JP2003001366A - Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof - Google Patents

Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof

Info

Publication number
JP2003001366A
JP2003001366A JP2001188586A JP2001188586A JP2003001366A JP 2003001366 A JP2003001366 A JP 2003001366A JP 2001188586 A JP2001188586 A JP 2001188586A JP 2001188586 A JP2001188586 A JP 2001188586A JP 2003001366 A JP2003001366 A JP 2003001366A
Authority
JP
Japan
Prior art keywords
titanium
hollow
composite material
based composite
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001188586A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takamiya
博之 高宮
Mikio Kondo
幹夫 近藤
Kazuaki Nishino
和彰 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001188586A priority Critical patent/JP2003001366A/en
Publication of JP2003001366A publication Critical patent/JP2003001366A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method where the hollow part of a hollow member is easily formed of a titanium-based composite material by cutting work. SOLUTION: The manufacturing method for the hollow member made of a titanium-based composite material comprises the following processes: a forging process for forging the forging material (8) that has an outer peripheral layer (81) made of a titanium-based composite material whose matrix, in which reinforced particles are dispersed, is mainly constituted of titanium and that has an inner peripheral layer (82) which is arranged inside the outer peripheral layer and which is made of a free-cutting titanium material having more excellent machinability than the titanium-based composite material; and a hollow-part forming process for forming a hollow part (101) by cutting the inner peripheral layer of the forging material that is obtained from the forging process. Since the inner peripheral layer is made of the free-cutting titanium material, the hollow part is easily formed by cutting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チタン基複合材料
からなる中空部材または中空バルブの製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a hollow member or a hollow valve made of a titanium-based composite material.

【0002】[0002]

【従来の技術】各種機器の高性能化や省エネルギー化を
図るべく、各種部材の軽量化が求められている。この軽
量化に際し、部材の材質変更や形状変更等が有効であ
る。部材の材質を、例えば、鋼製からアルミニウム合金
やチタン合金等の軽合金に変更すると、部材の軽量化を
達成できる。部材の強度や剛性をさらに確保するため
に、軽合金のマトリックス中に強化粒子を分散させた複
合材料も使用される。また、部材の形状を変更して、例
えば、部材を小型化したり、中空化すると、部材の軽量
化を達成できる。もっとも、機械構造部材等は、強度や
剛性等の観点から、その外形寸法がほぼ決定される。こ
のため、部材自体の小型化を図ることは容易ではない。
そこで、作用する応力の少ない内側の肉抜きによる中空
化が、部材の軽量化として一般的に行われ、有効であ
る。
2. Description of the Related Art In order to improve the performance of various devices and save energy, it is required to reduce the weight of various members. In order to reduce the weight, it is effective to change the material and shape of the members. The weight of the member can be reduced by changing the material of the member from steel to a light alloy such as an aluminum alloy or a titanium alloy. To further secure the strength and rigidity of the member, a composite material in which reinforcing particles are dispersed in a light alloy matrix is also used. Further, the weight of the member can be reduced by changing the shape of the member, for example, downsizing the member or making it hollow. However, the external dimensions of the mechanical structural member and the like are almost determined from the viewpoint of strength and rigidity. Therefore, it is not easy to reduce the size of the member itself.
Therefore, hollowing by thinning the inner side, which exerts less stress, is generally performed and effective as a weight reduction of the member.

【0003】このような事情の下、チタン基複合材料か
らなる中空部材を用いると、軽量化は勿論、その部材の
高強度化や高剛性化等も高次元で両立でき、非常に好ま
しい。しかし、チタン基複合材料の場合、その加工性が
悪いため、通常の切削加工で中空部材を形成することは
難しい。そこで、例えば、特開2000−15386号
公報や特開平6−63831号公報には、中空部材を容
易に製造する方法が提案されている。
Under these circumstances, it is highly preferable to use a hollow member made of a titanium-based composite material because it is possible not only to reduce the weight but also to increase the strength and rigidity of the member in a high degree. However, in the case of a titanium-based composite material, it is difficult to form a hollow member by a normal cutting process because of its poor workability. Therefore, for example, JP-A-2000-15386 and JP-A-6-63831 propose methods for easily manufacturing a hollow member.

【0004】[0004]

【発明が解決しようとする課題】前者の公報によると、
融点が、鍛造用粗材(焼結チタン合金:Ti−6Al−
4V)より低くて鍛造温度よりは高い金属材料(銅合
金)からなる中子を、予め形成しておいた鍛造用粗材の
中空部に挿入しておく。それを鍛造成形した後に全体を
加熱して中子を溶出させて、中空部を形成する中空部材
の製造方法が開示されている。しかし、この方法では、
中子を溶出させる際に、TiがCuと容易に反応して、
脆弱な化合物層を形成する。チタン基複合材料からなる
中空部材の場合、厳しい機械的特性が要求させるため、
例え、その内周側であっても、そのようは脆弱な化合物
層が形成されることは好ましくない。
According to the former publication,
Crude material for melting (sintered titanium alloy: Ti-6Al-
A core made of a metal material (copper alloy) lower than 4 V) and higher than the forging temperature is inserted into the hollow portion of the rough forging material that has been formed in advance. A method for manufacturing a hollow member is disclosed in which the hollow core is formed by forging it and then heating the whole to elute the core. But with this method,
When the core is eluted, Ti easily reacts with Cu,
Form a brittle compound layer. In the case of hollow members made of titanium-based composite material, strict mechanical properties require
For example, it is not preferable to form such a fragile compound layer even on the inner peripheral side.

【0005】後者の公報によると、難削材の深穴加工に
先立ち、YAGレーザで細径のガイド穴を形成してお
く。その後、そのガイド穴に沿ってドリル穴加工を行う
難削材の深穴加工方法が開示されている。しかし、この
方法は、レーザ加工を行うため、ガイド穴の加工工程コ
ストが高くなる。また、YAGレーザで難削材を溶融す
る際、難削材が組織変化を起こし、強度の低下要因とな
る。さらに、その公報では、難削材としている材質が耐
熱鋼(SUH)に過ぎないため、そのようなドリル加工
が可能である。しかし、それがチタン基複合材料の場
合、ガイド穴を形成しておいたとしても、ドリル穴加工
することは困難である。
According to the latter publication, a small-diameter guide hole is formed by a YAG laser prior to deep hole machining of a difficult-to-cut material. After that, a deep hole drilling method for a difficult-to-cut material is disclosed in which a drill hole is drilled along the guide hole. However, in this method, since the laser processing is performed, the cost of processing the guide hole becomes high. Further, when the difficult-to-cut material is melted by the YAG laser, the difficult-to-cut material undergoes a structural change, which causes a decrease in strength. Further, in the publication, since the material which is difficult to cut is only heat resistant steel (SUH), such drilling is possible. However, when it is a titanium-based composite material, it is difficult to drill holes even if the guide holes are formed.

【0006】ところで、中子を成形型に設け、粉末成形
等して中空素材を得ることも可能である。しかし、その
中空素材をそのまま鍛造等すれば、中空部が潰れてしま
い、結局、所望の中空部材は得られない。勿論、中空素
材のままでは、強度的に劣るため、使用に耐えない。
By the way, it is possible to obtain a hollow material by providing a core with a molding die and performing powder molding or the like. However, if the hollow material is forged as it is, the hollow portion is crushed, and eventually the desired hollow member cannot be obtained. Of course, the hollow material is inferior in strength and cannot be used as it is.

【0007】本発明は、このような事情に鑑みて為され
たものである。つまり、切削加工が困難なチタン基複合
材料からなる、中空部材を容易に製造することができる
製造方法を提供する。また、その中空部材の一例として
チタン基複合材料からなる中空バルブの製造方法を提供
することを目的とする。
The present invention has been made in view of such circumstances. That is, the present invention provides a manufacturing method capable of easily manufacturing a hollow member made of a titanium-based composite material that is difficult to cut. Moreover, it aims at providing the manufacturing method of the hollow valve which consists of titanium group composite materials as an example of the hollow member.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者はこの
課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、
チタン基複合材料よりも切削加工性に優れる快削チタン
系材料を内周層としチタン基複合材料を外周層とする鍛
造用素材を用いて、その内周層部分を切削加工すること
を思い付き本発明を完成させた。 (中空部材の製造方法)すなわち、本発明のチタン基複
合材料からなる中空部材は、チタンを主成分とするマト
リックス中に強化粒子が分散したチタン基複合材料から
なる外周層と該外周層の内側に配設され該チタン基複合
材料よりも切削加工性に優れる快削チタン系材料からな
る内周層とを有する鍛造用素材を鍛造加工する鍛造工程
と、該鍛造工程後に得られた鍛造材の内周層側を切削加
工して中空部を形成する中空部形成工程と、からなるこ
とを特徴とする。
Therefore, the present inventor has diligently studied to solve this problem, and as a result of repeated trial and error,
A free-cutting titanium-based material, which has better machinability than titanium-based composite materials, is used as the inner peripheral layer, and a titanium-based composite material is used as the outer peripheral layer. Completed the invention. (Method of Manufacturing Hollow Member) That is, the hollow member made of the titanium-based composite material of the present invention includes an outer peripheral layer made of a titanium-based composite material in which reinforcing particles are dispersed in a matrix containing titanium as a main component, and an inner side of the outer peripheral layer. A forging step of forging a forging material having an inner peripheral layer made of a free-cutting titanium-based material, which is disposed in the above and has better machinability than the titanium-based composite material; and a forging material obtained after the forging step. A hollow portion forming step of forming a hollow portion by cutting the inner peripheral layer side.

【0009】本発明の製造方法では、外周層が高強度の
チタン基複合材料からなり、内周層がそれよりも切削加
工性に優れる快削チタン系材料からなる鍛造用素材を用
いて鍛造工程を行う。この場合、得られた鍛造材の内周
層側には比較的、切削加工性に優れる快削チタン系材料
が残存する。その内周層側は、チタン基複合材料を加工
する場合に比べて切削加工が容易であるため、中空部を
形成し易い。また、ホーニング等で仕上面粗度を向上さ
せることもできる。
In the manufacturing method of the present invention, a forging step is performed using a forging material in which the outer peripheral layer is made of a titanium-based composite material having high strength and the inner peripheral layer is made of a free-cutting titanium-based material excellent in machinability. I do. In this case, the free-cutting titanium-based material having relatively excellent machinability remains on the inner peripheral layer side of the obtained forged material. Since the inner peripheral layer side is easier to cut as compared with the case of processing a titanium-based composite material, it is easy to form a hollow portion. Further, the finished surface roughness can be improved by honing or the like.

【0010】なお、外周層を構成するチタン基複合材料
のマトリックスと主成分(Ti)を共通にする快削チタ
ン系材料を内周層に用いたため、熱間鍛造や熱処理等を
行ったり中空部材を高温下で使用するとしても、内周層
(または切削加工後に残存した内周層)と外周層との間
で脆弱な化合物層を形成することが少ない。鍛造用素材
は、その外周層が、内周層を完全に囲繞(包囲)してい
る必要はない。むしろ、中空部形成工程において、切削
加工を開始する部分は、内周層の一部が露出しているこ
とが好ましい。本明細書中でいう「鍛造」は、300〜
1700℃での熱間鍛造が好ましく、鍛造の種類には、
金型鍛造、押出し、据え込み、線引、自由鍛造、スェー
ジング、圧延等がある。
Since a free-cutting titanium-based material having the same main component (Ti) as the matrix of the titanium-based composite material constituting the outer peripheral layer is used for the inner peripheral layer, hot forging, heat treatment, etc. are performed and the hollow member is made. Even when used at a high temperature, a fragile compound layer is rarely formed between the inner peripheral layer (or the inner peripheral layer remaining after cutting) and the outer peripheral layer. The outer peripheral layer of the forging material does not need to completely surround (enclose) the inner peripheral layer. Rather, in the hollow portion forming step, it is preferable that a part of the inner peripheral layer is exposed at a portion where the cutting process is started. "Forging" referred to in the present specification is from 300 to
Hot forging at 1700 ° C is preferable, and the types of forging include
Mold forging, extrusion, upsetting, wire drawing, free forging, swaging, rolling, etc.

【0011】(中空バルブの製造方法)本発明者は、さ
らに、その中空部材の一例である中空バルブの製造に適
した製造方法を開発し、本発明を完成させた。すなわ
ち、本発明のチタン基複合材料からなる中空バルブの製
造方法は、チタンを主成分とするマトリックス中に強化
粒子が分散したチタン基複合材料からなる外周層と該外
周層の内側に配設され該チタン基複合材料より切削加工
性に優れる快削チタン系材料からなる内周層とを有する
鍛造用素材を熱間押出し加工して軸部を形成する軸部形
成工程と、該鍛造用素材を据え込み鍛造加工して傘部を
形成する傘部形成工程と、該軸部形成工程および/また
は該傘部形成工程後に得られたバルブ素材の内周層側を
軸方向に切削加工して中空部を形成する中空部形成工程
と、からなることを特徴とする。
(Method for Manufacturing Hollow Valve) The present inventor has further developed a manufacturing method suitable for manufacturing a hollow valve, which is an example of the hollow member, and completed the present invention. That is, the method for producing a hollow valve made of a titanium-based composite material of the present invention is provided with an outer peripheral layer made of a titanium-based composite material in which reinforcing particles are dispersed in a matrix containing titanium as a main component, and an inner layer of the outer peripheral layer. A shaft portion forming step of forming a shaft portion by hot extruding a forging material having an inner peripheral layer made of a free-cutting titanium-based material, which has better machinability than the titanium-based composite material, and the forging material. Umbrella part forming step of forming an umbrella part by upsetting forging, and the hollow part by axially cutting the inner peripheral layer side of the valve material obtained after the shaft part forming step and / or the umbrella part forming step. And a hollow portion forming step of forming a portion.

【0012】本発明の場合、前述した鍛造工程をより具
体的な軸部形成工程と傘部形成工程とにしたものであ
る。軸部形成工程と傘部形成工程との先行は問わない。
そして、こうして得たバルブ素材の内周層側を、中空部
形成工程において軸方向に切削加工することにより、所
望の中空部が形成される。この中空部形成工程の加工方
向は、軸端部(ステムエンド)側からでも、傘部(バル
ブ)側からでも良い。
In the case of the present invention, the forging process described above is made into a more specific shaft forming process and umbrella forming process. The shaft part forming process and the umbrella part forming process may be preceded.
Then, a desired hollow portion is formed by axially cutting the inner peripheral layer side of the thus obtained valve material in the hollow portion forming step. The processing direction of the hollow portion forming step may be from the shaft end portion (stem end) side or the umbrella portion (valve) side.

【0013】[0013]

【発明の実施の形態】次に、実施形態を挙げ、本発明を
より詳しく説明する。 (1)鍛造用素材 鍛造用素材は、チタン基複合材料の外周層と切削加工性
に優れた快削チタン系材料の内周層とからなる。 チタン基複合材料は、チタンを主成分とするマトリッ
クスと、そのマトリックス中に分散した強化粒子とから
なる。マトリックスは、純チタンでも良いが、中空部材
に要求される強度、剛性等に応じて、適当な組成のチタ
ン合金を選択すると好ましい。強化粒子には、TiB、
TiB2、TiC、TiN等の一種以上を使用し得る。
マトリックスと強化粒子との組合わせや配合割合等は、
所望する機械的特性、高温安定性、熱間加工性等を考慮
して適宜選択される。なお、チタン基複合材料は、マト
リックスに別途用意した強化粒子を混合分散させたもの
でも良いし、焼結工程や加熱工程等でTiとB等の強化
元素とを反応させて強化粒子を析出させたものでも良
い。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to embodiments. (1) Forging material The forging material is composed of an outer peripheral layer of a titanium-based composite material and an inner peripheral layer of a free-cutting titanium-based material having excellent machinability. The titanium-based composite material is composed of a matrix containing titanium as a main component and reinforcing particles dispersed in the matrix. The matrix may be pure titanium, but it is preferable to select a titanium alloy having an appropriate composition depending on the strength, rigidity, etc. required of the hollow member. The reinforcing particles include TiB,
One or more of TiB 2 , TiC, TiN, etc. may be used.
The combination of the matrix and the reinforcing particles, the compounding ratio, etc.
It is appropriately selected in consideration of desired mechanical properties, high temperature stability, hot workability and the like. The titanium-based composite material may be a matrix in which separately prepared reinforcing particles are mixed and dispersed, or Ti and B may be reacted with a reinforcing element in a sintering step or a heating step to precipitate the reinforcing particles. It can be a stuff.

【0014】快削チタン系材料は、チタン基複合材料
よりも切削加工性に優れるものであり、チタンを主成分
とするものである。チタン基複合材料のマトリックスと
同組成である必要はない。むしろ、より切削加工性に優
れた純チタン、Ti−3Al−2V+硫化物等が快削チ
タン系材料として好ましい。
The free-cutting titanium-based material is superior to the titanium-based composite material in machinability and contains titanium as a main component. It does not have to have the same composition as the matrix of the titanium-based composite material. Rather, pure titanium, Ti-3Al-2V + sulfide, etc., which are more excellent in machinability, are preferable as the free-cutting titanium-based material.

【0015】鍛造用素材は、例えば、前記快削チタン
系材料からなる中子の少なくとも一部を前記チタン基複
合材料で囲繞する素材形成工程により得られる。この中
子が前記内周層を形成し、それを囲繞するチタン基複合
材料が外周層を形成することになる。
The forging material is obtained, for example, by a material forming step in which at least a part of the core made of the free-cutting titanium-based material is surrounded by the titanium-based composite material. This core forms the inner peripheral layer, and the titanium-based composite material surrounding it forms the outer peripheral layer.

【0016】より具体的には、例えば、快削チタン系材
料からなる中子を成形し(中子成形工程)、その中子を
成形型に配設し、形成されたキャビティにチタン基複合
材料の組成粉末を充填し(充填工程)、加圧成形して得
た粉末成形体を(成形工程)、鍛造用素材としても良
い。また、その粉末成形体を焼結させた焼結材を鍛造用
素材としても良い(焼結工程)。さらに、前記成形型に
替えて鋳型を用意し、チタン基複合材料の原料を溶解
(溶解工程)して、その溶湯をその鋳型に注湯して鋳造
した溶製材を(鋳造工程)、鍛造用素材としても良い。
いずれにしても、所望する鍛造用素材の形態に適した素
材形成工程を選択すると良い。
More specifically, for example, a core made of a free-cutting titanium-based material is molded (core molding step), the core is placed in a mold, and a titanium-based composite material is formed in the formed cavity. A powder compact obtained by filling the composition powder of (1) (filling process) and press-molding (forming process) may be used as a forging material. Further, a sintered material obtained by sintering the powder compact may be used as a forging material (sintering step). Further, a mold is prepared in place of the molding die, the raw material of the titanium-based composite material is melted (melting process), and the molten metal is poured into the mold and cast (casting process) for forging. Good as a material.
In any case, it is advisable to select a material forming process suitable for the desired form of the forging material.

【0017】素材形成工程は、前記外周層と前記内周
層との境界に少なくとも潤滑性を備えるコーティング層
を形成するコーティング工程を有すると、好適である。
外周層と内周層とからなる鍛造用素材は、両層間に少な
くとも潤滑性を備えるコーティング層を有すると、鍛造
工程において、各層の材料流れ(塑性流動)が向上し、
均一な鍛造材が得られる。例えば、その鍛造用素材を熱
間押出し加工した場合、外周層と内周層との径がほぼ設
定した押出し比となる均一な鍛造材が得られる。
It is preferable that the material forming step includes a coating step of forming a coating layer having at least lubricity on a boundary between the outer peripheral layer and the inner peripheral layer.
When the forging material including the outer peripheral layer and the inner peripheral layer has a coating layer having at least lubricity between both layers, the material flow (plastic flow) of each layer is improved in the forging step,
A uniform forged material can be obtained. For example, when the material for forging is hot extruded, a uniform forged material having the extrusion ratio in which the diameters of the outer peripheral layer and the inner peripheral layer are substantially set can be obtained.

【0018】このコーティング層は、さらに、高温下
で、両層間の反応や焼き付きを抑制し、潤滑性を確保す
るものであると好適である。鍛造工程として熱間鍛造す
る場合が多いからである。このようなコーティング層と
して、例えば、h−BN層(六方晶窒化ホウ素)、Zr
2等がある。コーティング工程は、具体的には、内周
層の外表面または外周層の内表面に、処理剤を塗布(ス
プレー法、刷毛塗り法)または浸漬(ディップ法)等す
ることにより行える。
It is preferable that the coating layer further suppresses reaction and seizure between the two layers at high temperature to ensure lubricity. This is because hot forging is often used as the forging step. As such a coating layer, for example, an h-BN layer (hexagonal boron nitride), Zr
There is O 2 etc. Specifically, the coating step can be performed by applying a treatment agent (spray method, brush coating method) or dipping (dip method) to the outer surface of the inner peripheral layer or the inner surface of the outer peripheral layer.

【0019】(2)中空部形成工程 中空部形成工程は、鍛造材の内周層側を切削加工して中
空部を形成する工程である。この切削加工は、ドリル等
による穴加工の他、エンドミルによる溝加工や肉抜き加
工等も含む。 (3)中空バルブの製造方法 本発明の製造方法によると、バルブの中空部はドリル
等により切削加工されて形成される。このため、バルブ
素材の少なくとも一端側は開口を有することとなる。通
常のバルブでは、その開口を閉塞するのが一般的であ
る。そこで、前記中空部形成工程後に、さらに、前記中
空部の開口に蓋体を接合する接合工程を備えると、好適
である。
(2) Hollow portion forming step The hollow portion forming step is a step of forming a hollow portion by cutting the inner peripheral layer side of the forged material. This cutting process includes a hole process using a drill, a groove process using an end mill, a lightening process, and the like. (3) Manufacturing Method of Hollow Valve According to the manufacturing method of the present invention, the hollow portion of the valve is formed by cutting with a drill or the like. Therefore, at least one end side of the valve material has an opening. In a normal valve, it is common to close the opening. Therefore, it is preferable to further include a joining step of joining a lid to the opening of the hollow portion after the hollow portion forming step.

【0020】特に、その蓋体が、前記マトリックスとほ
ぼ同組成のチタン系材料からなると、好ましい。境界付
近に脆弱な化合物層が形成されたりすることを抑制、防
止できる。また、溶接により蓋体の接合を行う場合、溶
接性が向上するからである。なお、溶接には、例えば、
レーザ溶接等を使用できる。
Particularly, it is preferable that the lid is made of a titanium-based material having substantially the same composition as that of the matrix. It is possible to suppress or prevent the formation of a fragile compound layer near the boundary. Also, when joining the lids by welding, the weldability is improved. For welding, for example,
Laser welding or the like can be used.

【0021】さらに、本発明の製造方法が、溶体化処
理と時効処理とからなる熱処理を前記バルブ素材に施す
熱処理工程を備えると、好適である。その熱処理を施す
ことにより、バルブの強度、耐疲労性、耐熱性等の向上
が図られる。溶体化処理は、例えば、1050〜130
0℃×5〜30分加熱した後に、水冷等の急冷を施すこ
とで行える。時効処理は、480℃以上で1〜5時間保
持した後、放冷等することで行える。勿論、熱処理条件
は、チタン基複合材料の組成や所望する機械的特性等に
より変化する。
Further, it is preferable that the manufacturing method of the present invention includes a heat treatment step of subjecting the valve material to a heat treatment comprising a solution treatment and an aging treatment. By performing the heat treatment, the strength, fatigue resistance and heat resistance of the valve can be improved. Solution treatment is, for example, 1050 to 130.
After heating at 0 ° C. for 5 to 30 minutes, rapid cooling such as water cooling can be performed. The aging treatment can be carried out by holding it at 480 ° C. or higher for 1 to 5 hours and then allowing it to cool. Of course, the heat treatment conditions vary depending on the composition of the titanium-based composite material, desired mechanical properties, and the like.

【0022】さらに、前記軸部の曲り矯正を行う矯正工
程を備えると、好適である。エンジンの吸排気孔を精度
良く開閉するためには、傘部に対する軸部の直角度等が
厳しく規制されているからである。特に、前記時効処理
と併せて、またはその時効処理の後で、その時効処理と
同温度でその矯正工程を行うと、効率的である。上述し
た本発明に係る各工程を経て得られた中空バルブは、材
質自体による軽量化のみならず、形状的にも中空部を備
えて軽量化が図られている。その結果、バルブ周りの往
復慣性質量が低減され、スプリング荷重の低減に伴うフ
リクションロスの低減や、エンジンのさらなる高回転化
等を図れる。
Further, it is preferable to include a straightening step for straightening the bending of the shaft portion. This is because the squareness of the shaft portion with respect to the umbrella portion is strictly regulated in order to open and close the intake and exhaust holes of the engine with high accuracy. In particular, it is efficient to perform the straightening step at the same temperature as the aging treatment in combination with the aging treatment or after the aging treatment. The hollow valve obtained through the above-described steps according to the present invention is not only made lighter by the material itself, but also made lighter by providing a hollow portion in terms of shape. As a result, the reciprocating inertial mass around the valve is reduced, so that the friction loss due to the reduction of the spring load can be reduced and the engine speed can be further increased.

【0023】[0023]

【実施例】次に、実施例を挙げて、本発明をより具体的
に説明する。以下では、中空部材として中空バルブを取
上げ、チタン基複合材料からなる中空バルブの製造方法
について説明する。 (実施例) (1)実施例1 鍛造用素材の製造(素材形成工程) (a)先ず、本発明でいう鍛造用素材の内周層となる中
子3を製作した。この様子を図1に示す。中子3は、純
チタン粉末(快削チタン系材料)からなる円柱状の粉末
成形体であり、次のように製作した。平均粒径80μm
の比較的粗い純チタン粉末2を、成形型である有底円柱
状のキャビティをもつゴム型1(同図(a))に充填し
(第1充填工程:同図(b))、294MPaの圧力で
CIP成形して(第1成形工程:同図(c))、φ9×
30mmの円柱状の粉末成形体を得た。なお、ゴム型1
の底部からは、円柱状の突起11が僅かに突出してお
り、中子3の一端部に位置決め用の凹部が形成されるよ
うにした。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. Below, a hollow valve is taken as the hollow member, and a method for manufacturing a hollow valve made of a titanium-based composite material will be described. (Example) (1) Example 1 Manufacturing of Forging Material (Material Forming Step) (a) First, a core 3 which is an inner peripheral layer of the forging material according to the present invention was manufactured. This state is shown in FIG. The core 3 is a cylindrical powder compact made of pure titanium powder (free-cutting titanium-based material), and was manufactured as follows. Average particle size 80μm
Of the comparatively coarse pure titanium powder 2 is filled in a rubber mold 1 (FIG. 1A) having a cylindrical cavity with a bottom, which is a molding die (first filling step: FIG. 2B), and 294 MPa. CIP molding with pressure (first molding step: same figure (c)), φ9 ×
A 30 mm columnar powder compact was obtained. The rubber mold 1
A cylindrical protrusion 11 slightly protrudes from the bottom of the core 3, and a recess for positioning is formed at one end of the core 3.

【0024】(b)平均粒径5μmのh−BN(2%)
を溶媒(エタノール(または代替フロン))に分散させ
た溶液の浴槽4に、その中子3を浸漬した後で引上げ、
中子3の表面にh−BNのコーティング層31を形成し
た(コーティング工程)。この様子を図1(d)に示
す。
(B) h-BN (2%) having an average particle size of 5 μm
Is immersed in a bath 4 of a solution in which is dispersed in a solvent (ethanol (or alternative Freon)) and then pulled up,
A coating layer 31 of h-BN was formed on the surface of the core 3 (coating step). This state is shown in FIG.

【0025】(c)次に、中子3の周囲に鍛造用素材の
外周層となる粉末成形体が形成された素材成形体7を製
作した。この様子を図2に示す。成形型として、図2
(a)に示す有底円筒状のキャビティをもつゴム型5を
使用した。このキャビティは、中子3の前記凹部が、そ
のゴム型5の中央底部から僅かに突出した位置決め用の
突起51に嵌挿されて形成される。その有底円筒状のキ
ャビティに、純チタン粉末(平均粒径25μm)とAl
−40%V粉末(平均粒径10μm)とFe−50%M
o粉末(平均粒径10μm)とTiB2粉末(平均粒径
4μm)との混合粉末を充填した(第2充填工程:同図
(b))。その混合粉末全体の組成は、Ti−3Al−
2V−1Fe−1Mo−1.8Bとなるようにした。そ
の後、294MPaでCIP成形して、φ19×50m
mの円柱状の素材成形体7得た(第2成形工程:同図
(c))。
(C) Next, a material compact 7 having a powder compact as an outer peripheral layer of the forging material formed around the core 3 was produced. This state is shown in FIG. As a mold,
A rubber mold 5 having a bottomed cylindrical cavity shown in (a) was used. The cavity is formed by inserting the concave portion of the core 3 into a positioning protrusion 51 slightly protruding from the central bottom portion of the rubber mold 5. Pure titanium powder (average particle size 25 μm) and Al were placed in the bottomed cylindrical cavity.
-40% V powder (average particle size 10 μm) and Fe-50% M
A mixed powder of o powder (average particle size 10 μm) and TiB 2 powder (average particle size 4 μm) was filled (second filling step: FIG. 2B). The composition of the entire mixed powder is Ti-3Al-
2V-1Fe-1Mo-1.8B. After that, CIP molding at 294 MPa, φ19 × 50 m
A columnar raw material molded body 7 of m was obtained (second molding step: FIG. 7C).

【0026】さらに、この素材成形体7を真空雰囲気中
で1300℃×4時間焼結させて(焼結工程)、外周層
81と内周層82とからなる二層構造の鍛造用ビレット
8を得た(同図(d))。この鍛造用ビレット8が、本
発明でいう鍛造用素材に相当する。
Further, the material compact 7 is sintered in a vacuum atmosphere at 1300 ° C. for 4 hours (sintering step) to form a forging billet 8 having a two-layer structure including an outer peripheral layer 81 and an inner peripheral layer 82. It was obtained ((d) of the same figure). The forging billet 8 corresponds to the forging material in the present invention.

【0027】鍛造工程(軸部形成工程、傘部形成工
程) 得られた鍛造用ビレット8(φ17×45mm)を高周
波誘導加熱装置で1150℃に加熱し、熱間鍛造するこ
とによりバルブ素材9を得た。この様子を図3に示す。
具体的には、先ず、熱間押出し加工(押し出し比:7.
5)により、軸部91(φ6.5mm×100mm)を
形成した(軸部形成工程:同図(a))。次に、この熱
間押出し加工により得た押出し素材を据え込み率80%
で据え込み鍛造(傘鍛造)加工して、傘部92を形成
し、鍛造材であるバルブ素材9(傘径φ40×5mm)
とした。
Forging Step (Shaft Forming Step, Umbrella Forming Step) The obtained forging billet 8 (φ17 × 45 mm) is heated to 1150 ° C. by a high frequency induction heating device and hot forged to form the valve material 9. Obtained. This state is shown in FIG.
Specifically, first, hot extrusion processing (extrusion ratio: 7.
5), the shaft portion 91 (φ6.5 mm × 100 mm) was formed (shaft portion forming step: FIG. 7A). Next, the extruded material obtained by this hot extrusion processing is upset to 80%.
Upset forging (umbrella forging) is performed to form the umbrella portion 92, and the valve material 9 is a forged material (umbrella diameter φ40 × 5 mm).
And

【0028】熱処理工程および矯正工程 このバルブ素材9を1100℃で15分間保持して、溶
体化した後、急冷(水冷)して溶体化処理を行った。そ
の後、500℃で4時間保持して、時効処理を施した。
その直後に、時効処理温度と同温度の500℃で、軸部
の曲がり矯正した(矯正工程)。
Heat Treatment Step and Straightening Step This valve material 9 was held at 1100 ° C. for 15 minutes for solution treatment, and then rapidly cooled (water cooled) for solution treatment. Then, it hold | maintained at 500 degreeC for 4 hours, and performed the aging treatment.
Immediately after that, the shaft portion was straightened at a temperature of 500 ° C., which is the same as the aging temperature (straightening step).

【0029】中空部形成工程 さらに、そのバルブ素材9に、超硬ドリル40を用いて
φ2.5×深さ85mmのストレート状の穴あけ加工を
施して、中空部101を有する中空バルブ素材10を製
作した(中空部形成工程)。この様子を図4に示す。
Hollow Portion Forming Step Further, a hollow valve material 10 having a hollow portion 101 is manufactured by subjecting the valve material 9 to a straight hole drilling with a diameter of 2.5 mm and a depth of 85 mm using a carbide drill 40. It did (hollow part formation process). This state is shown in FIG.

【0030】接合工程 中空バルブ素材10に形成された穴あけ加工後の開口1
02に、蓋体20を電子ビームにより溶接して(接合工
程)、中空バルブ30とした。この様子を図5に示す。
なお、この蓋体20は、マトリックスと同材料の丸棒か
らなる。この後、中空バルブ30は、軸部(ステム)の
外周面研磨、ステムエンドの端面研磨、フェイス面研磨
等の仕上加工が適宜なされて、エンジンに組込まれる。
Joining process Opening 1 formed in hollow valve material 10 after drilling
02, the lid 20 was welded with an electron beam (joining step) to form a hollow valve 30. This state is shown in FIG.
The lid 20 is a round bar made of the same material as the matrix. After that, the hollow valve 30 is assembled into the engine by appropriately finishing the outer peripheral surface of the shaft portion (stem), the end surface of the stem end, and the face surface.

【0031】(2)実施例2 本実施例では、実施例1の粉末成形体からなる中子3に
替えて、焼結体からなる中子230を使用した。この中
子230は、中子3と同形状の粉末成形体を、真空雰囲
気中で1300℃×4時間焼結させたものである(第1
焼結工程)。この中子230の表面に、実施例1と同様
のh−BN溶液をスプレー噴射して、h−BNのコーテ
ィング層を形成した。この様子を図6に示す。以降の工
程は、実施例1と同様である。こうして、実施例2に係
る中空バルブを製作した。但し、鍛造用素材の成形体
(素材成形体7に相当)をCIP成形した際の成形圧力
は392MPaであった。
(2) Example 2 In this example, a core 230 made of a sintered body was used instead of the core 3 made of the powder compact of Example 1. The core 230 is obtained by sintering a powder compact having the same shape as the core 3 in a vacuum atmosphere at 1300 ° C. for 4 hours (first).
Sintering process). The same h-BN solution as in Example 1 was sprayed onto the surface of the core 230 to form a coating layer of h-BN. This state is shown in FIG. The subsequent steps are the same as in Example 1. Thus, the hollow valve according to Example 2 was manufactured. However, the molding pressure when the molded body of the forging material (corresponding to the material molded body 7) was CIP-molded was 392 MPa.

【0032】(3)実施例3 本実施例では、先ず、本発明でいう鍛造用素材の外周層
となる焼結鍛伸素材340から製作した。この様子を図
7に示す。この焼結鍛伸素材340は、次のようにして
製作した。実施例1等と同組成の混合粉末320を、φ
80×150mmのキャビティをもつゴム型310(同
図(a))に充填工程し(同図(b))、これを392
MPaの圧力でCIP成形して粉末成形体330とした
(同図(c))。その粉末成形体330を、真空雰囲気
中で1300℃×16時間焼結させてφ60×150m
mの焼結体を得た。その焼結体を大気炉で1150℃に
加熱して、φ20mmまで熱間鍛伸し、自然放冷した後
で、所定長さにカットして焼結鍛伸素材340を得た
(同図(d))。
(3) Example 3 In this example, first, a sintered forged material 340, which is an outer peripheral layer of the forging material according to the present invention, was manufactured. This state is shown in FIG. The sintered forged material 340 was manufactured as follows. The mixed powder 320 having the same composition as in Example 1 was
A rubber mold 310 having a cavity of 80 × 150 mm ((a) in the same figure) was filled (FIG. (B) in the same figure) and 392
CIP molding was carried out at a pressure of MPa to obtain a powder compact 330 ((c) in the figure). The powder compact 330 is sintered at 1300 ° C. for 16 hours in a vacuum atmosphere to obtain φ60 × 150 m
A sintered body of m was obtained. The sintered body was heated to 1150 ° C. in an atmospheric furnace, hot forged to φ20 mm, naturally cooled, and then cut to a predetermined length to obtain a sintered forged material 340 (see FIG. d)).

【0033】次に、この焼結鍛伸素材340を用いて、
鍛造用ビレット380を次のように製作した。この様子
を図8に示す。前述の焼結鍛伸素材340に機械加工を
施して、外径φ17mm×長さ45mm×内径φ7mm
×深さ40mmのカップ形状とし、中空部341を形成
した(同図(b))。なお、ここでの機械加工は、最終
品よりもドリル加工径が大きく、鍛伸のままでは冷却速
度が遅いので硬さが低いため、比較的、その加工は容易
であった。純チタン2種(JIS)の丸棒330(φ
6.9×40mm:快削チタン系材料)を用意し、その
表面にh−BNのコーティング層を実施例2と同様にス
プレー法で形成した(同図(a))。それを中空部34
1に嵌挿して、鍛造用ビレット380とした(同図
(c))。従って、丸棒330が本発明でいう内周層と
なる。以降の工程は、実施例1と同様であり、こうし
て、実施例3に係る中空バルブを製作した。
Next, using this sintered forging material 340,
The billet 380 for forging was manufactured as follows. This state is shown in FIG. The sintered forging material 340 is machined to have an outer diameter of 17 mm, a length of 45 mm, and an inner diameter of 7 mm.
B. A cup-like shape having a depth of 40 mm was formed to form a hollow portion 341 ((b) of the same figure). Note that the machining here had a larger drilling diameter than the final product, and the hardness was low because the cooling rate was slow with forging as it was, so the machining was relatively easy. Pure titanium type 2 (JIS) round bar 330 (φ
6.9 × 40 mm: a free-cutting titanium-based material) was prepared, and a coating layer of h-BN was formed on the surface thereof by the spray method as in Example 2 (FIG. 10A). Hollow part 34
1 was inserted into the forging billet 380 ((c) in the figure). Therefore, the round bar 330 serves as the inner peripheral layer in the present invention. The subsequent steps are the same as in Example 1, and thus the hollow valve according to Example 3 was manufactured.

【0034】(評価)上述の3種の実施例に係るバルブ
素材と、2層構造ではないチタン基複合材料(実施例1
と同組成)のみからなるバルブ素材(比較例)とについ
て、ドリルによる切削加工性を評価した。その結果、比
較例の場合、深さ10mm程度まで穴加工したところ
で、ドリルが折損した。これに対し、実施例の場合、い
ずれのバルブ素材についても、ドリルが折損等すること
なく、所望する深さまで穴加工ができ、所望の中空部を
形成できた。この結果からも解るように、切削加工性に
優れた快削チタン系材料を内周層にもつバルブ素材(鍛
造用素材)を使用することにより、チタン基複合材料か
らなる中空バルブ(中空部材)を容易に、効率よく製造
することが可能となった。
(Evaluation) The valve materials according to the above-mentioned three examples and the titanium-based composite material not having the two-layer structure (Example 1)
The machinability with a drill was evaluated for a valve material (comparative example) consisting only of (the same composition). As a result, in the case of the comparative example, the drill was broken when the hole was drilled to a depth of about 10 mm. On the other hand, in the case of the examples, any of the valve materials could be drilled to a desired depth without breaking the drill, and a desired hollow portion could be formed. As can be seen from this result, a hollow valve (hollow member) made of a titanium-based composite material can be obtained by using a valve material (forging material) having a free-cutting titanium-based material in the inner peripheral layer, which has excellent machinability. It has become possible to easily and efficiently manufacture.

【0035】[0035]

【発明の効果】本発明の製造方法によれば、チタン基複
合材料から中空部材または中空バルブの中空部を切削加
工により、容易に、効率よく形成することができる。
According to the manufacturing method of the present invention, the hollow member or the hollow portion of the hollow valve can be easily and efficiently formed from the titanium-based composite material by cutting.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る中子の製造工程を示した模式図
である。
FIG. 1 is a schematic view showing a manufacturing process of a core according to a first embodiment.

【図2】実施例1に係る鍛造用ビレットの製造工程を示
した模式図である。
FIG. 2 is a schematic view showing a manufacturing process of the forging billet according to the first embodiment.

【図3】実施例1に係るバルブ素材の製造工程を示した
模式図である。
FIG. 3 is a schematic diagram showing a manufacturing process of the valve material according to the first embodiment.

【図4】実施例1に係る中空部形成工程を示した模式図
である。
FIG. 4 is a schematic view showing a hollow portion forming step according to Example 1.

【図5】実施例1に係る接合工程を示した模式図であ
る。
FIG. 5 is a schematic diagram showing a joining step according to Example 1.

【図6】実施例2に係るコーティング工程を示した模式
図である。
FIG. 6 is a schematic diagram showing a coating process according to Example 2.

【図7】実施例3に係る焼結鍛伸素材の製造工程を示し
た模式図である。
FIG. 7 is a schematic diagram showing a manufacturing process of a sintered forged material according to a third embodiment.

【図8】実施例3に係る鍛造用ビレットの製造工程を示
した模式図である。
FIG. 8 is a schematic view showing a manufacturing process of the forging billet according to the third embodiment.

【符号の説明】[Explanation of symbols]

1 ゴム型 2 混合粉末 3 中子 31 コーティング層 8 鍛造用ビレット(鍛造用素材) 81 外周層 82 内周層 9 バルブ素材 91 軸部 92 傘部 10 中空バルブ素材 101 中空部 102 開口 20 蓋体 30 中空バルブ 1 rubber mold 2 mixed powder 3 cores 31 coating layer 8 Billet for forging (material for forging) 81 outer layer 82 Inner layer 9 valve material 91 Shaft 92 Umbrella part 10 Hollow valve material 101 hollow 102 openings 20 lid 30 hollow valve

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 3/24 B22F 3/24 C F 5/00 5/00 S B23P 13/00 B23P 13/00 F01L 3/24 F01L 3/24 D (72)発明者 西野 和彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4E087 AA10 BA05 BA26 CA22 CA31 CB01 CC01 DB04 DB14 DB24 HA69 HB03 4K018 AA06 AB02 FA01 FA02 FA08 JA02 KA10 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B22F 3/24 B22F 3/24 C F 5/00 5/00 S B23P 13/00 B23P 13/00 F01L 3/24 F01L 3/24 D (72) Inventor Kazuaki Nishino 1 A-41, Nagakute-cho, Aichi-gun, Aichi-gun 1-sided Yokomichi Toyota Central Research Institute Co., Ltd. F-term (reference) 4E087 AA10 BA05 BA26 CA22 CA31 CB01 CC01 DB04 DB14 DB24 HA69 HB03 4K018 AA06 AB02 FA01 FA02 FA08 JA02 KA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】チタンを主成分とするマトリックス中に強
化粒子が分散したチタン基複合材料からなる外周層と該
外周層の内側に配設され該チタン基複合材料よりも切削
加工性に優れる快削チタン系材料からなる内周層とを有
する鍛造用素材を鍛造加工する鍛造工程と、 該鍛造工程後に得られた鍛造材の内周層側を切削加工し
て中空部を形成する中空部形成工程と、 からなることを特徴とするチタン基複合材料からなる中
空部材の製造方法。
1. An outer peripheral layer made of a titanium-based composite material in which reinforcing particles are dispersed in a matrix containing titanium as a main component, and an outer layer disposed inside the outer peripheral layer and having better machinability than the titanium-based composite material. A forging step of forging a forging material having an inner peripheral layer made of a titanium-based material, and a hollow portion forming a hollow portion by cutting the inner peripheral layer side of the forged material obtained after the forging step A method for producing a hollow member made of a titanium-based composite material, comprising the steps of:
【請求項2】前記鍛造用素材は、前記快削チタン系材料
からなる中子の少なくとも一部を前記チタン基複合材料
で囲繞する素材形成工程により得られるものである請求
項1記載のチタン基複合材料からなる中空部材の製造方
法。
2. The titanium-based material according to claim 1, wherein the forging material is obtained by a material forming step of surrounding at least a part of a core made of the free-cutting titanium-based material with the titanium-based composite material. A method for manufacturing a hollow member made of a composite material.
【請求項3】前記素材形成工程は、前記外周層と前記内
周層との境界に少なくとも潤滑性を備えるコーティング
層を形成するコーティング工程を有する請求項2記載の
チタン基複合材料からなる中空部材の製造方法。
3. The hollow member made of a titanium-based composite material according to claim 2, wherein the material forming step includes a coating step of forming a coating layer having at least lubricity on a boundary between the outer peripheral layer and the inner peripheral layer. Manufacturing method.
【請求項4】チタンを主成分とするマトリックス中に強
化粒子が分散したチタン基複合材料からなる外周層と該
外周層の内側に配設され該チタン基複合材料より切削加
工性に優れる快削チタン系材料からなる内周層とを有す
る鍛造用素材を熱間押出し加工して軸部を形成する軸部
形成工程と、 該鍛造用素材を据え込み鍛造加工して傘部を形成する傘
部形成工程と、 該軸部形成工程および/または該傘部形成工程後に得ら
れたバルブ素材の内周層側を軸方向に切削加工して中空
部を形成する中空部形成工程と、 からなることを特徴とするチタン基複合材料からなる中
空バルブの製造方法。
4. An outer peripheral layer made of a titanium-based composite material in which reinforcing particles are dispersed in a matrix containing titanium as a main component, and free-cutting disposed inside the outer peripheral layer and having excellent machinability than the titanium-based composite material. A shaft portion forming step of forming a shaft portion by hot extruding a forging material having an inner peripheral layer made of a titanium-based material, and an umbrella portion forming an umbrella portion by upsetting the forging material. A forming step, and a hollow portion forming step of axially cutting the inner peripheral layer side of the valve material obtained after the shaft portion forming step and / or the umbrella portion forming step to form a hollow portion. A method of manufacturing a hollow valve made of a titanium-based composite material, comprising:
【請求項5】さらに、前記中空部形成工程後に前記中空
部の開口に蓋体を接合する接合工程を備える請求項4記
載のチタン基複合材料からなる中空バルブの製造方法。
5. The method for manufacturing a hollow valve made of a titanium-based composite material according to claim 4, further comprising a joining step of joining a lid to the opening of the hollow portion after the hollow portion forming step.
【請求項6】さらに、溶体化処理と時効処理とからなる
熱処理を前記バルブ素材に施す熱処理工程を備える請求
項4記載のチタン基複合材料からなる中空バルブの製造
方法。
6. The method for producing a hollow valve made of a titanium-based composite material according to claim 4, further comprising a heat treatment step of subjecting the valve material to a heat treatment comprising a solution treatment and an aging treatment.
【請求項7】さらに、前記軸部の曲り矯正を行う矯正工
程を備える請求項4記載のチタン基複合材料からなる中
空バルブの製造方法。
7. The method of manufacturing a hollow valve made of a titanium-based composite material according to claim 4, further comprising a straightening step of straightening the bending of the shaft portion.
JP2001188586A 2001-06-21 2001-06-21 Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof Pending JP2003001366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188586A JP2003001366A (en) 2001-06-21 2001-06-21 Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188586A JP2003001366A (en) 2001-06-21 2001-06-21 Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof

Publications (1)

Publication Number Publication Date
JP2003001366A true JP2003001366A (en) 2003-01-07

Family

ID=19027660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188586A Pending JP2003001366A (en) 2001-06-21 2001-06-21 Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof

Country Status (1)

Country Link
JP (1) JP2003001366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137854B1 (en) * 2009-08-31 2012-04-18 창원대학교 산학협력단 Mmethod of manufacturing the ceramic plate for heat exchanger
WO2020004286A1 (en) * 2018-06-28 2020-01-02 株式会社東亜鍛工所 Method for manufacturing hollow engine valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137854B1 (en) * 2009-08-31 2012-04-18 창원대학교 산학협력단 Mmethod of manufacturing the ceramic plate for heat exchanger
WO2020004286A1 (en) * 2018-06-28 2020-01-02 株式会社東亜鍛工所 Method for manufacturing hollow engine valve
JPWO2020004286A1 (en) * 2018-06-28 2020-07-02 株式会社東亜鍛工所 Hollow engine valve manufacturing method

Similar Documents

Publication Publication Date Title
JP3309344B2 (en) Manufacturing method of gear with center hole
US4834036A (en) Composite valve for reciprocating engines and method for manufacturing the same
US7066235B2 (en) Method for manufacturing clad components
EP0696688B1 (en) Process for producing split type mechanical part
JP3249345B2 (en) Bevel gear manufacturing method
CN101285135A (en) Manufacturing method of metal composite and component composed of metal composite
US8956049B2 (en) Method for producing a fracture-divided component, and component produced according to the method
AU2007276084A1 (en) A die assembly and a method of making it
US7574795B2 (en) Method of manufacturing connecting rod
JP4355140B2 (en) Universal joint yoke manufacturing method and forging die
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
CN111037244A (en) Hollow shaft and manufacturing method thereof
JP2002043125A (en) Electromagnetic actuator and valve opening/closing mechanism for internal combustion engine using the same
US5666637A (en) Method of manufacturing connecting rod
Bay Cold forming of aluminium—state of the art
JP2003001366A (en) Manufacturing method for hollow member made of titanium-based composite material and for hollow valve made thereof
EP1576264A2 (en) Power metal connecting rod
JP4566132B2 (en) Method for forming cylindrical member
JPH07119421A (en) Manufacture of na-sealed hollow engine valve
JP4842704B2 (en) Mold repair method
US20070181228A1 (en) Spherical Bearing Arrangements
US7712965B2 (en) Piston pin bushing
CN110872663A (en) Lightweight insert for piston ring, method of making the same, and article including the insert
JP2000516997A (en) Method of manufacturing a part usable in a fuel environment
WO1999066092A1 (en) Bearing material for cold rolling forming and forming member thereof