周波数での実効電流の比率(a1/
a1,..,a13/a1))をもつためと考えられる。
FIG. 10 shows the result of obtaining the separation matrix B from the effective current value of each frequency component and the effective current value of the device by minimizing the mean square of the error (least square method). Figure 10
The upper row is the approximate effective current value of each device obtained by the separation matrix B from the effective current value at each frequency. The lower part of FIG. 10 shows the difference value of the approximate effective current value of each device (hereinafter, approximate difference current). Compared with Fig. 7, the air conditioner (A1, A2)
For example, the approximate effective current is close to the actual effective current, and it can be seen that the linearity is approximately established. On the other hand, for the inverter fluorescent lamp (F1) and the pot (J), the approximation waveforms differ greatly from the actual effective current, and the linearity assumption does not give a good approximation. However, regarding the total value (F1 + J) of both, the approximation accuracy is improved compared to the case of estimating each independently, and it is considered that linearity is approximately established. This is because the frequency characteristics of the inverter fluorescent lamp and the pot are similar (the ratio of the effective current at each frequency (a1 /
a1, .., a13 / a1)).

【0076】従って、線形性の仮定は、個別機器につい
て必ずしも成立するものではないが、類似した周波数特
性をもつ特定機器群を一つの機器とみなせば、近似的に
成立する。インバータ蛍光灯とポットのような類似した
周波数特性を示す機器をさらに分離するためには、各機
器の基本波の強度レベルI1=a1・I0に関する仮説、すな
わち、機器固有の電流変化の値(例:ポットJ:0.6A)
を導入する必要がある。(後述するように、これには、
機器動作特性モデルを使用すれば良い。)
Therefore, the assumption of linearity is not always established for individual devices, but is approximately established if a specific device group having similar frequency characteristics is regarded as one device. In order to further separate devices that show similar frequency characteristics such as inverter fluorescent lamps and pots, a hypothesis regarding the fundamental wave intensity level I 1 = a1 · I 0 of each device, that is, the value of the current change peculiar to the device (Example: Pot J: 0.6A)
Need to be introduced. (As described below, this includes
A device operating characteristic model may be used. )

【0077】周波数特性に基づく機器グループを検討す
るために、各ケースの動作機器間の近似差分電流、およ
び、近似差分電流の近似誤差(近似差分電流−実際の電
流変化)の相関係数を求め、絶対値平均をとったものを
図12に示す。前節で論じたように実際の電流変化自身
は、独立性が高く強い相関を示さない。近似差分電流の
相関係数が大きいことは、当該機器同士が類似した周波
数強度比を持つことを意味し、両機器の電流変化が一つ
の独立な信号成分として分離されやすいと予測される。
一方、近似電流変化誤差の相関係数は、電流変化のうち
線形性で捉えきれない部分の挙動の類似性を示す。従っ
て,この相関が高い機器は、別々の独立信号成分として
分離されるが、特定の時刻で両者の混信が生じる傾向が
あることと予測される。
In order to study the device group based on the frequency characteristics, the correlation coefficient of the approximate difference current between the operating devices in each case and the approximation error of the approximate difference current (approximate difference current-actual current change) is obtained. FIG. 12 shows the average of the absolute values. As discussed in the previous section, the actual current changes themselves are highly independent and do not show a strong correlation. A large correlation coefficient of the approximate difference current means that the devices have similar frequency intensity ratios, and it is predicted that the current changes of both devices are likely to be separated as one independent signal component.
On the other hand, the correlation coefficient of the approximate current change error indicates the similarity in behavior of the part of the current change that cannot be captured linearly. Therefore, although the devices with high correlation are separated as separate independent signal components, it is predicted that there is a tendency for interference between them to occur at a specific time.

【0078】図12から、機器群{白熱灯(4)、蛍光灯
(5)、インバータ式蛍光灯(6)、ポット(9)}は、近似差
分電流の相関係数(線形性部分)が高く、独立成分分析で
は区別しづらい機器群であると予測できる。また、機器
群{エアコンA2(2),扇風機(3),テレビ1(7)}も線形性
に関する類似性が高い。エアコン(A1(1),2(2))は、
扇風機(3)とテレビ1(7)以外のすべての機器との非線形
な類似性を持つことがわかる。特に、エアコン相互の関
連性が強く、部分的混信が生じやすいと考えられる。
From FIG. 12, the device group {incandescent lamp (4), fluorescent lamp
(5), the inverter type fluorescent lamp (6), and the pot (9)} have a high correlation coefficient (linear portion) of the approximate difference current, and can be predicted to be a device group that is difficult to distinguish by independent component analysis. The device group {air conditioner A2 (2), fan (3), television 1 (7)} also has a high degree of similarity in linearity. Air conditioners (A1 (1), 2 (2))
It can be seen that there is a non-linear similarity between the fan (3) and all equipment except the television 1 (7). In particular, air conditioners are strongly related to each other, and partial interference is likely to occur.

【0079】〔機器別電流変化の推定〕 〔標準的アルゴリズムの適用実験〕機器別電流変化に関
する独立性、および、適当な機器グループに対する線形
性を仮定し得ることが確認された。本節では、各周波数
成分の毎秒の実効電流値のみから、上記の独立性と線形
性の仮定に基づいて、未知の接続機器の毎秒の電流変化
を推定する実験について述べる。
[Estimation of Current Change by Device] [Experiment of Application of Standard Algorithm] It was confirmed that independence on current change by device and linearity with respect to an appropriate device group can be assumed. In this section, we describe an experiment to estimate the current change per second of an unknown connected device based on the above assumption of independence and linearity from only the effective current value per second of each frequency component.

【0080】実験では、まず、標準的独立成分分析手法
JADEを適用して個別機器の電流変化を推定した。機器動
作推定においては、一種の例外値とも言えるオン・オフ
時などのスパイク的電流変化が重要となるが、JADEは、
例外値の影響が強い独立性指標クルトシスの平方和の最
大化を効率的に行う。このため、JADEアルゴリズムを選
択した。
In the experiment, first, a standard independent component analysis method was used.
JADE was applied to estimate the current change of individual equipment. In estimating device operation, spike-like current changes such as on / off, which can be called an exceptional value, are important.
Efficiently maximize the sum of squares of the independence index Kurtosis, which is strongly influenced by the exceptional value. For this reason, the JADE algorithm was chosen.

【0081】図12にケース197での基本波〜13次
(奇数次)までの7周波数(図9の1段〜7段)を入力
として信号源の波形(基本周波数の電流変化)を推定し
た結果を示す。j次高調波の電流変化X、混合行列A、
分離行列Bとする時、第i推定成分の基本波の電流変化は
Si=ΣjA(1,i)・B(i,j)・Xjにより求まる。第1成分(最
大振幅3A),第2成分(2.8A),第3成分(0.8A),第4成分
(0.4A)が主な成分である。図13に、第1〜第3成分
と、対応する稼動機器の波形(基本波の電流変化)を示
す。
In FIG. 12, the waveform of the signal source (current change of the fundamental frequency) in the case 197 is estimated by inputting 7 frequencies (1st to 7th stages in FIG. 9) from the fundamental wave to the 13th order (odd order). The results are shown. current change X j of j-th harmonic, mixing matrix A,
When the separation matrix is B, the current change of the fundamental wave of the i-th estimated component is
S i = Σ j A (1, i) · B (i, j) · X j 1st component (maximum amplitude 3A), 2nd component (2.8A), 3rd component (0.8A), 4th component
(0.4A) is the main component. FIG. 13 shows the waveforms of the first to third components and the corresponding operating equipment (current changes of the fundamental wave).

【0082】第1成分はエアコンA1を、第2成分はエ
アコンA2を比較的良く再現している。ただし、詳しく
見ると第1成分には、エアコンA2の起動時の成分が一部
混信している(300秒、600秒付近)。なお、第
1、2成分の周波数強度は、混合行列Aを調べると、基本
波、3次波、5次波が主で第1成分が約10:6:2
に、第2成分が10:5:−1の強度比となっている。
The first component reproduces the air conditioner A1 relatively well, and the second component reproduces the air conditioner A2 relatively well. However, looking closely, the first component is partially interfering with the component when the air conditioner A2 is started (in the vicinity of 300 seconds and 600 seconds). In addition,
When the mixing matrix A is examined, the frequency intensity of the first and second components is mainly the fundamental wave, the third order wave, and the fifth order wave, and the first component is about 10: 6: 2.
In addition, the second component has an intensity ratio of 10: 5: -1.

【0083】第3成分は、単独の機器に対応していな
い。インバータ蛍光灯の点灯(4回、約0.2A),お
よびポットの起動・停止(5回、約±0.7A)に対応
したスパイク成分と,エアコンA2の一部(停止時の小ス
パイク(3回,−0.5A)と起動時の一部)が混合し
ている。図示していないが、実験結果から、第4成分
(スパイク2回、0.4A)は、エアコンA2の2回、3
回目の起動時ピークに対応している。第5成分はテレビ
との相関が強い。
The third component does not correspond to a single device. Spike components corresponding to the lighting of the inverter fluorescent lamp (4 times, about 0.2A), and the start / stop of the pot (5 times, about ± 0.7A), and part of the air conditioner A2 (small spikes when stopped ( 3 times, -0.5A) and a part of the start-up) are mixed. Although not shown, from the experimental results, the fourth component (spike twice, 0.4A) is twice the air conditioner A2, three times.
It corresponds to the peak at the start of the second time. The fifth component has a strong correlation with TV.

【0084】第3成分では、基本波と3次波の強度比が
10:1で他の周波数の強度は無視できる。すなわち、
ほとんど高調波を伴わない機器成分である。ポット、イ
ンバータ蛍光灯が第3成分に含まれることは、前述のイ
ンバータ蛍光灯F1とポットJの類似性の議論と一致す
る。エアコンが一時的に第3成分に混信するのは、エア
コンのインバータ制御により一時的に高調波が弱くなっ
たためと考えられる。エアコンA2については、特に起動
時の波形が,対応する第2成分以外の他成分に混信し、
また、一部のスパイクが第4成分として分離される。こ
れは、エアコンのインバータ制御による非線形性が原因
と考えられる。この点も前述の議論と合致する(図11
の(b)参照)。
In the third component, the intensity ratio of the fundamental wave and the tertiary wave is 10: 1, and the intensities of other frequencies can be ignored. That is,
It is a device component with almost no harmonics. The fact that the pot and the inverter fluorescent lamp are included in the third component is consistent with the above-mentioned discussion of the similarity between the inverter fluorescent lamp F1 and the pot J. It is considered that the air conditioner temporarily interferes with the third component because the harmonics are temporarily weakened by the inverter control of the air conditioner. As for the air conditioner A2, especially the waveform at startup interferes with other components than the corresponding second component,
Also, some spikes are separated as the fourth component. This is probably due to the non-linearity of the air conditioner inverter control. This point is also consistent with the above discussion (Fig. 11).
(B)).

【0085】上記の実験から、同一周波数強度特性や非
線形性による一部混信などがあるが、総電流の奇数次周
波数成分の実効電流値から、主要な各機器の動作状況
を、ほぼ再現できることが示された。 〔機器固有モデルによる精度向上〕一般の独立成分分析
では、分離対象機器の特性は完全に不明であるとして、各
信号源siの性質とは無関係に同一の独立性指標H(s)を
仮定して、その総和Σi H(s i ) が最小になるように
分離行列を決定する。
From the above experiment, the same frequency intensity characteristic and
There is some interference due to linearity, but the odd current order of the total current
From the effective current value of the wave number component, the operating status of each major device
It has been shown that can be almost reproduced. [Accuracy improvement by device-specific model] General independent component analysis
Then, assuming that the characteristics of the equipment to be separated are completely unknown,
Signal source siThe same independence index H (s) regardless of the nature of
Assuming that sum ΣiH (s i) Is minimized
Determine the separation matrix.

【0086】しかし、定常的な監視を行う信号分離追跡
問題、特に、機器動作信号分離においては、接続機器の
種類が事前にある程度想定でき、その定格などから電気
機器特性を事前に把握できる場合がある。事前には不明
でも、信号分離を定常的に進めるなかで同一特性を持つ
信号源として特定される場合もある。このような場合、
機器固有の動作特性を利用することで、分離精度を向上
できる。
However, in the signal separation / tracking problem in which steady monitoring is performed, particularly in the equipment operation signal separation, the type of the connected equipment can be assumed to some extent in advance, and the electrical equipment characteristics can be grasped in advance from the rating and the like. is there. Even if it is unknown in advance, it may be specified as a signal source having the same characteristics during steady progress of signal separation. In such cases,
Separation accuracy can be improved by utilizing the operating characteristics peculiar to the device.

【0087】提案手法では、機器動作特性を当該既機器
の電流変化(基本波)の標準的な電流変化値で与える。
たとえば、オン・オフ型機器では、オン動作時の電流変
化値、オフ動作時の電流変化値はほぼ一定値を取る。
In the proposed method, the device operating characteristic is given by the standard current change value of the current change (fundamental wave) of the existing device.
For example, in the ON / OFF type device, the current change value during the ON operation and the current change value during the OFF operation take a substantially constant value.

【0088】提案手法では,これらの標準的分布Qi(x)が
与えられると、信号源特性に基づく独立成分分析例えば
図4のアルゴリズムを含めた独立成分分析によって、適
切な独立性指標H(s)=ΣiH(si)を求めてその最大化を行
う。
In the proposed method, when these standard distributions Qi (x) are given, an appropriate independence index H (s is obtained by independent component analysis based on signal source characteristics, for example, the independent component analysis including the algorithm of FIG. ) = Σ i H (s i ) is found and maximized.

【0089】図15にエアコン等の標準的確率分布を与
えた時に得られた最適な独立性指標(主因子)と代表的
手法で使用される独立性指標とを示す。JADEが良い分離
性能を示すのは、他の独立性指標に比べ、JADEで使用す
る独立性指標(x4)が最適な独立性指標の良い近似とな
っているためと考えられる。
FIG. 15 shows an optimal independence index (main factor) obtained when a standard probability distribution of an air conditioner or the like is given and an independence index used in a typical method. It is thought that the reason why JADE shows good separation performance is that the independence index (x 4 ) used in JADE is a better approximation of the optimal independence index than other independence indexes.

【0090】提案アルゴリズムでは,さらに、与えられ
た機器動作特性モデルに基づいて、分離された独立成分
に生じている混信の解消を行う。
The proposed algorithm further eliminates interference caused in the separated independent components based on the given device operating characteristic model.

【0091】ケース197の例では,第3成分に、インバー
タ蛍光灯(F1)とポット(J)とエアコン(A2)の一部
の混信が見られるが、これは、インバータ蛍光灯、ポッ
ト各動作特性モデルQi(s) (蛍光灯:定常状態の0Aと
点灯時の約0.2Aに二つのピークを持つ混合分布、ポ
ット:定常状態0Aと、起動・停止時の約±0.65A
にピークを持つ混合分布)とによって分離される。
In the example of case 197, some interference of the inverter fluorescent lamp (F1), the pot (J) and the air conditioner (A2) can be seen in the third component. Characteristic model Qi (s) (Fluorescent lamp: Mixing distribution with two peaks at steady state 0A and lighting 0.2A, pot: steady state 0A and start / stop approximately ± 0.65A
Mixed distribution with a peak at) and

【0092】図16に、機器固有モデルと拡張した独立
性分析アルゴリズムを用いて最終的に推定された機器電
流変化を示す。機器固有の動作モデルの組み込みによ
り、特に、高調波の少ない機器の分離精度が改善してい
ることがわかる。
FIG. 16 shows a change in the device current finally estimated by using the device-specific model and the extended independence analysis algorithm. It can be seen that the incorporation of the operation model peculiar to the device has improved the separation accuracy of the device with particularly few harmonics.

【0093】以上により,提案する機器動作の独立性に
着目した提案手法が,機器動作分離追跡に有効であるこ
とが示された。さらに、10台の稼動家電機器で計測した
データに対して提案手法を適用することにより、個別機
器に計測装置、情報収集装置を設置せず、また、接続さ
れている機器の動作特性に関する情報がなくても、主要
な機器の動作状態を推定できることを示した。
From the above, it was shown that the proposed method, which pays attention to the independence of the proposed device operation, is effective for the device operation separation / tracking. Furthermore, by applying the proposed method to the data measured by 10 working home appliances, information about operating characteristics of connected devices can be obtained without installing a measuring device or information collecting device in individual devices. It was shown that the operating states of major devices can be estimated without using them.

【0094】また、機器動作特性モデルが与えられる時
には、混信して一つの機器の電流変化として認識されて
いる電流変化も、異なる機器の電流変化として認識する
など、推定精度を向上できる点を示した。
Further, when a device operation characteristic model is given, it is possible to improve the estimation accuracy by recognizing a current change which is recognized as a current change of one device due to interference and a current change of a different device. It was

【0095】機器動作信号分離問題では、機器の独立な
動作という性質が、機器の電流変化(電流変化)に現れ
ることに着目することで、主要接続機器の電流変化(電
流変化)に対応する成分を分離することができた。この
性質は、機器が非同期に自律的に動作するという非常に
一般的な性質に立脚している。
In the device operation signal separation problem, attention is paid to the fact that the property of independent operation of the device appears in the current change (current change) of the device, and the component corresponding to the current change (current change) of the main connected device. Could be separated. This property is based on the very general property that devices operate asynchronously and autonomously.

【0096】ただし、線形性仮説、すなわち、各機器の
高調波の強度比は、機器固有で時間的にほぼ一定である
という性質は厳密には成立しない。これには、2つの原
因がある。一つには,インバータ蛍光灯とポットのよう
に、類似の強度比を持つ機器がある点、エアコンなどの
ように強度比が時々変動するという非線形性を持つ点で
ある。第1の原因により,類似強度比を持つ複数機器の
同一化が生じ、第2の原因により、他の成分への混信
や、単一機器の複数成分への分離といった信号の分散が
生じる。これらが推定精度低下を引き起こしている。
However, the linearity hypothesis, that is, the characteristic that the intensity ratio of the harmonics of each device is device-specific and almost constant in time, is not strictly established. There are two causes for this. One is that there are devices that have similar intensity ratios, such as inverter fluorescent lamps and pots, and that they have non-linearity that the intensity ratio changes from time to time, such as in air conditioners. The first cause causes a plurality of devices having similar intensity ratios to be the same, and the second cause causes signal dispersion such as interference with other components or separation of a single device into a plurality of components. These cause the estimation accuracy to deteriorate.

【0097】類似強度比を持つ機器については,機器固
有の動作特性モデルが与えられるならば、そこから得ら
れる強度情報に基づいて、提案手法により別機器の電流
変化として認識できることを示した。非線形性に伴う信
号の分散については、対応する信号成分(ケース197
のエアコン2では第3成分)が不明になるほどの激しい
分散ではなく、動作状態推定には有効なレベルにとどま
っている。しかし、推定精度の向上および小電流機器の
動作状態推定を行うには、対処が必要となる。
It has been shown that, for a device having a similar intensity ratio, if a device-specific operating characteristic model is given, it can be recognized as a current change of another device by the proposed method based on intensity information obtained from the model. For the variance of the signal due to the non-linearity, the corresponding signal component (case 197
In the air conditioner 2 described above, the dispersion is not so severe that the third component) becomes unclear, and remains at an effective level for operating state estimation. However, in order to improve the estimation accuracy and estimate the operating state of the small current device, it is necessary to take measures.

【0098】独立性に着目して、接続機器の動作を推定
する技術は、機器固有のモデルを事前に用意しなくても
ある程度動作推定が行える点で非常に有用な技術であ
る。
The technique of estimating the operation of the connected device while paying attention to the independence is a very useful technique in that the operation can be estimated to some extent without preparing a device-specific model in advance.

【0099】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。例えば、本実施例においては各機器の基本波の持
つ実効電流値、即ち実効電流値I0(t)の時間差分δI
(t)を使用する方法を述べているが、各次数の高調波次
数の電流と電圧の位相差ω(t)により、各次数の高調波
の電流値を I(t)=√2・X0(t)・(cos(ω(t))+i・sin(ω(t))) として複素表現 (i:虚数)をすることで、無効電流を
含めた電流に対しても容易に拡張可能である。
The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in this embodiment, the effective current value of the fundamental wave of each device, that is, the time difference δI of the effective current value I 0 (t).
Although the method of using (t) is described, the current value of the harmonic of each order is I (t) = √2 · X by the phase difference ω (t) between the current and voltage of the harmonic order of each order. By using complex expression (i: imaginary number) as 0 (t) ・ (cos (ω (t)) + i ・ sin (ω (t))), it is possible to easily expand the current including the reactive current. It is possible.

【0100】総電流値の各次数の高調波電流値(複素表
現)の時間差分δI(f,t)に対して、複素数行列に対す
る独立成分分析手法を使用することで、同様に、各機器
の基本波の電流値(複素表現)の時間差分δS(i,t)を推
定することができる。この手法は、位相差ω(t)をほぼ
一定と近似した場合に相当する。
For the time difference δI (f, t) of the harmonic current value (complex expression) of each order of the total current value, by using the independent component analysis method for the complex matrix, similarly, It is possible to estimate the time difference ΔS (i, t) of the current value (complex expression) of the fundamental wave. This method corresponds to the case where the phase difference ω (t) is approximated to be substantially constant.

【0101】また、本実施形態では主に非侵入的な電力
機器の個別の消費電力の推定について述べたが、特に利
用方法は限定されず、電気機器の動作異常を警告するこ
とにも利用できる。即ち、電気機器の消費電力推定シス
テムで得られた電力消費に関する情報から、例えば日常
の電力消費との比較において異常と判断される場合に、
電力需要家在室者の安否、電力需要家内の安全、電気機
器や電化システムの異常の有無等を判定し、その情報を
外部へ発信することができる。例えば、本システムによ
り、在室者が毎日オンオフされるはずの照明、テレビ、
電気ポット、温水便座等の動作状態から「電力需要家在
室者の安否」を判定することができるとともに、火災等
の原因となる電気アイロン、電気ストーブ、電化厨房等
の長時間使用(つけっぱなし)等から「電力需要家内の
安全」を判定することができる。「これらの情報の外部
発信」については、既存の電話回線、PHS、ポケベル、
インターネット等の利用が可能であり、「通報対象者」
は居室者本人、居室者の縁者、消防署、地方自治体等の
福祉医療担当者等を想定できる。
Although the present embodiment has mainly described the estimation of individual power consumption of non-intrusive electric power equipment, the method of use is not particularly limited, and it can be used to warn of an abnormal operation of electric equipment. . That is, from the information about the power consumption obtained by the power consumption estimation system of the electric device, for example, when it is determined to be abnormal in comparison with the daily power consumption,
It is possible to judge the safety of the person in the power consumer room, the safety in the power consumer, the presence or absence of an abnormality in the electric device or the electrification system, and transmit the information to the outside. For example, this system will allow people in the room to be turned on and off daily, TVs,
It is possible to determine the "safety of people in the power consumer's room" from the operating state of electric kettles, hot water toilet seats, etc., and also to use electric irons, electric stoves, electrified kitchens, etc. for a long time It is possible to judge the "safety in the electric power consumer" from "Panashi" etc. For "external transmission of these information", please refer to existing telephone lines, PHS, pagers,
You can use the Internet, etc.
Can be assumed to be the occupants themselves, relatives of the occupants, fire departments, welfare medical personnel such as local governments, etc.

【0102】[0102]

【発明の効果】以上の説明より明らかなように、請求項
1及び4記載の本発明の遠隔電気機器監視方法及び装置
によると、ある機器の電流変化が他の機器の電流変化と
は独立しているということに着目し、独立成分分析手法
を利用して総消費電流から同一の高調波強度比率成分の
機器別の電流変化を分離し、機器別に可動状況を推定す
ることができるので、事前にデータベースを構築しなく
とも複数の機器の動作状況を把握することができる。デ
ータベースを構築する必要がないので、低コストでかつ
簡便に複数機器の総消費電流値のみから個別機器の消費
電流やその変化、動作状態を簡便に推定できる。しか
も、需要家の給電線の任意の1点、例えば屋外の給電線
引込口付近に測定センサーを設置するだけで、被測定電
気機器毎に測定センサーを取り付ける必要がないので、
本システムを電力需要家に設置するときにプライバシー
等を侵害したり、追加の配線等を施す度合いが少ない利
点がある。
As is apparent from the above description, according to the remote electric equipment monitoring method and apparatus of the present invention as set forth in claims 1 and 4, the current change of one equipment is independent of the current change of another equipment. Since it is possible to separate the current change for each device of the same harmonic intensity ratio component from the total current consumption by using the independent component analysis method and estimate the operating condition for each device, It is possible to grasp the operating status of multiple devices without constructing a database in. Since it is not necessary to build a database, it is possible to easily estimate the current consumption of individual devices, its change, and the operating state from only the total current consumption values of multiple devices at low cost. Moreover, since it is not necessary to attach the measurement sensor to each electric device to be measured, only by installing the measurement sensor at any one point of the power supply line of the customer, for example, near the power supply line inlet of the outdoors.
When this system is installed in an electric power consumer, it has the advantage that it violates privacy and does not require additional wiring.

【0103】そして、このような需要家(工場、ビル、
一般家庭)での電気機器の実際の使用状況の把握は、電
気事業にとっても需要家にとっても重要である。電力に
おいては、料金システムの構築、需要家への各種省エネ
ルギーサービス事業の展開に、需要家においては省エネ
運転制御や、機器故障の検出などに活用できる。
Then, such a customer (factory, building,
It is important for both the electric power industry and consumers to understand the actual usage status of electrical equipment in ordinary households. In electric power, it can be used for building a fee system, developing various energy-saving service businesses for customers, and for customers in energy-saving operation control and detection of equipment failure.

【0104】また、請求項2記載及び5の発明による
と、同一高調波比率を有する機器群の電流変化も、機器
毎の情報例えば基本波の電流変化(定格情報)に基づき
更に分離することができるので、電流変化量の推定精度
を高めることができる。
According to the second and fifth aspects of the present invention, the current change of the device group having the same harmonic ratio can be further separated based on the information for each device, for example, the current change of the fundamental wave (rating information). Therefore, the estimation accuracy of the current change amount can be improved.

【0105】更に、請求項3並びに6記載の発明による
と、同一高調波比率を示す機器群毎の消費電流並び消費
電力を求めることができる。
Further, according to the inventions of claims 3 and 6, it is possible to obtain the current consumption and power consumption for each device group having the same harmonic ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の遠隔電気機器監視方法の一実施形態を
示す概要図である。
FIG. 1 is a schematic diagram showing an embodiment of a remote electric device monitoring method of the present invention.

【図2】本発明の遠隔電気機器監視装置の一実施形態を
示す概略ブロック図である。
FIG. 2 is a schematic block diagram showing an embodiment of a remote electric device monitoring apparatus of the present invention.

【図3】周波数起用度比が同じ機器群別の基本波電流変
化量の推定工程の一例を示すフローチャート。
FIG. 3 is a flowchart showing an example of a process of estimating a fundamental wave current variation amount for each device group having the same frequency utilization ratio.

【図4】最適独立性指標の推定工程の一例を示すフロー
チャート。
FIG. 4 is a flowchart showing an example of an optimal independence index estimation step.

【図5】最適独立性指標Gを用いた時の分離行列更新ア
ルゴリズム(図3の推定工程の第4工程)の一例を示す
フローチャート。
FIG. 5 is a flowchart showing an example of a separation matrix update algorithm (fourth step of the estimation step of FIG. 3) when the optimum independence index G is used.

【図6】機器群基本電流変化量からの機器別電流変化量
の推定工程の一例を示すフローチャート。
FIG. 6 is a flowchart showing an example of a process of estimating a current change amount for each device from a device group basic current change amount.

【図7】各機器の実効電流と電流変化の変化(ケース1
97)のグラフである。
FIG. 7: Change in effective current and current change of each device (Case 1
97) is a graph.

【図8】機器の実効電流による分離と電流変化に基づく
分離の混信の度合いを示すグラフである。
FIG. 8 is a graph showing the degree of interference between separation due to effective current of equipment and separation based on current change.

【図9】各周波数での電流変化と、エアコン(A1,A2)
の電流変化値を示すグラフである。
[Figure 9] Current change at each frequency and air conditioner (A1, A2)
6 is a graph showing the current change value of

【図10】機器別近似実効電流と近似差分電流とを示す
グラフである。
FIG. 10 is a graph showing an approximate effective current and an approximate differential current for each device.

【図11】近似差分電流と近似差分電流誤差の相関係数
の絶対値(全ケース平均)を示すグラフで、(a)は近
似差分電流の相関を、(b)は近似差分電流誤差の相関
をそれぞれ示す(各軸の数字は機器番号)。
11A and 11B are graphs showing absolute values (corresponding to all cases) of correlation coefficients between an approximate differential current and an approximate differential current error, where (a) is the correlation of the approximate differential current and (b) is the correlation of the approximate differential current error. Are shown respectively (the numbers on each axis are the device numbers).

【図12】本発明の独立成分分析の結果である周波数別
実効電流変化に基づく信号分離結果(ケース197)の
グラフである。
FIG. 12 is a graph of a signal separation result (Case 197) based on a change in effective current by frequency, which is a result of independent component analysis according to the present invention.

【図13】第1,第2,第3独立成分と稼動機器の電流
変化の比較図である。
FIG. 13 is a comparison diagram of current changes of the first, second, and third independent components and the operating device.

【図14】エアコンA2の動作特性モデル(電流変化の取
りえる確率の対数)を示すグラフである。
FIG. 14 is a graph showing an operating characteristic model of the air conditioner A2 (logarithm of the probability that a current change can be obtained).

【図15】代表的独立性指標と最適化された独立性指標
を示すグラフである。
FIG. 15 is a graph showing a representative independence index and an optimized independence index.

【図16】動作特性モデルを用いて更に独立成分分析の
結果である推定電流変化(括弧内:対応稼動機器)を示
すグラフである。
FIG. 16 is a graph showing an estimated current change (in parentheses: corresponding operating equipment) as a result of further independent component analysis using an operation characteristic model.

【符号の説明】[Explanation of symbols]

1 電力需要家 2 給電線 3 電気機器 11 測定センサー 12 周波数成分変換装置 13 時間差分装置 14 独立成分分析装置 15 機器別信号分離装置 1 electricity consumers 2 power lines 3 electrical equipment 11 measurement sensor 12 Frequency component converter 13 hour difference device 14 Independent component analyzer 15 Equipment-based signal separation device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電力需要家が使用している複数の電気
機器の可動状況を推定する遠隔電気機器監視方法におい
て、前記電力需要家の給電線から総負荷電流を測定し、
該総負荷電流をその基本波並びに高調波毎の電流に変換
すると共に、該基本波並びに高調波毎の電流の時間差分
をとって電流変化データを作成し、これら基本波並びに
高調波毎の電流変化を独立成分分析により同一高調波強
度比率を持つ機器群として推定される成分毎に分離し、
この同一高調波強度比率成分毎の電流変化の波形から前
記監視対象機器の機器別の可動状況(電流変化)を推定
することを特徴とする遠隔電気機器監視方法。
1. A remote electric device monitoring method for estimating a movable state of a plurality of electric devices used by an electric power consumer, wherein a total load current is measured from a power supply line of the electric power consumer,
The total load current is converted into a current for each of the fundamental wave and the harmonics, current change data is created by taking a time difference between the currents for the fundamental wave and the harmonics, and the current for each of the fundamental waves and the harmonics is created. The change is separated for each component estimated as a device group having the same harmonic intensity ratio by independent component analysis,
A method for monitoring a remote electric device, characterized in that the operating condition (current change) of each device of the monitored device is estimated from the waveform of the current change for each of the same harmonic intensity ratio components.
【請求項2】 前記同一高調波強度比率成分毎の電流変
化のうち、同一高調波強度比を示す機器の成分を監視対
象機器の電流変化強度に関する情報に基づいてさらに分
離して個別の機器の電流変化を推定する請求項1記載の
遠隔電気機器監視方法。
2. Among the current changes for each of the same harmonic intensity ratio components, the component of the device exhibiting the same harmonic intensity ratio is further separated based on the information on the current change intensity of the monitored device to separate the components. The remote electric equipment monitoring method according to claim 1, wherein the change in current is estimated.
【請求項3】 請求項1または2記載の遠隔電気機器監
視方法に基づいて得られた同一の高調波強度比率を示す
機器毎の電流変化から消費電流を求め消費電力を推定す
ることを特徴とする消費電力推定方法。
3. The power consumption is estimated from the current consumption for each device showing the same harmonic intensity ratio obtained based on the remote electric device monitoring method according to claim 1 or 2. Power consumption estimation method.
【請求項4】 電力需要家が使用している複数の電気機
器の可動状況を推定する遠隔電気機器監視装置におい
て、前記電力需要家の給電線から総負荷電流を測定する
総電流センサと、前記総負荷電流から当該総負荷電流の
基本波並びに高調波の電流に変換する周波数成分変換装
置と、前記総負荷電流の基本波並びに高調波毎の電流の
時間差分をとって電流変化を求める時間差分装置と、該
電流変化を独立成分分析により同一の高調波強度比を持
つ機器群として推定される成分毎に分離する独立成分分
析装置と、前記同一高調波強度比率成分毎の電流変化の
波形から前記監視対象機器の機器別の可動状況(電流変
化)を推定する機器別信号分離装置とを備えることを特
徴とする遠隔電気機器監視装置。
4. A remote electric device monitoring apparatus for estimating a movable state of a plurality of electric devices used by an electric power consumer, and a total current sensor for measuring a total load current from a power supply line of the electric power consumer; A frequency component converter for converting the total load current into a fundamental wave and a harmonic current of the total load current, and a time difference for obtaining a current change by obtaining a time difference between the fundamental wave and the harmonics of the total load current. From an apparatus, an independent component analyzer that separates the current change for each component estimated as a device group having the same harmonic intensity ratio by independent component analysis, and a waveform of the current change for each of the same harmonic intensity ratio components A remote electric device monitoring device, comprising: a device-based signal separation device that estimates the operating status (current change) of the monitored device for each device.
【請求項5】 前記同一高調波強度比率成分毎の電流変
化のうち、同一高調波強度比を示す機器の成分を監視対
象機器の電流変化強度に関する情報に基づいてさらに分
離して個別の機器の電流変化を推定する請求項4記載の
遠隔電気機器監視装置。
5. Among the current changes for each of the same harmonic intensity ratio components, the component of the device exhibiting the same harmonic intensity ratio is further separated based on the information regarding the current change intensity of the monitored device to separate the components. The remote electric equipment monitoring apparatus according to claim 4, wherein the change in current is estimated.
【請求項6】 請求項4または5記載の遠隔電気機器監
視装置において得られた同一の高調波強度比率を示す機
器毎の電流変化から消費電流を求め消費電力を推定する
ことを特徴とする消費電力推定装置。
6. The power consumption is estimated from the current change of each device showing the same harmonic intensity ratio obtained in the remote electric device monitoring device according to claim 4 or 5, and the power consumption is estimated. Power estimation device.
JP2001185676A 2001-06-19 2001-06-19 Remote electrical equipment monitoring method and apparatus, and power consumption estimation method and apparatus using the same Expired - Fee Related JP4454001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185676A JP4454001B2 (en) 2001-06-19 2001-06-19 Remote electrical equipment monitoring method and apparatus, and power consumption estimation method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185676A JP4454001B2 (en) 2001-06-19 2001-06-19 Remote electrical equipment monitoring method and apparatus, and power consumption estimation method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003009430A true JP2003009430A (en) 2003-01-10
JP4454001B2 JP4454001B2 (en) 2010-04-21

Family

ID=19025222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185676A Expired - Fee Related JP4454001B2 (en) 2001-06-19 2001-06-19 Remote electrical equipment monitoring method and apparatus, and power consumption estimation method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4454001B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160130A (en) * 2003-11-20 2005-06-16 Central Res Inst Of Electric Power Ind Harmonic signal generator, method and system for estimating operational condition of specific electric apparatus using it, and system for confirming safety of electric power consumer resident
JP2006017456A (en) * 2004-06-04 2006-01-19 Mitsubishi Electric Corp Electrical apparatus working state estimating system, and database construction method for estimating electrical apparatus working state
JP2009047694A (en) * 2007-08-14 2009-03-05 General Electric Co <Ge> Cognitive electric power meter
JP2009295047A (en) * 2008-06-06 2009-12-17 Fuji Electric Holdings Co Ltd Energy consumption estimating device, unknown parameter value estimating device thereof, and program
WO2009152540A1 (en) * 2008-06-18 2009-12-23 Moeller Gebäudeautomation GmbH Electric installation structure
JP2011176985A (en) * 2010-02-25 2011-09-08 Nec System Technologies Ltd Power supply system, power supply method, and program
JP2011227545A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Information collection device, information collection method and program
JP2011254583A (en) * 2010-05-31 2011-12-15 Eneres Corp Robot and power consumption estimation system
JP2012016270A (en) * 2010-07-02 2012-01-19 Jiaotong Univ Electric power monitoring device and method of identifying state of electric appliance
JP2012120431A (en) * 2010-11-29 2012-06-21 Nhn Business Platform Corp Electric current calculation system and electric power analysis system using the same
JP2012189526A (en) * 2011-03-14 2012-10-04 Mitsubishi Electric Corp Apparatus state detection device and apparatus state detection system
JP2013038836A (en) * 2011-08-03 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> Electrical apparatus identification device, electrical apparatus identification method and electrical apparatus identification program
JP2013198334A (en) * 2012-03-21 2013-09-30 Toshiba Corp Electrical equipment monitoring device, and method and system therefor
JP2013246594A (en) * 2012-05-24 2013-12-09 Fujitsu Ltd Information processing apparatus, information processing method, information processing system and information processing program
JP2014016844A (en) * 2012-07-10 2014-01-30 East Japan Railway Co Power consumption estimation system for station-installed apparatus
JP2014064418A (en) * 2012-09-21 2014-04-10 Fujitsu Ltd Information processing apparatus, information processing method, information processing system and program
JP2014075923A (en) * 2012-10-04 2014-04-24 Toshiba Corp State estimation device, state estimation method, and program
WO2014087965A1 (en) * 2012-12-03 2014-06-12 三菱電機株式会社 Fault detection device, fault detection method, and program
JP2014142189A (en) * 2013-01-22 2014-08-07 Mitsubishi Electric Corp Monitoring device, monitoring method, and program
WO2015083393A1 (en) * 2013-12-03 2015-06-11 株式会社東芝 Device's state estimation device, device's power consumption estimation device, and program
JP5826395B2 (en) * 2012-07-17 2015-12-02 日立アプライアンス株式会社 Device identification device and device identification system
CN105445546A (en) * 2015-12-31 2016-03-30 杭州海兴电力科技股份有限公司 Fiber access type electric energy meter with function of harmonic detection
JP2016090326A (en) * 2014-10-31 2016-05-23 日本電信電話株式会社 Electric power value calculation method and electric power value calculation system
JP2016114470A (en) * 2014-12-15 2016-06-23 日本電信電話株式会社 Electrical apparatus identification method and electrical apparatus identification device
JP2016192896A (en) * 2015-08-20 2016-11-10 株式会社東芝 Electrical equipment monitoring device and method for the same
KR101866564B1 (en) * 2011-09-26 2018-06-14 한국전력공사 System and method for separating the power usage patterns of each load device in a load profile of a remote meter reading
US10114051B2 (en) 2014-03-31 2018-10-30 Nec Corporation Monitoring device, monitoring system, monitoring method, and non-transitory storage medium
PL425576A1 (en) * 2018-05-17 2019-01-02 Politechnika Warszawska Device for detection of working mode changes and for identification of receivers in the supply network and method for detection of working mode changes and for identification of receivers in the supply network
US10401403B2 (en) 2014-03-31 2019-09-03 Nec Corporation Monitoring device, monitoring system, monitoring method, and non-transitory storage medium
CN110441601A (en) * 2019-10-10 2019-11-12 四川大学 Multi-harmonic Sources responsibility quantization method based on independent component analysis
JP2020016992A (en) * 2018-07-24 2020-01-30 株式会社日立製作所 Characteristic model automatic generation system and characteristic model automatic generation method
WO2020250648A1 (en) * 2019-06-13 2020-12-17 株式会社エナリス Power management system, power management method, and power management program
CN112858782A (en) * 2021-01-07 2021-05-28 国网河南省电力公司电力科学研究院 Harmonic responsibility quantification method and system under influence of multi-user interaction of power system
CN113408341A (en) * 2021-05-10 2021-09-17 深圳供电局有限公司 Load identification method and device, computer equipment and storage medium

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160130A (en) * 2003-11-20 2005-06-16 Central Res Inst Of Electric Power Ind Harmonic signal generator, method and system for estimating operational condition of specific electric apparatus using it, and system for confirming safety of electric power consumer resident
JP2006017456A (en) * 2004-06-04 2006-01-19 Mitsubishi Electric Corp Electrical apparatus working state estimating system, and database construction method for estimating electrical apparatus working state
JP2009047694A (en) * 2007-08-14 2009-03-05 General Electric Co <Ge> Cognitive electric power meter
JP2009295047A (en) * 2008-06-06 2009-12-17 Fuji Electric Holdings Co Ltd Energy consumption estimating device, unknown parameter value estimating device thereof, and program
WO2009152540A1 (en) * 2008-06-18 2009-12-23 Moeller Gebäudeautomation GmbH Electric installation structure
CN102067399A (en) * 2008-06-18 2011-05-18 伊顿有限公司 Electric installation structure
JP2011176985A (en) * 2010-02-25 2011-09-08 Nec System Technologies Ltd Power supply system, power supply method, and program
JP2011227545A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Information collection device, information collection method and program
JP2011254583A (en) * 2010-05-31 2011-12-15 Eneres Corp Robot and power consumption estimation system
JP2012016270A (en) * 2010-07-02 2012-01-19 Jiaotong Univ Electric power monitoring device and method of identifying state of electric appliance
JP2012120431A (en) * 2010-11-29 2012-06-21 Nhn Business Platform Corp Electric current calculation system and electric power analysis system using the same
JP2012189526A (en) * 2011-03-14 2012-10-04 Mitsubishi Electric Corp Apparatus state detection device and apparatus state detection system
JP2013038836A (en) * 2011-08-03 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> Electrical apparatus identification device, electrical apparatus identification method and electrical apparatus identification program
KR101866564B1 (en) * 2011-09-26 2018-06-14 한국전력공사 System and method for separating the power usage patterns of each load device in a load profile of a remote meter reading
JP2013198334A (en) * 2012-03-21 2013-09-30 Toshiba Corp Electrical equipment monitoring device, and method and system therefor
JP2016001993A (en) * 2012-03-21 2016-01-07 株式会社東芝 Electrical equipment monitoring device and method of the same
JP2013246594A (en) * 2012-05-24 2013-12-09 Fujitsu Ltd Information processing apparatus, information processing method, information processing system and information processing program
JP2014016844A (en) * 2012-07-10 2014-01-30 East Japan Railway Co Power consumption estimation system for station-installed apparatus
JP5826395B2 (en) * 2012-07-17 2015-12-02 日立アプライアンス株式会社 Device identification device and device identification system
JP2014064418A (en) * 2012-09-21 2014-04-10 Fujitsu Ltd Information processing apparatus, information processing method, information processing system and program
JP2014075923A (en) * 2012-10-04 2014-04-24 Toshiba Corp State estimation device, state estimation method, and program
US9746504B2 (en) 2012-12-03 2017-08-29 Mitsubishi Electric Corporation Fault detection device, fault detection method, and program
WO2014087965A1 (en) * 2012-12-03 2014-06-12 三菱電機株式会社 Fault detection device, fault detection method, and program
JP2014109928A (en) * 2012-12-03 2014-06-12 Mitsubishi Electric Corp Abnormality detection device, abnormality detection method and program
JP2014142189A (en) * 2013-01-22 2014-08-07 Mitsubishi Electric Corp Monitoring device, monitoring method, and program
WO2015083393A1 (en) * 2013-12-03 2015-06-11 株式会社東芝 Device's state estimation device, device's power consumption estimation device, and program
US9563530B2 (en) 2013-12-03 2017-02-07 Kabushiki Kaisha Toshiba Device state estimation apparatus, device power consumption estimation apparatus, and program
JPWO2015083393A1 (en) * 2013-12-03 2017-03-16 株式会社東芝 Device state estimation device, device power consumption estimation device, and program
US10401403B2 (en) 2014-03-31 2019-09-03 Nec Corporation Monitoring device, monitoring system, monitoring method, and non-transitory storage medium
US10114051B2 (en) 2014-03-31 2018-10-30 Nec Corporation Monitoring device, monitoring system, monitoring method, and non-transitory storage medium
JP2016090326A (en) * 2014-10-31 2016-05-23 日本電信電話株式会社 Electric power value calculation method and electric power value calculation system
JP2016114470A (en) * 2014-12-15 2016-06-23 日本電信電話株式会社 Electrical apparatus identification method and electrical apparatus identification device
JP2016192896A (en) * 2015-08-20 2016-11-10 株式会社東芝 Electrical equipment monitoring device and method for the same
CN105445546A (en) * 2015-12-31 2016-03-30 杭州海兴电力科技股份有限公司 Fiber access type electric energy meter with function of harmonic detection
PL425576A1 (en) * 2018-05-17 2019-01-02 Politechnika Warszawska Device for detection of working mode changes and for identification of receivers in the supply network and method for detection of working mode changes and for identification of receivers in the supply network
JP2020016992A (en) * 2018-07-24 2020-01-30 株式会社日立製作所 Characteristic model automatic generation system and characteristic model automatic generation method
WO2020250648A1 (en) * 2019-06-13 2020-12-17 株式会社エナリス Power management system, power management method, and power management program
JP2020201867A (en) * 2019-06-13 2020-12-17 株式会社エナリス Power management system, power management method and power management program
JP7352385B2 (en) 2019-06-13 2023-09-28 株式会社エナリス Power management system, power management method and power management program
CN110441601B (en) * 2019-10-10 2020-01-07 四川大学 Independent component analysis-based multi-harmonic source responsibility quantification method
CN110441601A (en) * 2019-10-10 2019-11-12 四川大学 Multi-harmonic Sources responsibility quantization method based on independent component analysis
CN112858782A (en) * 2021-01-07 2021-05-28 国网河南省电力公司电力科学研究院 Harmonic responsibility quantification method and system under influence of multi-user interaction of power system
CN112858782B (en) * 2021-01-07 2022-04-26 国网河南省电力公司电力科学研究院 Harmonic responsibility quantification method and system under influence of multi-user interaction of power system
CN113408341A (en) * 2021-05-10 2021-09-17 深圳供电局有限公司 Load identification method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP4454001B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4454001B2 (en) Remote electrical equipment monitoring method and apparatus, and power consumption estimation method and apparatus using the same
JP3602825B2 (en) System and method for estimating power consumption of electrical equipment and abnormality warning system using the same
JP3877269B2 (en) Electric equipment monitoring system and abnormality warning system using the same
JP3403368B2 (en) Electrical equipment monitoring system and abnormal operation alarm system
JP3892358B2 (en) Method for estimating the operating state of electrical equipment in which power consumption frequently changes and monitoring system for electrical equipment in which power consumption frequently changes
US7944083B2 (en) Method and apparatus for characterizing a circuit coupled to an AC line
JP5444343B2 (en) Utility instrument
Patel et al. The design and evaluation of an end-user-deployable, whole house, contactless power consumption sensor
Salles et al. Assessing the collective harmonic impact of modern residential loads—Part I: Methodology
JP5751872B2 (en) Device state detection device and device state detection system
Larsson On high-frequency distortion in low-voltage power systems
JP6071397B2 (en) State estimation device, state estimation method and program
JP2011232061A (en) Power consumption measurement system and power consumption measurement method
US11237584B2 (en) State change detection apparatus, method, and non-transitory medium
Gerber et al. Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings
JP2013238523A (en) Electric apparatus detecting and power consumption monitoring systems
Bucci et al. Load identification system for residential applications based on the NILM technique
Djordjevic et al. Nonintrusive identification of residential appliances using harmonic analysis
Bernard Non-Intrusive Load Monitoring (NILM): combining multiple distinct electrical features and unsupervised machine learning techniques
Cardenas et al. Development of real-time admittance analysis system for residential load monitoring
JP4056004B2 (en) Harmonic signal generator, operation state estimation method and system for specific electrical equipment using the same, and safety confirmation method and system for electric power consumer residents
Bernard et al. Combining several distinct electrical features to enhance nonintrusive load monitoring
Kong et al. Identifying outlets at which electrical appliances are used by electrical wire sensing to gain positional information about appliance use
WO2020168193A1 (en) Voltage waveform transient identification and autonomous load coordination
US20080191637A1 (en) Method and apparatus for controlling electrical lighting installations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees