JP2003002673A - Apparatus for producing silica glass molding - Google Patents

Apparatus for producing silica glass molding

Info

Publication number
JP2003002673A
JP2003002673A JP2001179109A JP2001179109A JP2003002673A JP 2003002673 A JP2003002673 A JP 2003002673A JP 2001179109 A JP2001179109 A JP 2001179109A JP 2001179109 A JP2001179109 A JP 2001179109A JP 2003002673 A JP2003002673 A JP 2003002673A
Authority
JP
Japan
Prior art keywords
quartz glass
silica glass
molding nozzle
melting furnace
discharge opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001179109A
Other languages
Japanese (ja)
Inventor
Mamoru Yamakado
護 山門
Takashi Chijimatsu
孝 千々松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covalent Materials Tokuyama Corp
Original Assignee
Tokuyama Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Toshiba Ceramics Co Ltd filed Critical Tokuyama Toshiba Ceramics Co Ltd
Priority to JP2001179109A priority Critical patent/JP2003002673A/en
Publication of JP2003002673A publication Critical patent/JP2003002673A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/04Forming tubes or rods by drawing from stationary or rotating tools or from forming nozzles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus capable of obtaining high-quality mass-produced silica glass moldings at low cost in high yield. SOLUTION: The apparatus for producing the silica glass moldings comprises a silica glass-fusing furnace body for fusing and storing raw material particles of silica glass, an oxyhydrogen flame burner for fusing the raw material of silica glass with the oxyhydrogen flame having its tip part facing into the silica glass-fusing furnace body, a molding nozzle comprising a discharge opening for molding the fused silica glass into a shape of a desired cross section, a dummy member in contact with the fused silica glass at the tip of the discharge opening, and a dummy member-drive mechanism for pulling down the dummy member in the axis direction of the molding nozzle and pulling out a molded fused silica glass. The connection of the molding nozzle to the bottom of the silica glass-fusing furnace body is adapted to be tapered in diameter such that it reduces toward the discharge opening of the molding nozzle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石英ガラス成形体
の製造装置に係り、さらに詳しくは石英ガラス原料を酸
水素火炎溶融方式で溶融石英ガラス化し、この溶融石英
ガラス化に連続して透明な石英ガラス成形体を製造でき
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a quartz glass molded body, and more particularly, to a quartz glass raw material which is made into fused quartz glass by an oxyhydrogen flame melting method, and is continuously transparent to this fused quartz vitrification. The present invention relates to a device capable of manufacturing a quartz glass molded body.

【0002】[0002]

【従来の技術】たとえばシリコンウェハ上に、集積回路
の微細パターンを露光・転写する光リソグラフィ技術に
おいては、ステッパと呼ばれる露光装置が使用される。
そして、ステッパの照明系もしくは投影系のレンズに用
いられる光学素材としては、短波長域での高透過率およ
び耐紫外線性が要求されるため、合成石英ガラスが使用
されている。
2. Description of the Related Art In an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto, for example, a silicon wafer, an exposure device called a stepper is used.
As the optical material used for the illumination system or the projection system lens of the stepper, synthetic quartz glass is used because high transmittance in a short wavelength range and ultraviolet resistance are required.

【0003】また、微細パターン化に当たっては、アス
ペクト比の高いエッチング手段が要求され、このため
に、高密度プラズマが使用されつつある。つまり、半導
体の製造手段として、高密度プラズマによる物理的・化
学的なドライエッチング装置が使用されている。なお、
成膜手段として、高密度プラズマによる物理的・化学的
作用を利用したECRプラズマCVD装置も知られてい
る。そして、この種のプラズマを利用する装置において
は、プラズマに曝露される部材に対し、耐プラズマ性や
高純度化が要求される。こうした理由で、プラズマ照射
部となる処理室の内壁部材には、高純度の石英ガラス部
材やポリシリコン部材などが使用されている。
Further, in fine patterning, an etching means having a high aspect ratio is required, and for this reason, high density plasma is being used. That is, a physical / chemical dry etching apparatus using high-density plasma is used as a semiconductor manufacturing means. In addition,
As a film forming means, an ECR plasma CVD apparatus utilizing a physical / chemical action by high density plasma is also known. Further, in an apparatus using this type of plasma, plasma resistance and high purification are required for members exposed to plasma. For this reason, a high-purity quartz glass member, a polysilicon member, or the like is used as the inner wall member of the processing chamber that serves as the plasma irradiation unit.

【0004】ところで、透明な石英ガラス部材は、通
常、酸水素火炎溶融手段で作製されている。第1の手段
は、ベルヌイ炉を使用し、石英ガラス製の酸水素バーナ
ーの中央から石英ガラス粉末を一定速度で落下させて、
ターゲット面上に堆積させながら溶融ガラス化し、砲弾
形の石英ガラスインゴットを製造する。その後、この石
英ガラスインゴットを電気炉などによって再溶融後、角
柱形や円柱形に成形し、その成形体を所要の肉厚にスラ
イスする。
By the way, a transparent quartz glass member is usually manufactured by means of oxyhydrogen flame melting means. The first means is to use a Bernoulli furnace and drop quartz glass powder from the center of a quartz glass oxyhydrogen burner at a constant speed,
Molten glass is formed while being deposited on the target surface to produce a bullet-shaped quartz glass ingot. After that, the quartz glass ingot is remelted by an electric furnace or the like, and then formed into a prismatic shape or a cylindrical shape, and the formed body is sliced into a required thickness.

【0005】第2の手段は、たとえば四塩化ケイ素など
の石英ガラス形成原料となるシリコン化合物ガス(シリ
コン化合物のキャリアガスを含む)と、加熱・反応用の
燃焼ガス(酸素ガスと水素ガス)とを合成用バーナーか
ら流出・供給し、ガラス粒子(シリカガラス微粒子)を
形成させ、このガラス粒子を火炎内でインゴット形成用
のターゲット(耐熱性基材)面に、堆積・溶融化して透
明ガラスのインゴットを製造する直接合成手段である。
その後、この石英ガラスインゴットを電気炉などによっ
て再溶融後、角柱形や円柱形に成形し、その成形体を所
要の肉厚にスライスする。
The second means is, for example, a silicon compound gas (including a carrier gas of a silicon compound) which is a raw material for forming quartz glass such as silicon tetrachloride, and a combustion gas (oxygen gas and hydrogen gas) for heating / reaction. Is discharged and supplied from the synthesis burner to form glass particles (silica glass particles), and these glass particles are deposited and melted on the target (heat-resistant base material) surface for ingot formation in a flame to form transparent glass. It is a direct synthetic means for producing ingots.
After that, the quartz glass ingot is remelted by an electric furnace or the like, and then formed into a prismatic shape or a cylindrical shape, and the formed body is sliced into a required thickness.

