JP2003003590A - Evaluation system for building vibration - Google Patents
Evaluation system for building vibrationInfo
- Publication number
- JP2003003590A JP2003003590A JP2001189324A JP2001189324A JP2003003590A JP 2003003590 A JP2003003590 A JP 2003003590A JP 2001189324 A JP2001189324 A JP 2001189324A JP 2001189324 A JP2001189324 A JP 2001189324A JP 2003003590 A JP2003003590 A JP 2003003590A
- Authority
- JP
- Japan
- Prior art keywords
- building
- vibration
- external force
- evaluation
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Building Environments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、中層住宅等の建物
での生活行為によって発生する建物の振動を評価する方
法及びその評価に基づいた建物の設計方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of evaluating a vibration of a building caused by a living activity in a building such as a middle-rise house and a method of designing a building based on the evaluation.
【0002】[0002]
【従来の技術】最近では、中層建物の普及により個人住
宅においても3階、或いは4階建ての住宅が多く建設さ
れるようになっている。特に狭い敷地面積を有効に活用
するために比較的小規模の3階、4階建ての住宅を建設
する場合も増加している。2. Description of the Related Art Recently, with the spread of middle-rise buildings, many three-story or four-story houses have been constructed even in private houses. In particular, there is an increasing number of cases where relatively small 3-story and 4-story houses are constructed in order to effectively utilize the small site area.
【0003】このような中層建物では、屋上や上階層の
居室、梁り出し架構のベランダ、或いは下階から上階へ
の階段等において強く歩いたり飛び跳ねたりした時に建
物に微小レベルの振動を発生させる場合がある。In such a middle-rise building, vibration of a minute level is generated in the building when the user walks or jumps strongly on the roof or the upper-level living room, the veranda of the beamed frame, or the stairs from the lower floor to the upper floor. There is a case to let.
【0004】このような微小振動は、建物重量の大きい
大規模な建物や、揺れの振幅が小さい低層建物では発生
したとしてもあまり問題にならないが、中層小規模建物
で発生すると振動が体感されて問題となることがある。Even if such a minute vibration occurs in a large-scale building with a large building weight or a low-rise building with a small swing amplitude, it does not cause a problem, but if it occurs in a middle-rise small-scale building, the vibration is felt. It can be a problem.
【0005】[0005]
【発明が解決しようとする課題】この微小振動の発生は
建物規模や形状による要因が大きく作用するが、従来で
は設計段階で居住者(人や大型ペットを含む)の生活行
為による振動の大きさを判断することが出来ず、事前に
予測することも困難で建設後にはじめて建物の振動が問
題となる虞れがあった。The generation of this minute vibration is largely affected by the size and shape of the building, but conventionally, the magnitude of vibration caused by the living activities of residents (including humans and large pets) at the design stage. Could not be determined, and it was difficult to predict in advance, and there was a risk that vibration of the building would become a problem only after construction.
【0006】本発明は前記課題を解決するものであり、
その目的とするところは、建物での生活行為によって発
生する建物の振動を評価することで、設計時に予め建物
の振動を適切に評価することが出来、設計時の間取りに
対する適切な配慮や事前の説明を行なうことを可能にす
る建物の振動評価方法及びその評価に基づいた建物の設
計方法を提供せんとするものである。[0006] The present invention is to solve the above problems,
The purpose is to evaluate the vibration of the building caused by living activities in the building, so that the vibration of the building can be appropriately evaluated in advance at the time of design, and appropriate consideration for the floor plan at the time of design and An object of the present invention is to provide a method of evaluating a vibration of a building that enables an explanation and a method of designing a building based on the evaluation.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
の本発明に係る建物の振動評価方法は、建物での生活行
為によって発生する建物の振動を評価する方法であっ
て、予め基準となる建物の標準モデルを作成し、その標
準モデルの建物に所定の基準外力を付与した時の第1の
振動応答値と、その標準モデルの建物に該建物での生活
行為によって発生する建物の振動を想定した特定の生活
行為を想定した外力を付与した時の第2の振動応答値と
を求め、前記標準モデルの建物に対して個別に設計する
建物の構造的要素を組み込んだ個別モデルを作成し、そ
の個別モデルの建物に前記所定の基準外力を付与した時
の第3の振動応答値を求め、前記第1、第2、第3の振
動応答値に基づいて、その個別に設計する建物での生活
行為によって発生する建物の振動を評価することを特徴
とする。A method for evaluating vibration of a building according to the present invention for achieving the above object is a method for evaluating a vibration of a building caused by a living activity in the building, which is a reference in advance. A standard model of a building is created, and the first vibration response value when a predetermined reference external force is applied to the building of the standard model and the vibration of the building caused by living activity in the building of the standard model The second vibration response value when an external force assuming a specific expected life action is applied is calculated, and an individual model incorporating the structural elements of the building to be individually designed for the standard model building is created. , A third vibration response value when the predetermined reference external force is applied to the building of the individual model, and based on the first, second, and third vibration response values, the individually designed building Caused by the life act of And evaluating the vibration of the building.
【0008】上記構成によれば、標準モデルの建物に所
定の基準外力を付与した時の第1の振動応答値と、その
標準モデルの建物に該建物での生活行為によって発生す
る建物の振動を想定した特定の生活行為を想定した外力
を付与した時の第2の振動応答値と、個別モデルの建物
に前記所定の基準外力を付与した時の第3の振動応答値
とを求めた後、前記第1、第2、第3の振動応答値を生
活行為によって実際に発生する振動に近似させ得る所定
の演算式により計算することで、個別に設計する建物で
の生活行為によって発生する建物の振動を求め、これを
評価することが出来る。According to the above configuration, the first vibration response value when a predetermined reference external force is applied to the standard model building and the vibration of the building caused by living activities in the standard model building are shown. After obtaining the second vibration response value when applying an external force that assumes an assumed specific living activity and the third vibration response value when applying the predetermined reference external force to the building of the individual model, By calculating the first, second, and third vibration response values by a predetermined arithmetic expression that can be approximated to the vibration actually generated by a living activity, a building generated by a living activity in a individually designed building is calculated. Vibration can be obtained and evaluated.
