JP2003001117A - Photocatalytic particle and its manufacturing method - Google Patents

Photocatalytic particle and its manufacturing method

Info

Publication number
JP2003001117A
JP2003001117A JP2001189024A JP2001189024A JP2003001117A JP 2003001117 A JP2003001117 A JP 2003001117A JP 2001189024 A JP2001189024 A JP 2001189024A JP 2001189024 A JP2001189024 A JP 2001189024A JP 2003001117 A JP2003001117 A JP 2003001117A
Authority
JP
Japan
Prior art keywords
particles
photocatalytic
titanium oxide
fine particles
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001189024A
Other languages
Japanese (ja)
Inventor
Chuka Shu
忠華 周
Atsuro Miyao
敦朗 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001189024A priority Critical patent/JP2003001117A/en
Publication of JP2003001117A publication Critical patent/JP2003001117A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic particle and its manufacturing method, which enhance adsorption power of the whole photocatalytic particle containing a titanium oxide fine particle, and catalytic activity and activity persistency as a photocatalyst of the titanium oxide fine particle as well. SOLUTION: With using the manufacturing method of the photocatalytic particle that is characterized by obtaining a porous silica fine particle, which supports the titanium oxide fine particle, through hydrolyzing a silicon compound and a titanium compound in oxygen-hydrogen flame by using a multiple burner, the photocatalytic particle, which is characterized in that a particle size is 1 μm or smaller and the porous silica fine particle is supporting the titanium oxide fine particle, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒性粒子およ
びその製造方法に関し、より詳細には、光触媒活性を利
用した、塗料、繊維製品、シックハウス解消剤、工業排
水・排ガスの無害化処理剤等に用いられ、分解・除去、
消臭、抗菌、防汚、防曇等の作用を奏する光触媒性粒子
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to photocatalytic particles and a method for producing the same, and more particularly, to paints, textile products, sick house eliminating agents, industrial wastewater / exhaust gas detoxifying agents, etc. which utilize photocatalytic activity. Used for, disassembly and removal,
The present invention relates to a photocatalytic particle that exhibits actions such as deodorant, antibacterial, antifouling, and antifogging, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタン等の半導体粒子に、そのバン
ドギャップ以上のエネルギーを有する光を照射すると、
光励起により生成した電子と正孔が半導体粒子表面に移
動し、周囲に存在するイオン種や分子種に作用して、光
触媒反応と呼ばれる様々な反応を引き起こす。特に、酸
化チタン微粒子は、その表面に生じた正孔が、強力な酸
化力を有していることから、塗料、繊維製品、シックハ
ウスの解消、工業排水・排ガスの無害化処理等への応用
が種々提案されており、一部は既に実施されている。
2. Description of the Related Art When semiconductor particles such as titanium oxide are irradiated with light having an energy larger than the band gap,
Electrons and holes generated by photoexcitation move to the surface of semiconductor particles and act on ionic species and molecular species present in the surroundings to cause various reactions called photocatalytic reactions. In particular, since the holes generated on the surface of titanium oxide fine particles have a strong oxidizing power, they can be applied to paints, textile products, elimination of sick houses, detoxification of industrial wastewater and exhaust gas, etc. Various proposals have been made, and some have already been implemented.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸化チ
タン微粒子を光触媒として用いて、汚染物質を分解・除
去、消臭、抗菌等しようとする場合、一般に、除去すべ
き汚染物質等の被処理物質の濃度は、非常に低いもので
ある。例えば、室内の空気洗浄・消臭の場合には、新建
材・壁紙等の接着剤から発生し、シックハウス症候群の
主な原因とされているホルムアルデヒドガスが被処理物
質となるが、これは2〜5ppm程度の低濃度でも、目
や気道粘膜に対する刺激性があると言われている。
However, in the case of using titanium oxide fine particles as a photocatalyst for decomposing / removing pollutants, deodorizing, antibacterial, etc., in general, it is necessary to remove the pollutants to be removed. The concentration is very low. For example, in the case of indoor air cleaning and deodorization, formaldehyde gas, which is generated from adhesives such as new building materials and wallpaper, and is the main cause of sick house syndrome, becomes the substance to be treated. It is said that even a low concentration of about 5 ppm is irritating to the eyes and airway mucosa.

【0004】したがって、このような低濃度の被処理物
質の分解・除去等の反応効率を向上させるためには、被
処理物質の拡散律速を回避するため、酸化チタン微粒子
の周囲における被処理物質の濃度を高くする必要があ
る。また、その一方では、反応律速を回避するため、光
触媒性粒子としての高い触媒活性も求められる。
Therefore, in order to improve the reaction efficiency such as decomposition / removal of the low-concentration substance to be treated, in order to avoid the diffusion control of the substance to be treated, the substance to be treated around the titanium oxide fine particles is prevented. It is necessary to increase the concentration. On the other hand, in order to avoid the reaction rate limitation, high catalytic activity as photocatalytic particles is also required.

【0005】しかしながら、酸化チタン微粒子自体は、
吸着力が弱いため、従来から、活性炭、多孔質セラミッ
クス、無機繊維等の吸着力が高い物質とともに使用する
等の工夫がなされている。
However, the titanium oxide fine particles themselves are
Since it has a weak adsorptive power, it has been conventionally devised to use it together with a substance having a high adsorptive power such as activated carbon, porous ceramics, and inorganic fibers.

【0006】具体的には、シリカゲル等の担体表面に、
酸化チタンのゾルを塗布する方法、シリカゲル等の担体
表面に、バインダーを介して、酸化チタン被膜を形成さ
せる方法、ゼオライト等の担体の細孔内に、チタン含有
溶液を吸収させ、焼結させる方法等が挙げられる。しか
しながら、これらの方法によって得られた光触媒性粒子
によっては、上記被処理物質の分解・除去等の反応効率
の向上は十分なものであるとは言えなかった。
Specifically, on the surface of a carrier such as silica gel,
Method of applying titanium oxide sol, method of forming titanium oxide film on the surface of carrier such as silica gel via a binder, method of absorbing titanium-containing solution in pores of carrier such as zeolite and sintering Etc. However, it cannot be said that the photocatalytic particles obtained by these methods sufficiently improve the reaction efficiency such as decomposition and removal of the substance to be treated.

【0007】本発明は、上記技術的課題を解決するため
になされたものであり、酸化チタン微粒子を含む光触媒
性粒子全体の吸着力を向上させるとともに、酸化チタン
微粒子の光触媒としての触媒活性およびその活性持続性
を向上させた光触媒性粒子およびその製造方法を提供す
ることを目的とするものである。
The present invention has been made to solve the above technical problems, and improves the adsorption power of the entire photocatalytic particles containing titanium oxide fine particles, and at the same time, the catalytic activity of titanium oxide fine particles as a photocatalyst and the same. It is an object of the present invention to provide a photocatalytic particle having improved activity durability and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る光触媒性粒
子は、粒径が1μm以下であり、酸化チタン微粒子を担
持した多孔質シリカ微粒子であることを特徴とする。こ
のように構成された光触媒性粒子によれば、強い吸着力
を有し、担持される酸化チタン微粒子近傍の被処理物質
の濃度を高くすることができ、さらに、多孔質シリカ微
粒子の表面に担持された酸化チタン微粒子の高い光触媒
活性との相乗効果によって、光触媒活性およびその活性
持続性を向上させることができる。
The photocatalytic particles according to the present invention are characterized in that they have a particle size of 1 μm or less, and are porous silica fine particles carrying titanium oxide fine particles. According to the photocatalytic particles configured in this way, it has a strong adsorption force, it is possible to increase the concentration of the substance to be treated in the vicinity of the titanium oxide fine particles to be supported, and further, to support on the surface of the porous silica fine particles. The photocatalytic activity and its activity sustainability can be improved by the synergistic effect of the titanium oxide fine particles with the high photocatalytic activity.

【0009】前記酸化チタン微粒子の粒径は、5nm以
上100nm以下であり、かつ、前記光触媒性粒子の粒
径は、0.01μm以上1μm以下であることが好まし
い。十分な光触媒活性および溶媒への分散性等の観点か
ら、上記範囲内の粒径とすることが好ましく、塗料用途
にも好適に用いることができる。
It is preferable that the particle size of the titanium oxide fine particles is 5 nm or more and 100 nm or less, and the particle size of the photocatalytic particles is 0.01 μm or more and 1 μm or less. From the viewpoint of sufficient photocatalytic activity, dispersibility in a solvent, and the like, it is preferable that the particle diameter be within the above range, and it can be suitably used for coating applications.

【0010】また、前記光触媒性粒子の表面において、
酸化チタン微粒子で覆われた部分の面積は、該光触媒性
粒子の表面積に対して、30%以上であることが好まし
い。酸化チタンの光触媒活性を十分に発揮させる観点か
ら、光触媒粒子の表面における酸化チタンによる被覆面
積を規定したものである。
Further, on the surface of the photocatalytic particles,
The area covered by the titanium oxide fine particles is preferably 30% or more of the surface area of the photocatalytic particles. From the viewpoint of sufficiently exhibiting the photocatalytic activity of titanium oxide, the area covered by titanium oxide on the surface of the photocatalyst particles is defined.

【0011】さらにまた、前記光触媒性粒子の組成は、
シリカに対する酸化チタンのモル比が、0.01以上
0.5以下であることが好ましい。多孔質シリカによる
被処理物質の吸着性を十分に発揮させる観点から、光触
媒粒子の組成比を規定したものである。
Furthermore, the composition of the photocatalytic particles is
The molar ratio of titanium oxide to silica is preferably 0.01 or more and 0.5 or less. The composition ratio of the photocatalyst particles is defined from the viewpoint of sufficiently exhibiting the adsorptivity of the substance to be treated by the porous silica.

【0012】本発明に係る光触媒性粒子の製造方法は、
多重バーナーを用いて、ケイ素化合物およびチタン化合
物を酸水素火炎中にて加水分解することにより、酸化チ
タン微粒子を担持した多孔質シリカ微粒子を得ることを
特徴とする。このように、気相合成により光触媒性粒子
を製造することによって、多孔質シリカ微粒子表面に酸
化チタン微粒子を均質に担持させることができ、また、
粒径が均等な粒子を得ることができ、しかも、吸着力、
光触媒活性およびその活性持続性にも優れた光触媒性粒
子を得ることができる。
The method for producing photocatalytic particles according to the present invention comprises:
It is characterized in that a silicon compound and a titanium compound are hydrolyzed in an oxyhydrogen flame using a multi-burner to obtain porous silica fine particles carrying titanium oxide fine particles. Thus, by producing photocatalytic particles by gas phase synthesis, it is possible to uniformly support the titanium oxide fine particles on the surface of the porous silica fine particles,
It is possible to obtain particles with a uniform particle size, and the adsorption force
It is possible to obtain photocatalytic particles which are excellent in photocatalytic activity and their activity sustainability.

【0013】前記製造方法においては、前記多重バーナ
ーのノズル内管側からケイ素化合物を導入し、前記多重
バーナーのノズル外管側からチタン化合物を導入して、
酸水素火炎中にて加水分解することが好ましい。バーナ
ーノズルをこのような構成とすることにより、酸化チタ
ン微粒子を、担体となる多孔質シリカ微粒子表面に、均
質かつ容易に担持させることができる。
In the manufacturing method, the silicon compound is introduced from the nozzle inner tube side of the multiple burner, and the titanium compound is introduced from the nozzle outer tube side of the multiple burner,
Hydrolysis in an oxyhydrogen flame is preferred. With such a structure of the burner nozzle, the titanium oxide fine particles can be uniformly and easily supported on the surface of the porous silica fine particles serving as a carrier.

【0014】また、前記チタン化合物は、ケイ素化合物
に対するモル比が、0.01以上0.5以下となるよう
に導入されることが好ましい。上記のように、多孔質シ
リカによる被処理物質の吸着性を十分に発揮させること
ができる光触媒性粒子を得る等の観点から、原料供給量
比を規定したものである。
The titanium compound is preferably introduced so that the molar ratio to the silicon compound is 0.01 or more and 0.5 or less. As described above, the raw material supply ratio is defined from the viewpoint of obtaining photocatalytic particles capable of sufficiently exhibiting the adsorptivity of the substance to be treated by the porous silica.

【0015】また、前記酸化チタン微粒子を担持した多
孔質シリカ微粒子は、さらに、還元性ガス雰囲気中で熱
処理することが好ましい。この熱処理により、酸化チタ
ン微粒子を担持した多孔質シリカ微粒子は、紫外線が照
射された場合だけでなく、可視光線が照射された場合に
も光触媒活性を発揮することが可能となる。
Further, it is preferable that the porous silica fine particles carrying the titanium oxide fine particles are further heat-treated in a reducing gas atmosphere. By this heat treatment, the porous silica fine particles carrying the titanium oxide fine particles can exhibit photocatalytic activity not only when they are irradiated with ultraviolet rays but also when they are irradiated with visible light.

【0016】前記熱処理温度は、前記酸化チタン微粒子
を担持した多孔質シリカ微粒子の50%が焼結する温度
以下であることが好ましい。全粒子数の50%を超える
粒子に焼結が起こると、十分な光触媒活性を得ることが
できない。
The heat treatment temperature is preferably below the temperature at which 50% of the porous silica fine particles carrying the titanium oxide fine particles are sintered. If sintering occurs in particles exceeding 50% of the total number of particles, sufficient photocatalytic activity cannot be obtained.

【0017】また、前記熱処理は、水素ガス雰囲気中、
300℃以上600℃以下で行われることが、より好ま
しい。上記と同様に、焼結する粒子の割合を考慮した上
での、より好ましい温度範囲である。
The heat treatment is performed in a hydrogen gas atmosphere,
More preferably, it is performed at 300 ° C or higher and 600 ° C or lower. Similar to the above, it is a more preferable temperature range in consideration of the ratio of particles to be sintered.

【0018】[0018]

【発明の実施の形態】以下、本発明を、図面を参照して
詳細に説明する。図1(a)、(b)は、本発明に係る
光触媒性粒子の構造の典型例を示したものである。図1
(a)、(b)に示すように、本発明に係る光触媒性粒
子は、通常、非晶性の多孔質シリカ微粒子1の表面に、
該多孔質シリカ微粒子1よりも微細の酸化チタン微粒子
2が担持された構造からなる。図1(a)は、多孔質シ
リカ微粒子1表面の全面が、酸化チタン微粒子2によっ
て覆われたものである。また、図1(b)は、多孔質シ
リカ微粒子1の表面が、部分的に酸化チタン微粒子2に
よって覆われたものであり、斑状に多孔質シリカ微粒子
1の表面が露出している。本発明に係る光触媒性粒子
は、通常、上述した図1(a)、(b)に示した構造の
いずれか、または、両方が混在した粒子の集合体であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIGS. 1A and 1B show typical examples of the structure of the photocatalytic particles according to the present invention. Figure 1
As shown in (a) and (b), the photocatalytic particles according to the present invention are usually formed on the surface of amorphous porous silica fine particles 1.
It has a structure in which titanium oxide fine particles 2 finer than the porous silica fine particles 1 are carried. In FIG. 1A, the entire surface of the porous silica fine particles 1 is covered with titanium oxide fine particles 2. In addition, in FIG. 1B, the surface of the porous silica fine particles 1 is partially covered with the titanium oxide fine particles 2, and the surface of the porous silica fine particles 1 is exposed in a patchy manner. The photocatalytic particles according to the present invention are usually an aggregate of particles having either one of the structures shown in FIGS. 1A and 1B described above, or a mixture of both.

【0019】前記光触媒性粒子の粒径は、1μm以下、
より好ましくは、0.01μm以上1μm以下の範囲で
ある。前記光触媒性粒子の粒径が1μmを超える場合
は、比表面積が小さくなるため、酸化チタン微粒子が付
着する多孔質シリカ微粒子の表面積が小さくなり、十分
な光触媒活性を得ることができなくい。また、例えば、
塗料のように溶媒に分散させて用いる場合、粒子が大き
いと、平滑な塗膜を得ることができないという不都合を
生じる。一方、粒径が0.01μm未満の場合には、粒
子が飛散しやすく、取扱いが困難となる。また、塗料の
ように溶媒に分散させて用いる場合、粒子が小さいと、
カサ比重が小さいことにも起因して、凝集しやすくな
り、分散性が低下することとなる。
The diameter of the photocatalytic particles is 1 μm or less,
More preferably, it is in the range of 0.01 μm or more and 1 μm or less. When the particle diameter of the photocatalytic particles exceeds 1 μm, the specific surface area becomes small, so that the surface area of the porous silica fine particles to which the titanium oxide fine particles adhere becomes small and it becomes difficult to obtain sufficient photocatalytic activity. Also, for example,
When used in a solvent dispersed like a paint, if the particles are large, there arises a disadvantage that a smooth coating film cannot be obtained. On the other hand, if the particle size is less than 0.01 μm, the particles are likely to scatter and the handling becomes difficult. Also, when used by dispersing in a solvent like paint, if the particles are small,
Due to the fact that the bulk specific gravity is small, it is easy to aggregate and the dispersibility is reduced.

【0020】前記担体(核)となる多孔質シリカ粒子
は、通常、表面に1〜5nm程度の微細開気孔を密に有
する非晶質シリカである。このため、粒子の表面積が大
きく、かつ、表面形状が複雑であり、その表面に担持さ
れた酸化チタン微粒子に、多数の触媒活性点を付与する
作用を奏するとともに、該酸化チタン微粒子を強力に保
持することができる。
The porous silica particles serving as the carrier (nucleus) are usually amorphous silica having dense open pores of about 1 to 5 nm on the surface. Therefore, the surface area of the particles is large, and the surface shape is complicated, and the titanium oxide fine particles carried on the surface have the effect of imparting a large number of catalytically active sites, and also strongly retain the titanium oxide fine particles. can do.

【0021】また、本発明に係る酸化チタン微粒子は、
担体である多孔質シリカ微粒子に担持される光触媒成分
である。この酸化チタン微粒子の粒径は、5nm以上1
00nm以下の範囲であることが好ましく、特に、前記
多孔質シリカ微粒子との粒径比(酸化チタン微粒子/多
孔質シリカ微粒子)が0.005〜0.5であること
が、被処理物質の吸着性と光触媒活性等の観点から好ま
しい。
The titanium oxide fine particles according to the present invention are
It is a photocatalyst component supported on porous silica fine particles as a carrier. The particle size of the titanium oxide fine particles is 5 nm or more 1
It is preferable that the particle size ratio with respect to the porous silica fine particles (titanium oxide fine particles / porous silica fine particles) is 0.005 to 0.5, in particular, the adsorption of the substance to be treated is It is preferable from the viewpoints of properties and photocatalytic activity.

【0022】さらにまた、本発明に係る光触媒性粒子の
表面の状態は、酸化チタン微粒子で覆われた部分の面積
が、該光触媒性粒子の表面積に対して、30%以上であ
ることが、酸化チタンの光触媒活性を十分に発揮させる
観点から好ましい。より好ましくは、50〜80%であ
る。
Furthermore, regarding the surface condition of the photocatalytic particles according to the present invention, the area of the portion covered with titanium oxide fine particles is 30% or more of the surface area of the photocatalytic particles. It is preferable from the viewpoint of sufficiently exhibiting the photocatalytic activity of titanium. More preferably, it is 50 to 80%.

【0023】また、前記光触媒性粒子全体の組成は、シ
リカに対する酸化チタンのモル比が、0.01以上0.
5以下の範囲にあることが、多孔質シリカによる被処理
物質の吸着性を十分に発揮させる観点から好ましい。
The composition of the entire photocatalytic particles is such that the molar ratio of titanium oxide to silica is 0.01 or more.
The range of 5 or less is preferable from the viewpoint of sufficiently exhibiting the adsorptivity of the substance to be treated by the porous silica.

【0024】次に、上記のような光触媒性粒子を得るた
めの本発明に係る製造方法を、以下に説明する。本発明
に係る製造方法は、多重式酸水素火炎バーナーを用い
て、ケイ素化合物およびチタン化合物を酸水素火炎中に
て加水分解させるものである。すなわち、高純度合成石
英を製造する際に用いられる、いわゆるVAD(Vapor-
phase axial deposition)法に類似した方法である。こ
のように、本発明に係る製造方法は、気相合成により光
触媒性粒子を製造するものであるため、多孔質シリカ微
粒子表面に酸化チタン微粒子を均質に担持させることが
でき、また、粒径が均等な粒子を得ることができる。し
かも、吸着性、光触媒活性およびその活性持続性にも優
れた光触媒性粒子を得ることができる。
Next, a manufacturing method according to the present invention for obtaining the above-mentioned photocatalytic particles will be described below. The production method according to the present invention uses a multi-type oxyhydrogen flame burner to hydrolyze a silicon compound and a titanium compound in an oxyhydrogen flame. That is, the so-called VAD (Vapor-) used when manufacturing high-purity synthetic quartz is used.
This is a method similar to the phase axial deposition) method. As described above, since the production method according to the present invention produces the photocatalytic particles by vapor phase synthesis, the titanium oxide fine particles can be uniformly supported on the surface of the porous silica fine particles, and the particle size is Uniform particles can be obtained. Moreover, it is possible to obtain photocatalytic particles that are excellent in adsorptivity, photocatalytic activity, and their activity sustainability.

【0025】具体的な製造方法としては、例えば、図2
に示すように構成された装置により、チャンバ11内に
多重式酸水素火炎バーナーのバーナーノズル12の先端
部12aから水素ガス、酸素ガスとともに、ケイ素化合
物、チタン化合物をそれぞれ霧状またはガス状に噴射さ
せる。そして、前記ケイ素化合物およびチタン化合物
を、水素と酸素の火炎燃焼反応により生じる熱および水
により、通常600〜1300℃程度となる高温下に
て、加水分解反応させることによって、多孔質シリカ微
粒子の表面に酸化チタン微粒子が付着した粒子、すなわ
ち、本発明に係る光触媒性粒子13が生成し、チャンバ
11内の底部に堆積する。なお、チャンバ11内に生成
したガスは、該チャンバ11に設けられた排気口14か
ら排気される。
As a concrete manufacturing method, for example, FIG.
With the device configured as shown in FIG. 1, a silicon compound and a titanium compound are injected into the chamber 11 from the tip portion 12a of the burner nozzle 12 of the multiple oxyhydrogen flame burner together with hydrogen gas and oxygen gas in the form of mist or gas, respectively. Let Then, the silicon compound and the titanium compound are hydrolyzed by heat and water generated by the flame combustion reaction of hydrogen and oxygen at a high temperature of about 600 to 1300 ° C. Particles having titanium oxide fine particles attached thereto, that is, the photocatalytic particles 13 according to the present invention are generated and deposited on the bottom of the chamber 11. The gas generated in the chamber 11 is exhausted from the exhaust port 14 provided in the chamber 11.

【0026】前記光触媒性粒子13の生成過程をさらに
詳細に説明すると、まず、多重式酸水素炎バーナーのバ
ーナーノズル12に導入されたケイ素化合物を、酸水素
火炎中で加水分解して、多孔質シリカ微粒子を生成させ
る。そして、この生成した多孔質シリカ微粒子の表面
に、バーナーノズル12に導入されたチタン化合物を酸
水素火炎中で加水分解反応させることにより生成した酸
化チタン微粒子を付着させて、酸化チタン微粒子を担持
した多孔質シリカ微粒子が得られる。前記光触媒性粒子
13の粒径は、ケイ素化合物、チタン化合物および酸素
ガス、水素ガスの流量、バーナーノズル12の調整によ
って制御することができる。
The production process of the photocatalytic particles 13 will be described in more detail. First, the silicon compound introduced into the burner nozzle 12 of the multiple oxyhydrogen flame burner is hydrolyzed in an oxyhydrogen flame to give a porous structure. Generates silica fine particles. Then, titanium oxide fine particles produced by hydrolyzing the titanium compound introduced into the burner nozzle 12 in an oxyhydrogen flame are adhered to the surface of the produced porous silica fine particles to carry the titanium oxide fine particles. Porous silica fine particles are obtained. The particle size of the photocatalytic particles 13 can be controlled by adjusting the flow rates of the silicon compound, the titanium compound, the oxygen gas and the hydrogen gas, and the burner nozzle 12.

【0027】前記多重式酸水素火炎バーナーとしては、
酸素ガス、水素ガス、ケイ素化合物、チタン化合物等の
4種類以上のガスをそれぞれ供給することができる多重
ノズル口を備えた酸水素火炎用バーナーであれば、特に
限定されることなく、使用することができる。例えば、
図3に示すような構造からなるバーナーノズル12を備
えた多重式酸水素火炎バーナーが、好適に用いられる。
なお、図3(a)は、バーナーノズルの縦断面図であ
り、(b)は、横断面図である。図3に示したバーナー
ノズル12は、同心円の環状多重管からなり、最内管2
1にケイ素化合物、最外環状管24にチタン化合物、中
間の環状管22、23に酸素または水素のそれぞれが導
入され、先端部12aから噴射される。バーナーノズル
12をこのような構成とすることにより、酸化チタン微
粒子を、担体となる多孔質シリカ微粒子表面に、均質か
つ容易に担持させることができる。
The multi-type oxyhydrogen flame burner includes:
Any burner for an oxyhydrogen flame having multiple nozzle ports capable of supplying four or more kinds of gases such as oxygen gas, hydrogen gas, silicon compound, titanium compound, etc., is not particularly limited and may be used. You can For example,
A multi-type oxyhydrogen flame burner equipped with a burner nozzle 12 having a structure as shown in FIG. 3 is preferably used.
3A is a vertical cross-sectional view of the burner nozzle, and FIG. 3B is a horizontal cross-sectional view. The burner nozzle 12 shown in FIG. 3 consists of concentric annular multi-tubes, and the innermost tube 2
1, a silicon compound is introduced into the outermost annular pipe 24, a titanium compound is introduced into the outermost annular pipe 24, and oxygen or hydrogen is introduced into the intermediate annular pipes 22 and 23, respectively, and injected from the tip portion 12a. By configuring the burner nozzle 12 with such a configuration, the titanium oxide fine particles can be uniformly and easily supported on the surface of the porous silica fine particles serving as a carrier.

【0028】また、反応を均等に進行させる等の観点か
ら、環状多重管のラインを増加させ、酸素、水素、ケイ
素化合物、チタン化合物が導入されるそれぞれの環状管
の間に、チッ素、アルゴン、ヘリウム等の不活性ガス等
を導入させることが好ましい。特に、前記ケイ素化合物
とチタン化合物が液体または溶液である場合には、前記
不活性ガス等を中間の環状管に導入し、この不活性ガス
等を用いて、霧状またはガス状に噴射させることが、こ
れらの化合物の加水分解反応を均等に進行させ、高い光
触媒活性を発揮する構造および粒径である光触媒性粒子
を得る観点から好ましい。
From the viewpoint of allowing the reaction to proceed uniformly, the lines of the annular multi-tube are increased so that nitrogen, argon, and argon are introduced between the respective annular tubes into which oxygen, hydrogen, a silicon compound and a titanium compound are introduced. It is preferable to introduce an inert gas such as helium. In particular, when the silicon compound and the titanium compound are liquids or solutions, the inert gas or the like is introduced into an intermediate annular pipe, and the inert gas or the like is used to spray it in a mist or gas state. However, it is preferable from the viewpoint of uniformly advancing the hydrolysis reaction of these compounds to obtain photocatalytic particles having a structure and a particle size that exhibit high photocatalytic activity.

【0029】上記製造方法においては、得られる光触媒
性粒子13の粒径が、上記のように、1μm以下、好ま
しくは、0.01〜0.1μm程度になるように調節さ
れる。粒径の調節は、ケイ素化合物含有ガス、チタン化
合物含有ガス、酸素ガス、水素ガスの各流量、バーナー
ノズル先端部12aにおけるガス流線速度等を適宜調整
することによって行われる。前記線速度が速いほど、得
られる光触媒性粒子の粒径は小さくなり、光触媒活性は
向上するが、その反面、分散性は低下する。
In the above manufacturing method, the particle size of the photocatalytic particles 13 obtained is adjusted to 1 μm or less, preferably 0.01 to 0.1 μm, as described above. The particle size is adjusted by appropriately adjusting the respective flow rates of the silicon compound-containing gas, the titanium compound-containing gas, the oxygen gas, and the hydrogen gas, the gas stream linear velocity at the tip 12a of the burner nozzle, and the like. The higher the linear velocity, the smaller the particle size of the photocatalytic particles obtained and the photocatalytic activity is improved, but the dispersibility is decreased.

【0030】また、前記チタン化合物とケイ素化合物と
の供給量比は、上記した光触媒性粒子の組成を基準とし
て、チタン化合物のケイ素化合物に対するモル比が、
0.01〜0.5となるように導入される。前記多孔質
シリカ微粒子の構成原料としては、四塩化ケイ素、トリ
クロロシラン等の塩化物、四フッ化ケイ素、トリフルオ
ロシラン等のフッ化物等のほか、アルコキシド等のケイ
素化合物を挙げることができる。また、前記チタン微粒
子の構成原料としては、四塩化チタン、三塩化チタン等
の塩化物、フッ化物、硫酸塩、アルコキシド等のチタン
化合物を挙げることができる。
Further, the supply ratio of the titanium compound and the silicon compound is such that the molar ratio of the titanium compound to the silicon compound is based on the composition of the photocatalytic particles described above.
It is introduced so as to be 0.01 to 0.5. Examples of the constituent raw material of the porous silica fine particles include chlorides such as silicon tetrachloride and trichlorosilane, fluorides such as silicon tetrafluoride and trifluorosilane, and silicon compounds such as alkoxides. In addition, examples of the constituent raw material of the titanium fine particles include chlorides such as titanium tetrachloride and titanium trichloride, titanium compounds such as fluorides, sulfates and alkoxides.

【0031】上記製造方法により得られた光触媒性粒子
は、そのまま使用しても、十分な光触媒活性を発揮する
ことができるが、その得られた粒子は、さらに、水素ガ
ス、水素ガスとチッ素ガスとの混合ガス、アンモニアガ
ス等の還元性ガス雰囲気中で熱処理することが、より好
ましい。この還元性雰囲気中での熱処理を行うことによ
り、紫外線波長領域の光照射に対してのみならず、可視
光線波長領域の光照射に対しても、高い光触媒活性を発
揮する光触媒性粒子を得られる。
The photocatalytic particles obtained by the above-mentioned production method can exhibit a sufficient photocatalytic activity even if they are used as they are, but the obtained particles are further hydrogen gas, hydrogen gas and nitrogen. It is more preferable to perform the heat treatment in an atmosphere of a reducing gas such as a mixed gas with a gas or ammonia gas. By performing heat treatment in this reducing atmosphere, photocatalytic particles exhibiting high photocatalytic activity not only for light irradiation in the ultraviolet wavelength region but also for light irradiation in the visible light wavelength region can be obtained. .

【0032】前記熱処理は、前記酸化チタン微粒子を担
持した多孔質シリカ微粒子の50%が焼結する温度以下
で行うことが好ましい。全粒子数の50%を超える粒子
に焼結が起こると、十分な光触媒活性を得ることができ
なくなる。したがって、熱処理温度は、300〜600
℃の範囲で行うことが、特に好ましい。
The heat treatment is preferably carried out at a temperature not higher than the temperature at which 50% of the porous silica fine particles carrying the titanium oxide fine particles are sintered. If sintering occurs in particles exceeding 50% of the total number of particles, sufficient photocatalytic activity cannot be obtained. Therefore, the heat treatment temperature is 300 to 600.
It is particularly preferable to carry out in the range of ° C.

【0033】[0033]

【実施例】以下、本発明を実施例に基づきさらに具体的
に説明するが、本発明は下記の実施例により制限される
ものではない。 [実施例]図2に示したようなチャンバ内で、多重管バ
ーナーノズルを装着した酸水素火炎装置を用いて、この
バーナーノズルの環状管の内側から順に、四塩化ケイ素
(濃度:80mol%、流量:5l/min)、チッ素
ガス(流量:5l/min)、水素ガス(流量:12l
/min)、チッ素ガス(流量:5l/min)、酸素
ガス(流量:5l/min)、チッ素ガス(流量:5l
/min)、四塩化チタン(濃度:20mol%、流
量:1l/min)を、該バーナーノズル先端部から噴
射させ(ガス流線速度:約0.5m/sec)、最高温
度900℃の酸水素火炎にて加水分解反応させ、酸化チ
タン微粒子を担持した多孔質シリカ微粒子をチャンバ内
に集積させた。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples. Example Using an oxyhydrogen flame device equipped with a multi-tube burner nozzle in a chamber as shown in FIG. 2, silicon tetrachloride (concentration: 80 mol%, Flow rate: 5 l / min), nitrogen gas (flow rate: 5 l / min), hydrogen gas (flow rate: 12 l)
/ Min), nitrogen gas (flow rate: 5 l / min), oxygen gas (flow rate: 5 l / min), nitrogen gas (flow rate: 5 l)
/ Min), titanium tetrachloride (concentration: 20 mol%, flow rate: 1 l / min) is injected from the tip of the burner nozzle (gas stream linear velocity: about 0.5 m / sec), and oxyhydrogen at a maximum temperature of 900 ° C. Hydrolysis reaction was carried out with a flame, and porous silica fine particles supporting titanium oxide fine particles were accumulated in the chamber.

【0034】得られた粒子の粒径は、0.05〜0.1
μmの範囲のものが、99重量%であった。また、顕微
鏡写真による目視計測の結果、酸化チタン微粒子を担持
した多孔質シリカ微粒子の表面積に対して、酸化チタン
微粒子で覆われた部分の面積は、平均60%であり、担
持された酸化チタン微粒子の平均粒径は30nmであっ
た。そして、このチタン微粒子を担持した多孔質シリカ
微粒子を、水素ガス気流中、400℃で2時間熱処理
し、光触媒性粒子を得た。
The particle size of the obtained particles is 0.05 to 0.1.
The value in the range of μm was 99% by weight. Further, as a result of visual measurement with a micrograph, the area of the portion covered with the titanium oxide fine particles was 60% on average with respect to the surface area of the porous silica fine particles supporting the titanium oxide fine particles, and the supported titanium oxide fine particles were Had an average particle size of 30 nm. Then, the porous silica fine particles carrying the titanium fine particles were heat-treated in a hydrogen gas stream at 400 ° C. for 2 hours to obtain photocatalytic particles.

【0035】[比較例]A型シリカゲル(平均細孔径:
2.4nm、細孔容積:0.46ml/g、比表面積:
700m2 /g)を粉砕した後、篩別し、粒径40〜1
50μmの粒状シリカゲルを得た。この粒状シリカゲル
に、ジイソプロポキシ−ビス(アセチルアセトナート)
チタンを含浸させた後、酸素気流中、600℃で1時間
保持して酸化し、5重量%の酸化チタンを担持したシリ
カゲル粒子からなる光触媒性粒子を得た。
Comparative Example A type silica gel (average pore size:
2.4 nm, pore volume: 0.46 ml / g, specific surface area:
700 m 2 / g) and then sieved to give a particle size of 40-1
50 μm granular silica gel was obtained. Diisopropoxy-bis (acetylacetonate) was added to the granular silica gel.
After impregnating with titanium, it was kept in an oxygen stream at 600 ° C. for 1 hour for oxidation to obtain photocatalytic particles consisting of silica gel particles carrying 5% by weight of titanium oxide.

【0036】上記の実施例品および比較例品の光触媒性
粒子をそれぞれ、同型のボックス型密閉容器(容積:2
0l、底面積:1000cm2 、20Wのブラックライ
トを内蔵)内に、該ボックスの底面全面に厚さ2mmで
敷き詰めた。次いで、これらの各容器内に、トリメチル
アミン80ppmを注入し、ブラックライトを点灯し、
20分後に容器内の空気中に含まれるトリメチルアミン
濃度をガスクロマトグラフィーにより測定した。この第
1回測定においては、両者ともにトリメチルアミン濃度
は0ppmであった。再度、両容器に減少した分のトリ
メチルアミンを注入し、20分後に、同様にトリメチル
アミン濃度を測定した。このような操作を繰り返し実施
したところ、実施例品を敷き詰めた容器の場合は、上記
操作サイクルを8回繰り返しても、トリメチルアミン濃
度は0ppmであったが、比較例品の容器の場合には、
2回目以降残存トリメチルアミンが検出され、回を重ね
るごとにその濃度は増加し、8回目には除去効果が全く
見られなくなった。
The photocatalytic particles of the above-mentioned example product and comparative example product were respectively packed in the same type of box-type closed container (volume: 2).
0 l, bottom area: 1000 cm 2 , 20 W of black light was built in), and the entire bottom surface of the box was spread with a thickness of 2 mm. Then, 80 ppm of trimethylamine was injected into each of these containers, and a black light was turned on.
After 20 minutes, the concentration of trimethylamine contained in the air in the container was measured by gas chromatography. In this first measurement, both had a trimethylamine concentration of 0 ppm. Again, the reduced amount of trimethylamine was injected into both containers, and 20 minutes later, the trimethylamine concentration was similarly measured. When such an operation was repeatedly carried out, in the case of the container laid with the example product, the trimethylamine concentration was 0 ppm even after repeating the above operation cycle 8 times, but in the case of the container of the comparative example product,
Residual trimethylamine was detected from the second time onward, the concentration increased with each repetition, and no removal effect was observed at the eighth time.

【0037】[0037]

【発明の効果】以上のとおり、本発明によれば、ホルム
アルデヒドガス、工場排水中の有害物質等の被処理物質
に対する吸着力が強く、該被処理物質が低濃度である場
合においても、光触媒活性が高く、かつ、その活性持続
性に優れた光触媒性粒子が得られる。したがって、本発
明に係る光触媒性粒子は、建築の外装・内装塗料、路面
舗装材料、車ボディー用塗料等の塗料分野、病院用、車
内シート、インテリア、衣類等の繊維製品分野、食品用
プラスチック容器、日用雑貨等のプラスチック製品分
野、さらに、環境ホルモン・環境汚染物質の除去剤、工
業排水・排ガス処理剤、衛生陶器製品等、広範な分野に
おいて応用することができる。
As described above, according to the present invention, the photocatalytic activity is high even when the substance to be treated such as formaldehyde gas and harmful substances in factory wastewater has a strong adsorption force and the substance to be treated has a low concentration. The photocatalytic particles having high activity and excellent activity durability can be obtained. Therefore, the photocatalytic particles according to the present invention are used in exterior and interior paints for construction, road surface paving materials, paints such as car body paints, hospitals, car seats, interiors, textile products such as clothes, and plastic containers for food. It can be applied to a wide range of fields such as plastic products such as daily sundries and the like, as well as agents for removing environmental hormones and pollutants, industrial wastewater and exhaust gas treatment agents, sanitary ware products, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光触媒性粒子の構造の典型例の模
式図である。(a)は、や孔質シリカ微粒子表面の全面
が酸化チタン微粒子で覆われたものであり、(b)は、
多孔質シリカ微粒子表面のうちの一部が酸化チタン微粒
子で覆われたものである。
FIG. 1 is a schematic view of a typical example of the structure of photocatalytic particles according to the present invention. In (a), the entire surface of the porous silica fine particles is covered with titanium oxide fine particles, and in (b),
Part of the surface of the porous silica fine particles is covered with titanium oxide fine particles.

【図2】本発明に係る光触媒性粒子の製造方法において
用いられる装置の概略断面図である。
FIG. 2 is a schematic sectional view of an apparatus used in the method for producing photocatalytic particles according to the present invention.

【図3】多重式酸水素火炎バーナーのバーナーノズルの
一例を示す概略図である。(a)は、バーナーノズルの
縦断面図であり、(b)は、横断面図である。
FIG. 3 is a schematic view showing an example of a burner nozzle of a multi-type oxyhydrogen flame burner. (A) is a vertical cross-sectional view of the burner nozzle, and (b) is a horizontal cross-sectional view.

【符号の説明】[Explanation of symbols]

1 多孔質シリカ微粒子 2 酸化チタン微粒子 11 チャンバ 12 バーナーノズル 12a バーナーノズル先端部 13 光触媒性粒子 14 排気口 21 最内管 22、23 中間環状管 24 最外環状管 1 Porous silica particles 2 Fine particles of titanium oxide 11 chambers 12 burner nozzle 12a Burner nozzle tip 13 Photocatalytic particles 14 exhaust port 21 innermost tube 22, 23 Intermediate annular pipe 24 Outermost annular pipe

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA03 AA08 BA02A BA02B BA04A BA04B BA48A CA01 CA11 CA17 DA05 EB18X EB18Y EB19 FB03 4G072 AA37 AA41 BB05 BB15 DD05 DD06 GG01 GG03 MM01 QQ09 RR05 TT01 UU15    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA02 AA03 AA08 BA02A                       BA02B BA04A BA04B BA48A                       CA01 CA11 CA17 DA05 EB18X                       EB18Y EB19 FB03                 4G072 AA37 AA41 BB05 BB15 DD05                       DD06 GG01 GG03 MM01 QQ09                       RR05 TT01 UU15

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 粒径が1μm以下であり、酸化チタン微
粒子を担持した多孔質シリカ微粒子であることを特徴と
する光触媒性粒子。
1. A photocatalytic particle having a particle size of 1 μm or less, which is a porous silica fine particle carrying a titanium oxide fine particle.
【請求項2】 前記酸化チタン微粒子の粒径が5nm以
上100nm以下であり、かつ、前記酸化チタン微粒子
を担持した多孔質シリカ微粒子の粒径が0.01μm以
上1μm以下であることを特徴とする請求項1記載の光
触媒性粒子。
2. The particle size of the titanium oxide particles is 5 nm or more and 100 nm or less, and the particle size of the porous silica particles supporting the titanium oxide particles is 0.01 μm or more and 1 μm or less. The photocatalytic particle according to claim 1.
【請求項3】 前記光触媒性粒子の表面において、酸化
チタン微粒子で覆われた部分の面積が、該光触媒性粒子
の表面積に対して、30%以上であることを特徴とする
請求項1または請求項2記載の光触媒性粒子。
3. The surface of the photocatalytic particles, the area of the portion covered with titanium oxide fine particles is 30% or more, with respect to the surface area of the photocatalytic particles, the claim 1 or claim Item 2. The photocatalytic particles according to item 2.
【請求項4】 前記光触媒性粒子の組成は、シリカに対
する酸化チタンのモル比が、0.01以上0.5以下で
あることを特徴とする請求項1から請求項3までのいず
れかに記載の光触媒性粒子。
4. The composition of the photocatalytic particles has a molar ratio of titanium oxide to silica of 0.01 or more and 0.5 or less, according to any one of claims 1 to 3. Photocatalytic particles.
【請求項5】 多重バーナーを用いて、ケイ素化合物お
よびチタン化合物を酸水素火炎中にて加水分解すること
により、酸化チタン微粒子を担持した多孔質シリカ微粒
子を得ることを特徴とする光触媒性粒子の製造方法。
5. A photocatalytic particle, characterized in that porous silica fine particles carrying titanium oxide fine particles are obtained by hydrolyzing a silicon compound and a titanium compound in an oxyhydrogen flame using a multi-burner. Production method.
【請求項6】 前記多重バーナーのノズル内管側からケ
イ素化合物を導入し、前記多重バーナーのノズル外管側
からチタン化合物を導入して、酸水素火炎中にて加水分
解することを特徴とする請求項5記載の光触媒性粒子の
製造方法。
6. The silicon compound is introduced from the inner tube side of the nozzle of the multi-burner, the titanium compound is introduced from the outer tube side of the nozzle of the multi-burner, and hydrolyzed in an oxyhydrogen flame. The method for producing photocatalytic particles according to claim 5.
【請求項7】 前記チタン化合物は、ケイ素化合物に対
するモル比が、0.01以上0.5以下となるように導
入されることを特徴とする請求項5または請求項6記載
の光触媒性粒子の製造方法。
7. The photocatalytic particles according to claim 5, wherein the titanium compound is introduced so that the molar ratio to the silicon compound is 0.01 or more and 0.5 or less. Production method.
【請求項8】 前記酸化チタン微粒子を担持した多孔質
シリカ微粒子を、さらに、還元性ガス雰囲気中で熱処理
することを特徴とする請求項5から請求項7までのいず
れかに記載の光触媒性粒子の製造方法。
8. The photocatalytic particles according to claim 5, wherein the porous silica fine particles carrying the titanium oxide fine particles are further heat-treated in a reducing gas atmosphere. Manufacturing method.
【請求項9】 前記熱処理温度は、前記酸化チタン微粒
子を担持した多孔質シリカ微粒子の50%が焼結する温
度以下であることを特徴とする請求項8記載の光触媒性
粒子の製造方法。
9. The method for producing photocatalytic particles according to claim 8, wherein the heat treatment temperature is equal to or lower than a temperature at which 50% of the porous silica fine particles supporting the titanium oxide fine particles are sintered.
【請求項10】 前記熱処理は、水素ガス雰囲気中、3
00℃以上600℃以下で行われることを特徴とする請
求項8または請求項9記載の光触媒性粒子の製造方法。
10. The heat treatment is performed in a hydrogen gas atmosphere for 3 hours.
The method for producing photocatalytic particles according to claim 8 or 9, wherein the method is performed at a temperature of 00 ° C or higher and 600 ° C or lower.
JP2001189024A 2001-06-22 2001-06-22 Photocatalytic particle and its manufacturing method Pending JP2003001117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189024A JP2003001117A (en) 2001-06-22 2001-06-22 Photocatalytic particle and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189024A JP2003001117A (en) 2001-06-22 2001-06-22 Photocatalytic particle and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003001117A true JP2003001117A (en) 2003-01-07

Family

ID=19028012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189024A Pending JP2003001117A (en) 2001-06-22 2001-06-22 Photocatalytic particle and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003001117A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292219A (en) * 2003-03-26 2004-10-21 Yokohama Rubber Co Ltd:The Surface-treated silica and rubber composition containing it
JP2008246392A (en) * 2007-03-30 2008-10-16 Hiroshima Univ Fine particle-containing complex and its manufacturing method
JP2009512621A (en) * 2005-11-12 2009-03-26 エボニック デグサ ゲーエムベーハー Method for producing doped metal oxide particles
US7662476B2 (en) 2008-06-13 2010-02-16 The Worthington Group of Tennessee, LLC Metal surface-modified silica-titania composites and methods for forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292219A (en) * 2003-03-26 2004-10-21 Yokohama Rubber Co Ltd:The Surface-treated silica and rubber composition containing it
JP2009512621A (en) * 2005-11-12 2009-03-26 エボニック デグサ ゲーエムベーハー Method for producing doped metal oxide particles
US8535633B2 (en) 2005-11-12 2013-09-17 Evonik Degussa Gmbh Process for the production of doped metal oxide particles
JP2008246392A (en) * 2007-03-30 2008-10-16 Hiroshima Univ Fine particle-containing complex and its manufacturing method
US7662476B2 (en) 2008-06-13 2010-02-16 The Worthington Group of Tennessee, LLC Metal surface-modified silica-titania composites and methods for forming the same

Similar Documents

Publication Publication Date Title
JP3417862B2 (en) Silica gel highly loaded with titanium oxide photocatalyst and method for producing the same
Hodos et al. Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles
TWI410275B (en) Method of fabricating visible light absorbed tio/cnt photocatalysts and photocatalytic filters
Balbuena et al. Nanomaterials to combat NO x pollution
JP4505688B2 (en) Novel photocatalyst and method for producing the same
CN105964283A (en) Photocatalytic coating with micro-nano structure and preparation method for photocatalytic coating
JP2007203223A (en) Visible light-responsive titanium oxide-activated carbon composite photocatalyst and manufacturing method
Sarantopoulos et al. Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification
CN104226287A (en) Preparation method of nano titanium dioxide photocatalyst thin film
CN105536757A (en) Method for preparing high-activity nano-mesoporous SiO2-TiO2 composite photocatalytic material
Tao et al. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams
CN105642333B (en) A kind of Multifunctional environment purification composite material and preparation method and application
RU2647839C2 (en) Photo-catalytic element for cleaning and disinfecting of air and water and the method of its manufacturing
Lee et al. Synthesis of bimodal porous structured TiO2 microsphere with high photocatalytic activity for water treatment
JP2003001117A (en) Photocatalytic particle and its manufacturing method
CN102784633B (en) Photocatalyst TiO2supported body manufacture method and the manufacture of photocatalyst air purifying machine
RU2151632C1 (en) Photocatalytic element and method for manufacture thereof
JP4163374B2 (en) Photocatalytic membrane
KR101173445B1 (en) Photocatalyst composition and manufacturing method thereof for offensive odor treatment
JP2003001118A (en) Photocatalytic particle and its manufacturing method
KR102278891B1 (en) Terrazzo tile with photocatalytic complex consisting of titanium dioxide
US20170348672A1 (en) Photocatalyst particle, method for decomposing organic compound contained in alkaline aqueous solution with the same, and method for converting toxic ions contained in alkaline aqueous solution into non-toxic ions
US20220111353A1 (en) Monolithic composite photocatalysts
JPWO2008146711A1 (en) Composite, method for producing the same, and composition containing the same
JP2006052099A (en) Titanium oxide particle, method for producing the same, and utilization of the particle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711