【0006】その他、電気溶融手段として、(a)電気
炉中、真空もしくは不活性ガス下で、石英ガラス原料粉
末ないしインゴットを溶融し、この溶融石英ガラスを耐
火性の成形型に注入・充填して角柱形や円柱形に成形し
た後、その成形体を所要の肉厚にスライスする。あるい
は(b)ジルコニアを主成分とした耐火性溶融炉など
で、石英ガラス原料粉末ないしインゴットを溶融し、前
記溶融炉の底に配置した引き下げ装置を降下させ、この
引き下げ操作によって溶融石英ガラスを溶融炉の底部開
口に対応した横断面形状に成形しながら、石英ガラス成
形体を引き出す手段もある。
In addition, as an electric melting means, (a) a quartz glass raw material powder or an ingot is melted in an electric furnace in a vacuum or under an inert gas, and the fused quartz glass is injected and filled into a refractory mold. After forming into a prismatic shape or a cylindrical shape, the molded body is sliced into a required thickness. Alternatively, (b) in a refractory melting furnace containing zirconia as a main component, the quartz glass raw material powder or ingot is melted, and the pulling device arranged at the bottom of the melting furnace is lowered, and the fused quartz glass is melted by this pulling operation. There is also a means for pulling out the quartz glass molded body while molding it into a cross-sectional shape corresponding to the bottom opening of the furnace.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記、
従来の石英ガラス成形体の製造手段は、実用上、次のよ
うな不都合がある。すなわち、酸水素火炎溶融法におけ
るベルヌイ法の場合は、電気溶融炉などで砲弾型のイン
ゴットを再溶融し、型枠を使用してブロック状に成形
し、その成形体を所要の厚さにスライスするため、石英
ガラス成形体に至るまでのプロセスが煩雑で、かつ製造
コストアップを招来する。
However, the above
The conventional means for producing a quartz glass molded body has the following practical disadvantages. That is, in the case of the Bernoulli method in the oxyhydrogen flame melting method, the shell-shaped ingot is re-melted in an electric melting furnace, molded into a block shape using a mold, and the molded body is sliced to the required thickness. Therefore, the process up to the quartz glass molded body is complicated, and the manufacturing cost is increased.

【0008】さらに、火炎加水合成法(直接法)による
場合も、合成石英ガラスのインゴットを作製し、このイ
ンゴットを所要の厚さにスライスする手段が採られる。
したがって、結果的には、他の手段の場合と同様に、操
作の煩雑、生産性の低下、コストアップなどの問題を提
起する。
Further, also in the case of the flame hydrolysis synthesis method (direct method), a means of producing an ingot of synthetic quartz glass and slicing the ingot to a required thickness can be adopted.
Therefore, as in the case of other means, as a result, problems such as complicated operation, reduced productivity, and increased cost are raised.

【0009】一方、真空下などで石英原料粉末を電気溶
融する場合は、ブロック状のインゴットを溶融し、この
溶融石英ガラスを鋳型に鋳込む構成を採るため、鋳型な
ど材料のコストアップを招来する。しかも、溶融炉の構
造や鋳込み操作の組み込みによる作業の煩雑化なども加
わって、生産性が大幅に損なわれ、少量多品種の製造・
製作に不向きである。
On the other hand, when the quartz raw material powder is electrically melted under vacuum or the like, the block-shaped ingot is melted and the fused quartz glass is cast into the mold, so that the cost of the material such as the mold is increased. . In addition, the complexity of the work due to the structure of the melting furnace and the incorporation of the casting operation, etc. was added, and the productivity was greatly impaired.
Not suitable for production.

【0010】さらに、他の電気溶融手段の場合は、成形
体化に作用する溶融炉体底部の開口は、溶融炉の横断面
内形をそのまま延長させた形態を採っている。つまり、
溶融石英ガラス溜め部を成す溶融炉の開口端が、そのま
ま成形型として機能する構成を採っているため、溶融石
英ガラスに対して溶融炉本体側壁面の接触抵抗が作用し
易くなり、中央部における溶融石英ガラスの流動に較べ
て滞留する傾向を呈する。そして、前記溶融炉本体側壁
面における溶融石英ガラスの滞留は、発泡・気泡の残存
を発生するとともに、成形した石英ガラスに不純物を混
入する傾向がある。つまり、気泡を含んだり脈流が生じ
たりした不均質な石英ガラス成形体が得られ、品質や歩
留まりなどの点で問題がある。このように、従来の各手
段は、合成石英ガラスの生産コスト、量産性、品質など
に問題があって、実用的に有効な手段といい難い。
Further, in the case of another electric melting means, the opening of the bottom of the melting furnace which acts to form a molded body takes a form in which the internal shape of the cross section of the melting furnace is extended as it is. That is,
Since the open end of the melting furnace that forms the fused silica glass reservoir functions as a mold as it is, contact resistance of the side wall surface of the melting furnace body easily acts on the fused silica glass, and It exhibits a tendency to stay compared to the flow of fused silica glass. The retention of the fused silica glass on the side wall surface of the melting furnace body tends to cause foaming and bubbles to remain, and to mix impurities into the molded quartz glass. That is, an inhomogeneous quartz glass molded body containing bubbles and pulsating flow is obtained, and there is a problem in terms of quality and yield. As described above, each of the conventional means has problems in production cost, mass productivity, quality, and the like of synthetic quartz glass, and cannot be said to be practically effective means.

【0011】本発明は、上記事情に対処してなされたも
ので、低コストで、かつ歩留まりよく高品質の石英ガラ
ス成形体を得ることができる製造装置の提供を目的とす
る。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a manufacturing apparatus capable of obtaining a high-quality quartz glass molded body at a low cost and with a high yield.

【0012】[0012]

【課題を解決するための手段】請求項1の発明は、石英
ガラス原料粒子を溶融・貯留する石英ガラス溶融炉本体
と、前記石英ガラス溶融炉本体内に先端部が臨み供給さ
れる石英ガラス原料を酸水素火炎で溶融石英ガラス化す
る酸水素火炎バーナーと、前記石英ガラス溶融炉本体の
底部に連接されて溶融石英ガラスを所要の横断面形状に
成形体化する吐出開口を備えた成形用ノズルと、前記成
形用ノズルの吐出開口端面に対峙配置され、吐出開口端
の溶融石英ガラスに接するダミー部材と、前記成形用ノ
ズルの軸方向にダミー部材を引き下げ溶融石英ガラスを
成形体化して引き出すダミー部材駆動機構とを有する石
英ガラス成形体の製造装置であって、前記石英ガラス溶
融炉本体の底部に対する成形用ノズルの連接が成形用ノ
ズルの吐出開口側に縮径するテーパー付きでなされてい
ることを特徴とする石英ガラス成形体の製造装置であ
る。
According to a first aspect of the present invention, there is provided a quartz glass melting furnace main body for melting and storing quartz glass raw material particles, and a quartz glass raw material whose front end is fed into the quartz glass melting furnace main body. A oxyhydrogen flame burner for forming fused silica glass with an oxyhydrogen flame, and a molding nozzle provided with a discharge opening that is connected to the bottom of the quartz glass melting furnace body and forms the fused silica glass into a desired cross-sectional shape. And a dummy member facing the discharge opening end face of the molding nozzle and in contact with the fused silica glass at the discharge opening end, and a dummy that pulls down the dummy member in the axial direction of the molding nozzle to form the fused quartz glass into a molded body. A manufacturing apparatus of a quartz glass molded body having a member driving mechanism, wherein the molding nozzle is connected to the bottom of the quartz glass melting furnace body at a discharge opening side of the molding nozzle. It is a manufacturing apparatus of the quartz glass molded body, characterized in that made in tapered reduced in diameter.

【0013】請求項2の発明は、請求項1記載の石英ガ
ラス成形体の製造装置において、石英ガラス溶融炉本体
の溶融石英ガラス貯留部内径が成形用ノズルの吐出開口
径に対して60〜100mm大きく設定してあることを
特徴とする。
According to a second aspect of the present invention, in the apparatus for producing a quartz glass molded body according to the first aspect, the inner diameter of the fused silica glass storage portion of the quartz glass melting furnace body is 60 to 100 mm with respect to the discharge opening diameter of the molding nozzle. It is characterized by being set large.

【0014】請求項3の発明は、請求項1もしくは請求
項2記載の石英ガラス成形体の製造装置において、溶融
ガラス化する酸水素火炎バーナーが天然石英ガラス原料
粉末を溶融ガラス化する酸水素火炎バーナーであること
を特徴とする。
According to a third aspect of the present invention, in the apparatus for producing a quartz glass molded body according to the first or second aspect, an oxyhydrogen flame burner for melting and vitrifying a raw material powder of natural quartz glass for melting and vitrifying an oxyhydrogen flame. It is a burner.

【0015】請求項4の発明は、請求項1もしくは請求
項2記載の石英ガラス成形体の製造装置において、溶融
ガラス化する酸水素火炎バーナーが気体状の石英ガラス
原料を加水分解させ、生成させたシリカガラス粒子を溶
融ガラス化する酸水素火炎合成バーナーであることを特
徴とする。
According to a fourth aspect of the present invention, in the apparatus for producing a quartz glass molded body according to the first or second aspect, an oxyhydrogen flame burner for melting and vitrifying causes a gaseous quartz glass raw material to be hydrolyzed and produced. It is characterized by being an oxyhydrogen flame synthesis burner that melts and vitrifies silica glass particles.

【0016】請求項1ないし4の発明は、酸水素火炎溶
融手段による石英ガラス原料の溶融石英ガラス化と、こ
の溶融石英ガラスが成形用ノズルを通過する過程での成
形体化とを一体的に行える構成を採った点で特徴付けら
れる。すなわち、酸水素火炎溶融手段によって、溶融炉
本体内で石英ガラス原料を溶融化するとともに、溶融炉
本体内を溶融石英ガラスの溜め部(貯留部)とする。一
方、この溜め部の底部にテーパー付き接続部を介し、所
要の横断面形状が開口する成形用ノズルを配置した構成
とする。そして、前記溜められた溶融石英ガラスがスム
ーズな流動で、成形用ノズル開口を吐出・通過する段階
において、所定の横断面形状に成形されながら引き出さ
れる構成を採ったことを骨子とする。
According to the first to fourth aspects of the present invention, the fused silica glass material is made into fused silica glass by the oxyhydrogen flame melting means, and the formed body is formed in the process in which the fused silica glass passes through the forming nozzle. It is characterized in that it can be configured. That is, the quartz glass raw material is melted in the melting furnace main body by the oxyhydrogen flame melting means, and the inside of the melting furnace main body is used as a reservoir portion (reserving portion) for the molten quartz glass. On the other hand, a molding nozzle having a desired cross-sectional shape is arranged at the bottom of the reservoir via a tapered connecting portion. The outline is that the accumulated fused silica glass is smoothly flown and is drawn out while being formed into a predetermined cross-sectional shape at the stage of discharging and passing through the forming nozzle opening.

【0017】さらに言及すると、溶融炉本体内の溶融石
英ガラスは、その溜め部と成形体化する成形用ノズルと
がテーパー付きで連接されたことにより、溜め部から成
形用ノズル開口部へスムーズに流動する。そして、成形
用ノズルの開口が所望する成形体、たとえば角柱状、円
柱状、板状に対応した横断面形状に選択・設定してある
ため、成形用ノズルを引き出される段階で所望の横断面
形状に成形される。つまり、製造装置は、石英ガラスの
溶融・調製と、石英ガラス成形体の成形とを連続して、
あるいは一括的に行うことが可能に構成されている。
More specifically, the fused silica glass in the melting furnace main body is smoothly connected from the reservoir to the nozzle opening for molding because the reservoir and the molding nozzle for forming a molded body are connected with a taper. Flow. Since the opening of the molding nozzle is selected and set to have a desired cross-sectional shape corresponding to a desired molded product, for example, a prismatic shape, a cylindrical shape, or a plate shape, the desired cross-sectional shape is obtained when the molding nozzle is pulled out. Is molded into. That is, the manufacturing apparatus continuously melts and prepares the quartz glass and molds the quartz glass molded body,
Alternatively, it can be collectively performed.

【0018】請求項1ないし4の発明において、溶融炉
本体及び成形用ノズルは、溶融石英ガラスを対象とした
耐熱性を要求されるため、たとえばジルコニアや炭化ケ
イ素などを素材として構成される。なお、溶融石英ガラ
スの溜め部を兼ねる溶融炉本体は、製造する石英ガラス
成形体に対応して、たとえば横断面形状を正方形、円
形、長方形などに設定することが好ましい。また、成形
用ノズルは、前記溶融炉本体の底面側を延設して一体的
に構成配置してもよいし、あるいは別個に作製して溶融
炉本体の底面側に組み込む構成としてもよい。
In the invention of claims 1 to 4, since the melting furnace body and the molding nozzle are required to have heat resistance for fused silica glass, they are made of, for example, zirconia or silicon carbide. In addition, it is preferable that the melting furnace main body which also serves as a reservoir for the fused silica glass has a cross-sectional shape of, for example, a square, a circle, a rectangle or the like, corresponding to the quartz glass molded body to be manufactured. Further, the molding nozzle may be integrally formed and arranged by extending the bottom surface side of the melting furnace main body, or may be separately manufactured and incorporated into the bottom surface side of the melting furnace main body.

【0019】しかし、いずれの場合も、溶融炉本体の底
面側と成形用ノズルとの接続部は、溶融石英ガラスのス
ムーズな流れを助長ないし確保するために、成形用ノズ
ル側に縮径するテーパー付きに形成される。なお、上記
溶融石英ガラスの溜め部を兼ねる溶融炉本体の内径を、
成形用ノズル開口径ないし幅よりも60〜100mm程
度大きく設定しておくと、上記溶融石英ガラスの流れ易
さが、より容易に助長され、気泡残りなどのない成形体
の高品質化を図れる。
However, in any case, the connecting portion between the bottom surface side of the melting furnace main body and the molding nozzle has a taper that is reduced in diameter toward the molding nozzle in order to promote or ensure a smooth flow of the fused silica glass. Is formed. In addition, the inner diameter of the melting furnace main body also serving as a reservoir of the fused quartz glass,
If the opening diameter or width of the molding nozzle is set to be about 60 to 100 mm larger, the flowability of the fused silica glass is facilitated more easily, and the quality of the molded product free of residual bubbles can be improved.

【0020】請求項1ないし4の発明において、成形用
ノズルの吐出開口端面に対峙配置され、成形用ノズル吐
出開口端の溶融石英ガラスに接するダミー部材の引き下
げ(もしくは下降)に寄与する駆動機構は、たとえばエ
アーシリンダーやオイルシリンダーなどであり、成形体
の長さに応じて下降量ないしストロークが選択・制御さ
れる。また、ダミー部材の引き下げ速度(下降速度)
は、常時、溶融石英ガラスの溜め量がほぼ一定であるよ
うに、たとえば1:1の関係を保持する状態に、酸水素
火炎中への石英ガラス原料粉末の供給量、あるいは酸水
素火炎中での加水分解によるシリカ微粒子の生成・供給
・溶融化量と連動的に行われる。
In the invention according to any one of claims 1 to 4, the driving mechanism which is arranged to face the discharge opening end face of the molding nozzle and which contributes to pulling down (or descending) the dummy member in contact with the fused silica glass at the discharge opening end of the molding nozzle is For example, it is an air cylinder or an oil cylinder, and the descending amount or stroke is selected and controlled according to the length of the molded body. Also, the lowering speed (lowering speed) of the dummy member
Is a state in which the volume of the fused silica glass is kept almost constant at all times, for example, in the state of maintaining a 1: 1 relationship, the supply amount of the silica glass raw material powder into the oxyhydrogen flame or the oxyhydrogen flame It is performed in conjunction with the generation, supply, and melting amount of silica fine particles by the hydrolysis of.

【0021】請求項1ないし4の発明において、石英ガ
ラス成形体の製造装置は、上記縮径型の成形用ノズルの
設置、溶融炉本体底面側とのテーパー付き接続、溶融炉
本体内での溶融石英ガラス溜めなどの点を除くと、基本
的には、従来の酸水素火炎溶融手段の場合と同様の構成
を採っている。すなわち、溶融炉本体内に先端部を臨ま
せて、天然石英ガラス原料粉末もしくは気体状の石英ガ
ラス形成原料を供給して火炎加水分解で生成するシリカ
ガラス粒子を溶融する酸水素火炎バーナーと、前記溶融
石英ガラスの溶融状態を保持させる熱源もしくは断熱手
段とを有しており、酸水素火炎溶融方式の石英ガラス製
造装置に類似した構成である。
According to the first to fourth aspects of the invention, the apparatus for producing a quartz glass molded body is provided with the above-described reduced-diameter molding nozzle, tapered connection with the bottom side of the melting furnace body, and melting in the melting furnace body. Except for points such as a quartz glass reservoir, it basically has the same configuration as that of the conventional oxyhydrogen flame melting means. That is, the oxyhydrogen flame burner that faces the tip in the melting furnace body, and melts the silica glass particles produced by flame hydrolysis by supplying natural quartz glass raw material powder or gaseous quartz glass forming raw material, It has a heat source or a heat insulating means for holding the molten state of the fused quartz glass, and has a configuration similar to that of the oxyhydrogen flame melting type quartz glass manufacturing apparatus.

【0022】請求項1ないし4の発明では、たとえば四
塩化ケイ素(SiCl)などの気体状石英ガラス形
成原料を酸水素火炎中で加水分解して得られたシリカ粒
子、あるいは天然石英ガラス原料粒子(粉末)を酸水素
火炎によって、溶融炉本体内で溶融石英ガラス化する。
一方、この溶融石英ガラスを溶融炉本体内に一次的に溜
め、溶融炉本体に較べて狭小(縮径)させた開口を介し
て引き出すことによって成形が行われる。つまり、成形
用ノズルを介して溶融石英ガラスを引き出す過程で成形
体化するため、前記溶融石英ガラス化及び成形体化が連
続的、かつ一括的に行われる。
In the first to fourth inventions, silica particles obtained by hydrolyzing a gaseous quartz glass forming raw material such as silicon tetrachloride (SiCl 4 ) in an oxyhydrogen flame, or natural quartz glass raw material particles The (powder) is vitrified into vitrified silica in the melting furnace body by an oxyhydrogen flame.
On the other hand, this fused quartz glass is temporarily stored in the melting furnace main body, and is drawn out through an opening that is narrower (diameter reduced) than the melting furnace main body, whereby molding is performed. That is, since the fused silica glass is formed into a molded body in the process of being drawn out through the molding nozzle, the fused silica glass and the molded body are continuously and collectively formed.

【0023】[0023]

【発明の実施態様】以下、図1、図2(a),(b)、
図3及び図4(a),(b)を参照して実施例を説明す
る。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, FIG. 1, FIG. 2 (a), (b),
An embodiment will be described with reference to FIGS. 3 and 4A and 4B.

【0024】図1は、第1の実施例に係る石英ガラス成
形体製造装置の概略構成を示す断面図である。図1にお
いて、1は溶融炉本体、2は前記溶融炉本体1の底面側
に連接配置された成形用ノズル、3は前記溶融炉体1及
び成形用ノズル2の外周面に嵌合的に配置された断熱部
材である。
FIG. 1 is a sectional view showing the schematic arrangement of a quartz glass molded body manufacturing apparatus according to the first embodiment. In FIG. 1, 1 is a melting furnace body, 2 is a molding nozzle connected to the bottom surface side of the melting furnace body 1, and 3 is fitly arranged on the outer peripheral surfaces of the melting furnace body 1 and the molding nozzle 2. Is a heat insulating member.

【0025】ここで、溶融炉本体1及び成形用ノズル2
は、いずれもジルコニア製であり、図2(a)に上面
を、図2(b)に断面をそれぞれ示すような横断面長方
形の構成と成っている。すなわち、溶融炉本体1は、内
径が670×260mm、壁厚さ65mm程度、長さ5
00mm、また、成形用ノズル2は、全長80mmで、
一端面側(30mm)が内径610×200mmに開口
した吐出開口(成形部)2aを、また、他端面側(50
mm)が内径670×260mmに開口し、かつ吐出開
口(成形部)2a側に縮径されたテーパー2b付きに形
成されている。
Here, the melting furnace body 1 and the molding nozzle 2
Are made of zirconia, and each has a rectangular cross-sectional configuration whose top surface is shown in FIG. 2 (a) and whose cross section is shown in FIG. 2 (b). That is, the melting furnace main body 1 has an inner diameter of 670 × 260 mm, a wall thickness of about 65 mm, and a length of 5 mm.
00 mm, and the molding nozzle 2 has a total length of 80 mm,
One end surface side (30 mm) has a discharge opening (molding portion) 2a having an inner diameter of 610 × 200 mm, and the other end surface side (50 mm).
mm) has an inner diameter of 670 × 260 mm and is formed with a tapered taper 2b on the discharge opening (molding portion) 2a side.

【0026】さらに、4は前記溶融炉本体1内に先端部
が臨み、天然石英ガラス原料粉を一定速度で落下・供給
して溶融石英ガラス化する酸水素バーナー、5は前記石
英ガラス原料粉末を収容する原料タンクで、開閉機構6
の駆動によって酸水素バーナー4への天然石英ガラス原
料粉末の供給を調整する構成と成っている。つまり、基
本的な構成自体は、従来の酸水素火炎溶融方式の石英ガ
ラス製造装置の場合と同様である。
Further, 4 is an oxyhydrogen burner whose front end faces the inside of the melting furnace body 1 and which drops and supplies natural silica glass raw material powder at a constant speed to form fused silica vitreous, and 5 is the silica glass raw material powder. Opening mechanism 6 for the raw material tank
Is controlled to control the supply of the natural quartz glass raw material powder to the oxyhydrogen burner 4. That is, the basic configuration itself is the same as that of the conventional oxyhydrogen flame melting type quartz glass manufacturing apparatus.

【0027】さらにまた、7は前記成形用ノズル2の吐
出開口(成形部)2aに対峙し、かつ溶融炉本体1内
に、溶融石英ガラス8を溜める閉塞体としての作用に寄
与する一方、この吐出開口2aから引き離され、かつ溶
融石英ガラス8を成形しながら引っ張り出す作用に寄与
するダミー部材、9は前記成形用ノズル2の吐出開口2
aに対するダミー部材7の離脱・接離を行う駆動機構、
たとえば一軸シリンダーである。
Furthermore, 7 is opposed to the discharge opening (molding portion) 2a of the molding nozzle 2 and contributes to the function as a closing body for accumulating the fused silica glass 8 in the melting furnace body 1, while The dummy member 9 which is separated from the discharge opening 2a and contributes to the action of pulling out the fused silica glass 8 while molding the molten quartz glass 8 is the discharge opening 2 of the molding nozzle 2.
a drive mechanism for separating / contacting the dummy member 7 with respect to a,
For example, a uniaxial cylinder.

【0028】ここで、ダミー部材7は、たとえば厚さ5
0mm、約610×200mmの長方形板であり、ま
た、前記閉塞体としての作用及び成形体化の核的な作用
が期待されている点から、溶融石英ガラスと同質が望ま
しい。すなわち、ダミー部材7を石英ガラス製とした場
合は、熱膨張率が等しいため、引っ張り(引き下げ)時
における温度低下に起因する剥離・離脱なども回避で
き、操作の安定化などを容易に図れる。
Here, the dummy member 7 has a thickness of 5 for example.
It is a rectangular plate having a size of 0 mm and about 610 × 200 mm, and it is desirable that it has the same quality as fused silica glass from the viewpoint that the function as the closing body and the core function of forming the molded body are expected. That is, when the dummy member 7 is made of quartz glass, since the coefficient of thermal expansion is the same, it is possible to avoid peeling or detachment due to a temperature drop during pulling (pulling), and it is possible to easily stabilize the operation.

【0029】次に、上記製造装置による石英ガラス成形
体の製造例を説明する。先ず、製造装置の溶融炉本体1
内の温度を1850℃程度に設定する一方、天然石英ガ
ラス原料粉末を2.0kg/hの割合で供給し、酸水素
火炎溶融によって溶融石英ガラス化させた。こうして、
溶融炉本体1内の溶融ガラス溜め込み部に、一定量の溶
融石英ガラス8が貯留した段階で、駆動機構9によって
ダミー部材7を0.12mm/minの速度で引き下げ
て、横断面積610×200mmの高品質な板状の石英
ガラス成形体を得た。そして、この石英ガラス成形体か
ら厚さ19mm程度の板を切りだし、表面を研磨して半
導体用の部材に加工したところ、歩留まりよく、かつ高
純度を保持する石英ガラス板が得られた。
Next, an example of manufacturing a quartz glass molded body by the above manufacturing apparatus will be described. First, the melting furnace body 1 of the manufacturing apparatus
While the internal temperature was set to about 1850 ° C., a natural silica glass raw material powder was supplied at a rate of 2.0 kg / h and fused silica vitrified by oxyhydrogen flame melting. Thus
At a stage where a certain amount of fused silica glass 8 was stored in the molten glass storage portion in the melting furnace body 1, the dummy member 7 was pulled down by the drive mechanism 9 at a speed of 0.12 mm / min, and the cross-sectional area of 610 × 200 mm. A high quality plate-shaped quartz glass molded body was obtained. Then, a plate having a thickness of about 19 mm was cut out from this quartz glass molded body, and the surface was polished to be processed into a member for semiconductor. As a result, a quartz glass plate with a high yield and high purity was obtained.

【0030】すなわち、成形用ノズル7の吐出開口2a
に亘って溶融石英ガラス8が行き渡り、ダミー部材7と
融合した時点でダミー部材7を下降させることによっ
て、前記成形用ノズル7の吐出開口2aの形状・寸法に
規制された横断面形状で、かつ残飽や脈流のない品質良
好な板状の石英ガラスを得た。ここで、駆動機構9によ
る下降量(もしくはストローク)の選択・制御によっ
て、成形体の長さが決められる。
That is, the discharge opening 2a of the molding nozzle 7
When the fused silica glass 8 spreads over the entire area and is fused with the dummy member 7, the dummy member 7 is lowered so that the cross-sectional shape is restricted to the shape and size of the discharge opening 2a of the molding nozzle 7, and A plate-shaped quartz glass having good quality without residual fatigue or pulsation was obtained. Here, the length of the compact is determined by the selection / control of the descending amount (or stroke) by the drive mechanism 9.

【0031】また、ダミー部材7の引き下げ速度(下降
速度)は、常時、溶融石英ガラス8の溜め量がほぼ一定
であるように、酸水素火炎溶融による天然石英ガラス原
料粉末の溶融石英ガラス化量と連動的に行われる。この
実施例の場合は、溶融石英ガラス8の溜め量(溶融炉本
体1の溶融石英ガラス8の高さ)を150〜200mm
程度にキープした。すなわち、溜め量が200mmを超
えると成型用ノズル2部での温度が低下し、粘性流動性
の低下により引き出し操作が困難化し、また、150m
m未満では溜め量の不足によって、所定形状化が困難に
なる傾向が認められた。
Further, the lowering speed (lowering speed) of the dummy member 7 is such that the amount of the molten quartz vitrification of the raw material powder of natural quartz glass by oxyhydrogen flame melting is always constant so that the amount of the molten quartz glass 8 accumulated is almost constant. It is done in conjunction with. In the case of this embodiment, the storage amount of the fused silica glass 8 (the height of the fused silica glass 8 of the melting furnace body 1) is 150 to 200 mm.
I kept it around. That is, if the amount of the reservoir exceeds 200 mm, the temperature of the molding nozzle 2 is lowered, the viscous fluidity is lowered, and the pulling operation becomes difficult.
If it is less than m, it tends to be difficult to form a desired shape due to insufficient storage amount.

【0032】図3は、第2の実施例に係る石英ガラス成
形体の製造装置の溶融炉本体1及び成形用ノズル2の構
成を示す上面図である。すなわち、溶融炉本体1及び成
形用ノズル2の構成を円筒状に構成した点を除くと、基
本的には、第1の実施例の場合と同様の構造と成ってい
る。具体的には、溶融炉体1の内径が360mm、壁厚
さ65mm程度、長さ500mm、また、成形ノズル2
の全長が80mmで、一端面側(30mm)が内径30
0mmに開口した吐出開口(成形部)2aを、また、他
端面側(50mm)が内径360mmに開口し、かつ吐
出開口(成形部)2a側に縮径されたテーパー2b付き
に形成されている。
FIG. 3 is a top view showing the construction of the melting furnace body 1 and the molding nozzle 2 of the apparatus for manufacturing a quartz glass molded body according to the second embodiment. That is, the structure is basically the same as that of the first embodiment except that the melting furnace main body 1 and the molding nozzle 2 are formed in a cylindrical shape. Specifically, the melting furnace body 1 has an inner diameter of 360 mm, a wall thickness of about 65 mm, a length of 500 mm, and the molding nozzle 2
Has a total length of 80 mm and one end surface side (30 mm) has an inner diameter of 30
The discharge opening (molding portion) 2a is opened to 0 mm, the other end surface side (50 mm) is opened to an inner diameter of 360 mm, and the discharge opening (molding portion) 2a side is formed with a tapered taper 2b. .

【0033】この製造装置の溶融炉本体1内の温度を1
850℃程度に設定する一方、石英ガラス原料粉末を
3.0kg/hの割合で供給し、酸素火炎溶融によって
溶融石英ガラス化させた。こうして、溶融炉本体1内の
溶融ガラス溜め込み部に、一定量の溶融石英ガラス8が
貯留した段階で、駆動機構9の駆動によってダミー部材
7を0.22mm/minの速度で引き下げて、横断面
径300mmの高品質な円柱状石英ガラス成形体を得
た。
The temperature inside the melting furnace body 1 of this manufacturing apparatus is set to 1
While setting the temperature to about 850 ° C., the quartz glass raw material powder was supplied at a rate of 3.0 kg / h, and fused quartz vitrified by oxygen flame melting. In this way, when a certain amount of the fused silica glass 8 is stored in the molten glass accumulating portion in the melting furnace body 1, the dummy member 7 is pulled down at a speed of 0.22 mm / min by the driving of the driving mechanism 9, A high quality cylindrical quartz glass molded body having a diameter of 300 mm was obtained.

【0034】すなわち、成形用ノズル7の吐出開口2a
に亘って溶融石英ガラスが行き渡り、ダミー部材7と融
合した時点で、ダミー部材7を下降させることによっ
て、前記成形用ノズル7の吐出開口2aの形状・寸法に
規制された横断面形状で、かつ残飽や脈流のない品質良
好な円柱状の石英ガラスが得られた。そして、この石英
ガラス成形体から厚さ19mm程度の板を切りだし、表
面を研磨して半導体用の部材に加工したところ、歩留ま
りよく、かつ高純度を保持する石英ガラス板が得られ
た。
That is, the discharge opening 2a of the molding nozzle 7
When the fused silica glass spreads over and is fused with the dummy member 7, the dummy member 7 is lowered to have a cross-sectional shape regulated to the shape and size of the discharge opening 2a of the molding nozzle 7, and A good-quality cylindrical quartz glass without residual fatigue or pulsation was obtained. Then, a plate having a thickness of about 19 mm was cut out from this quartz glass molded body, and the surface was polished to be processed into a member for semiconductor. As a result, a quartz glass plate with a high yield and high purity was obtained.

【0035】図4(a),(b)は、第3の実施例に係
る石英ガラス成形体製造装置の溶融炉本体1及び成形用
ノズル2の構成を示す上面図と断面図である。すなわ
ち、溶融炉本体1及び成形用ノズル2の構成を角筒状に
構成しており、基本的には、第1の実施例の場合と同様
の構造と成っている。具体的には、溶融炉本体1の内径
が570×80mm、壁厚さ65mm程度、長さ500
mm、また、成形用ノズル2の全長が80mmで、一端
面側(30mm)が内径510×20mmに開口した吐
出開口(成形部)2aを、また、他端面側(50mm)
が内径570×80に開口し、かつ吐出開口(成形部)
2a側に縮径されたテーパー2b付きに形成されてい
る。
FIGS. 4 (a) and 4 (b) are a top view and a cross-sectional view showing the structures of the melting furnace body 1 and the molding nozzle 2 of the quartz glass molded body manufacturing apparatus according to the third embodiment. That is, the melting furnace main body 1 and the molding nozzle 2 are configured in a rectangular tube shape, and basically have the same structure as in the case of the first embodiment. Specifically, the melting furnace body 1 has an inner diameter of 570 × 80 mm, a wall thickness of about 65 mm, and a length of 500.
mm, the total length of the molding nozzle 2 is 80 mm, and one end surface side (30 mm) is a discharge opening (molding portion) 2a having an inner diameter of 510 × 20 mm, and the other end surface side (50 mm).
Has an inner diameter of 570 × 80 and a discharge opening (molding part)
It is formed with a taper 2b having a reduced diameter on the 2a side.

【0036】この製造装置の溶融炉体1内の温度を18
50℃程度に設定する一方、石英ガラス原料粉末を2.
4kg/hの割合で供給し、酸水素火炎溶融によって、
溶融石英ガラス化させた。こうして、溶融炉体1内の溶
融ガラス溜め込み部に、一定量の溶融石英ガラス8が貯
留した段階で、駆動機構9の駆動によってダミー部材7
を1.8mm/minの速度で引き下げて、横断面積5
10×20mmで長さが1000mmの板状石英ガラス
成形体を得た。
The temperature in the melting furnace body 1 of this manufacturing apparatus is set to 18
The quartz glass raw material powder is set to about 50 ° C.
It is supplied at a rate of 4 kg / h and by oxyhydrogen flame melting,
It was made into fused quartz glass. In this way, when a certain amount of fused silica glass 8 is stored in the molten glass storage portion in the melting furnace body 1, the dummy member 7 is driven by the drive mechanism 9.
At a speed of 1.8 mm / min to reduce the cross-sectional area to 5
A plate-shaped quartz glass molded body having a length of 10 × 20 mm and a length of 1000 mm was obtained.

【0037】すなわち、成形ノズル7の吐出開口2aに
亘って溶融石英ガラスが行き渡り、ダミー部材7と融合
した時点で、ダミー部材7を下降させることによって、
前記成形ノズル7の吐出開口2aの形状・寸法に規制さ
れた横断面形状で、かつ残飽や脈流のない品質良好な板
状の石英ガラスが得られた。そして、この石英ガラス板
の表面を研磨して半導体用の部材に加工したところ、歩
留まりよく、かつ高純度を保持する石英ガラス板が得ら
れた。
That is, when the fused silica glass spreads over the discharge opening 2a of the molding nozzle 7 and fuses with the dummy member 7, the dummy member 7 is lowered to
A plate-shaped quartz glass having a cross-sectional shape restricted by the shape and size of the discharge opening 2a of the molding nozzle 7 and having good quality without residual fatigue or pulsating flow was obtained. Then, when the surface of this quartz glass plate was polished and processed into a member for semiconductor, a quartz glass plate having a high yield and maintaining high purity was obtained.

【0038】上記では、各実施例に係る製造装置で、い
わゆるベルヌイ法による石英ガラス成形体の製造例を説
明したが、酸水素溶融手段の直接法の実施も可能であ
る。すなわち、溶融炉本体1内の温度を1850℃程度
に設定する一方、ガラス成形原料(SiCl)を供
給し、酸水素火炎中で加水分解させ、生成したシリカ粒
子を一定の割合で溶融石英ガラス化させる。こうして、
溶融炉本体1内の溶融ガラス溜め込み部に、一定量の溶
融石英ガラス8が貯留した段階で、駆動機構9の駆動に
よって、ダミー部材7を一定速度で引き下げることによ
り、成型用ノズル2の開口部2aに対応した横断面の石
英ガラス成形体を得ることができる。
In the above description, the manufacturing apparatus according to each of the embodiments has been described with reference to an example of manufacturing a quartz glass molded body by the so-called Bernoulli method, but a direct method of oxyhydrogen melting means can also be carried out. That is, while the temperature in the melting furnace body 1 is set to about 1850 ° C., a glass forming raw material (SiCl 4 ) is supplied and hydrolyzed in an oxyhydrogen flame, and the generated silica particles are melted at a constant rate. Turn into Thus
When a certain amount of the fused silica glass 8 is stored in the molten glass accumulating portion in the melting furnace main body 1, the dummy member 7 is pulled down at a constant speed by driving the driving mechanism 9 to open the opening of the molding nozzle 2. A quartz glass molded body having a cross section corresponding to 2a can be obtained.

【0039】比較のため、上記第1の実施例に係る石英
ガラス成形体製造装置において、成形用ノズル2の吐出
開口2aを溶融炉体1の内径と同一寸法・形状に設定
し、第1の実施例の場合と同じ条件で石英ガラス成形体
を製造したところ、引き出されるガラスが伸張して、所
定の横断面形状の板状体を得ることができなかった。す
なわち、この場合は、引き下げ時間の経過に伴ってガラ
スの伸張が激しくなり、最終的には、溶融石英ガラスの
引き下げ成形体化ができない状態であった。なお、成形
ノズル2の吐出開口2a寸法に対して、溶融炉本体1の
内径(溶融ガラス溜め部の径)を大幅に大きく設定した
場合、引き下げ成形ガラス内に筋状の気泡を発生する傾
向がある。
For comparison, in the quartz glass molded body manufacturing apparatus according to the first embodiment, the discharge opening 2a of the molding nozzle 2 is set to have the same size and shape as the inner diameter of the melting furnace body 1, When a quartz glass molded body was manufactured under the same conditions as in the example, the drawn glass was stretched, and a plate-shaped body having a predetermined cross-sectional shape could not be obtained. That is, in this case, the elongation of the glass became violent with the elapse of the pulling down time, and finally, the fused silica glass could not be formed into a pull-down molded body. When the inner diameter of the melting furnace body 1 (the diameter of the molten glass reservoir) is set to be significantly larger than the discharge opening 2a of the molding nozzle 2, streak-like bubbles tend to be generated in the down-molded glass. is there.

【0040】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲でいろいろの変形を
採ることができる。たとえば溶融炉本体及び成形ノズル
の構造・材質、寸法・形状など、その石英ガラス成形体
の製造容量などに応じて任意に選択・設定できる。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, the structure / material, size / shape, etc. of the melting furnace main body and the molding nozzle can be arbitrarily selected and set according to the production capacity of the quartz glass molded body.

【0041】[0041]

【発明の効果】請求項1ないし4の発明によれば、石英
ガラスの製造・溶融、及び溶融石英ガラスの成形体化
が、最小限のプロセスで実施できる。石英ガラス原料粒
子の溶融化、さらに、溶融石英ガラスの成形型として機
能する成形用ノズルの引き下げ通過の一体的な、かつ連
続的なプロセスで石英ガラス成形体を得ることができ
る。
According to the inventions of claims 1 to 4, the production and melting of quartz glass and the forming of the fused quartz glass into a molded body can be carried out by a minimum process. It is possible to obtain a quartz glass molded body by an integral and continuous process of melting the raw material particles of the quartz glass and further pulling down and passing through the molding nozzle functioning as a mold for the molten quartz glass.

【0042】つまり、成形ノズルの吐出開口の設定形状
に制約されるとは言え、煩雑な築炉や段取り作業の不要
化、石英ガラス製造及び成形体化プロセスの大幅な簡略
化などによって、生産性の向上及び低コスト化などが容
易に図られる。しかも、成形体においては高純度を保持
するとともに、気泡の残留や脈流などの発生も解消され
るので、半導体製造用の部材に適する高品質な石英ガラ
ス成形体を歩留まりよく提供できる。
That is, although the shape of the discharge opening of the molding nozzle is restricted, productivity is improved by eliminating the need for complicated furnaces and setup work, and by greatly simplifying the quartz glass manufacturing and molding process. And the cost can be easily reduced. Moreover, since the molded body maintains high purity and the generation of residual bubbles and pulsating flow is eliminated, it is possible to provide a high-quality quartz glass molded body suitable for a semiconductor manufacturing member with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係る石英ガラス成形体製造装置
の概略構成を示す断面図。
FIG. 1 is a sectional view showing a schematic configuration of a quartz glass molded body manufacturing apparatus according to a first embodiment.

【図2】第1の実施例に係る石英ガラス成形体製造装置
の溶融炉本体及び成形用ノズルの構成を示すもので、
(a)は上面図、(b)は断面図。
FIG. 2 shows a configuration of a melting furnace main body and a molding nozzle of a quartz glass molded body manufacturing apparatus according to a first embodiment,
(A) is a top view and (b) is a sectional view.

【図3】第2の実施例に係る他の石英ガラス成形体製造
装置の溶融炉本体及び成形用ノズルの構成を示す上面
図。
FIG. 3 is a top view showing a configuration of a melting furnace main body and a molding nozzle of another quartz glass molded body manufacturing apparatus according to the second embodiment.

【図4】第3の実施例に係る石英ガラス成形体製造装置
の溶融炉本体及び成形用ノズルの構成を示すもので、
(a)は上面図、(b)は断面図。
FIG. 4 shows the configurations of a melting furnace body and a molding nozzle of a quartz glass molded body manufacturing apparatus according to a third embodiment,
(A) is a top view and (b) is a sectional view.

【符号の説明】[Explanation of symbols]

1……溶融炉本体 2……成形用ノズル 2a……吐出開口 2b……テーパー 3……断熱部材 4……酸水素火炎バーナー 5……石英ガラス用原料タンク 6……開閉機構 7……ダミー部材 8……ダミー部材駆動機構 1 ... Main body of melting furnace 2 ... Molding nozzle 2a ... Discharge opening 2b ... taper 3 ... Insulation material 4 oxyhydrogen flame burner 5 ... Quartz glass raw material tank 6 ... Opening / closing mechanism 7: Dummy member 8: Dummy member drive mechanism

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 1/00 G02B 1/00 Fターム(参考) 4G014 AH12 AH15 AH16 4K046 AA04 BA08 CD07 CE09 DA09 4K055 AA04 BA05 JA00 JA13 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G02B 1/00 G02B 1/00 F term (reference) 4G014 AH12 AH15 AH16 4K046 AA04 BA08 CD07 CE09 DA09 4K055 AA04 BA05 JA00 JA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス原料粒子を溶融・貯留する石
英ガラス溶融炉本体と、前記石英ガラス溶融炉本体内に
先端部が臨み供給される石英ガラス原料を酸水素火炎で
溶融石英ガラス化する酸水素火炎バーナーと、前記石英
ガラス溶融炉本体の底部に連接されて溶融石英ガラスを
所要の横断面形状に成形体化する吐出開口を備えた成形
用ノズルと、前記成形用ノズルの吐出開口端面に対峙配
置され、吐出開口端の溶融石英ガラスに接するダミー部
材と、前記成形用ノズルの軸方向にダミー部材を引き下
げ、溶融石英ガラスを成形体化して引き出すダミー部材
駆動機構とを有する石英ガラス成形体の製造装置であっ
て、 前記石英ガラス溶融炉本体の底部に対する成形用ノズル
の連接が成形用ノズルの吐出開口側に縮径するテーパー
付きになされていることを特徴とする石英ガラス成形体
の製造装置。
1. A quartz glass melting furnace main body for melting and storing quartz glass raw material particles, and an acid for melting and vitrifying a quartz glass raw material whose front end is fed into the quartz glass melting furnace main body with an oxyhydrogen flame. A hydrogen flame burner, a molding nozzle connected to the bottom of the quartz glass melting furnace body and having a discharge opening for shaping the fused silica glass into a desired cross-sectional shape, and a discharge opening end face of the molding nozzle. A quartz glass molded body having a dummy member which is arranged oppositely and is in contact with the molten quartz glass at the discharge opening end, and a dummy member drive mechanism which pulls down the dummy member in the axial direction of the molding nozzle to draw the molten quartz glass into a molded body. In the manufacturing apparatus, the molding nozzle is connected to the bottom of the quartz glass melting furnace body with a taper that reduces the diameter toward the discharge opening side of the molding nozzle. An apparatus for the production of a silica glass shaped body characterized in that there.
【請求項2】 石英ガラス溶融炉本体の溶融石英ガラス
貯留部内径が成形用ノズルの吐出開口径に対して60〜
100mm大きく設定してあることを特徴とする請求項
1記載の石英ガラス成形体の製造装置。
2. The fused silica glass reservoir inner diameter of the quartz glass melting furnace main body is 60 to the discharge opening diameter of the molding nozzle.
The apparatus for manufacturing a quartz glass molded body according to claim 1, wherein the size is set to be 100 mm larger.
【請求項3】 溶融ガラス化する酸水素火炎バーナーが
天然石英ガラス原料粉末を溶融ガラス化する酸水素火炎
バーナーであることを特徴とする請求項1もしくは請求
項2記載の石英ガラス成形体の製造装置。
3. The production of the quartz glass molding according to claim 1, wherein the oxyhydrogen flame burner for melting and vitrifying is an oxyhydrogen flame burner for melting and vitrifying natural quartz glass raw material powder. apparatus.
【請求項4】 溶融ガラス化する酸水素火炎バーナーが
気体状のシリカガラス原料を加水分解させ、生成させた
シリカガラス粒子を溶融ガラス化する酸水素火炎合成バ
ーナーであることを特徴とする請求項1もしくは請求項
2記載の石英ガラス成形体の製造装置。
4. The molten hydrogenated oxyhydrogen flame burner is an oxyhydrogen flame synthesis burner which hydrolyzes a silica glass raw material in a gaseous state to melt and vitrify the produced silica glass particles. The apparatus for manufacturing a quartz glass molded body according to claim 1 or 2.
JP2001179109A 2001-06-13 2001-06-13 Apparatus for producing silica glass molding Pending JP2003002673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179109A JP2003002673A (en) 2001-06-13 2001-06-13 Apparatus for producing silica glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179109A JP2003002673A (en) 2001-06-13 2001-06-13 Apparatus for producing silica glass molding

Publications (1)

Publication Number Publication Date
JP2003002673A true JP2003002673A (en) 2003-01-08

Family

ID=19019717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179109A Pending JP2003002673A (en) 2001-06-13 2001-06-13 Apparatus for producing silica glass molding

Country Status (1)

Country Link
JP (1) JP2003002673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083725A (en) * 2018-11-29 2020-06-04 東ソ−・エスジ−エム株式会社 Method and apparatus for manufacturing quartz glass molding
CN114406218A (en) * 2022-01-23 2022-04-29 宁波磁性材料应用技术创新中心有限公司 Quartz nozzle and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083725A (en) * 2018-11-29 2020-06-04 東ソ−・エスジ−エム株式会社 Method and apparatus for manufacturing quartz glass molding
JP7140654B2 (en) 2018-11-29 2022-09-21 東ソ-・エスジ-エム株式会社 Quartz glass molded body manufacturing method and quartz glass molded body manufacturing apparatus
CN114406218A (en) * 2022-01-23 2022-04-29 宁波磁性材料应用技术创新中心有限公司 Quartz nozzle and preparation method thereof
CN114406218B (en) * 2022-01-23 2023-10-03 宁波磁性材料应用技术创新中心有限公司 Quartz nozzle and preparation method thereof

Similar Documents

Publication Publication Date Title
US6841210B2 (en) Multilayer structured quartz glass crucible and method for producing the same
TW590992B (en) Quartz glass crucible for pulling up silicon single crystal and method for producing the same
WO2000059837A1 (en) Method for manufacturing quartz glass crucible
KR100637027B1 (en) Process and apparatus for manufacturing a glass ingot from synthetic silica
US7305852B2 (en) Method for manufacturing quartz glass ingot
US20070251271A1 (en) Processes for the production of glass article and optical device
JP5034093B2 (en) Silica crucible with nozzle and method for producing the same
JPH01148718A (en) Quartz crucible and its formation
TW200936820A (en) Quartz glass crucible, method for manufacturing the same and single crystal pulling method
WO2007000864A1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP2005272194A (en) Method for manufacturing preform for press molding, manufacturing apparatus, and method for manufacturing optical element
JP4548682B2 (en) Manufacturing method of quartz glass crucible
JP2003002673A (en) Apparatus for producing silica glass molding
JP4509342B2 (en) Manufacturing method and apparatus for long quartz glass
JP2001002430A (en) Production of quartz glass crucible for pulling up silicon single crystal
JP2006169084A (en) Quartz crucible
JP3128042B2 (en) Method for manufacturing quartz glass crucible
JP3734420B2 (en) Quartz glass manufacturing equipment
JPH08301693A (en) Quartz crucible for pulling up single crystal of silicon
JP3433976B2 (en) Glass melting crucible
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
JPS60231421A (en) Manufacture and apparatus for quartz glass
JPH06206730A (en) Production of glass gob
JP2004292211A (en) Method of forming transparent layer on inside surface of quartz crucible
JP2009102200A (en) Glass flow passage and method for manufacturing optical glass formed body using the same

Legal Events

Date Code Title Description
RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411