【0009】また、前記個別に設計する建物の個別モデ
ルに組み込んだ構造的要素を複数設定すれば、より精確
な評価が出来るので好ましい。例えば、設定される建物
の構造的要素としては、建物の重量、延べ床面積、建物
の縦横比、建物の固有振動数、建物の立面形状(特に梁
り出し架構の大きさ)、建物の偏心率等の建物の種々の
構造的要素を設定すれば、より精確な評価が出来る。Further, it is preferable to set a plurality of structural elements incorporated in the individual model of the individually designed building because more accurate evaluation can be performed. For example, the structural elements of the building to be set include the weight of the building, the total floor area, the aspect ratio of the building, the natural frequency of the building, the elevation shape of the building (especially the size of the beam frame), By setting various structural elements of the building such as eccentricity, more accurate evaluation can be performed.
【0010】また、前記生活行為を想定した外力が、各
種の生活行為を想定して複数設定された場合には、種々
の生活行為毎の外力に対応した建物の振動評価が出来
る。建物に振動が発生する生活行為とは、例えば、人や
大型ペットの飛び跳ね、小走り、階段の駆け登りや駆け
降り等であり、これ等の行為を評価すれば実態に合った
建物の振動評価が出来る。Further, when a plurality of external forces assuming the above-mentioned daily activities are set assuming various daily activities, it is possible to evaluate the vibration of the building corresponding to the external force for each of the various daily activities. Living activities in which vibration occurs in a building include, for example, jumping of people or large pets, small runs, running up and down stairs, and the like.If these activities are evaluated, vibration evaluation of a building suitable for the actual situation is possible. I can.
【0011】想定される主な生活行為は複数に代表さ
れ、夫々の生活行為の影響が建物の構造的要素によって
は影響したり、しなかったりする。従って、建物の構造
的要素及び生活行為を複数設定することで建物の振動評
価が精確に出来る。The main living activities that are supposed are represented by a plurality, and the influence of each living activity may or may not be affected depending on the structural element of the building. Therefore, the vibration evaluation of the building can be accurately performed by setting a plurality of structural elements and living activities of the building.
【0012】また、想定される個別設計に対応する振動
応答値を予め計算し、データベース化しておくことで、
個別設計時に個々に振動解析して計算する必要がなく、
データベースから想定される個別設計に対応する振動応
答値を抽出して、個別設計に即刻利用することが出来
る。Further, the vibration response value corresponding to the assumed individual design is calculated in advance and stored in a database,
There is no need to individually analyze and calculate vibration during individual design,
The vibration response value corresponding to the assumed individual design can be extracted from the database and immediately used for the individual design.
【0013】唯一の標準モデルで且つ生活行為と建物の
構造的要素が数個である場合には一覧表等でも十分対応
出来るが、標準モデル、生活行為、建物の構造的要素が
多数になった場合には一覧表等からの読み出しは困難に
なるためデータベース化することで想定される個別設計
に対応する振動応答値を容易に抽出することが出来る。If there is only one standard model and there are several structural elements of a living action and a building, a list or the like can be sufficient, but the number of structural elements of the standard model, living behavior, and building has increased. In this case, it is difficult to read from the list or the like, so that it is possible to easily extract the vibration response value corresponding to the assumed individual design by creating a database.
【0014】また、前記基準外力は、想定される生活行
為により発生する振動の周波数帯域を包括する成分を持
つ外力(振動波)により構成すれば好ましい。この場合
には、実際の生活行為によって発生する建物の振動によ
り近似した評価を得ることが出来る。Further, it is preferable that the reference external force is constituted by an external force (oscillation wave) having a component covering a frequency band of vibration generated by an assumed living activity. In this case, it is possible to obtain an evaluation that is closer to the vibration of the building caused by the actual living activity.
【0015】また、演算式に用いる数値としては、前記
第2、第3の振動応答値と、前記第1の振動応答値との
比を利用して、前記個別に設計する建物での生活行為に
よって発生する建物の振動を評価することが出来る。こ
の場合には演算式により計算した結果が取り扱い易い数
値で表現することが出来ると共に、各々の建物の構造的
要素による振動に対しての影響を評価し易くすることが
出来、好ましい。As a numerical value used in the arithmetic expression, a living activity in the individually designed building is utilized by utilizing the ratio between the second and third vibration response values and the first vibration response value. It is possible to evaluate the vibration of the building caused by. In this case, it is preferable that the result calculated by the arithmetic expression can be represented by a numerical value that is easy to handle, and the influence on the vibration due to the structural element of each building can be easily evaluated.
【0016】また、本発明に係る建物の設計方法は、前
述の建物の振動評価方法により評価された建物が所望の
評価以下であった場合に、所望の評価以上になるように
設計変更することを特徴とする。Further, in the building design method according to the present invention, when the building evaluated by the above-described building vibration evaluation method is less than or equal to the desired evaluation, the design is changed so as to be more than the desired evaluation. Is characterized by.
【0017】前述の建物の振動評価の結果が、所望の評
価以下であった場合には、例えば、耐力壁を追加して建
物に剛性を付加する等の適当な設計変更を行い、その設
計変更に応じて再度振動評価を行い、最終的に評価結果
が所望の評価以上になるように設計変更を行なえば好ま
しい。When the result of the vibration evaluation of the building described above is less than the desired evaluation, for example, an appropriate design change such as adding a bearing wall to add rigidity to the building is performed, and the design change is made. It is preferable that the vibration evaluation is performed again according to the above, and the design is changed so that the evaluation result finally becomes equal to or higher than the desired evaluation.
【0018】[0018]
【発明の実施の形態】図により本発明に係る建物の振動
評価方法及びその評価に基づいた建物の設計方法の一例
として、3階建ての住宅に適用した場合の一実施形態を
具体的に説明する。図1は本発明に係る建物の振動評価
方法の構成を示すフローチャート、図2(a)は標準モ
デルの建物に基準外力を付与する様子を示す立体模式
図、図2(b)は標準モデルの建物の各階の間取りを示
す模式平面図、図3は標準モデルの建物に特定の生活行
為を想定した外力を付与する様子を示す立体模式図であ
る。BEST MODE FOR CARRYING OUT THE INVENTION As an example of a method for evaluating vibration of a building according to the present invention and a method for designing a building based on the evaluation, an embodiment in the case of being applied to a three-story house will be specifically described with reference to the drawings. To do. FIG. 1 is a flow chart showing the configuration of a building vibration evaluation method according to the present invention, FIG. 2 (a) is a three-dimensional schematic diagram showing how a reference external force is applied to a standard model building, and FIG. 2 (b) is a standard model. FIG. 3 is a schematic plan view showing the floor plan of each floor of the building, and FIG. 3 is a three-dimensional schematic diagram showing how a standard model building is given an external force assuming a specific living activity.
【0019】また、図4(a)は個別に設計する建物の
層重量を標準モデルに組み込んだ個別モデルの建物に基
準外力を付与する様子を示す立体模式図、図4(b)は
個別に設計する建物の縦横比を標準モデルに組み込んだ
個別モデルの建物に基準外力を付与する様子を示す立体
模式図、図4(c)は個別に設計する建物の層剛性を標
準モデルに組み込んだ個別モデルの建物に基準外力を付
与する様子を示す立体模式図である。Further, FIG. 4 (a) is a three-dimensional schematic diagram showing a state in which the reference external force is applied to the individual model building in which the layer weights of the individually designed buildings are incorporated into the standard model, and FIG. 4 (b) individually. A three-dimensional schematic diagram showing how the reference external force is applied to the individual model building in which the aspect ratio of the building to be designed is incorporated in the standard model. It is a three-dimensional schematic diagram which shows a mode that a reference | standard external force is given to a model building.
【0020】また、図5は振動評価点と振動レベルとの
関係を予め実験により求めた近似曲線に基づいて振動評
価を行なうための振動評価ランクを示す図である。Further, FIG. 5 is a diagram showing vibration evaluation ranks for performing vibration evaluation based on an approximate curve obtained by an experiment in advance for the relationship between the vibration evaluation point and the vibration level.
【0021】図1において、建物での居住者(人や大型
ペット等を含む)の生活行為によって発生する建物の振
動、例えば、上層階や梁り出し部からなるベランダでの
飛び跳ねや強く歩く等、或いは階段の昇降等の各種の生
活行為によって発生する振動を評価するに際して、先
ず、ステップS1で予め基準となる建物の標準モデル1
を作成する。In FIG. 1, vibration of the building caused by living activities of residents (including people and large pets) in the building, for example, jumping or strong walking on the upper floor or veranda composed of beamed parts. Alternatively, when evaluating the vibrations generated by various living activities such as going up and down stairs, first, in step S1, the standard model 1 of the building, which is a reference in advance, is used.
To create.
【0022】標準モデル1は、振動を評価する目的の建
物の階層に合った階層に設定し、例えば、建物の各種の
構造的要素を振動が減衰し易い理想的な建物として設計
すれば良く、例えば、建物の縦横比が小さく、ベランダ
等の梁り出し部が少なく、建物の偏心が小さい等の条件
で作成するのが好ましい。The standard model 1 may be set in a hierarchy that matches the hierarchy of a building whose vibration is to be evaluated, and various structural elements of the building may be designed as an ideal building in which vibration is easily damped. For example, it is preferable to create it under the conditions that the aspect ratio of the building is small, the number of beam portions such as a balcony is small, and the eccentricity of the building is small.
【0023】尚、標準モデル1として建物の各種の構造
的要素を振動が減衰し易い理想的な建物として設計しな
かった場合であっても本発明に係る建物の振動評価方法
により建物での生活行為によって発生する建物の振動を
評価することは可能である。Even if the various structural elements of the building are not designed as an ideal building in which the vibration is easily damped as the standard model 1, the building life is evaluated by the building vibration evaluation method according to the present invention. It is possible to evaluate building vibrations caused by actions.
【0024】次に、ステップS2において、標準モデル
1に付与する基準外力、及びその基準外力を標準モデル
1に作用させる位置となる加振点、及び付与された基準
外力により標準モデル1が振動した際に、その振動を測
定する位置となる受振点を決定する。Next, in step S2, the standard external force applied to the standard model 1, the excitation point at which the standard external force acts on the standard model 1, and the applied standard external force vibrates the standard model 1. At that time, a receiving point which is a position for measuring the vibration is determined.
【0025】例えば、図2(a)に示すように、3階建
ての建物で屋上(図のR)を有する場合の標準モデル1
を作成した場合、振動の発生により大きく作用する屋上
(R)のベランダ側の位置に加振点を設定し、受振点を
居住者が最も揺れを体感する3階(図の3F)の居室に
設定する。For example, as shown in FIG. 2A, a standard model 1 having a three-story building and a rooftop (R in the figure)
If you create, set the vibration point at the position on the balcony of the rooftop (R) that greatly affects the generation of vibration, and set the vibration receiving point in the living room on the 3rd floor (3F in the figure) where residents experience the most shaking. Set.
【0026】基準外力としては、想定される生活行為に
より発生する振動の周波数帯域を包括する成分を持つ外
力(振動波)として設定されており、例えば、1Hz〜
5Hz程度の周波数を多数重畳したランダムノイズ、或
いはホワイトノイズと称する振動波外力を付与する。The reference external force is set as an external force (vibration wave) having a component covering the frequency band of vibration generated by the assumed living activity, for example, 1 Hz to
An external force of an oscillating wave called random noise or white noise in which a large number of frequencies of about 5 Hz are superimposed is applied.
【0027】そして、図2(a)に示すように、標準モ
デル1の建物に所定の基準外力を付与した時に3階(3
F)の居室において受振する振動応答解析を行い(ステ
ップS3)、第1の振動応答値となる建物の振動加速度
BMを求める(ステップS4)。Then, as shown in FIG. 2A, when a predetermined reference external force is applied to the building of the standard model 1, the third floor (3
The vibration response analysis for receiving the vibration in the living room in (F) is performed (step S3), and the vibration acceleration BM of the building having the first vibration response value is obtained (step S4).
【0028】次に、ステップS5において、標準モデル
1に付与する生活行為を想定した外力、及びその生活行
為を想定した外力を標準モデル1に作用させる位置とな
る加振点、及び付与された生活行為を想定した外力によ
り標準モデル1が振動した際に、その振動を測定する位
置となる受振点を決定する。Next, in step S5, the external force that is applied to the standard model 1 assuming the life act, the excitation point at which the external force that assumes the life act is applied to the standard model 1, and the applied life When the standard model 1 vibrates due to an external force assuming an action, a vibration receiving point which is a position for measuring the vibration is determined.
【0029】生活行為を想定した外力としては、例え
ば、図3に示すように、3階建ての建物の屋上(R)で
飛び跳ねたり、強く歩く等の生活行為を想定した加振点
や衝撃力、或いは3階(3F)の居室で飛び跳ねたり、
強く歩く等の生活行為を想定した加振点や衝撃力、或い
は3階(3F)のベランダで飛び跳ねたり、強く歩く等
の生活行為を想定した加振点や衝撃力、或いは2階(2
F)から3階(3F)に掛かる階段を駆け降りたり駆け
登ったりする等の生活行為を想定した加振点や衝撃力を
設定し、受振点を居住者が最も揺れを体感する3階(3
F)の居室に設定する。The external force assuming a living activity is, for example, as shown in FIG. 3, an exciting point or an impact force assuming a living activity such as jumping or walking strongly on the rooftop (R) of a three-story building. Or jump around in the living room on the 3rd floor (3F),
Excitation points and impact forces assuming life activities such as walking strongly, or jumping on the balcony on the 3rd floor (3F), exciting points and impact forces assuming life activities such as walking strongly, or the second floor (2
Set the excitation point and impact force assuming living activities such as going down or running up the stairs from (F) to the 3rd floor (3F), and the resident will experience the most shaking at the receiving point (3rd floor ( Three
Set it in the room of F).
【0030】そして、図3に示すように、標準モデル1
の建物に特定の生活行為を想定した外力を付与した時に
3階(3F)の居室において受振する振動応答解析を行
い(ステップS6)、第2の振動応答値となる建物の振
動加速度Pを求める(ステップS7)。Then, as shown in FIG. 3, the standard model 1
Vibration analysis is performed in the living room on the 3rd floor (3F) when an external force assuming a specific living action is applied to the building (step S6), and the vibration acceleration P of the building that is the second vibration response value is obtained. (Step S7).
【0031】次にステップS8において、図4に示すよ
うに、標準モデル1の建物に対して個別に設計する建物
の構造的要素を組み込んだ個別モデル2a,2b,2c
を作成する。本実施形態では、建物の構造的要素とし
て、各階層の層重量を組み込んだ個別モデル2aと、建
物の縦横比を組み込んだ個別モデル2bと、各階層の層
剛性を組み込んだ個別モデル2cを作成した一例につい
て説明する。Next, in step S8, as shown in FIG. 4, individual models 2a, 2b, 2c in which structural elements of the building to be individually designed for the building of the standard model 1 are incorporated.
To create. In the present embodiment, as the structural elements of the building, an individual model 2a incorporating the layer weight of each layer, an individual model 2b incorporating the aspect ratio of the building, and an individual model 2c incorporating the layer rigidity of each layer are created. An example will be described.
【0032】尚、建物の構造的要素としては、建物の重
量、延べ床面積、建物の縦横比、建物の固有振動数、建
物の立面形状(特に梁り出し架構の大きさ)、建物の偏
心率等が考えられる。The structural elements of the building include the weight of the building, the total floor area, the aspect ratio of the building, the natural frequency of the building, the elevation shape of the building (particularly the size of the beam frame), Eccentricity etc. are considered.
【0033】居住者の生活行為によって発生する建物の
振動を評価するにあたり、居住する人(或いは、大型ペ
ットを含む)の体重と建物の重量との相対的な比率によ
り発生する振動の大きさが異なる。In evaluating the vibration of the building caused by the living activity of the resident, the magnitude of the vibration generated by the relative ratio between the weight of the resident (or large pet) and the weight of the building. different.
【0034】即ち、建物の重量比率(建物の重量/人の
体重)が大きい大規模な建物の場合には振動が発生し難
く、建物の重量比率が小さい小規模な建物程、振動が発
生し易くなる。また、建物の重量は階数が同じであれば
延べ床面積により便宜的に置き換えることも出来る。That is, in the case of a large-scale building in which the weight ratio of the building (weight of the building / weight of person) is large, vibration is unlikely to occur, and vibration occurs in a smaller building with a smaller weight ratio of the building. It will be easier. In addition, the weight of a building can be conveniently replaced by the total floor area if the number of floors is the same.
【0035】また、建物の縦横比が大きい程、振動が発
生し易く、建物の剛性が低い(固有振動数が低い)程、
振動が発生し易く、建物の立面形状(特に梁り出し架構
の大きさ)の突出度が高い程、振動が発生し易く、建物
の偏心率(建物の中心と重心との位置ずれの大きさ)が
大きい程、振動が発生し易い。Further, the larger the aspect ratio of the building, the easier the vibration is, and the lower the rigidity of the building (the lower the natural frequency),
Vibration is more likely to occur and the higher the degree of protrusion of the building elevation (particularly the size of the beam frame), the more likely it is that vibration will occur and the eccentricity of the building (the deviation between the center of the building and the center of gravity will be large). The larger the value is, the more vibration is likely to occur.
【0036】そして、標準モデル1に個別に設計する建
物の個々の構造的要素を組み込んだ夫々の個別モデル2
a,2b,2cの建物に対して、前述したステップS2
〜S4と同様にして、ステップS9において、各個別モ
デル2a,2b,2cに付与する基準外力、及びその基
準外力を各個別モデル2a,2b,2cに作用させる位
置となる加振点、及び付与された基準外力により各個別
モデル2a,2b,2cが振動した際に、その振動を測
定する位置となる受振点を決定する。Each individual model 2 incorporating the individual structural elements of the building to be designed individually into the standard model 1
For the buildings a, 2b, and 2c, step S2 described above is performed.
~ S4, in step S9, in step S9, the reference external force applied to each individual model 2a, 2b, 2c, and the excitation point at which the reference external force acts on each individual model 2a, 2b, 2c, and the application When each individual model 2a, 2b, 2c vibrates due to the applied reference external force, a vibration receiving point at which the vibration is measured is determined.
【0037】これ等の基準外力、加振点、受振点は、前
記ステップS2で前述した基準外力、加振点、受振点と
一致させる。The reference external force, the vibration applying point, and the vibration receiving point are matched with the reference external force, the vibration applying point, and the vibration receiving point described above in step S2.
