JP2003005142A - Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator - Google Patents

Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator

Info

Publication number
JP2003005142A
JP2003005142A JP2001188669A JP2001188669A JP2003005142A JP 2003005142 A JP2003005142 A JP 2003005142A JP 2001188669 A JP2001188669 A JP 2001188669A JP 2001188669 A JP2001188669 A JP 2001188669A JP 2003005142 A JP2003005142 A JP 2003005142A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguide type
resonator
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001188669A
Other languages
Japanese (ja)
Other versions
JP3758996B2 (en
Inventor
Yoshinobu Nakayama
義宣 中山
Motonobu Korogi
元伸 興梠
Osamu Nakamoto
修 仲本
Shigeyoshi Misawa
成嘉 三澤
Wideiyatomoko Banban
ウイディヤトモコ バンバン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001188669A priority Critical patent/JP3758996B2/en
Publication of JP2003005142A publication Critical patent/JP2003005142A/en
Application granted granted Critical
Publication of JP3758996B2 publication Critical patent/JP3758996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently generate an optical frequency comb. SOLUTION: An optical resonator 10 constituted by forming an incidence-end reflecting film 14A and a projection-end reflecting film 14B on two opposite end surfaces of an electrooptic crystal substrate 12 where an optical waveguide 11 passing beam light L1 causing optical resonance is formed is built in a cavity microwave resonator 20 surrounded with metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光導波路型光変調
器及び光導波路型光周波数コム発生器に関し、光通信、
光CT、光周波数標準機など多波長でコヒーレンス性の
高い標準光源、又は、各波長間のコヒーレンス性も利用
できる光源を必要とする分野に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type optical modulator and an optical waveguide type optical frequency comb generator for optical communication,
It is applied to fields requiring a standard light source with high coherence at multiple wavelengths such as optical CT and optical frequency standard, or a light source that can also utilize coherence between wavelengths.

【0002】[0002]

【従来の技術】従来より、例えば光周波数を高精度に測
定する場合に光周波数コム発生器(Optical Frequency
Comb Generator)が使用されている。すなわち、2つの
レーザ光をヘテロダイン検波してその差周波数を測定す
る場合、その帯域は受光素子の帯域で制限され、おおむ
ね数十GHz程度であるので、光周波数コム発生器を用
いて広帯域なヘテロダイン検波系を構築するようにして
いる。光周波数コム発生器は、入射したレーザ光の側帯
波を等周波数間隔毎に数百本発生させるもので、発生さ
れる側帯波の周波数安定度はもとのレーザ光のそれとほ
ぼ同等である。そこで、この側帯波と被測定レーザ光を
ヘテロダイン検波することにより、数THzに亘る広帯
域なヘテロダイン検波系を構築することができる。
2. Description of the Related Art Conventionally, an optical frequency comb generator (Optical Frequency Comb
Comb Generator) is used. That is, when two laser lights are heterodyne-detected and the difference frequency is measured, the band is limited by the band of the light receiving element and is about several tens of GHz, so a wideband heterodyne is used by using an optical frequency comb generator. I am trying to build a detection system. The optical frequency comb generator generates several hundred sidebands of the incident laser light at equal frequency intervals, and the frequency stability of the generated sidebands is almost the same as that of the original laser light. Therefore, by heterodyne-detecting this sideband wave and the laser light to be measured, a wide-band heterodyne detection system over several THz can be constructed.

【0003】光周波数コム発生器として、例えば光導波
路型光周波数コム発生器が使用されている。
As the optical frequency comb generator, for example, an optical waveguide type optical frequency comb generator is used.

【0004】従来の光導波路型光周波数コム発生器は、
広帯域の光導波路型光位相変調器の両端面に鏡を形成し
た光共振器を備え、その光共振器の自由スペクトル域の
整数倍で光導波路型光位相変調器を駆動し、レーザ光を
変調し光周波数コムを発生していた。
A conventional optical waveguide type optical frequency comb generator is
An optical resonator with mirrors formed on both end faces of a broadband optical waveguide type optical phase modulator is provided, and the optical waveguide type optical phase modulator is driven by an integral multiple of the free spectral range of the optical resonator to modulate laser light. Then the optical frequency comb was generated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
如き構造の従来の光導波路型光周波数コム発生器では、
広帯域の光導波路型光位相変調器を駆動するために多く
の電力が必要であった。
However, in the conventional optical waveguide type optical frequency comb generator having the structure as described above,
A large amount of electric power is required to drive the broadband optical waveguide type optical phase modulator.

【0006】低電力化のためには、電極をマイクロ波共
振器構造にした狭帯域の光導波路型光位相変調器を用い
る必要があると考えられる。ところが、光導波路型光位
相変調器の電極構造で外部金属構造を用いない共振器を
作成する場合、例えば図12に示すように、光導波路3
01を形成した2電極構造のY−cut LiNbOの基板
302を用いた光変調器300では、電極303A、3
03Bの端を開放とし、開放端でマイクロ波の反射が起
こるようにして光共振器を作成しようとすると、電極3
03Aが細く電気抵抗が大きいために、ジュール熱が発
生しマイクロ波がエネルギーを失い高品質なマイクロ波
共振が得られない。すなわち高いQ値がえられない。電
極303Aを細くすることは、インピーダンスマッチン
グを得るため、またマイクロ波の電極を伝わる速度と光
の速度を一致させるため、さらに電界を狭い範囲に閉じ
込め高い変調効率を得るための構造であるが、高いQ値
を得るためには不向きであった。また電極を超伝導材料
などで作成すると、高いQ値が得られるが、液体窒素温
度まで冷却する必要があり実用的ではない。
In order to reduce the power consumption, it is considered necessary to use a narrow band optical waveguide type optical phase modulator in which the electrodes have a microwave resonator structure. However, in the case where a resonator having an electrode structure of an optical waveguide type optical phase modulator without using an external metal structure is produced, for example, as shown in FIG.
In the optical modulator 300 using the substrate 302 of Y-cut LiNbO 3 having a two-electrode structure in which No. 01 is formed, the electrodes 303A, 3
When the end of 03B is opened and microwaves are reflected at the open end to make an optical resonator, the electrode 3
Since 03A is thin and has a large electric resistance, Joule heat is generated and the microwave loses energy, so that high-quality microwave resonance cannot be obtained. That is, a high Q value cannot be obtained. Thinning the electrode 303A is a structure for obtaining impedance matching, for matching the speed of light transmitted through the electrode of the microwave and the speed of light, and for confining the electric field in a narrow range to obtain high modulation efficiency. It was not suitable for obtaining a high Q value. Further, when the electrode is made of a superconducting material or the like, a high Q value can be obtained, but it is not practical because it needs to be cooled to the liquid nitrogen temperature.

【0007】そこで、本発明の目的は、上述の如き従来
の問題点に鑑み、低電力駆動の光導波路型光変調器及び
光導波路型光周波数コム発生器を提供することにある。
Therefore, in view of the conventional problems as described above, an object of the present invention is to provide an optical waveguide type optical modulator and an optical waveguide type optical frequency comb generator which are driven at low power.

【0008】[0008]

【課題を解決するための手段】ところで、従来のバルク
型光周波数コム発生器では、図13に示すようにバルク
型位相変調器を構成する電気光学結晶基板410を空洞
マイクロ波共振器420に挿入して駆動する構造採用す
ることにより高効率が得られている。
By the way, in a conventional bulk type optical frequency comb generator, as shown in FIG. 13, an electro-optic crystal substrate 410 forming a bulk type phase modulator is inserted into a cavity microwave resonator 420. High efficiency has been obtained by adopting a structure that is driven by.

【0009】本発明では、上述の如き従来の問題点を解
決するために、金属で囲まれた空洞マイクロ波共振器と
結合させマイクロ波の伝播の電気抵抗損失を少なくし、
さらに電界を狭い範囲に閉じ込め高い変調効率を得、か
つマイクロ波の電極を伝わる速度と光の速度を一致さ
せ、その結果高いQ値の実用的な共振器型光変調器を実
現する。
In order to solve the above-mentioned conventional problems, the present invention reduces the electric resistance loss of microwave propagation by coupling with a cavity microwave resonator surrounded by a metal,
Further, the electric field is confined in a narrow range, high modulation efficiency is obtained, and the speed of light transmitted through the microwave electrode is matched with the speed of light, and as a result, a practical resonator type optical modulator having a high Q value is realized.

【0010】すなわち、本発明に係る光導波路型光変調
器は、光変調を行うビーム光を通過させる光導波路が形
成された電気光学結晶基板を空洞マイクロ波共振器に内
蔵してなることを特徴とする。
That is, the optical waveguide type optical modulator according to the present invention is characterized in that the electro-optical crystal substrate on which the optical waveguide for passing the light beam for optical modulation is formed is built in the cavity microwave resonator. And

【0011】この光導波路型光変調器において、例え
ば、上記空洞マイクロ波共振器と結合される電極を電気
光学結晶基板上に光導波路を挟むように形成し、上記電
極を空洞マイクロ波共振器と結合させる。
In this optical waveguide type optical modulator, for example, an electrode coupled to the above-mentioned cavity microwave resonator is formed on an electro-optic crystal substrate so as to sandwich the optical waveguide, and the above electrode is referred to as a cavity microwave resonator. To combine.

【0012】また、上記光導波路型光変調器において、
上記電極は、例えば、網目状に形成される。
In the above optical waveguide type optical modulator,
The electrodes are formed in a mesh shape, for example.

【0013】さらに、上記光導波路型光変調器におい
て、上記空洞マイクロ波共振器は、例えば、マイクロ波
の電極を伝わる速度と光の速度を一致させた構造とす
る。
Further, in the above-mentioned optical waveguide type optical modulator, the cavity microwave resonator has, for example, a structure in which the speed of light transmitted through the electrode of the microwave is matched with the speed of light.

【0014】また、本発明に係る光導波路型光周波数コ
ム発生器は、光共振を起こさせるビーム光を通過させる
光導波路が形成された電気光学結晶基板の相対向する2
つの端面に入射端反射膜と出射端反射膜が形成されてな
る光共振器を空洞マイクロ波共振器に内蔵してなること
を特徴とする。
In the optical waveguide type optical frequency comb generator according to the present invention, the electro-optic crystal substrates on which the optical waveguide for transmitting the beam light causing the optical resonance is formed are opposed to each other.
It is characterized in that an optical resonator having an incident end reflection film and an emission end reflection film formed on one end face is built in a cavity microwave resonator.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】本発明では、図1に基本的な構造を示すよ
うに、バルク型光周波数コム発生器の空洞マイクロ波共
振器構造を光導波路型光コム発生器に適用することによ
り低電力な光導波路型光コム発生器(2電極構造)を実現
する。
In the present invention, as shown in the basic structure of FIG. 1, by applying the cavity microwave resonator structure of the bulk type optical frequency comb generator to the optical waveguide type optical comb generator, a low power optical waveguide is obtained. A waveguide type optical comb generator (two-electrode structure) is realized.

【0017】すなわち、図1に示した光導波路型光コム
発生器30は、光共振を起こさせるビーム光L1を通過
させる光導波路11が形成された電気光学結晶基板12
の相対向する2つの端面に入射端反射膜14Aと出射端
反射膜14Bが形成されてなる光共振器10と、金属で
囲まれた空洞マイクロ波共振器20とを備え、上記光共
振器10を空洞マイクロ波共振器20に内蔵してなる。
That is, in the optical waveguide type optical comb generator 30 shown in FIG. 1, the electro-optic crystal substrate 12 on which the optical waveguide 11 for passing the beam light L1 causing optical resonance is formed.
The optical resonator 10 has an incident-end reflecting film 14A and an emitting-end reflecting film 14B formed on two opposite end faces thereof, and a cavity microwave resonator 20 surrounded by a metal. In the cavity microwave resonator 20.

【0018】上記空洞マイクロ波共振器20は、光共振
を起こさせる光ビームL1を伝播させ、かつそれぞれの
光ビームL1に対応して光導波路11に電界をかけるた
めものであって、図示しない給電アンテナに供給される
マイクロ波信号に共振することにより、上記マイクロ波
信号に応じた電界を光導波路11に印加する。
The cavity microwave resonator 20 propagates a light beam L1 which causes optical resonance and applies an electric field to the optical waveguide 11 corresponding to each light beam L1. By resonating with the microwave signal supplied to the antenna, an electric field corresponding to the microwave signal is applied to the optical waveguide 11.

【0019】また、上記電気光学結晶基板12は、例え
ばニオブ酸リチウム(LiNbO)など電圧で光を位
相変調できる光学材料基板である。
The electro-optic crystal substrate 12 is an optical material substrate such as lithium niobate (LiNbO 3 ) capable of phase modulating light with a voltage.

【0020】上記光学結晶基板12には、入射端反射膜
14Aを介して基本波としての光ビームL1が入射さ
れ、入射端反射膜14Aと出射端反射膜14Bにより構
成されたファブリペロエタロンにより共振した光ビーム
L1の一部が、出射端反射膜14Bを介して光周波数コ
ムLC1として出射される光導波路11が形成されてい
る。
A light beam L1 as a fundamental wave is incident on the optical crystal substrate 12 via an incident end reflection film 14A, and is resonated by a Fabry-Perot etalon composed of an incident end reflection film 14A and an emission end reflection film 14B. An optical waveguide 11 is formed in which a part of the light beam L1 is emitted as an optical frequency comb LC1 via the emitting end reflection film 14B.

【0021】上記入射端反射膜14Aと出射端反射膜1
4Bは、それぞれ僅かに透過率もある反射鏡であって、
クロム,金,アルミニウムあるいは誘電体多層膜などを
蒸着することにより、上記電気光学結晶基板12の相対
向する2つの端面に形成されている。
The incident end reflection film 14A and the emission end reflection film 1
4B is a reflecting mirror having a slight transmittance,
Chromium, gold, aluminum or a dielectric multilayer film is deposited on the two end faces of the electro-optic crystal substrate 12 facing each other.

【0022】上記電気光学結晶基板12に形成された光
導波路11は、上記空洞マイクロ波共振器20に内蔵さ
れているので、マイクロ波信号に上記空洞マイクロ波共
振器20が共振することにより、上記マイクロ波信号に
応じた電界が印加され、上記マイクロ波信号に応じて屈
折率が変化する。これにより、上記光導波路11は、入
射端反射膜14Aを介して入射された基本波としての光
ビームL1に対して上記マイクロ波信号に応じた光位相
変調を施す光位相変調器として機能する。
Since the optical waveguide 11 formed on the electro-optic crystal substrate 12 is built in the cavity microwave resonator 20, the cavity microwave resonator 20 resonates with a microwave signal, so that An electric field corresponding to the microwave signal is applied, and the refractive index changes according to the microwave signal. Thereby, the optical waveguide 11 functions as an optical phase modulator that performs optical phase modulation according to the microwave signal on the light beam L1 as the fundamental wave that is incident through the incident end reflection film 14A.

【0023】このような構成の光共振器10を空洞マイ
クロ波共振器20に内蔵してなる光導波路型光コム発生
器30では、入射端反射膜14Aを介して光導波路11
に入射された基本波としての光ビームL1に対して、マ
イクロ波信号に応じて光位相変調することができ、光ビ
ームL1の位相を変調して、出射端反射膜14Bを介し
て光周波数コムLC1を出射することができる。
In the optical waveguide type optical comb generator 30 in which the optical resonator 10 having such a structure is built in the cavity microwave resonator 20, the optical waveguide 11 is provided via the incident end reflection film 14A.
The light beam L1 as the fundamental wave incident on the optical beam can be phase-modulated in accordance with the microwave signal, the phase of the light beam L1 is modulated, and the optical frequency comb is transmitted through the emitting end reflection film 14B. LC1 can be emitted.

【0024】なお、上記空洞マイクロ波共振器20内の
マイクロ波の伝播モードがTEモードである場合だと、
電界は結晶に対して図の上下方向にかかるが、電界は結
晶全体にほぼ一様にかかり、光導波路型変調器の利点で
ある電界が光の通る部分領域に集中する特性ではない。
そのため、電界が光導波路11に集中せず十分な低電力
な変調にはならないと考えられる。また空洞マイクロ波
共振器20に平面基板上に作成された電気光学変調器を
如何に設置するかの問題も生じる。実際の光導波路は薄
い平面の基板上に作成されるので図1のような構成は作
成上難しい。
In the case where the microwave propagation mode in the cavity microwave resonator 20 is the TE mode,
The electric field is applied to the crystal in the vertical direction in the figure, but the electric field is applied almost uniformly to the entire crystal, and it is not the characteristic that the electric field is concentrated in the partial region where light passes, which is an advantage of the optical waveguide modulator.
Therefore, it is considered that the electric field is not concentrated on the optical waveguide 11 and the modulation does not have sufficiently low power. Further, there arises a problem of how to install the electro-optic modulator formed on the planar substrate in the cavity microwave resonator 20. Since an actual optical waveguide is formed on a thin flat substrate, it is difficult to form the structure shown in FIG.

【0025】そこで、図2に要部を拡大して示すよう
に、実用的な光導波路型光コム発生器130では、光共
振器110の光導波路111を薄い平面の電気光学結晶
基板112に形成し、この電気光学結晶基板112上に
電極115A,115Bを作成して空洞マイクロ波共振
器構造と結合させるように、平面基板に適した空洞マイ
クロ波共振器120に光共振器110を挿入する。
Therefore, in a practical optical waveguide type optical comb generator 130, the optical waveguide 111 of the optical resonator 110 is formed on a thin flat electro-optic crystal substrate 112 as shown in FIG. Then, the optical resonator 110 is inserted into the cavity microwave resonator 120 suitable for the planar substrate so that the electrodes 115A and 115B are formed on the electro-optic crystal substrate 112 and coupled with the cavity microwave resonator structure.

【0026】そして、図3に示すように金属平板120
a,120bで挟まれた空洞マイクロ波共振器120
は、光導波路111の反対側の幅を電気光学結晶基板1
12の厚さよりも十分大きくし、平面基板を設置しやす
い構造としてある。このような構成であると、電気光学
結晶基板112が薄くても容易に設置できる。また、こ
の空洞マイクロ波共振器120には、図3(a)に示す
開放型空洞マイクロ波共振器120Aと図3(b)に示
す非開放型空洞マイクロ波共振器120Bがあり、開放
型空洞マイクロ波共振器120Aは低周波数に向き、非
開放型空洞マイクロ波共振器120Bは高周波数に向く
傾向にあるが、原理的にはとちらでもよい。
Then, as shown in FIG.
Cavity microwave resonator 120 sandwiched between a and 120b
Is the width on the opposite side of the optical waveguide 111.
The thickness is made sufficiently larger than the thickness of 12 so that a flat substrate can be easily installed. With such a configuration, even if the electro-optic crystal substrate 112 is thin, it can be easily installed. Further, the cavity microwave resonator 120 includes an open cavity microwave resonator 120A shown in FIG. 3A and a non-open cavity microwave resonator 120B shown in FIG. 3B. The microwave resonator 120A tends to the low frequency and the non-open type microwave resonator 120B tends to the high frequency, but in principle it may be different.

【0027】ここで、上記電極115A,115Bとし
ては、それぞれ全面電極を用いている。図4は、この時
の電界強度分布の計算結果である。電界が中心(光の通
る部分)に集中していることが分かる。このような構造
の電極を用いることは、空洞マイクロ波共振部からの電
流に対して、電流が広い面積の電極を通るため電流損失
を少なくすることが可能である。
Here, as the electrodes 115A and 115B, full-surface electrodes are used. FIG. 4 shows the calculation result of the electric field strength distribution at this time. It can be seen that the electric field is concentrated in the center (the part where light passes). The use of the electrode having such a structure makes it possible to reduce the current loss with respect to the current from the cavity microwave resonance part because the current passes through the electrode having a wide area.

【0028】上記ではあらかじめ電気光学結晶基板11
2上に補助的な電極115A,115Bを作成すること
が電界集中に役立つことを説明した。しかしながら空洞
マイクロ波共振器120の光導波路111の反対側にも
ある程度電界はもれる。その電界のもれは電気光学結晶
基板112の厚さ程度の範囲まで発生する。漏れ電界を
減らすのは、電気光学結晶基板112の厚さを薄くする
ことで可能である。これにより大きな電界集中を得られ
る。ところが電気光学結晶基板112を薄くすること
は、機械的な強度が劣化する可能性があり電気光学結晶
基板112を薄くすることは最小限にとどめる必要があ
る。
In the above, the electro-optic crystal substrate 11 is previously prepared.
It has been explained that the formation of the auxiliary electrodes 115A and 115B on the electrode 2 helps to concentrate the electric field. However, an electric field also leaks to the opposite side of the optical waveguide 111 of the cavity microwave resonator 120 to some extent. The leakage of the electric field occurs up to the range of the thickness of the electro-optic crystal substrate 112. The leakage electric field can be reduced by reducing the thickness of the electro-optic crystal substrate 112. As a result, a large electric field concentration can be obtained. However, thinning the electro-optical crystal substrate 112 may deteriorate mechanical strength, and it is necessary to minimize the thinning of the electro-optical crystal substrate 112.

【0029】そこで、上記電極115A,115Bとし
て、図5の(a),(b)、(c)に示すように網状の
電極構造を採用することにより、部分的に不要な電気力
線を逓減し、静電容量を逓減する。
Therefore, by adopting a net-like electrode structure as shown in FIGS. 5A, 5B, and 5C as the electrodes 115A and 115B, the unnecessary lines of electric force are partially reduced. And gradually reduce the capacitance.

【0030】すなわち、網目状の電極115A,115
Bは、図6に示すように、光の通る部分の電界強度を高
めるための空洞マイクロ波共振器120からの電流を流
す線路として働くが、電気力線は電極下部に発生するの
みで、網の空間部では電気力線は発生しない。よって平
均的に見ると電気力線の数が減少し光の通る部分に対す
る電界集中を高めることができる。編み目電極の間隔は
マイクロ波の波長より十分小さくすることによって周期
構造による影響をなくすことができる。網目状の電極を
作成する範囲は光が通過する部分から電気光学結晶基板
112の厚み程度の範囲で十分である。
That is, the mesh electrodes 115A, 115
As shown in FIG. 6, B acts as a line for passing a current from the cavity microwave resonator 120 for increasing the electric field strength of a portion through which light passes, but electric lines of force are generated only under the electrodes, Electric lines of force do not occur in the space part of. Therefore, on average, the number of lines of electric force is reduced, and the electric field concentration can be increased in the portion through which light passes. The effect of the periodic structure can be eliminated by making the spacing between the mesh electrodes sufficiently smaller than the wavelength of the microwave. The range of forming the mesh-like electrode is sufficient within the range from the portion through which light passes to the thickness of the electro-optic crystal substrate 112.

【0031】さらに、この構造でマイクロ波が電極11
5A,115Bを伝わる速度と光の速度を一致させ、さ
らに電界を狭い範囲に閉じ込め高い変調効率を得ること
ができる。電極115A,115Bの持つ静電容量が2
50pF/m程度の分布を持つとするときのマイクロ波
の位相速度を等価屈折率としてあらわしたのが図7及び
図8である。
Further, in this structure, the microwave is transmitted to the electrode 11
It is possible to match the speed of light transmitted through 5A and 115B with the speed of light, confine the electric field in a narrow range, and obtain high modulation efficiency. The electrostatic capacity of the electrodes 115A and 115B is 2
FIG. 7 and FIG. 8 show the phase velocity of the microwave when the distribution is about 50 pF / m as the equivalent refractive index.

【0032】図7は、H=0.015m、W=0.00
04mの開放型空洞マイクロ波共振器120A、非開放
型空洞マイクロ波共振器120Bを採用した場合の等価
屈折率特性A,Bを示している。光の速度は結晶中では
等価屈折率であらわすと2.18であり、図7では直線
であらわしている。約10GHzにおいてマイクロ波の
等価屈折率は光の等価屈折率に一致し、この時マイクロ
波の電極115A,115Bを伝わる速度と光の速度が
一致する。この周波数は、開放型空洞マイクロ波共振器
120A、非開放型空洞マイクロ波共振器120Bの違
いやH及びWの値をかえることで変更が可能である。例
えば図8は非開放型空洞マイクロ波共振器120BでW
の値を変化させた場合の等価屈折率特性を示している。
等価屈折率が2.18になる範囲はWを変化させること
で5GHzから20GHzまで可変であることが分か
る。
In FIG. 7, H = 0.015 m, W = 0.00
The equivalent refractive index characteristics A and B in the case where the open cavity microwave resonator 120A and the non-open cavity microwave resonator 120B of 04 m are adopted are shown. The speed of light is 2.18 when expressed by the equivalent refractive index in the crystal, and is expressed by a straight line in FIG. 7. At approximately 10 GHz, the equivalent refractive index of microwaves matches the equivalent refractive index of light, and at this time, the speed of microwaves transmitted through the electrodes 115A and 115B and the speed of light match. This frequency can be changed by changing the difference between the open cavity microwave resonator 120A and the non-open cavity microwave resonator 120B and the values of H and W. For example, FIG. 8 shows a case where the open microwave cavity resonator 120B has a W
It shows the equivalent refractive index characteristics when the value of is changed.
It can be seen that the range in which the equivalent refractive index is 2.18 can be changed from 5 GHz to 20 GHz by changing W.

【0033】以上説明した光導波路型光コム発生器13
0では、金属平板120a,120bで挟まれた空洞マ
イクロ波共振器120を用いていたが、次に説明する図
9及び図10に示す光導波路型光コム発生器230で
は、空洞マイクロ波共振器220を構成する金属平板の
一部を電気光学結晶基板212に作成した電極215
A,215Bが兼ねる構造となっており、光導波路21
1の反対側は完全に解放されている。光導波路211側
は、電気光学結晶基板212の表面の電極215A,2
15Bと設置された凹型の金属ブロック220Aの間で
空洞マイクロ波共振器220が構成されている。この空
洞マイクロ波共振器220には、励起用のマイクロ波入
力が同軸線路によって空洞内部に直接結合するように、
励起用空洞部が形成されている。
The optical waveguide type optical comb generator 13 described above
0, the cavity microwave resonator 120 sandwiched between the metal flat plates 120a and 120b was used. However, in the optical waveguide type optical comb generator 230 shown in FIGS. Electrode 215 in which a part of the metal flat plate constituting 220 is formed on electro-optic crystal substrate 212
The optical waveguide 21 has a structure in which A and 215B are combined.
The other side of 1 is completely free. The optical waveguide 211 side is provided with electrodes 215A, 2 on the surface of the electro-optic crystal substrate 212.
A cavity microwave resonator 220 is formed between 15B and the recessed metal block 220A provided. In this cavity microwave resonator 220, a microwave input for excitation is directly coupled to the inside of the cavity by a coaxial line,
An excitation cavity is formed.

【0034】このような構造の光導波路型光コム発生器
230は、金属平板で挟まれた空洞マイクロ波共振器2
20の作成が容易であり、しかも、小型化に有利であ
る。この光導波路型光コム発生器230において、空洞
マイクロ波共振器220の光の進む方向に垂直な面は開
放端になっている。これは光周波数コム発生器として必
要なモードとして端面で開放端となるようなモードを励
起するためである。この場合、マイクロ波の電極を伝わ
る速度と光の速度を一致させるように空洞の大きさ等の
調整を行っているとすると、光共振器210の自由スペ
クトル域の整数倍にこの空洞マイクロ波共振器220の
共振周波数に一致することになる。
The optical waveguide type optical comb generator 230 having such a structure is used in the cavity microwave resonator 2 sandwiched between metal flat plates.
20 is easy to create, and it is advantageous for downsizing. In this optical waveguide type optical comb generator 230, the surface of the cavity microwave resonator 220 perpendicular to the light traveling direction is an open end. This is to excite a mode that has an open end at the end face as a mode required for the optical frequency comb generator. In this case, assuming that the size of the cavity is adjusted so that the speed of light transmitted through the electrode of the microwave and the speed of light are matched, this cavity microwave resonance is an integral multiple of the free spectrum region of the optical resonator 210. This will match the resonance frequency of the device 220.

【0035】さらに、このような構造の光導波路型光コ
ム発生器230では、図11に示すように、空洞マイク
ロ波共振器220の片側閉じている金属ブロック220
Aに開口220aを設け、空洞マイクロ波共振器220
を開放型の構造とすることにより、直流バイアスの印加
を容易に行うことが可能となる。
Furthermore, in the optical waveguide type optical comb generator 230 having such a structure, as shown in FIG. 11, the metal block 220 closed on one side of the cavity microwave resonator 220.
An opening 220a is provided in A and the cavity microwave resonator 220 is provided.
By adopting an open structure, it becomes possible to easily apply a DC bias.

【0036】[0036]

【発明の効果】以上詳細に説明したように、本発明に係
る導波路型光変調器では、光変調を行うビーム光を通過
させる光導波路が形成された電気光学結晶基板を空洞マ
イクロ波共振器に内蔵して結合させることにより、マイ
クロ波の伝播の電気抵抗損失を少なくすることができ
る。
As described above in detail, in the waveguide type optical modulator according to the present invention, the electro-optic crystal substrate on which the optical waveguide for passing the light beam for optical modulation is formed is a cavity microwave resonator. The electric resistance loss due to the propagation of microwaves can be reduced by incorporating it in and coupling it.

【0037】また、本発明に係る光導波路光変調器で
は、上記電気光学結晶基板上に光導波路を挟むように形
成された電極を上記空洞マイクロ波共振器と結合させた
構造とすることによって、電界を狭い範囲に閉じ込め高
い変調効率を得ることができる。
Further, in the optical waveguide optical modulator according to the present invention, the electrodes formed on the electro-optic crystal substrate so as to sandwich the optical waveguide are combined with the cavity microwave resonator. A high modulation efficiency can be obtained by confining the electric field in a narrow range.

【0038】また、本発明に係る光導波路型光変調器で
は、上記電極を網目状に形成した構造とすることによ
り、光の通る光導波路部分に対する電界集中を高めるこ
とができる。
Further, in the optical waveguide type optical modulator according to the present invention, the electric field concentration on the optical waveguide portion through which light passes can be increased by forming the electrode in a mesh shape.

【0039】さらに、本発明に係る光導波路型光変調器
では、上記空洞マイクロ波共振器をマイクロ波の電極を
伝わる速度と光の速度を一致させた構造とすることによ
り、高いQ値の実用的な共振器型光変調器で効率よく光
変調を行うことができる。
Further, in the optical waveguide type optical modulator according to the present invention, the cavity microwave resonator has a structure in which the speed of light transmitted through the electrode of the microwave and the speed of light are matched, and thus a high Q value is practically used. Optical modulator can efficiently perform optical modulation.

【0040】すなわち、本発明によれば、金属で囲まれ
た空洞マイクロ波共振器と結合させマイクロ波の伝播の
電気抵抗損失を少なくし、さらに電界を狭い範囲に閉じ
込め高い変調効率を得、かつマイクロ波の電極を伝わる
速度と光の速度を一致させ、その結果高いQ値の実用的
な共振器型光変調器で効率よく光変調を行うことができ
る光導波路型光変調器を提供することができる。
That is, according to the present invention, by coupling with a cavity microwave resonator surrounded by a metal, the electric resistance loss of microwave propagation is reduced, and the electric field is confined in a narrow range to obtain high modulation efficiency. To provide an optical waveguide type optical modulator capable of efficiently performing optical modulation by a practical resonator type optical modulator having a high Q value by matching the speed of light transmitted through a microwave electrode with the speed of light. You can

【0041】また、本発明に係る光導波路型光周波数コ
ム発生器では、光共振を起こさせるビーム光を通過させ
る光導波路が形成された電気光学結晶基板の相対向する
2つの端面に入射端反射膜と出射端反射膜が形成されて
なる光共振器を空洞マイクロ波共振器に内蔵して結合さ
せることにより、マイクロ波の伝播の電気抵抗損失を少
なくして、効率よく光周波数コムを発生することができ
る。
Further, in the optical waveguide type optical frequency comb generator according to the present invention, the incident end reflections are made on the two opposite end faces of the electro-optic crystal substrate on which the optical waveguide for passing the beam light causing the optical resonance is formed. An optical resonator consisting of a film and a reflection film at the output end is built in and coupled to a cavity microwave resonator to reduce the electrical resistance loss of microwave propagation and efficiently generate an optical frequency comb. be able to.

【0042】[0042]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光導波路型光周波数コム発生器の
基本的な構成を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing the basic configuration of an optical waveguide type optical frequency comb generator according to the present invention.

【図2】実用的な光導波路型光コム発生器の要部を拡大
して示す斜視図である。
FIG. 2 is an enlarged perspective view showing a main part of a practical optical waveguide type optical comb generator.

【図3】実用的な構造を有する開放型空洞マイクロ波共
振器及び開放型空洞マイクロ波共振器の外観斜視図であ
る。
FIG. 3 is an external perspective view of an open cavity microwave resonator and a open cavity microwave resonator having a practical structure.

【図4】上記実用的な構造を有する光導波路型光コム発
生器において、空洞マイクロ波共振器と結合される電極
を電気光学結晶基板上に光導波路を挟むように形成した
場合の電界強度分布の計算結果を模式的に示す図であ
る。
FIG. 4 is an electric field intensity distribution in the optical waveguide type optical comb generator having the above practical structure, in which an electrode coupled to a cavity microwave resonator is formed on an electro-optic crystal substrate so as to sandwich the optical waveguide. It is a figure which shows the calculation result of.

【図5】上記実用的な構造を有する光導波路型光コム発
生器において採用される網状の電極構造を模式的に示す
図である。
FIG. 5 is a diagram schematically showing a mesh electrode structure adopted in the optical waveguide type optical comb generator having the above-mentioned practical structure.

【図6】上記網状の電極構造を採用した光導波路型光コ
ム発生器における、電気光学結晶基板を通る電気力線を
模式的に示す図である。
FIG. 6 is a diagram schematically showing lines of electric force passing through an electro-optic crystal substrate in an optical waveguide type optical comb generator adopting the mesh electrode structure.

【図7】開放型空洞マイクロ波共振器及び非開放型空洞
マイクロ波共振器を採用した場合における電気光学結晶
基板の等価屈折率特性を示す特性図である。
FIG. 7 is a characteristic diagram showing an equivalent refractive index characteristic of an electro-optic crystal substrate when an open type cavity microwave resonator and a non-open type cavity microwave resonator are adopted.

【図8】開放型空洞マイクロ波共振器でWの値を変化さ
せた場合における電気光学結晶基板の等価屈折率特性を
示す特性図である。
FIG. 8 is a characteristic diagram showing equivalent refractive index characteristics of an electro-optic crystal substrate when the value of W is changed in the open-type cavity microwave resonator.

【図9】本発明に係る光導波路型光コム発生器の他の構
成例を模式的に示す図である。
FIG. 9 is a diagram schematically showing another configuration example of the optical waveguide type optical comb generator according to the present invention.

【図10】上記光導波路型光コム発生器の要部断面図で
ある。
FIG. 10 is a sectional view of an essential part of the optical waveguide type optical comb generator.

【図11】上記光導波路型光コム発生器の変形例を示す
要部断面図である。
FIG. 11 is a cross-sectional view of essential parts showing a modified example of the optical waveguide type optical comb generator.

【図12】従来の光導波路型光コム発生器の構成を模式
的に示す図である。
FIG. 12 is a diagram schematically showing a configuration of a conventional optical waveguide type optical comb generator.

【図13】従来のバルク型光周波数コム発生器の構成を
模式的に示す図である。
FIG. 13 is a diagram schematically showing a configuration of a conventional bulk type optical frequency comb generator.

【符号の説明】[Explanation of symbols]

10,110,210 光共振器、11,111,21
1 光導波路、12,112,212 電気光学結晶基
板、14A 入射端反射膜、14B 出射端反射膜、2
0,220 空洞マイクロ波共振器、30,130,2
30 光導波路型光コム発生器、115A,115B,
215A,215B 電極、120a,120b 金属
平板、120 空洞マイクロ波共振器、120A 開放
型空洞マイクロ波共振器、120B 非開放型空洞マイ
クロ波共振器、220A 金属ブロック、220a 開
10,110,210 Optical resonator, 11,111,21
DESCRIPTION OF SYMBOLS 1 Optical waveguide, 12, 112, 212 Electro-optic crystal substrate, 14A Incident end reflection film, 14B Emission end reflection film, 2
0,220 cavity microwave resonator, 30,130,2
30 optical waveguide type optical comb generator, 115A, 115B,
215A, 215B electrode, 120a, 120b metal plate, 120 cavity microwave resonator, 120A open cavity microwave resonator, 120B non-open cavity microwave resonator, 220A metal block, 220a opening

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲本 修 東京都大田区蒲田3−3−4 (72)発明者 三澤 成嘉 東京都大田区田園調布2−5−8 (72)発明者 バンバン ウイディヤトモコ 神奈川県横浜市緑区津田町3034−3 Fターム(参考) 2H047 KA03 MA03 NA02 QA03 RA08 TA01 TA11 TA31 2H079 AA02 BA04 CA04 CA24 EA03 EB01 EB04 HA11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Osamu Nakamoto             3-3-4 Kamata, Ota-ku, Tokyo (72) Inventor Shigeyoshi Misawa             2-5-8 Denenchofu, Ota-ku, Tokyo (72) Inventor Bang Bang Widy Tomoko             3034-3 Tsuda-cho, Midori-ku, Yokohama-shi, Kanagawa F-term (reference) 2H047 KA03 MA03 NA02 QA03 RA08                       TA01 TA11 TA31                 2H079 AA02 BA04 CA04 CA24 EA03                       EB01 EB04 HA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光変調を行うビーム光を通過させる光導
波路が形成された電気光学結晶基板を空洞マイクロ波共
振器に内蔵してなることを特徴とする光導波路型光変調
器。
1. An optical waveguide type optical modulator, characterized in that an electro-optic crystal substrate having an optical waveguide through which a light beam for optical modulation is formed is built in a cavity microwave resonator.
【請求項2】 空洞マイクロ波共振器と結合される電極
を電気光学結晶基板上に光導波路を挟むように形成し、
上記電極を空洞マイクロ波共振器と結合させたことを特
徴とする請求項1記載の光導波路型光変調器。
2. An electrode coupled to a cavity microwave resonator is formed on an electro-optic crystal substrate so as to sandwich an optical waveguide,
2. The optical waveguide type optical modulator according to claim 1, wherein the electrode is coupled to a cavity microwave resonator.
【請求項3】 上記電極は網目状に形成されていること
を特徴とする請求項2記載の光導波路型光変調器。
3. The optical waveguide type optical modulator according to claim 2, wherein the electrodes are formed in a mesh shape.
【請求項4】 上記空洞マイクロ波共振器は、マイクロ
波の電極を伝わる速度と光の速度を一致させたことを特
徴とする請求項3記載の光導波路型光変調器。
4. The optical waveguide type optical modulator according to claim 3, wherein the cavity microwave resonator has a speed at which the microwave is transmitted through the electrode and a speed at which light is matched.
【請求項5】 光共振を起こさせるビーム光を通過させ
る光導波路が形成された電気光学結晶基板の相対向する
2つの端面に入射端反射膜と出射端反射膜が形成されて
なる光共振器を空洞マイクロ波共振器に内蔵してなるこ
とを特徴とする光導波路型光周波数コム発生器。
5. An optical resonator in which an incident end reflection film and an emission end reflection film are formed on two facing end faces of an electro-optic crystal substrate on which an optical waveguide for transmitting a beam of light that causes optical resonance is formed. An optical waveguide type optical frequency comb generator, characterized in that is built in a cavity microwave resonator.
JP2001188669A 2001-06-21 2001-06-21 Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator Expired - Lifetime JP3758996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188669A JP3758996B2 (en) 2001-06-21 2001-06-21 Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188669A JP3758996B2 (en) 2001-06-21 2001-06-21 Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator

Publications (2)

Publication Number Publication Date
JP2003005142A true JP2003005142A (en) 2003-01-08
JP3758996B2 JP3758996B2 (en) 2006-03-22

Family

ID=19027728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188669A Expired - Lifetime JP3758996B2 (en) 2001-06-21 2001-06-21 Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator

Country Status (1)

Country Link
JP (1) JP3758996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459421A (en) * 2018-04-12 2018-08-28 南京邮电大学 A kind of generation device and its production method of the super flat microwave frequency comb in broadband

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211480A (en) * 2020-01-14 2020-05-29 电子科技大学 Optical frequency comb signal generation device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459421A (en) * 2018-04-12 2018-08-28 南京邮电大学 A kind of generation device and its production method of the super flat microwave frequency comb in broadband

Also Published As

Publication number Publication date
JP3758996B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
EP2210318B1 (en) Cross modulation-based opto-electronic oscillator with tunable electro-optic optical whispering gallery mode resonator
US5499256A (en) Polarized frequency-selective optical source
FI127382B (en) Method and apparatus for generating a frequency comb using an optical manipulator
US5640480A (en) Zig-zag quasi-phase-matched wavelength converter apparatus
US4733397A (en) Resonant cavity optical modulator
EP1411387A1 (en) Optical frequency com generator
JPH05333395A (en) Optical wavelength conversion device
US8564869B1 (en) Voltage controlled tunable single sideband modulators and devices based on electro-optic optical whispering gallery mode resonators
JP3756959B2 (en) Optical frequency comb generator
US4998255A (en) Resonant phase modulator
JP2003233048A (en) Optical modulator module and optical modulator
Abdalmalak et al. Microwave radiation coupling into a WGM resonator for a high-photonic-efficiency nonlinear receiver
JP3758996B2 (en) Optical waveguide type optical modulator and optical waveguide type optical frequency comb generator
Wang et al. High-power intracavity few-cycle THz pulse generation using thin lithium niobate
CN213071697U (en) Wide-tuning high-efficiency terahertz source based on collinear phase matching difference frequency of zinc telluride crystals
Zhang et al. Tunable multi-frequency optoelectronic oscillator based on a microwave photonic filter and an electrical filter
WO2004107033A1 (en) Frequency comb generator
JP3931235B2 (en) Reciprocating optical modulator
CN113687555A (en) Broadband difference frequency generation method and system based on directional pattern gallium phosphide
US8357919B2 (en) Systems, methods, and apparatus for generating terahertz electromagnetic radiation
CN114830018A (en) Optical resonator, optical modulator, method for manufacturing optical resonator, method for manufacturing optical modulator, optical frequency comb generator, and optical oscillator
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
CN112164965B (en) Wide tuning high-efficiency terahertz source based on zinc telluride crystal collinear phase matching difference frequency
JP3902047B2 (en) Waveguide type optical modulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term