【0038】そして、図4(a),(b),(c)に示
すように、個別に設計する建物の重量、縦横比、剛性の
構造的要素毎に標準モデル1の建物に組み込んだ各個別
モデル2a,2b,2cの建物に所定の基準外力を付与
した時に3階(3F)の居室において受振する振動応答
解析を行い(ステップS10)、第3の振動応答値となる
建物の振動加速度Bを求める(ステップS11)。As shown in FIGS. 4 (a), (b), and (c), the weight, aspect ratio, and rigidity of the individually designed building are incorporated into the building of the standard model 1 for each structural element. When a predetermined reference external force is applied to the buildings of the individual models 2a, 2b, and 2c, a vibration response analysis is performed in the living room on the third floor (3F) (step S10), and the vibration acceleration of the building becomes the third vibration response value. B is obtained (step S11).
【0039】そして、前記第1、第2、第3の振動応答
値となる振動加速度BM,P,Bに基づいて、生活行為
によって実際に発生する振動に近似させ得る、例えば以
下の式に例示した演算式により振動評価点Eを計算す
ることで、個別に設計する建物での生活行為によって発
生する建物の振動を評価することが出来る。Then, based on the vibration accelerations BM, P, B which are the first, second, and third vibration response values, it is possible to approximate the vibration actually generated by daily activities. By calculating the vibration evaluation point E by the above calculation formula, it is possible to evaluate the vibration of the building caused by the living activity in the individually designed building.
【0040】[0040]
【数1】 [Equation 1]
【0041】上記式において、E1は個別に設計する
建物の屋上(R)での飛び跳ねによる振動評価点、E2
は個別に設計する建物の3階(3F)での飛び跳ねによ
る振動評価点、E3は個別に設計する建物のベランダで
の飛び跳ねによる振動評価点、E4は個別に設計する建
物の2階(2F)から3階(3F)に掛けられた階段の
昇降による振動評価点である。In the above equation, E 1 is the vibration evaluation point due to the jumping on the roof (R) of the individually designed building, and E 2
Is the vibration evaluation point due to jumping on the 3rd floor (3F) of the individually designed building, E 3 is the vibration evaluation point due to jumping on the balcony of the individually designed building, and E 4 is the 2nd floor of the individually designed building ( It is a vibration evaluation point due to ascending / descending stairs from the 2nd floor to the 3rd floor.
【0042】また、P1は標準モデル1の建物の屋上
(R)での飛び跳ねに応じた衝撃力を付与した時に3階
(3F)の居室において受振する振動応答値となる建物
の振動加速度である。P 1 is the vibration acceleration of the building which is the vibration response value received in the living room on the 3rd floor (3F) when an impact force corresponding to the jumping on the roof (R) of the building of the standard model 1 is applied. is there.
【0043】また、P2は標準モデル1の建物の3階
(3F)での飛び跳ねに応じた衝撃力を付与した時に3
階(3F)の居室において受振する振動応答値となる建
物の振動加速度である。Further, P 2 is 3 when an impact force according to the jumping on the 3rd floor (3F) of the building of the standard model 1 is applied.
It is the vibration acceleration of the building, which is the vibration response value received in the living room on the third floor.
【0044】また、P3は標準モデル1の建物のベラン
ダでの飛び跳ねに応じた衝撃力を付与した時に3階(3
F)の居室において受振する振動応答値となる建物の振
動加速度である。Further, P 3 is the third floor (3 when the impact force is applied according to the jumping on the balcony of the building of the standard model 1).
It is the vibration acceleration of the building that is the vibration response value that is received in the living room in F).
【0045】また、P4は標準モデル1の建物の2階
(2F)から3階(3F)に掛けられた階段の昇降に応
じた衝撃力を付与した時に3階(3F)の居室において
受振する振動応答値となる建物の振動加速度である。P 4 is the vibration received in the living room on the 3rd floor (3F) when the impact force is applied according to the ascent and descent of the stairs from the 2nd floor (2F) to the 3rd floor (3F) of the standard model 1 building. It is the vibration acceleration of the building that becomes the vibration response value.
【0046】また、Bwは図4(a)に示す個別に設計
する建物の重量の構造的要素を標準モデル1の建物に組
み込んだ個別モデル2aの建物に基準外力を付与した時
の3階(3F)の居室において受振する振動応答値とな
る建物の振動加速度である。Bw is the third floor when a reference external force is applied to the building of the individual model 2a in which the structural element of the weight of the individually designed building shown in FIG. 4 (a) is incorporated into the building of the standard model 1 ( 3F) is the vibration acceleration of the building which is the vibration response value received in the living room.
【0047】また、Bpは図4(b)に示す個別に設計
する建物の縦横比の構造的要素を標準モデル1の建物に
組み込んだ個別モデル2bの建物に基準外力を付与した
時の3階(3F)の居室において受振する振動応答値と
なる建物の振動加速度である。Bp is the third floor when a reference external force is applied to the building of the individual model 2b in which the structural element having the aspect ratio of the individually designed building shown in FIG. 4 (b) is incorporated in the building of the standard model 1. It is the vibration acceleration of the building that is the vibration response value that is received in the living room of (3F).
【0048】また、Bsは図4(c)に示す個別に設計
する建物の層剛性の構造的要素を標準モデル1の建物に
組み込んだ個別モデル2aの建物に基準外力を付与した
時の3階(3F)の居室において受振する振動応答値と
なる建物の振動加速度である。Further, Bs is the third floor when a reference external force is applied to the building of the individual model 2a in which the structural element of the layer rigidity of the individually designed building shown in FIG. 4C is incorporated into the building of the standard model 1. It is the vibration acceleration of the building that is the vibration response value that is received in the living room of (3F).
【0049】本実施形態では、各振動評価点E1,E2,
E3,E4を算出するに際して、前記式の各右辺に示す
ように第2の振動応答値となる振動加速度P1,P2,P
3,P4と、第1の振動応答値となる振動加速度BMとの
比と、第3の振動応答値となる振動加速度Bw,Bp,
Bsと、第1の振動応答値となる振動加速度BMとの比
とを利用し、それ等を夫々掛け合わせて、各振動評価点
E1,E2,E3,E4を算出するように構成している。In this embodiment, each vibration evaluation point E 1 , E 2 ,
When calculating E 3 and E 4 , the vibration accelerations P 1 , P 2 and P that are the second vibration response values as shown on the right side of the above equations.
3 , P 4 and the ratio of the vibration acceleration BM which is the first vibration response value, and the vibration acceleration Bw, Bp, which is the third vibration response value.
Using the ratio of Bs and the vibration acceleration BM, which is the first vibration response value, and multiplying them respectively, the respective vibration evaluation points E 1 , E 2 , E 3 , E 4 are calculated. I am configuring.
【0050】ここで、第2、第3の振動応答値と、第1
の振動応答値との比を利用し、標準モデル1を振動が減
衰し易い理想的な建物として設計することで前記式の
各右辺における(Bw/BM),(Bp/BM),(B
s/BM)は「1」より大きく且つ「1」に近い値が算
出され、更に(P/BM)も単位のない同じ次元の数値
で算出されるため、振動評価点Eも桁数が小さく取り扱
いの良い数値として算出され、評価がし易くなってい
る。Here, the second and third vibration response values and the first and second vibration response values
By designing the standard model 1 as an ideal building in which the vibration is easily damped by using the ratio of the vibration response value of (Bw / BM), (Bp / BM), (B
Since the value of (s / BM) is larger than "1" and close to "1", and (P / BM) is also calculated by the numerical value of the same dimension without a unit, the vibration evaluation point E also has a small number of digits. It is calculated as a number that is easy to handle and is easy to evaluate.
【0051】そして、ステップS12において、個別に設
計する建物での生活行為によって発生する建物の振動評
価点Eを上記式により算出する。Then, in step S12, the vibration evaluation point E of the building generated by the living activity in the individually designed building is calculated by the above formula.
【0052】図5は予め振動評価点Eと、実際の振動レ
ベルとの関係を実験により求めた近似グラフの一例であ
り、所定の振動レベルにおいて、振動を体感しないラン
クA、振動を体感するが生活に支障がないランクB、生
活に支障があるランクCに設定している。FIG. 5 is an example of an approximate graph in which the relationship between the vibration evaluation point E and the actual vibration level is obtained in advance by experiment, and at a predetermined vibration level, rank A where vibration is not felt, and vibration is felt. It is set to rank B that does not interfere with life and rank C that does not interfere with life.
【0053】そして、ステップS12において得られた各
振動評価点E1,E2,E3,E4に基づいて図5のグ
ラフから振動のランク評価を行なう(ステップS13)。
そして、その結果、ランクCの評価となった場合は、耐
力壁を追加して建物に剛性を付加する等の適当な設計変
更を行い、その設計変更に応じて再度振動評価点Eを計
算して図5のグラフから振動のランク評価を行い、最終
的にランク評価がランクAになるように設計変更を行な
う。Then, based on the respective vibration evaluation points E1, E2, E3, E4 obtained in step S12, the vibration rank is evaluated from the graph of FIG. 5 (step S13).
Then, as a result, when the evaluation is rank C, an appropriate design change such as adding a load bearing wall and adding rigidity to the building is performed, and the vibration evaluation point E is calculated again according to the design change. Then, the vibration rank is evaluated from the graph of FIG. 5, and the design is changed so that the rank is finally ranked A.
【0054】尚、ステップS1からステップS7まで
は、個別に設計する建物に対して共通の標準モデル1を
使用する場合には、事前に一度振動解析を行なって、振
動応答値BM,Pを夫々求めておけば、同一の振動応答
値BM,Pを使って個別に設計する異なる複数の建物に
対して、ステップS8以降を繰り返し実施することで生
活行為によって発生する夫々の建物の振動評価点Eを求
めて振動のランク評価を行なうことが出来る。In the steps S1 to S7, when the common standard model 1 is used for the individually designed buildings, the vibration analysis is performed once in advance to obtain the vibration response values BM and P respectively. If it asks, the vibration evaluation point E of each building generated by living activity will be generated by repeatedly performing step S8 onward for a plurality of different buildings that are individually designed using the same vibration response values BM and P. It is possible to evaluate the vibration rank by obtaining
【0055】また、種々の想定される代表的な個別設計
の建物に関して、ステップS1、及びステップS8〜S
11を繰り返して個別に設計する建物の振動応答値Bを多
数作成してデータベース化しておくことで、各建物の振
動応答値Bをデータベースから検索して振動評価点Eを
容易に求めることが出来、振動のランク評価を短時間で
行なうことが出来る。Further, with respect to various supposed typical designs of individual designs, step S1 and steps S8 to S are performed.
By repeating 11 and creating a large number of vibration response values B of the building to be individually designed and creating a database, it is possible to easily obtain the vibration evaluation point E by searching the database for the vibration response value B of each building. The vibration rank can be evaluated in a short time.
【0056】以下の表1は想定される代表的な個別設計
の建物の層重量、縦横比、層剛性毎の(Bw/BM)、
(Bp/BM)、(Bs/BM)を予め演算してデータ
ベース化した一例である。Table 1 below shows the layer weights, aspect ratios, and layer stiffnesses (Bw / BM) of a typical assumed individually designed building.
This is an example in which (Bp / BM) and (Bs / BM) are calculated in advance and made into a database.
【0057】[0057]
【表1】 [Table 1]
【0058】このデータベースから個別に設計する建物
の層重量、縦横比、層剛性に対応する(Bw/BM)、
(Bp/BM)、(Bs/BM)を選択して前述した
式に例示した演算式により振動評価点Eを容易に計算す
ることが出来る。Corresponding to the layer weight, aspect ratio, and layer rigidity of the building individually designed from this database (Bw / BM),
The vibration evaluation point E can be easily calculated by selecting (Bp / BM) or (Bs / BM) and using the arithmetic expression illustrated in the above-mentioned expression.
【0059】尚、前記実施形態では、各振動評価点
E1,E2,E3,E4を算出するに際して、前記式の各
右辺に示すように第2の振動応答値となる振動加速度P
1,P2,P3,P4と、第1の振動応答値となる振動加速
度BMとの比と、第3の振動応答値となる振動加速度B
w,Bp,Bsと、第1の振動応答値となる振動加速度
BMとの比とを利用し、それ等を夫々掛け合わせて、各
振動評価点E1,E2,E3,E4を算出するように構成し
た場合の一例について示したが、他の演算式として、第
2の振動応答値となる振動加速度P1,P2,P3,P
4と、第1の振動応答値となる振動加速度BMとの比
と、第3の振動応答値となる振動加速度Bw,Bp,B
sと、第1の振動応答値となる振動加速度BMとの比と
を利用し、それ等の和を求めて、各振動評価点E1,
E2,E3,E4を算出することでも良く、他の種々の演
算方法が適用可能である。In the above embodiment, when the vibration evaluation points E 1 , E 2 , E 3 and E 4 are calculated, the vibration acceleration P which is the second vibration response value as shown on the right side of the equation is obtained.
The ratio of 1 , P 2 , P 3 , P 4 to the vibration acceleration BM which is the first vibration response value, and the vibration acceleration B which is the third vibration response value.
Using the ratio of w, Bp, Bs and the vibration acceleration BM that is the first vibration response value, and multiplying them respectively, the respective vibration evaluation points E 1 , E 2 , E 3 , E 4 are obtained. Although an example of the case of being configured to calculate is shown, as another arithmetic expression, the vibration accelerations P 1 , P 2 , P 3 , P which are the second vibration response values are obtained.
4 and the vibration acceleration BM that is the first vibration response value, and the vibration accelerations Bw, Bp, and B that are the third vibration response values.
The ratio between s and the vibration acceleration BM that is the first vibration response value is used, and the sum of them is calculated to obtain each vibration evaluation point E 1 ,
It is also possible to calculate E 2 , E 3 , and E 4, and various other calculation methods can be applied.
【0060】[0060]
【発明の効果】本発明は、上述の如き構成と作用とを有
するので、中層小規模建物に対して生活行為により発生
する振動を建物の構造的要素や生活行為に応じて設計段
階で振動評価を行なうことが出来、評価結果に基づいて
揺れにくい建物を設計することが出来る。EFFECTS OF THE INVENTION Since the present invention has the above-described structure and operation, the vibration generated by a living activity for a small-scale small-scale building can be evaluated at the design stage according to the structural elements of the building and the living activity. It is possible to design a building that does not shake easily based on the evaluation results.
【0061】特に規格化されたプレハブ住宅等の建物の
振動評価に使用すれば好ましい。It is particularly preferable to use it for vibration evaluation of a standardized building such as a prefabricated house.
【図1】本発明に係る建物の振動評価方法の構成を示す
フローチャートである。FIG. 1 is a flowchart showing a configuration of a building vibration evaluation method according to the present invention.
【図2】(a)は標準モデルの建物に基準外力を付与す
る様子を示す立体模式図、(b)は標準モデルの建物の
各階の間取りを示す模式平面図である。FIG. 2A is a three-dimensional schematic diagram showing how a standard external force is applied to a standard model building, and FIG. 2B is a schematic plan view showing the floor plan of each floor of the standard model building.
【図3】標準モデルの建物に特定の生活行為を想定した
外力を付与する様子を示す立体模式図である。FIG. 3 is a three-dimensional schematic diagram showing how a standard model building is given an external force assuming a specific living activity.
【図4】(a)は個別に設計する建物の層重量を標準モ
デルに組み込んだ個別モデルの建物に基準外力を付与す
る様子を示す立体模式図、(b)は個別に設計する建物
の縦横比を標準モデルに組み込んだ個別モデルの建物に
基準外力を付与する様子を示す立体模式図、(c)は個
別に設計する建物の層剛性を標準モデルに組み込んだ個
別モデルの建物に基準外力を付与する様子を示す立体模
式図である。FIG. 4 (a) is a three-dimensional schematic diagram showing a state in which a reference external force is applied to a building of an individual model in which the layer weight of the individually designed building is incorporated in a standard model, and FIG. Fig. 3C is a three-dimensional schematic diagram showing how a standard external force is applied to the individual model building in which the ratio is incorporated into the standard model, and (c) shows the standard external force to the individual model building in which the layer rigidity of the individually designed building is incorporated It is a three-dimensional schematic diagram which shows a mode that it gives.
【図5】振動評価点と振動レベルとの関係を予め実験に
より求めた近似曲線に基づいて振動評価を行なうための
振動評価ランクを示す図である。FIG. 5 is a diagram showing a vibration evaluation rank for performing vibration evaluation based on an approximate curve obtained by an experiment in advance on the relationship between the vibration evaluation point and the vibration level.
1…建物の標準モデル 2a〜2c…建物の個別モデル 1. Standard building model 2a-2c ... Individual model of building
Claims (4)
の振動を評価する方法であって、 予め基準となる建物の標準モデルを作成し、その標準モ
デルの建物に所定の基準外力を付与した時の第1の振動
応答値と、その標準モデルの建物に該建物での生活行為
によって発生する建物の振動を想定した特定の生活行為
を想定した外力を付与した時の第2の振動応答値とを求
め、 前記標準モデルの建物に対して個別に設計する建物の構
造的要素を組み込んだ個別モデルを作成し、その個別モ
デルの建物に前記所定の基準外力を付与した時の第3の
振動応答値を求め、 前記第1、第2、第3の振動応答値に基づいて、その個
別に設計する建物での生活行為によって発生する建物の
振動を評価することを特徴とする建物の振動評価方法。1. A method for evaluating vibration of a building caused by a living activity in a building, wherein a standard model of a standard building is created in advance, and a predetermined standard external force is applied to the standard model building. And a second vibration response value when an external force is applied to a building of the standard model, which assumes a specific living activity in which vibration of the building caused by living activity in the building is assumed. Then, an individual model incorporating structural elements of the building to be individually designed with respect to the standard model building is created, and the third vibration response when the predetermined reference external force is applied to the individual model building A method for evaluating a vibration of a building, characterized in that a value is obtained, and based on the first, second, and third vibration response values, the vibration of the building caused by a living activity in the individually designed building is evaluated. .
組み込んだ構造的要素を複数設定したことを特徴とする
請求項1に記載の建物の振動評価方法。2. The vibration evaluation method for a building according to claim 1, wherein a plurality of structural elements incorporated in the individual model of the individually designed building are set.
生活行為を想定して複数設定したことを特徴とする請求
項1または請求項2に記載の建物の振動評価方法。3. The vibration evaluation method for a building according to claim 1, wherein a plurality of external forces assuming the daily activities are set assuming various daily activities.
物の振動評価方法により評価された建物が所望の評価以
下であった場合に、所望の評価以上になるように設計変
更することを特徴とする建物の設計方法。4. When the building evaluated by the method for evaluating vibration of a building according to any one of claims 1 to 3 is less than or equal to a desired evaluation, a design change is made so as to obtain a desired evaluation or more. A method of designing a building characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189324A JP3706048B2 (en) | 2001-06-22 | 2001-06-22 | Building vibration evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189324A JP3706048B2 (en) | 2001-06-22 | 2001-06-22 | Building vibration evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003003590A true JP2003003590A (en) | 2003-01-08 |
JP3706048B2 JP3706048B2 (en) | 2005-10-12 |
Family
ID=19028268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001189324A Expired - Lifetime JP3706048B2 (en) | 2001-06-22 | 2001-06-22 | Building vibration evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3706048B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201012A (en) * | 2005-01-20 | 2006-08-03 | Tokyo Electric Power Services Co Ltd | Method and apparatus for monitoring environmental vibration |
JP2013037649A (en) * | 2011-08-11 | 2013-02-21 | Mitsubishi Heavy Ind Ltd | Vibration analysis method for piping system |
CN105155717A (en) * | 2015-09-18 | 2015-12-16 | 福州大学 | Magneto-rheological damping fuzzy controller design method based on imperialist competition algorithm |
CN113190891A (en) * | 2021-02-10 | 2021-07-30 | 国机集团科学技术研究院有限公司 | Evaluation test method for damage and vibration resistance of historic building timber structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04218732A (en) * | 1990-12-19 | 1992-08-10 | Hitachi Ltd | Structure designing system and method |
JPH10275170A (en) * | 1997-03-28 | 1998-10-13 | Fujita Corp | Method and device for analyzing floor vibration |
JPH11160145A (en) * | 1997-11-27 | 1999-06-18 | Suzuki Motor Corp | Acoustic evaluating system |
JP2001033347A (en) * | 1999-07-21 | 2001-02-09 | Sekisui Chem Co Ltd | Construction judgement system for base isolation building |
-
2001
- 2001-06-22 JP JP2001189324A patent/JP3706048B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04218732A (en) * | 1990-12-19 | 1992-08-10 | Hitachi Ltd | Structure designing system and method |
JPH10275170A (en) * | 1997-03-28 | 1998-10-13 | Fujita Corp | Method and device for analyzing floor vibration |
JPH11160145A (en) * | 1997-11-27 | 1999-06-18 | Suzuki Motor Corp | Acoustic evaluating system |
JP2001033347A (en) * | 1999-07-21 | 2001-02-09 | Sekisui Chem Co Ltd | Construction judgement system for base isolation building |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006201012A (en) * | 2005-01-20 | 2006-08-03 | Tokyo Electric Power Services Co Ltd | Method and apparatus for monitoring environmental vibration |
JP2013037649A (en) * | 2011-08-11 | 2013-02-21 | Mitsubishi Heavy Ind Ltd | Vibration analysis method for piping system |
CN105155717A (en) * | 2015-09-18 | 2015-12-16 | 福州大学 | Magneto-rheological damping fuzzy controller design method based on imperialist competition algorithm |
CN105155717B (en) * | 2015-09-18 | 2017-09-15 | 福州大学 | A kind of magnetorheological damping Method for Fuzzy Logic Controller Design based on Competitive Algorithms of colonizing |
CN113190891A (en) * | 2021-02-10 | 2021-07-30 | 国机集团科学技术研究院有限公司 | Evaluation test method for damage and vibration resistance of historic building timber structure |
CN113190891B (en) * | 2021-02-10 | 2023-09-29 | 国机集团科学技术研究院有限公司 | Evaluation test method for damage and vibration resistance of historic building wood structure |
Also Published As
Publication number | Publication date |
---|---|
JP3706048B2 (en) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Younis et al. | Dynamic forces induced by a single pedestrian: a literature review | |
Willford et al. | Improved methodologies for the prediction of footfall-induced vibration | |
Thiers-Moggia et al. | Dynamic response of post-tensioned rocking structures with inerters | |
Moschen et al. | Vertical acceleration demands on column lines of steel moment‐resisting frames | |
JP3931973B2 (en) | Seismic diagnosis method and system for buildings | |
Hassan et al. | Assessment of footfall-induced vibrations in timber and lightweight composite floors | |
Nguyen et al. | Mitigating footfall-induced vibration in long-span floors | |
Glisovic et al. | Vibrational behaviour of timber floors | |
JP2003003590A (en) | Evaluation system for building vibration | |
Utne | Numerical models for dynamic properties of a 14 storey timber building | |
CN108170906A (en) | A kind of multivariate earthquake based on canonical correlation analysis destroys gesture appraisal procedure | |
Johansson | Vibration of hollow core concrete elements induced by walking | |
Hwang et al. | Statistical evaluation of response modification factors for reinforced concrete structures | |
JPH11140967A (en) | Vibration-level predicting method of building and designing method of building | |
Kehoe et al. | Procedures for estimating floor accelerations | |
Minas et al. | Spectral shape proxies and simplified fragility analysis of mid-rise reinforced concrete buildings | |
JP2001349776A (en) | Method of predicting vibration level for building and method of designing building | |
Worth et al. | Dynamic performance assessment of a multistorey timber building via ambient and forced vibration testing, continuous seismic monitoring and finite element model updating | |
Lanata et al. | Guidelines definition for in-situ vibration measurements of buildings | |
Marecik et al. | A comparative analysis of selected models of pedestrian-generated dynamic loads on footbridges–vertical loads | |
CN109375524A (en) | A kind of structural vibration response analysis method based under random crowd's walking model | |
Setareh | Vibration analysis and design of a monumental stair | |
Akhter et al. | Displacement-based design of Reinforced Concrete Special Moment Frame (RC-SMF) with Vertical Irregularity | |
Youssef et al. | Global Analysis of a Tall Timber-Concrete Hybrid Structure Subjected to Wind Load: A Parametric Study of Different Hybrid Solutions | |
Lord et al. | FEM updating using ambient vibration data from a 48-storey building in Vancouver, British Columbia, Canada |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050520 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3706048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130805 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |