JP2003000240A - Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria - Google Patents

Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria

Info

Publication number
JP2003000240A
JP2003000240A JP2001190356A JP2001190356A JP2003000240A JP 2003000240 A JP2003000240 A JP 2003000240A JP 2001190356 A JP2001190356 A JP 2001190356A JP 2001190356 A JP2001190356 A JP 2001190356A JP 2003000240 A JP2003000240 A JP 2003000240A
Authority
JP
Japan
Prior art keywords
ser
ala
pro
glu
solid culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001190356A
Other languages
Japanese (ja)
Inventor
Hiroki Ishida
博樹 石田
Yoji Hata
洋二 秦
Shoji Kawato
章嗣 川戸
Takeshi Akao
健 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gekkeikan Sake Co Ltd
National Research Institute of Brewing
Original Assignee
Gekkeikan Sake Co Ltd
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gekkeikan Sake Co Ltd, National Research Institute of Brewing filed Critical Gekkeikan Sake Co Ltd
Priority to JP2001190356A priority Critical patent/JP2003000240A/en
Publication of JP2003000240A publication Critical patent/JP2003000240A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DNA encoding transcription factors for controlling a solid culture-expressing gene of koji bacteria, enabling the efficient production of exogenic proteins in a solid culture and also the comprehensive improvement of an enzyme production in the liquid and solid culture of the koji bacteria. SOLUTION: This gene encoding transcription factors (sgbR1, sgbR2 and sgbR3) for controlling the solid culture-expressing gene of koji bacteria is cloned and their base sequences are determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は麹菌の固体培養応答
性cis因子に結合し該因子下流の遺伝子の転写を制御
するタンパク質、該タンパク質をコードする遺伝子、該
遺伝子を含有する組み換えベクター、該組み換えベクタ
ーを含有する形質転換体、該遺伝子を含有する組み換え
麹菌、該形質転換体を用いる転写因子タンパク質の製造
方法、タンパク質を麹菌体内で発現させ、固体培養発現
遺伝子群の生産を制御する方法に関するものである。
TECHNICAL FIELD The present invention relates to a protein that binds to a solid culture responsive cis factor of Aspergillus oryzae and controls transcription of a gene downstream of the factor, a gene encoding the protein, a recombinant vector containing the gene, and the recombinant vector. A transformant containing a vector, a recombinant koji mold containing the gene, a method for producing a transcription factor protein using the transformant, a method for expressing a protein in the koji mold and controlling the production of a solid culture-expressed gene group Is.

【0002】[0002]

【従来の技術】麹菌を含む全生物の遺伝子の転写は、R
NAポリメラーゼにより行われる。RNAポリメラーゼ
は二本鎖DNAを鋳型に、プライマー非依存的にリボヌ
クレオシドリン酸を3′方向にむかって重合する。真核
生物のRNAポリメラーゼには3種類の酵素が存在し、
I型はrRNA、II型はmRNA、III型はtRNAの
合成を司る。真核生物のRNAポリメラーゼはそれ自身
では正しい位置からの特異的転写を行うことが出来ず、
基本転写因子群を必要としており、転写の基本水準維持
に関与するプロモーターと呼ばれる領域に結合する。し
かし、RNAポリメラーゼによるRNAの合成量は、様
々な培養条件すなわち細胞の増殖や外部環境の変化に応
じて変動するのが一般的である。この外部環境の変化へ
の応答は、遺伝子制御領域のエンハンサーとよばれる領
域に結合することによってRNAポリメラーゼの転写開
始を正または負に制御する転写制御因子によって担われ
ている。
2. Description of the Related Art The transcription of genes of all organisms including Aspergillus oryzae is
It is performed by NA polymerase. RNA polymerase uses double-stranded DNA as a template to polymerize ribonucleoside phosphate toward the 3'direction in a primer-independent manner. There are three types of enzymes in eukaryotic RNA polymerase,
Type I controls the synthesis of rRNA, type II controls the synthesis of mRNA, and type III controls the synthesis of tRNA. Eukaryotic RNA polymerases, by themselves, cannot direct specific transcription from the correct position,
It requires a group of basic transcription factors and binds to a region called a promoter involved in maintaining the basic level of transcription. However, the amount of RNA synthesized by RNA polymerase generally fluctuates according to various culture conditions, that is, cell growth and changes in the external environment. The response to this change in the external environment is carried by a transcriptional regulatory factor that positively or negatively controls the initiation of transcription of RNA polymerase by binding to a region called an enhancer of the gene regulatory region.

【0003】麹菌を含む糸状菌においてもこのような遺
伝子発現制御の報告は多数存在する。このような例とし
ては、麹菌のデンプンによるアミラーゼ誘導機構、グル
コースによるアミラーゼ抑制機構、アンモニウムによる
プロテアーゼ抑制機構などがあげられる。これは主に液
体培養を中心とした実験系により解明されている。
There are many reports on such gene expression control in filamentous fungi including Aspergillus oryzae. Examples of such a mechanism include an amylase induction mechanism by starch of Aspergillus oryzae, an amylase inhibition mechanism by glucose, and a protease inhibition mechanism by ammonium. This has been clarified mainly by experimental systems centered on liquid culture.

【0004】しかし、アスペルギルス・オリゼーやアス
ペルギルス・ソーヤ、アスペルギルス・アワモリなどの
アスペルギルス属の麹菌は、従来清酒、醤油、味噌、み
りん醸造など我が国古来の醸造に用いられており、その
利用に当たっての培養形態は麹とよばれる固体培養であ
る。この固体培養の特徴は、液体培養に比べてタンパク
質生産力が非常に高いことである。これら醸造産業では
多くの有用タンパク質が、液体培養では生産されず、固
体培養で特異的に大量に生産されることが知られてい
る。
However, Aspergillus oryzae of the genus Aspergillus such as Aspergillus oryzae, Aspergillus soja, and Aspergillus awamori have been conventionally used in sake brewing such as sake, soy sauce, miso, and mirin brewing, and the culture form for its use. Is a solid culture called koji. The feature of this solid culture is that protein productivity is much higher than that of liquid culture. It is known in the brewing industry that many useful proteins are not produced in liquid culture but are produced in large quantities specifically in solid culture.

【0005】近年、この原因のひとつには、固体培養で
特異的に発現する遺伝子が存在することが報告されてい
る。例えば、麹菌のグルコアミラーゼ生産においては、
液体培養で発現するグルコアミラーゼ遺伝子(gla
A)とは異なるglaB遺伝子が固体培養で強力に発現
することにより、大量の酵素タンパク質が固体培養で生
産されることが実証された。しかしながら、固体培養で
の遺伝子発現の制御機構、すなわち転写制御因子の解析
はほとんど行われておらず、なぜglaB遺伝子のよう
に固体培養特異的遺伝子群が、固体培養でのみ発現する
かは明らかになっていない。
In recent years, it has been reported that one of the causes is a gene specifically expressed in solid culture. For example, in the production of glucoamylase from Aspergillus,
Glucoamylase gene (gla) expressed in liquid culture
Strong expression of the glaB gene different from A) in solid culture demonstrated that a large amount of enzyme protein was produced in solid culture. However, the control mechanism of gene expression in solid culture, that is, the transcriptional regulatory factor has hardly been analyzed, and it is clear why solid culture-specific genes such as glaB gene are expressed only in solid culture. is not.

【0006】もし、このような固体培養での遺伝子発現
制御を司る転写制御因子が取得できれば、固体培養での
高発現機構が明らかとなり、さらに発現量を高める検討
も可能になる。また本来遺伝子が全く発現しない液体培
養においても、当該遺伝子を大量に発現することも可能
となる。すなわち、これらの転写制御因子は固体培養で
の遺伝子発現、酵素生産を決定する重要な因子であり、
麹菌での効率的な物質生産のために転写制御因子の取得
が望まれている。
[0006] If a transcriptional regulatory factor that controls gene expression in such solid culture can be obtained, the mechanism of high expression in solid culture will be clarified, and it will be possible to study to further increase the expression level. Further, even in liquid culture in which the gene is not originally expressed at all, it becomes possible to express the gene in a large amount. That is, these transcription control factors are important factors that determine gene expression and enzyme production in solid culture,
The acquisition of transcriptional regulatory factors is desired for efficient substance production in Aspergillus.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記課題の
解決を意図するものである。本発明の目的は、麹菌の固
体培養応答性cis因子に結合し該因子下流の遺伝子の
転写を制御する3種類の転写制御因子を提供することに
ある。また本発明の目的は、このような3種類の転写制
御因子をコードするDNAを提供することにある。本発
明の他の目的は本遺伝子を含有する組み換えベクターと
この組み換えベクターを含有する形質転換体を提供する
ことにある。また本発明は上記形質転換体を用いる転写
因子タンパク質の製造方法、ならびにタンパク質を麹菌
体内で発現させ、固体培養発現遺伝子群の生産を包括的
に制御することを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems. It is an object of the present invention to provide three types of transcription control factors that bind to solid culture responsive cis factor of Aspergillus and control the transcription of genes downstream of the factor. Another object of the present invention is to provide DNAs encoding such three types of transcription control factors. Another object of the present invention is to provide a recombinant vector containing this gene and a transformant containing this recombinant vector. Another object of the present invention is to produce a transcription factor protein using the above transformant and to comprehensively control the production of a solid culture-expressed gene group by expressing the protein in a koji mold.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであって、先ずはじめに、麹
菌(アスペルギルス・オリゼー:Aspergillu
s oryzae)に着目した。麹菌A.oryzae
は清酒、醤油、味噌などの我が国の伝統的発酵産業で使
用されてきた糸状菌である。本菌株の特徴は、上記発酵
産業で固体培養により有用なタンパク質を非常に大量に
生産することである。本菌株が持つ高い蛋白生産能と醸
造微生物としての安全性から、異種蛋白生産の宿主とし
て注目されている(Biotechnology,6,
1419(1988)、特開昭62−272988)。
The present invention has been made in order to achieve the above-mentioned object. First, aspergillus (Aspergillus oryzae: Aspergillus).
s oryzae). Aspergillus A. oryzae
Is a filamentous fungus that has been used in Japan's traditional fermentation industry, such as sake, soy sauce, and miso. A feature of this strain is that it produces a very large amount of useful proteins by solid culture in the fermentation industry. Due to the high protein-producing ability of this strain and its safety as a brewing microorganism, it has attracted attention as a host for heterologous protein production (Biotechnology, 6, 6.
1419 (1988), JP-A-62-272988).

【0009】しかし、このような麹菌の異種蛋白生産に
おける報告は液体培養によるものが非常に多い。醸造産
業での培養形態が固体培養であるにもかかわらず、異種
蛋白生産が液体培養で行われることが多い原因として、
固体培養での遺伝子発現メカニズムは、液体培養に比べ
て未解明な点が多いことがあげられる。しかし、固体培
養は、液体培養に比べてタンパク質分泌生産量も多く、
また固体培養特異的に生産される酵素群も非常に種類が
多い特徴を有している。そこで、固体培養での遺伝子発
現メカニズムを分子レベルで解明することが出来れば、
古来より非常に有用な固体培養を介しての異種蛋白生産
が可能となる。
However, there are many reports on such heterologous protein production of Aspergillus oryzae by liquid culture. Despite the fact that the culture form in the brewing industry is solid culture, the reason why heterologous protein production is often carried out in liquid culture is
The gene expression mechanism in solid culture has many unclear points compared to liquid culture. However, solid culture produces a larger amount of protein secretion than liquid culture,
In addition, the enzyme group produced in solid culture has a characteristic that there are many kinds. Therefore, if we can elucidate the gene expression mechanism in solid culture at the molecular level,
Since ancient times, it has become possible to produce heterologous proteins through very useful solid culture.

【0010】発明者らは、既に、A.oryzaeの固
体培養特異的に発現するglaBプロモーターを用いた
固体培養での異種蛋白生産に成功しており、Asper
gillus属などの近種の遺伝子であれば、その生産
能はさらに増大することが認められた。特に、A.or
yzaeの遺伝子を、A.oryzaeのglaBプロ
モーター制御下で発現させた場合、非常に大量のタンパ
ク質が固体培養により生産されることを見いだした。
(特願平11−154271、特願2000−3675
4)よって、このglaBプロモーターを代表とする固
体培養特異的に発現するプロモーター配列を制御する転
写制御因子を明らかに出来れば、これらの固体培養を用
いた麹菌の異種蛋白の生産性の改善につながり、大変産
業的に意義がある点にはじめて着目した。
The inventors have already reported that A. oryzae has succeeded in producing a heterologous protein in solid culture using the glaB promoter that is specifically expressed in solid culture.
It was confirmed that the productivity of genes of the near species such as the genus gillus is further increased. In particular, A. or
The yzae gene was cloned into A. It was found that when expressed under the control of the oryzae glaB promoter, a very large amount of protein was produced by solid culture.
(Japanese Patent Application No. 11-154271, Japanese Patent Application 2000-3675)
4) Therefore, if a transcriptional regulatory factor that controls a promoter sequence specifically expressed in solid culture, which is represented by the glaB promoter, can be clarified, it will lead to improvement in productivity of heterologous protein of Aspergillus oryzae using these solid cultures. For the first time, I focused on the point that it has great industrial significance.

【0011】本発明者らは、麹菌の固体培養特異的に発
現する遺伝子glaBの発現条件を検討するために、g
laBプロモーター配列の直後に大腸菌uidA遺伝子
を連結したレポーター解析を試みた。その結果、gla
Bプロモーターは固体培養において低水分活性、高温度
および菌糸伸長障害によりその発現が高められることを
明らかにした。また、このような固体培養中の低水分活
性、高温度および菌糸伸長障害という環境因子がgla
Bプロモーター中のどの領域に応答するのかを調査し
た。glaBプロモーターの種々の欠失変異体を作製
し、それぞれについてレポーターアッセイを行った結
果、上記環境因子に応答する領域を同定した。
The present inventors have investigated the expression conditions of the gene glaB, which is specifically expressed in solid culture of Aspergillus oryzae.
An attempt was made to analyze a reporter in which the E. coli uidA gene was ligated immediately after the laB promoter sequence. As a result, gla
It was revealed that the B promoter was enhanced in solid culture by low water activity, high temperature and impaired hyphal elongation. In addition, environmental factors such as low water activity, high temperature and impaired hyphal elongation during solid culture are gla.
We investigated which region in the B promoter is responsible. Various deletion mutants of the glaB promoter were prepared, and a reporter assay was performed on each of them to identify the region responsive to the above environmental factors.

【0012】glaBプロモーター中の開始コドン上流
350から254bpに存在する97bpの部位特異的
欠失により、固体培養中の低水分活性、高温度および菌
糸伸長障害という環境因子応答性が失われる。この97
bpはglaBプロモーターが固体培養特異的に発現す
るために必須のcis因子であることが示唆された。こ
れを確認するために、この97bpの領域を異種遺伝子
プロモーターに挿入する実験を行った。麹菌で液体培養
特異的に発現し、固体培養でほとんど発現しないgla
Aプロモーターの−205の位置に上記97bpの領域
を挿入した結果、このキメラプロモーターは、固体培養
で強く発現するようになった。これは上記97bpの領
域が固体培養特異的に発現するために必須のcis因子
であることを表している。次に、この97bpの領域を
麹菌内へ複数導入することにより、転写制御因子の不足
を招き、promoter titrationという
現象が起こるのかどうかを確認した。
A site-specific deletion of 97 bp located 350 to 254 bp upstream of the start codon in the glaB promoter abolishes the environmental factor responsiveness of low water activity, high temperature and impaired hyphal elongation in solid culture. This 97
It was suggested that bp is an essential cis factor for the glaB promoter to be expressed specifically in solid culture. In order to confirm this, an experiment was performed to insert this 97 bp region into a heterologous gene promoter. Gla, which is specifically expressed in Aspergillus oryzae in liquid culture and is rarely expressed in solid culture
As a result of inserting the 97 bp region at the -205 position of the A promoter, this chimeric promoter became strongly expressed in solid culture. This indicates that the above 97 bp region is an essential cis factor in order to express specifically in solid culture. Next, it was confirmed whether introduction of a plurality of 97 bp regions into Aspergillus oryzae causes a deficiency of transcriptional regulatory factors and causes a phenomenon called promoter titration.

【0013】その結果、本領域を麹菌内へ複数コピー導
入した麹菌を育種後、米麹の固体培養を行い、種々の酵
素生産性について検討した。その結果、本麹菌は、グル
コアミラーゼのみならず、α−アミラーゼ、酸性プロテ
アーゼ、酸性カルボキシペプチダーゼ、フィターゼなど
についても親株に対する菌体当たりの酵素生産量が、2
0−40%に低下した。これはこの97bpの領域には
固体培養での遺伝子発現を正に制御する転写制御因子が
結合し、またこの領域に結合する転写制御因子はグルコ
アミラーゼのみならず、他の固体培養で生産される酵素
群の発現も制御することが推察された。そこで、この9
7bpの領域に結合する転写制御因子を取得すれば、麹
菌の固体培養で発現する遺伝子群の制御機構の解明につ
ながるとの新規着想を得た。
As a result, after breeding koji mold in which multiple copies of this region were introduced into koji mold, solid culture of rice koji was carried out and various enzyme productivity was examined. As a result, the Aspergillus oryzae produces not only glucoamylase but also α-amylase, acid protease, acid carboxypeptidase, phytase, etc. with an enzyme production amount of 2 per cell relative to the parent strain.
It fell to 0-40%. This 97 bp region is bound by a transcriptional regulatory factor that positively regulates gene expression in solid culture, and the transcriptional regulatory factor that binds to this region is produced not only by glucoamylase but also by other solid culture. It was speculated that the expression of the enzyme group is also controlled. So, this 9
We obtained a new idea that the acquisition of a transcriptional regulatory factor that binds to the 7-bp region will lead to the elucidation of the regulatory mechanism of the genes expressed in solid culture of Aspergillus oryzae.

【0014】このような転写制御因子は、固体培養中の
低水分活性、高温度および菌糸伸長障害という環境因子
を認識することが示唆されており、本因子は温度や乾燥
などのストレスや菌糸伸長障害ストレスに応答する可能
性が示唆された。既に植物のシロイヌナズナでは構造的
にC22タイプのzinc fingerタンパク質の
中に、ストレス応答性のものが多いという知見が得られ
ている。またマウスでは全遺伝子の約1%がC22タイ
プのzinc fingerタンパク質であるといわれ
ている。そこで、我々は麹菌ESTライブラリーの中か
らC22タイプのzinc fingerタンパク質の
抽出を行った。
It has been suggested that such a transcription control factor recognizes environmental factors such as low water activity, high temperature and impaired hyphal elongation in solid culture. This factor is stressed by temperature and drought and hyphal elongation. The possibility of responding to distress stress was suggested. It has already been found that in plant Arabidopsis thaliana, many structurally C 2 H 2 type zinc finger proteins are responsive to stress. Further, it is said that about 1% of all genes in mice are C 2 H 2 type zinc finger proteins. Therefore, we extracted the C 2 H 2 type zinc finger protein from the Aspergillus oryzae EST library.

【0015】その結果、小麦フスマを用いた固体培養に
のみ存在する3種類のC22タイプのzinc fin
gerタンパク質をESTクローンから抽出するのに成
功した。1つは出芽酵母のストレス応答性を制御するC
22タイプのzinc fingerタンパク質である
MSN2と相同性を示し、これをsgbR1と命名し
た。もう1つはFusarium属のクチナーゼ遺伝子
の上流域に結合するC22タイプのzinc fing
erタンパク質と相同性を示し、これをsgbR2と命
名した。最後の1つは分裂酵母Schizosacch
aromyces pombeの機能未知なC22タイ
プのzinc fingerタンパク質と相同性を示
し、これをsgbR3と命名した。これらの3つのC2
2タイプのzinc fingerタンパク質が上記
97bpの領域に結合するかどうかを検討するために、
大腸菌においてそのタンパク質を発現させた。
As a result, three types of C 2 H 2 type zinc fin which exist only in solid culture using wheat bran
The ger protein was successfully extracted from the EST clone. One is C, which controls the stress response of Saccharomyces cerevisiae.
It showed homology to MSN2, which is a 2 H 2 type zinc finger protein, and was named sgbR1. The other is a C 2 H 2 -type zinc finger that binds to the upstream region of the Fusarium cutinase gene.
It showed homology with the er protein and was named sgbR2. The last one is the fission yeast Schizosacc
indicates unknown function C 2 H 2 type of zinc finger protein homologous aromyces pombe, and was named SgbR3. These three C 2
In order to examine whether the H 2 -type zinc finger protein binds to the 97 bp region,
The protein was expressed in E. coli.

【0016】発現タンパク質を用いてゲルシフトアッセ
イを行った結果、この97bpの領域にsgbR1とs
gbR2の2つの因子が結合することが確認された。ま
た、これら3つの転写制御因子の機能を決定するために
コサプレッション法を用いて、それぞれの遺伝子の発現
を抑制させた麹菌を構築した。固体培養を行った結果、
いずれもグルコアミラーゼのみならず、α−アミラー
ゼ、酸性プロテアーゼ、酸性カルボキシペプチダーゼ、
フィターゼなどについても親株に対する菌体当たりの酵
素生産量が30−70%に低下した。よって両転写制御
因子は、固体培養特異的な遺伝子群の発現を正に制御す
る因子であることが明らかとなった。これらの転写因子
の活性を調節することにより固体培養での遺伝子発現を
自由にコントロールできるものとの新しい観点に本発明
者らはたった。
As a result of gel shift assay using the expressed protein, sgbR1 and sgbR1
It was confirmed that two factors of gbR2 bind. In addition, the co-suppression method was used to determine the functions of these three transcription control factors, and koji mold in which the expression of each gene was suppressed was constructed. As a result of performing solid culture,
Not only glucoamylase, but also α-amylase, acid protease, acid carboxypeptidase,
With respect to phytase and the like, the enzyme production per bacterial cell was reduced to 30-70% with respect to the parent strain. Therefore, it was revealed that both transcription control factors positively control the expression of the gene group specific to solid culture. The present inventors have found a new viewpoint that gene expression in solid culture can be freely controlled by regulating the activity of these transcription factors.

【0017】以下、本発明の詳細について述べる。The details of the present invention will be described below.

【0018】本発明者らは、既に麹菌の固体培養特異的
に発現する遺伝子としてグルコアミラーゼ遺伝子gla
Bを発見したことを報告した(特開平10−8496
8)。さらに、本遺伝子を固体培養で発現させる環境因
子を決定するために、大腸菌由来β−グルクロニダーゼ
(GUS)をレポーターとしてglaBプロモーターの
発現条件を検討した(H.Ishidaら、Curr. Genet., 37,
p.373-379、2000)。
The present inventors have already identified the glucoamylase gene gla as a gene that is specifically expressed in solid culture of Aspergillus oryzae.
It was reported that B was discovered (Japanese Patent Laid-Open No. 10-8496).
8). Furthermore, in order to determine the environmental factor for expressing this gene in solid culture, expression conditions of the glaB promoter were examined using Escherichia coli-derived β-glucuronidase (GUS) as a reporter (H. Ishida et al., Curr. Genet., 37,
p.373-379, 2000).

【0019】すなわち、高発現システムを開発するため
のプロモーター解析システムとして、具体的には図22
に示すような、プロモーター解析プラスミドpNGUS
を用いた。このプラスミドは、形質転換用マーカーであ
るA.oryzaeのniaD遺伝子(E.S.Unk
leら、Mol.Gen.Genet.,218,p.
99−104,1989)と、レポーター遺伝子である
大腸菌のβ−グルクロニダーゼ(GUS)をコードする
uidA遺伝子(R.A.Jeffersonら、Pr
oc.Natl.Acad.Sci.,p.8447−
8451,1986)を含む。このプラスミドのuid
A遺伝子の上流域(例えばSa1I、PstIサイト)
に、検討しようとする種々の遺伝子プロモーターあるい
はその一部を挿入し、構築されたプロモーター解析用プ
ラスミドをA.oryzae(Aspergillus
oryzae O−1013:本菌株は、工業技術院
生命工学工業技術研究所(現、独立行政法人 産業技術
総合研究所 特許生物寄託センター)にFERM P−
16528として既に寄託されている)のniaD変異
株(硝酸資化能欠損株、Nitrate Reduct
ase欠損:例えばAspergillus oryz
ae 1013−niaD:本菌株は、工業技術院生命
工学工業技術研究所(現、独立行政法人 産業技術総合
研究所 特許生物寄託センター)にFERM P−17
707として寄託されている)に導入し、導入プラスミ
ドが宿主染色体のniaD locusに1コピーだけ
導入された形質転換体を選択した。そしてこれらの形質
転換体のGUS活性を測定することにより、プロモータ
ー活性の指標とした。なお、プロモーター解析用プラス
ミドpNGUSを大腸菌に導入してなる形質転換体は、
Escherichiacoli IN 113と命名
され、経済産業省産業技術総合研究所生命工学工業技術
研究所(現、独立行政法人 産業技術総合研究所 特許
生物寄託センター)にFERM P−18254として
寄託されている。
That is, as a promoter analysis system for developing a high expression system, specifically, FIG.
Promoter analysis plasmid pNGUS as shown in
Was used. This plasmid is A. oryzae niaD gene (ES Unk
le et al., Mol. Gen. Genet. 218, p.
99-104, 1989) and a reporter gene E. coli β-glucuronidase (GUS) encoding the uidA gene (RA Jefferson et al., Pr.
oc. Natl. Acad. Sci. , P. 8447-
8451, 1986). Uid of this plasmid
Upstream region of A gene (for example, Sa1I and PstI sites)
Various gene promoters to be studied or a part thereof were inserted into A. oryzae (Aspergillus
oryzae O-1013: This strain was transferred to the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (now, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) under FERM P-
16528 already deposited), niaD mutant strain (nitrate-utilizing strain, Nitrate Reduct)
ase deficiency: For example, Aspergillus oryz
ae 1013-niaD: This strain is FERM P-17 at the Institute of Biotechnology, Institute of Industrial Science and Technology (now the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center).
(Deposited as 707), and a transformant in which only one copy of the introduced plasmid was introduced into niaD locus of the host chromosome was selected. Then, the GUS activity of these transformants was measured and used as an index of the promoter activity. The transformant obtained by introducing the promoter analysis plasmid pNGUS into E. coli is
It has been named Escherichia coli IN 113, and has been deposited as FERM P-18254 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (now the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) of the Ministry of Economy, Trade and Industry.

【0020】上記解析システムを用いてglaBプロモ
ーターの発現条件を検討した結果、glaB遺伝子は、
固体培養における低水分活性、高温度、菌糸伸長障害の
因子により、その発現が高められることを明らかとした
(特開平11−225746)。このような固体培養に
おける低水分活性、高温度、菌糸伸長障害の環境因子に
応答する領域を同定するために、種々のglaBプロモ
ーターの欠失変異体を作製した。その結果、開始コドン
上流350から254bpに存在する97bpの欠失に
より、固体培養におけるglaBプロモーター活性は完
全に失われ、この97bpが固体培養における低水分活
性、高温度、菌糸伸長障害の環境因子に応答する領域で
あることを同定した(特開平11−243965)。
As a result of examining the expression conditions of the glaB promoter using the above analysis system, the glaB gene was found to be
It was clarified that its expression is enhanced by factors of low water activity, high temperature, and hyphal elongation disorder in solid culture (JP-A-11-225746). In order to identify the region responding to environmental factors of low water activity, high temperature, and hyphal elongation disorder in solid culture, various deletion mutants of glaB promoter were prepared. As a result, due to the deletion of 97 bp existing upstream from the start codon 350 to 254 bp, the glaB promoter activity in solid culture was completely lost, and this 97 bp was an environmental factor for low water activity, high temperature and impaired hyphal elongation in solid culture. It was identified to be a response area (Japanese Patent Laid-Open No. 11-243965).

【0021】次に、この97bp(その塩基配列を配列
表の配列番号7(図21)に示す)の領域が、実際に固
体培養における遺伝子発現を正に制御するのかを検討し
た。本領域を固体培養では発現が微弱なA.oryza
e由来glaAプロモーターの−205bpの位置に挿
入し、得られたキメラプロモーターのGUSレポーター
アッセイを行った(図1)。その結果、キメラプロモー
ターは固体培養におけるGUS発現量がネイティブのも
のの約50倍に増大した。よってこの97bpの領域
が、実際に固体培養における遺伝子発現を正に制御する
ことが明らかとなった。
Next, it was examined whether the 97 bp region (the nucleotide sequence of which is shown in SEQ ID NO: 7 (FIG. 21) of the sequence listing) actually positively regulates gene expression in solid culture. This region has a weak expression in solid culture. oryza
It was inserted into the -205 bp position of the e-derived glaA promoter, and the resulting chimeric promoter was subjected to GUS reporter assay (Fig. 1). As a result, the GUS expression level of the chimeric promoter in solid culture was increased about 50 times that of the native one. Therefore, it was revealed that this 97 bp region actually positively controls gene expression in solid culture.

【0022】次に、この97bpの領域を麹菌へ多コピ
ー導入することによって、プロモータータイトレーショ
ン実験を行った。97bpの領域を8コピータンデムに
リピートさせたフラグメントをA.nidulans由
来argBマーカーとともにA.oryzae M−2
−3(arg−)へ導入した。サザン解析の結果、本9
7bpの領域が80−300コピー導入された形質転換
体が得られた。これらの形質転換体のうち5株について
固体培養を行った結果、図2に示すようにグルコアミラ
ーゼのみならず、α−アミラーゼ、酸性プロテアーゼ、
酸性カルボキシペプチダーゼ、フィターゼなどについて
も親株に対する菌体当たりの酵素生産量が、20−40
%に低下した。これは人為的に導入した97bpの領域
に多数の転写制御因子が結合したため、転写制御因子が
不足し、その結果、酵素生産量が低下したものと推察さ
れた。
Next, a promoter titration experiment was carried out by introducing multiple copies of this 97 bp region into Aspergillus oryzae. The fragment in which the 97 bp region was repeated in 8 copy tandem was A. nigerans derived argB marker together with A. oryzae M-2
-3 (arg-). As a result of Southern analysis, this book 9
A transformant having 80-300 copies of the 7-bp region was obtained. As a result of solid culture of 5 strains among these transformants, as shown in FIG. 2, not only glucoamylase but also α-amylase, acid protease,
Regarding acid carboxypeptidase, phytase, etc., the enzyme production amount per bacterial cell with respect to the parent strain was 20-40.
Fell to%. It was speculated that this is because the transcription control factor was insufficient because a large number of transcription control factors bound to the artificially introduced 97 bp region, and as a result, the enzyme production amount decreased.

【0023】これらの結果から、この97bpの領域に
は固体培養での遺伝子発現を正に制御する転写制御因子
が結合し、また、この領域に結合する転写制御因子はグ
ルコアミラーゼのみならず、他の固体培養で生産される
酵素群の発現も制御することが推察された。そこで、こ
の97bpの領域に結合する転写制御因子を取得すれ
ば、麹菌の固体培養で発現する遺伝子群の制御機構の解
明につながると発明者らは考えた。
From these results, a transcription control factor that positively controls gene expression in solid culture binds to this 97 bp region, and the transcription control factor that binds to this region is not only glucoamylase but also other It was presumed that the expression of the enzyme group produced in the solid culture of the above was also controlled. Therefore, the present inventors considered that the acquisition of a transcriptional regulatory factor that binds to this 97 bp region would lead to the elucidation of the regulatory mechanism of the genes expressed in solid culture of Aspergillus oryzae.

【0024】本発明者らは、このような転写制御因子
は、固体培養中の低水分活性、高温度および菌糸伸長障
害という環境因子を認識することが示唆されており、本
因子は温度や乾燥などのストレスや菌糸伸長障害ストレ
スに応答する可能性が示唆された。既に植物のシロイヌ
ナズナでは構造的にC22タイプのzinc fing
erタンパク質の中に、ストレス応答性のものが多いと
いう知見が得られている。そこで、我々は麹菌ESTラ
イブラリーの中からC22タイプのzinc fing
erタンパク質の抽出を行った。その結果、小麦フスマ
を用いた固体培養にのみ存在する3種類のC22タイプ
のzinc fingerタンパク質のESTクローン
を抽出するのにはじめて成功した。
It has been suggested by the present inventors that such a transcription control factor recognizes environmental factors such as low water activity, high temperature and impaired hyphal elongation in solid culture. It was suggested that it may respond to such stress and hyphal elongation disorder stress. Already in plants, Arabidopsis is structurally a C 2 H 2 type of zinc finger.
It has been found that many er proteins are responsive to stress. Therefore, we selected a C 2 H 2 type zinc finger from the Aspergillus oryzae EST library.
The er protein was extracted. As a result, they succeeded for the first time in extracting EST clones of three types of C 2 H 2 -type zinc finger proteins that exist only in solid culture using wheat bran.

【0025】1つは出芽酵母のC22タイプのzinc
fingerタンパク質であるMSN2と相同性を示
す。MSN2は出芽酵母においてSTREとよばれる配
列に結合し、複数のストレス応答性遺伝子群の発現を正
に制御することが知られている。もう1つはFusar
ium属のクチナーゼ遺伝子の上流域に結合するC22
タイプのzinc fingerタンパク質と相同性を
示した。これは、Fusarium属が植物の葉に感染
する際に分泌するクチナーゼの発現を正に制御する転写
制御因子であり、Fusarium属が植物の葉に対し
て付着のシグナルに応答する因子と考えられる。最後の
1つは分裂酵母Schizosaccharomyce
s pombeの機能未知なC22タイプのzinc
fingerタンパク質と相同性を示した。このような
3つのC22タイプのzincfingerタンパク質
の部分cDNAをプローブとして、A.oryzaeの
λEMBL3ライブラリーからゲノム遺伝子のクローニ
ングを行った。
The first is the C 2 H 2 type zinc of budding yeast.
It shows homology with MSN2 which is a finger protein. It is known that MSN2 binds to a sequence called STRE in Saccharomyces cerevisiae and positively regulates the expression of multiple stress-responsive genes. The other is Fusar
C 2 H 2 binding to upstream region of cutinase gene of ium
It showed homology with the type of zinc finger protein. This is a transcriptional regulatory factor that positively regulates the expression of cutinase secreted when Fusarium genus infects plant leaves, and is considered to be a factor in which Fusarium genus responds to an adhesion signal to plant leaves. The last one is the fission yeast Schizosaccharomyces
C 2 H 2 type zinc with unknown function of s pombe
It showed homology with the finger protein. The partial cDNAs of the three C 2 H 2 type zincfinger proteins were used as probes. A genomic gene was cloned from the oryzae λEMBL3 library.

【0026】これらのDNAシーケンスを行った結果、
MSN2と相同性のある転写因子は、そのアミノ酸配列
を配列番号1(図6〜8)に示し、その塩基配列を配列
番号2(図9、10)に示したが、配列番号1、2に示
しすように、717アミノ酸残基をコードして、イント
ロンを持たない遺伝子であった。また本遺伝子はS.c
erevisiaeの様々なストレス応答遺伝子のST
RE配列に結合するMSN2と相同性を示す。これをs
gbR1と命名した。
As a result of performing these DNA sequences,
A transcription factor homologous to MSN2 has its amino acid sequence shown in SEQ ID NO: 1 (FIGS. 6 to 8) and its nucleotide sequence shown in SEQ ID NO: 2 (FIGS. 9 and 10). As shown, it was a gene encoding 717 amino acid residues and having no intron. In addition, this gene is S. c
ST of various stress response genes of Erevisiae
It shows homology with MSN2 binding to the RE sequence. S this
It was named gbR1.

【0027】一方、フザリウム(Fusarium)属
クチナーゼ制御因子と相同性のある転写因子クローン
は、そのアミノ酸配列を配列番号3(図11〜13)に
示し、その塩基配列を配列番号4(図14、15)に示
したが、配列番号3、4に示すように、597アミノ酸
残基をコードして、1つのイントロンを有する遺伝子で
あった。これをsgbR2と命名した。
On the other hand, the transcription factor clone having homology with the Fusarium cutinase regulatory factor has its amino acid sequence shown in SEQ ID NO: 3 (FIGS. 11 to 13) and its nucleotide sequence shown in SEQ ID NO: 4 (FIG. 14, FIG. As shown in 15), it was a gene encoding 597 amino acid residues and having one intron as shown in SEQ ID NOs: 3 and 4. This was named sgbR2.

【0028】最後の分裂酵母シゾサッカロミセス・ポン
ベ(Schizosaccharomyces pom
be)の機能未知なC22タイプのzinc fing
erタンパク質と相同性を示す転写因子クローンは、そ
のアミノ酸配列を配列番号5(図16〜18)に示し、
その塩基配列を配列番号6(図19、20)に示した
が、配列番号5、6に示すように、468アミノ酸残基
をコードして、2つのイントロンを有する遺伝子であっ
た。これをsgbR3と命名した。
The last fission yeast Schizosaccharomyces pomb
be) Function of unknown C 2 H 2 type zinc finger
The transcription factor clone showing homology with the er protein has its amino acid sequence shown in SEQ ID NO: 5 (FIGS. 16 to 18),
Its base sequence is shown in SEQ ID NO: 6 (FIGS. 19 and 20), and as shown in SEQ ID NOs: 5 and 6, it was a gene encoding 468 amino acid residues and having two introns. This was named sgbR3.

【0029】これらの因子の機能を決定するために、コ
サブレッション法を用いて、それぞれの遺伝子の発現を
抑制させた麹菌を構築した。麹菌内で構成的に高発現す
るhistoneH2Aプロモーター下流にsgbR
1、sgbR2及びsgbR3の開始コドンから500
bpの部分断片を連結させ、これをA.nidulan
sのsCマーカーを用いて麹菌内へマルチコピーで導入
した。得られた麹菌を用いて固体培養を行った結果、図
4に示すようにグルコアミラーゼのみならず、α−アミ
ラーゼ、酸性プロテアーゼ、酸性カルボキシルペプチダ
ーゼ、フィターゼなどについても親株に対する菌体当た
りの酵素生産量がいずれも30−70%に低下した。よ
って、これらの転写制御因子は、固体培養特異的な遺伝
子群の発現を正に制御する因子であることが明らかとな
った。
In order to determine the function of these factors, the koji mold in which the expression of each gene was suppressed was constructed by using the cossablation method. SgbR is downstream of the histoneH2A promoter that is constitutively highly expressed in Aspergillus oryzae.
1, 500 from the start codon of sgbR2 and sgbR3
The partial fragment of bp was ligated, and this was nidulan
Using the sC marker of s, it was introduced into Koji mold in multiple copies. As a result of carrying out solid culture using the obtained koji mold, not only glucoamylase but also α-amylase, acid protease, acid carboxylpeptidase, phytase, etc. as shown in FIG. In all cases fell to 30-70%. Therefore, it was revealed that these transcription control factors are factors that positively control the expression of gene groups specific to solid culture.

【0030】次に、これらの遺伝子が、glaBプロモ
ーターのcis因子である97bpとの結合能を有する
かどうかをゲルシフトアッセイにより確認した。sgb
R1、sgbR2及びsgbR3のcDNAを取得する
ために、蒸し米を用いた固体培養菌体から調製したmR
NAをもとにRT−PCRを行った。この際に使用した
プライマーの両端には制限酵素サイトBamHI(sg
bR1)、EcoRI(sgbR2)、SmaI(sg
bR3)を付加した。得られたクローンをpUC118
のlacZプロモーターの正の方向にサブクローニング
し、得られた発現ベクター(それぞれ、pSGBR1、
pSGBR2、pSGBR3と命名)を大腸菌JM10
9に形質転換した。アンピシリン含有培地で培養し、ア
ンピシリン耐性株を選択し、得られた形質転換体は、そ
れぞれ、エシェリヒア・コリ(Escherichia
coli)SGBR1、同SGBR2、同SGBR3
と命名し、これを独立行政法人 産業技術総合研究所
特許生物寄託センターに、それぞれ、FERM P−1
8357、FERM P−18358、FERMP−1
8359として寄託した。この形質転換体は、sgbR
1、sgbR2、sgbR3タンパク質をコードする遺
伝子を含有しており、IPTG誘導によって、lacZ
プロモーター支配下でsgbR1、sgbR2、sgb
R3タンパク質が発現することを確認した。
Next, it was confirmed by gel shift assay whether these genes have the binding ability to 97 bp which is a cis factor of the glaB promoter. sgb
MR prepared from solid-cultured cells using steamed rice to obtain cDNAs for R1, sgbR2 and sgbR3
RT-PCR was performed based on NA. The restriction enzyme site BamHI (sg
bR1), EcoRI (sgbR2), SmaI (sg
bR3) was added. The obtained clone was designated as pUC118.
Of the expression vector (pSGBR1, pSGBR1,
(named pSGBR2 and pSGBR3) was used for Escherichia coli JM10
Transformed into 9. The transformants obtained by culturing in an ampicillin-containing medium and selecting an ampicillin-resistant strain were respectively transformed into Escherichia coli (Escherichia coli).
coli) SGBR1, SGBR2, SGBR3
And named it, National Institute of Advanced Industrial Science and Technology
FERM P-1 at the Patent Biological Deposit Center
8357, FERM P-18358, FERMP-1
Deposited as 8359. This transformant is sgbR
1, which contains genes encoding sgbR2 and sgbR3 proteins, and by IPTG induction, lacZ
SgbR1, sgbR2, sgb under the control of promoter
It was confirmed that the R3 protein was expressed.

【0031】ゲルシフトアッセイは、タンパク質として
大腸菌の無細胞調製液を用い、プローブとしてはgla
Bプロモーターのcis因子である97bpの2本鎖D
NAの二量体をフルオレッセンラベルしたものを用い
た。室温で30分間インキュベートした後に、ポリアク
リルアミドゲル電気泳動を行った。泳動ゲルは、正電荷
メンブレンへアルカリ転写し、抗原抗体反応によりフル
オレッセンの検出を行った。図5に示すようにsgbR
1とsgbR2はglaBプロモーターのcis因子で
ある97bpとの結合により、遅延したバンドが確認さ
れた。またこのバンドは過剰の非ラベルプローブの添加
により消失した。よってsgbR1とsgbR2はとも
にglaBプロモーターのcis因子である97bpへ
の結合能を有することが確認された。
In the gel shift assay, a cell-free preparation of Escherichia coli was used as the protein, and gla was used as the probe.
97 bp double-stranded D which is a cis factor of B promoter
The dimer of NA was labeled with fluorescein. After incubating at room temperature for 30 minutes, polyacrylamide gel electrophoresis was performed. The electrophoresis gel was alkali-transferred to a positively charged membrane, and fluorescein was detected by an antigen-antibody reaction. As shown in Figure 5, sgbR
A delayed band was confirmed by binding of 1 and sgbR2 with 97 bp which is a cis factor of the glaB promoter. Also, this band disappeared due to the addition of excess unlabeled probe. Therefore, it was confirmed that both sgbR1 and sgbR2 have the ability to bind to 97 bp, which is the cis factor of the glaB promoter.

【0032】以上の結果、sgbR1、sgbR2及び
sgbR3は麹菌の固体培養におけるタンパク質生産を
正に制御する転写制御因子であることが明らかとなっ
た。
From the above results, it was revealed that sgbR1, sgbR2 and sgbR3 are transcriptional control factors that positively control protein production in solid culture of Aspergillus oryzae.

【0033】本転写制御因子(転写因子ということもあ
る)である、sgbR1、sgbR2、sgbR3が得
られたことによって、麹菌の液体培養及び固体培養での
酵素生産の包括的改善を行うことが可能となり、工業的
にも非常に有望な遺伝子であることが示唆された。
By obtaining sgbR1, sgbR2 and sgbR3, which are the present transcriptional regulatory factors (sometimes referred to as transcription factors), it is possible to comprehensively improve enzyme production in liquid culture and solid culture of Aspergillus oryzae. Therefore, it was suggested that the gene is very promising industrially.

【0034】[0034]

【実施例1】glaBプロモーター中の固体培養高発現
に必須な領域の同定 glaBプロモーターの固体培養高発現に必須な領域を
欠失変異により開始コドン上流350から254bpの
97bpであることを明らかにした。次に、固体培養高
発現の機能を付与するのに必須な領域の同定を試みた。
glaBプロモーターの開始コドン上流350から下流
へ97、61、27bpを固体培養では発現が微弱であ
るglaAプロモーター中に挿入し、キメラプロモータ
ーの固体培養高発現能を比較した。挿入位置はglaA
プロモーターのデンプン誘導に必須なcis因子である
RegionIIIaの上流末端が存在する開始コドン
上流205bpの位置に決定した。
Example 1 Identification of a region essential for high expression in solid culture in the glaB promoter It was clarified that a region essential for high expression in solid culture of the glaB promoter was 97 bp from the start codon 350 to 254 bp upstream by deletion mutation. . Next, an attempt was made to identify a region essential for imparting the function of high expression in solid culture.
97, 61, and 27 bp were inserted downstream from the start codon 350 of the glaB promoter into the glaA promoter, which expression is weak in solid culture, and the high expression ability of the chimeric promoter in solid culture was compared. The insertion position is glaA
It was determined at a position 205 bp upstream of the initiation codon in which the upstream end of Region IIIa, which is a cis factor essential for starch induction of the promoter, is present.

【0035】上記3種のフラグメントをglaAプロモ
ーターの−205の位置に挿入し、得られたキメラプロ
モーターをプロモーター解析用プラスミドpNGUS
(図22)のSalIサイトへサブクローニングし、n
iaDをマーカーとして麹菌へ形質転換後、固体培養に
おけるGUSアッセイを行った。その結果、97bpを
挿入したキメラプロモーターは、ネイティブのものの約
50倍のGUS発現量を示した。よって、glaBプロ
モーターの開始コドン上流350から254までの97
bp(配列番号7、図21)が、固体培養高発現に必須
なcis因子であることが証明された(図1)。図中、
GUS activityはGUS活性(U/mg−タ
ンパク質)を示し、単一炭素源としてGlcはグルコー
ス、Stはデンプンを使用したことを示す。
The above three kinds of fragments were inserted at the −205 position of the glaA promoter, and the resulting chimeric promoter was used as a plasmid pNGUS for promoter analysis.
Subcloning into the SalI site of (Fig. 22)
After transformation into Aspergillus oryzae using iaD as a marker, GUS assay in solid culture was performed. As a result, the chimeric promoter having 97 bp inserted showed a GUS expression level about 50 times that of the native one. Therefore, 97 from 350 to 254 upstream of the start codon of the glaB promoter.
It was proved that bp (SEQ ID NO: 7, FIG. 21) is a cis factor essential for high expression in solid culture (FIG. 1). In the figure,
GUS activity shows GUS activity (U / mg-protein), Glc is glucose and St is starch as a single carbon source.

【0036】[0036]

【実施例2】glaBプロモーターcis因子97bp
を用いたプロモータータイトレーションアッセイ glaBプロモーターのcis因子97bpに結合する
固体培養高発現に関わる転写制御因子が、glaB遺伝
子以外の遺伝子を制御するかを確認するために、プロモ
ータータイトレーションアッセイを行った。97bpの
上流側にSalI、下流側にXhoIの制限酵素サイト
を付加し、pBluescript IISK+にサブク
ローニングした。このXhoIサイトに新たな97bp
のSalIサイトを結合させる操作を3回繰り返すこと
によって、97bpの8量体が得られた。これをA.n
idulans由来argBをマーカーとしてA.or
yzae M−2−3(argB−)へ導入した。サザ
ン解析の結果、本97bpの領域が80−300コピー
導入された形質転換体が得られた。
Example 2 GlaB promoter cis factor 97 bp
A promoter titration assay was carried out in order to confirm whether or not the transcription control factor involved in high expression in solid culture that binds to the cis factor 97 bp of the glaB promoter controls genes other than the glaB gene. A restriction enzyme site of SalI was added to the upstream side of 97 bp, and a restriction enzyme site of XhoI was added to the downstream side, and subcloning was performed into pBluescript II SK + . New 97bp on this XhoI site
By repeating the operation for binding the SalI site of 3 times, a 97 bp octamer was obtained. A. n
A. duluans-derived argB as a marker. or
It was introduced into yzae M-2-3 (argB-). As a result of Southern analysis, a transformant into which 80 to 300 copies of the 97 bp region were introduced was obtained.

【0037】これらの形質転換体のうち5株について固
体培養を行った結果、図2に示すようにグルコアミラー
ゼのみならず、α−アミラーゼ、酸性プロテアーゼ、酸
性カルボキシペプチダーゼ、フィターゼなどについても
親株に対する菌体当たりの酵素生産量が、20−40%
に低下した。これは人為的に導入した97bpの領域に
固体培養での遺伝子発現を正に制御する転写制御因子が
結合し、本転写制御因子の不足により、上記酵素遺伝子
群の効率的な転写が行われなくなったためと考えられ
る。よってこの領域に結合する転写制御因子はグルコア
ミラーゼのみならず、他の固体培養で生産される酵素群
の遺伝子発現も制御することが推察された。
As a result of solid culture of 5 of these transformants, as shown in FIG. 2, not only glucoamylase but also α-amylase, acid protease, acid carboxypeptidase, phytase, etc. 20-40% of enzyme production per body
Fell to. This is because a transcriptional regulatory factor that positively regulates gene expression in solid culture binds to the artificially introduced 97 bp region, and due to the lack of this transcriptional regulatory factor, efficient transcription of the enzyme gene group is not performed. It is thought to be a tame. Therefore, it was speculated that the transcription control factor binding to this region controls not only glucoamylase but also gene expression of other enzyme groups produced in solid culture.

【0038】[0038]

【実施例3】C22タイプzinc fingerタン
パク質のESTライブラリーからのクローニング 97bpに結合する転写制御因子は、固体培養中の低水
分活性、高温度および菌糸伸長障害という環境因子を認
識することが示唆されており、本因子は温度や乾燥及び
菌糸伸長障害などのストレスに応答する因子である可能
性が示唆された。既に植物のシロイヌナズナでは構造的
にC22タイプのzinc fingerタンパク質の
中に、ストレス応答性のものが多いという知見を得てい
る。そこで、我々は麹菌ESTライブラリーの中からC
22タイプのzinc fingerタンパク質の抽出
を行った。その結果、小麦フスマを用いた固体培養にの
み存在する3種類のC22タイプのzinc fing
erタンパク質のESTクローンを抽出した。
Example 3 Cloning of C 2 H 2 Type Zinc Finger Protein from EST Library A transcription factor that binds to 97 bp recognizes environmental factors such as low water activity, high temperature and impaired hyphal elongation in solid culture. It was suggested that this factor may be a factor that responds to stress such as temperature, drought and impaired hyphal elongation. It has already been found that in Arabidopsis plants, many structurally C 2 H 2 type zinc finger proteins are responsive to stress. Therefore, we selected C from the koji mold EST library.
Extraction of 2 H 2 type zinc finger protein was performed. As a result, three types of C 2 H 2 type zinc fingering that exist only in solid culture using wheat bran
An EST clone of the er protein was extracted.

【0039】この3つのC22タイプのzinc fi
ngerタンパク質の部分cDNAをプローブとして、
Gene Imageキット(アマシャムファルマシア
社製)を用いて、アスペルギルス・オリゼーO−101
3株(FERM P−16528)の約3000個のラ
ムダEMBL3ゲノムDNAライブラリーをプラークハ
イブリダイゼーションによりスクリーニングし、陽性を
示すクローンを得た。
These three C 2 H 2 type zinc fi
Using a partial cDNA of the nger protein as a probe,
Using the Gene Image kit (manufactured by Amersham Pharmacia), Aspergillus oryzae O-101
About 3000 lambda EMBL3 genomic DNA libraries of 3 strains (FERM P-16528) were screened by plaque hybridization to obtain positive clones.

【0040】上記ゲノム遺伝子のクローニングの結果、
MSN2と相同性のある転写因子は、配列番号1(アミ
ノ酸配列:図6〜8)、配列番号2(塩基配列:図9、
10)に示すように、717アミノ酸残基をコードし
て、イントロンを持たない遺伝子であった。また本遺伝
子はS.cerevisiaeの様々なストレス応答遺
伝子のSTRE配列に結合するMSN2と相同性を示
す。これをsgbR1と命名した。一方、Fusari
um属クチナーゼ制御因子と相同性のある転写因子クロ
ーンは、配列番号3(アミノ酸配列:図11〜13)、
配列番号4(塩基配列:図14、15)に示すように、
597アミノ酸残基をコードして、1つのイントロンを
有する遺伝子であった。これをsgbR2と命名した。
最後の分裂酵母Schizosaccharomyce
s pombeの機能未知なC22タイプのzinc
fingerタンパク質と相同性を示す転写因子クロー
ンは、配列番号5(アミノ酸配列:図16〜18)、配
列番号6(塩基配列:図19、20)に示すように、4
68アミノ酸残基をコードして、2つのイントロンを有
する遺伝子であった。これをsgbR3と命名した。
As a result of cloning the above-mentioned genomic gene,
Transcription factors homologous to MSN2 include SEQ ID NO: 1 (amino acid sequence: FIGS. 6 to 8), SEQ ID NO: 2 (base sequence: FIG. 9,
As shown in 10), it was a gene encoding 717 amino acid residues and having no intron. In addition, this gene is S. It shows homology with MSN2 binding to the STRE sequences of various stress response genes of S. cerevisiae. This was named sgbR1. On the other hand, Fusari
A transcription factor clone homologous to the um genus cutinase regulatory factor is SEQ ID NO: 3 (amino acid sequence: FIGS. 11 to 13),
As shown in SEQ ID NO: 4 (base sequence: FIGS. 14 and 15),
It was a gene encoding 597 amino acid residues and having one intron. This was named sgbR2.
The last fission yeast Schizosaccharomyces
C 2 H 2 type zinc with unknown function of s pombe
Transcription factor clones showing homology with the finger protein are 4 as shown in SEQ ID NO: 5 (amino acid sequence: FIGS. 16 to 18) and SEQ ID NO: 6 (base sequence: FIGS. 19 and 20).
It was a gene encoding 68 amino acid residues and having two introns. This was named sgbR3.

【0041】[0041]

【実施例4】sgbR1、sgbR2及びsgbR3の
ノザン解析 sgbR1、sgbR2及びsgbR3の発現条件を解
析するためにノザン解析を行った。液体培養(2%デキ
ストリン、1%ペプトン、0.5%イーストエキス、
0.05% MgSO4、0.1% KCl、0.1%
2HPO4、0.001% FeSO4)、小麦フス
マを用いた固体培養、蒸し米を用いた固体培養菌体より
RNAの抽出を行った。RNA抽出にはISOGEN
(ニッポンジーン社製)を用いた。
Example 4 Northern Analysis of sgbR1, sgbR2 and sgbR3 Northern analysis was performed to analyze the expression conditions of sgbR1, sgbR2 and sgbR3. Liquid culture (2% dextrin, 1% peptone, 0.5% yeast extract,
0.05% MgSO 4 , 0.1% KCl, 0.1%
K 2 HPO 4 , 0.001% FeSO 4 ), solid culture using wheat bran, and RNA extraction from solid culture cells using steamed rice. ISOGEN for RNA extraction
(Manufactured by Nippon Gene Co., Ltd.) was used.

【0042】得られたRNA各20μgを1%ホルムア
ルデヒド変性アガロースゲル電気泳動を行った。泳動
後、HybondN+メンブレン(アマシャムファルマ
シア社製)ヘアルカリトランスファー後、Gene I
mageキット(アマシャムファルマシア社製)を用い
てノザン解析を行った。図3(電気泳動パターンの写
真:図面代用写真)に示したように両遺伝子共に液体培
養、小麦フスマを用いた固体培養、蒸米を用いた固体培
養で発現が認められた。
20 μg of each of the obtained RNAs was subjected to 1% formaldehyde-denaturing agarose gel electrophoresis. After electrophoresis, Hybond N + membrane (manufactured by Amersham Pharmacia) was alkali-transferred, and then Gene I
Northern analysis was performed using a image kit (manufactured by Amersham Pharmacia). As shown in FIG. 3 (photograph of electrophoretic pattern: photograph in lieu of drawing), expression of both genes was observed in liquid culture, solid culture using wheat bran, and solid culture using steamed rice.

【0043】[0043]

【実施例5】sgbR1、sgbR2及びsgbR3の
コサプレッション法によるジーンサイレンシング株の解
析 sgbR1、sgbR2及びsgbR3の機能を決定す
るためにコサプレッション法を用いて、両遺伝子の発現
を抑制させた麹菌の構築を検討した。麹菌内で構成的に
高発現するA.oryzae由来histoneH2A
プロモーター(685bp)下流にsgbR1、sgb
R2及びsgbR3の開始コドン(それぞれ、配列番号
2、4、6において、186番目、1288番目、50
6番目のATG)から500bpの部分断片を連結さ
せ、これをアスペルギルス・ニドランス(A.nidu
lans)のsCマーカーを用いて麹菌内へマルチコピ
ーで導入した。
Example 5 Analysis of Gene Silencing Strains by Cosuppression Method of sgbR1, sgbR2 and sgbR3 Using the cosuppression method to determine the functions of sgbR1, sgbR2 and sgbR3, the expression of both genes was suppressed in Aspergillus oryzae. Considered construction. A. which is constitutively highly expressed in Aspergillus oryzae. oryzae-derived histone H2A
SgbR1 and sgb downstream of the promoter (685 bp)
Initiation codons of R2 and sgbR3 (in SEQ ID NOS: 2, 4, and 6, 186th, 1288th, 50th, respectively)
A partial fragment of 500 bp from the 6th ATG) was ligated, and this was ligated to Aspergillus nidulans (A. nidu).
was introduced into koji mold in multiple copies using the sC marker of lans).

【0044】得られた麹菌を用いて固体培養を行った結
果、図4に示すようにグルコアミラーゼのみならず、α
−アミラーゼ、酸性プロテアーゼ、酸性カルボキシペプ
チダーゼ、フィターゼなどについても親株に対する菌体
当たりの酵素生産量が30−70%に低下した。よっ
て、これらの転写制御因子は、固体培養特異的な遺伝子
群の発現を正に制御する因子であることが明らかとなっ
た。
As a result of carrying out solid culture using the obtained koji mold, as shown in FIG. 4, not only glucoamylase but α
-For amylase, acid protease, acid carboxypeptidase, phytase, etc., the enzyme production per cell was reduced to 30-70% with respect to the parent strain. Therefore, it was revealed that these transcription control factors are factors that positively control the expression of gene groups specific to solid culture.

【0045】[0045]

【実施例6】sgbR1、sgbR2及びsgbR3の
97bp cis因子とのゲルシフトアッセイ これらの転写制御因子が、glaBプロモーターのci
s因子である97bpとの結合能を有するかどうかをゲ
ルシフトアッセイにより確認した。sgbR1、sgb
R2及びsgbR3のcDNAを取得するために、蒸し
米を用いた固体培養菌体から調製したmRNAをもとに
RT−PCRを行った。この際に使用したプライマーの
両端には制限酵素サイトBamHI(sgbR1)、E
coRI(sgbR2)及びSmaI(sgbR3)を
付加した。得られたクローンをpUC118のlacZ
プロモーターの正の方向にサブクローニングし、得られ
た発現ベクター(pSGBR1、pSGBR2、pSG
BR3)を大腸菌JM109に形質転換した。アンピシ
リン含有培地で培養し、アンピシリン耐性株を選択し、
得られた形質転換体は、Escherichia co
li SGBR1、Escherichia coli
SGBR2、Escherichia coli S
GBR3と命名し、これを独立行政法人 産業技術総合
研究所 特許生物寄託センターにFERM P−183
57、FERM P−18358、FERM P−18
359としてそれぞれ寄託した。
Example 6 Gel shift assay of sgbR1, sgbR2 and sgbR3 with 97 bp cis factor These transcription factors are ci of the glaB promoter.
It was confirmed by gel shift assay whether or not it has the binding ability to 97 bp which is an s factor. sgbR1, sgb
In order to obtain the R2 and sgbR3 cDNAs, RT-PCR was performed based on the mRNA prepared from solid-cultured bacterial cells using steamed rice. The restriction enzyme sites BamHI (sgbR1), E
coRI (sgbR2) and SmaI (sgbR3) were added. The obtained clone was lacZ of pUC118.
Expression vectors (pSGBR1, pSGBR2, pSG) obtained by subcloning in the positive direction of the promoter
BR3) was transformed into E. coli JM109. Culture in ampicillin-containing medium, select ampicillin resistant strain,
The resulting transformant was Escherichia co
li SGBR1, Escherichia coli
SGBR2, Escherichia coli S
Named GBR3 and named it FERM P-183 at National Institute of Advanced Industrial Science and Technology, Patent Biological Depository Center.
57, FERM P-18358, FERM P-18
359, respectively.

【0046】形質転換体は、転写因子sgbR1、sg
bR2、sgbR3タンパク質をコードする遺伝子すべ
て含有している。この点は、形質転換体をOD660が、
0.6になるまで37℃にて培養後、最終1mM IP
TGと最終1mM ZnSO 4を添加し、さらに30℃
で6時間培養を行い、このIPTG誘導により、lac
Zプロモーター支配下でsbgR1、sgbR2及びs
gbR3タンパク質を発現させてこれを確認した。
The transformants are the transcription factors sgbR1 and sg.
All genes encoding bR2 and sgbR3 proteins
Contained. In this respect, the transformants were OD660But,
After culturing at 37 ℃ until 0.6, the final 1 mM IP
TG and final 1 mM ZnSO FourIs added, and further 30 ° C
Culturing was carried out for 6 hours, and by this IPTG induction, lac
SbgR1, sgbR2 and s under the control of the Z promoter
This was confirmed by expressing the gbR3 protein.

【0047】ゲルシフトアッセイは、タンパク質として
結合バッファー(最終1mM MgCl2、0.5mM
EDTA、0.5mM DTT、50mM KCl、
5mM Tris−HCl pH7.5、0.05μg
/μl polydIdC、4% glycerol)
に対して透析した大腸菌の無細胞調製液10μgを用
い、プローブとしてはglaBプロモーターのcis因
子である97bpの2本鎖DNAの二量体をGene
Imageキット(アマシャムファルマシア社製)によ
るフルオレッセンラベルしたものを0.8pmol用い
た。両者をバッファー(最終1mM MgCl2、0.
5mM EDTA、0.5mM DTT、50mM K
Cl、5mM Tris−HCl pH7.5、0.0
5μg/μl polydIdC、4% glycer
ol)中で室温30分間インキュベートした後に、2〜
15%グラジエントポリアクリルアミドゲル電気泳動を
4℃、120Vで行った。泳動ゲルは、正電荷メンブレ
ンへアルカリ転写し、抗原抗体反応によりフルオレッセ
ンの検出をGene Imageキット(アマシャムフ
ァルマシア社製)により行った。
The gel shift assay was performed using binding buffer (final 1 mM MgCl 2 , 0.5 mM) as protein.
EDTA, 0.5 mM DTT, 50 mM KCl,
5 mM Tris-HCl pH 7.5, 0.05 μg
/ Μl polydIdC, 4% glycerol)
10 μg of a cell-free preparation of Escherichia coli dialyzed against was used as a probe, and a dimer of 97 bp double-stranded DNA which is a cis factor of the glaB promoter was used as a gene.
0.8 pmol of fluorescein-labeled with Image kit (manufactured by Amersham Pharmacia) was used. Both were buffered (final 1 mM MgCl 2 , 0.
5 mM EDTA, 0.5 mM DTT, 50 mM K
Cl, 5 mM Tris-HCl pH 7.5, 0.0
5 μg / μl polydIdC, 4% glycer
2) after incubation at room temperature for 30 minutes in
15% gradient polyacrylamide gel electrophoresis was performed at 120C at 4 ° C. The electrophoretic gel was alkali-transferred to a positively charged membrane, and fluorescein was detected by an antigen-antibody reaction using a Gene Image kit (manufactured by Amersham Pharmacia).

【0048】図5(ゲルシフトアッセイの結果を示すパ
ターンの写真:図面代用写真)に示すようにsgbR1
とsgbR2はglaBプロモーターのcis因子であ
る97bpとの結合により、遅延したバンドが確認され
た。またこのバンドは過剰の非ラベルプローブの添加に
より消失した。よってsgbR1とsgbR2は、とも
にglaBプロモーターのcis因子である97bpへ
の結合能を有することが確認された。sgbR3は97
bpへの結合を確認できなかったが、コサプレッション
により固体培養での酵素遺伝子群の発現を低下させたこ
とから、sgbR1やsgbR2と相互作用することに
より、固体培養での酵素遺伝子発現を制御することが示
唆された。
As shown in FIG. 5 (photograph of pattern showing results of gel shift assay: photograph substituting for drawing), sgbR1
A delayed band was confirmed by binding of sgbR2 and 97 bp, which is a cis factor of the glaB promoter. Also, this band disappeared due to the addition of excess unlabeled probe. Therefore, it was confirmed that both sgbR1 and sgbR2 have the ability to bind to 97 bp, which is the cis factor of the glaB promoter. sgbR3 is 97
Although the binding to bp could not be confirmed, the expression of the enzyme gene group in solid culture was reduced by cosuppression. Therefore, the enzyme gene expression in solid culture is controlled by interacting with sgbR1 and sgbR2. It has been suggested.

【0049】[0049]

【発明の効果】固体培養は、醸造産業の培養形態であ
り、液体培養に比べてタンパク質分泌生産量も多く、ま
た培養特異的に生産される酵素群も非常に種類が多い特
徴を有する。本発明によりこの固体培養での遺伝子発現
に関わる転写制御因子が、はじめて明らかとなった。固
体培養は様々な産業で実用化されている培養法であり、
本培養法における発現メカニズムが分子レベルで解明で
きれば当該産業の発展に著しく貢献できるだけでなく固
体培養での異種タンパク質生産を可能にするものであ
る。また本発明は麹菌の酵素を麹菌で生産させるため、
生産される酵素蛋白は非常に安全性が高く、食品、医薬
品、化粧品産業などへも応用が可能な画期的な技術であ
る。よって本転写制御因子が得られたことによって、麹
菌の液体培養及び固体培養での酵素生産の包括的改善を
行うことが可能となり、工業的にも非常に有望な遺伝子
であることが示唆された。
EFFECTS OF THE INVENTION Solid culture is a culture form of the brewing industry, and has a characteristic that the amount of secretory protein produced is larger than that of liquid culture, and that the enzyme groups produced in a culture-specific manner have a great variety. According to the present invention, a transcription control factor involved in gene expression in this solid culture was clarified for the first time. Solid culture is a culture method that has been put to practical use in various industries.
If the expression mechanism in the present culturing method can be elucidated at the molecular level, it will not only significantly contribute to the development of the industry but also enable heterologous protein production in solid culture. Further, in the present invention, since the enzyme of koji mold is produced by koji mold,
The enzyme protein produced is extremely safe and is an epoch-making technology that can be applied to the food, pharmaceutical, cosmetics industries, etc. Therefore, it was possible to comprehensively improve enzyme production in liquid culture and solid culture of Aspergillus oryzae by obtaining this transcriptional regulatory factor, and it was suggested that this gene is a very promising gene in industry. .

【0050】[0050]

【配列表】 SEQUENCE LISTING <110> National Research Institute of Brewing ; Gekkeikan Inc., Ltd. <120> DNA-encoding Transfer factor Regulating Expression of Koji-mo ld Gene in Solid Culture <130> 6431 <141> 2001-6-27 <160> 7 <210> 1 <211> 717 <212> PRT <213> Aspergillus oryzae <400> 1 Met Ser Met Tyr Pro Ser Ile Arg Asn Lys Gly Phe Ile Ser Glu Pro 1 5 10 15 Thr Ser Thr Pro Phe Ile Asn Phe Gln Asp Pro Val Phe Ile Gln Asp 20 25 30 Glu Phe Leu Pro Asp Leu Ser Gln Glu Ala Ala Leu Gln Phe Tyr Asn 35 40 45 Gln Gln Leu Pro Arg Leu Gln Ser Pro Phe Gln Tyr His Ser Gly Leu 50 55 60 Glu Phe Tyr Ser Pro Pro Ser Ser Ala Pro Ser Ser Pro Thr Ser Ser 65 70 75 80 Pro Ala Ser Ser Thr Thr His Leu Pro Ala Thr Thr Ala Val Ala Ala 85 90 95 Glu Tyr Pro Asn Ser Phe Glu Ala Pro Ser Met Thr Pro Val Ser Ser 100 105 110 Tyr Asn Ser Ala Phe Asn Ile Gln His Thr Ala Thr Pro Pro Ser Ser 115 120 125 Gln Pro Tyr Leu Ser Gln Tyr Pro Gln Tyr Leu Phe Glu Asn Ser Pro 130 135 140 Met Leu Ala Gln Gln Pro Val Ala Asn Thr His Gly Trp Glu Asn Asn 145 150 155 160 Leu Gln Leu Leu Ser Ser Ala Arg Met Gln His Lys Ala Ser Pro Ser 165 170 175 Thr Ser Ser Thr Arg Ser Ala Pro Ala Gly Ser Ser Tyr Gln Arg Ser 180 185 190 Asn Ala Ser Thr Leu Ser Lys Pro Leu Pro Thr Pro Val Gln Thr Pro 195 200 205 Ile Gln Asn Ser Phe Leu Ala Ala Pro Tyr Gln Gln Asn Tyr Asp Thr 210 215 220 Ser Val His Asp Gly Ser Gln Ala Glu Ala Glu Met Val Arg Arg Ala 225 230 235 240 Val Met Glu Gln Gln Gln Lys Gln Gln Gln Gln Gln Ser His His Gln 245 250 255 His Gln Pro Ser Asp Tyr Ser Leu Ala Pro Ser Val Ser Ser Val Ser 260 265 270 His Asn Ser Pro Val Thr Pro Gln Ile Lys Pro Glu Glu Leu Asp Glu 275 280 285 Ala Ser Lys Ala Met Val Asn Gly Glu Lys Arg Tyr Pro Asp Ile Asp 290 295 300 Arg Trp Met Asp Asp Tyr Leu His Leu Asp Ala Phe Ala Asp Tyr Asn 305 310 315 320 Asn His Asn Gly Asn Asn Leu Pro Ile Gly Ile Pro Lys Ile Asn Arg 325 330 335 Thr Met Ser Asp Ile Tyr Gln Asp Glu Leu Tyr Asn Pro Ala Leu Met 340 345 350 Pro Thr Pro Gln Val Ser Lys Gln Thr Thr Asn Gln Gln Asn Leu Leu 355 360 365 Asn Pro Phe Arg Asn Val Phe Ala Asp Arg Leu Gln Ala Ala Asn Gln 370 375 380 Gly His Met Thr Ala Arg Ser His Ser Pro Val Val Asn Met His Arg 385 390 395 400 Asp Arg Ser Pro Phe Arg Gln Asn Ser Pro Leu Ala Ala Glu Tyr Asn 405 410 415 Asn Gly Phe Gln Gln Pro Gln Met Ala Thr Ser Val Pro Met Thr Gln 420 425 430 Asn Val Gly Gln Ser Gln Gly Glu Gly Glu Pro Lys Thr Met Ser Pro 435 440 445 Lys Asp Ala Leu Leu Asp Phe Asn Glu Gly Asp Asp Ala Gly Ile Pro 450 455 460 Leu Phe Pro Thr Ser Gln Pro Asp Phe Asn Leu Gly Glu Ala Leu Gly 465 470 475 480 Leu Arg Arg Glu Ser Ser Ser Ser Phe Pro Gln Ser Gln Asn Phe Thr 485 490 495 Ser Met Glu Ser Phe Pro Thr Gln Tyr Thr Thr Pro Asn Gly Leu Pro 500 505 510 Gln Gln Tyr Pro Phe Ala Gln Gln Gln Gln Asp His Gln Gln Gln Gln 515 520 525 Gln Asn Asn Leu Leu His Gln Thr Pro Glu Phe Pro Ala Ser Leu Pro 530 535 540 His Phe Glu Ser Thr Asn Ser Asp Ala Gly Val Asn Asn Gly Val Ala 545 550 555 560 Ser Pro Pro Ala Gln Pro Thr Met Ala Met Arg Pro Val Lys Glu Glu 565 570 575 Ile Thr Arg Pro Glu Arg Thr Ser Ala Asp Ser Gly Thr Tyr Thr Cys 580 585 590 Thr Tyr His Gly Cys Thr Leu Arg Phe Glu Thr Pro Thr Lys Leu Gln 595 600 605 Lys His Lys Arg Glu Ala His Arg Gln Thr Thr Pro Gly Gly His Leu 610 615 620 Val Gly Arg Asp Thr Ser Ala Arg Asn Ser Gln Ala Gly Pro His Lys 625 630 635 640 Cys Glu Arg Ile Asn Pro Ser Thr Gly Lys Pro Cys Asn Ser Val Phe 645 650 655 Ser Arg Pro Tyr Asp Leu Thr Arg His Glu Asp Thr Ile His Asn Ala 660 665 670 Arg Lys Gln Lys Val Arg Cys His Leu Cys Thr Glu Glu Lys Thr Phe 675 680 685 Ser Arg Asn Asp Ala Leu Thr Arg His Met Arg Val Val His Pro Glu 690 695 700 Val Asp Trp Pro Gly Lys Gln Arg Arg Arg Gly Arg Glu 705 710 715 717 <210> 2 <211> 2362 <212> DNA <213> Aspergillus oryzae <400> 2 ccacttcata ttcgcagtgt tcggggataa agataatcgg atcttgggcc gttggaactt 60 ttatttggag gcttgggtgc catacctagt acttaacttc tggaacctcc cccagtggcg 120 aatcctctga acttccccat ccactccggc gtcataccct tgacgtccat ttgttgaaag 180 agaacatgtc catgtaccct tcgatacgca ataagggttt tatcagtgaa ccaacatcta 240 cccccttcat caatttccaa gaccccgttt tcatccagga cgagttcctt cccgacttgt 300 cgcaggaggc cgcattacag ttctacaacc agcaactacc caggctccaa tcacctttcc 360 agtaccactc gggtcttgaa ttttactctc cgccatcttc cgcgccgtcg tcaccgactt 420 cctctccagc ctcttccacc acccacctgc cagcgaccac agcggtggct gcggaatacc 480 ccaactcctt tgaggctcct tcgatgacac ccgtgtcctc ctataactct gcattcaaca 540 ttcagcatac cgcgacacca ccgtcctcac agccatactt gtcacaatac ccccaatacc 600 tttttgaaaa ctccccaatg ttggcgcaac agcctgtcgc aaacacccac ggctgggaaa 660 acaacctgca gctgctgagc tcggctcgca tgcagcacaa ggcatcaccg agtacctcgt 720 cgactcgatc tgcacctgca gggagctcgt accaaagatc taacgcttct acgctgtcga 780 agcctctacc cactcccgtc cagacaccta tccagaactc gtttctcgcc gcgccctatc 840 agcagaacta tgacacttcg gtgcatgatg gtagccaagc tgaagcggag atggtgagac 900 gggctgtgat ggaacagcag cagaagcagc aacagcaaca aagtcaccat cagcatcagc 960 caagtgatta ctcactggca ccttcggtat catcagtgag ccacaactca cctgttactc 1020 ctcagataaa accggaggaa cttgacgagg cctcgaaggc gatggtcaat ggtgagaaac 1080 gatatcctga tatagaccga tggatggatg attacttaca tctcgatgcc tttgcagact 1140 acaataacca caacggaaac aaccttccga tcggcattcc caaaatcaac cgaactatgt 1200 cggacatcta ccaagatgag ctctataacc cagctctcat gccgactcct caagtctcca 1260 aacagactac gaaccagcag aatcttctga acccgttcag aaacgtcttt gctgatcgac 1320 tgcaagccgc caatcagggc cacatgactg cacggtctca ttctcctgtt gttaacatgc 1380 accgggatcg gtctcctttc cgacagaact cgcccctggc tgctgagtac aacaatgggt 1440 tccagcagcc ccagatggcg accagtgtgc ctatgactca aaatgtaggc caaagtcaag 1500 gagaaggaga accgaagact atgtctccta aggatgccct gttggacttc aacgagggag 1560 atgacgccgg gattcctttg ttcccaacaa gtcaacctga cttcaacctt ggtgaagcac 1620 tcggcctccg acgtgaaagc tcatcatcct tcccgcagtc gcagaacttt acttccatgg 1680 agtcattccc cacgcaatac actacaccga atggacttcc ccagcagtat cccttcgcgc 1740 agcagcaaca agaccatcag cagcaacaac agaacaacct cctgcaccag acccccgaat 1800 tccctgcatc ccttcctcac tttgagtcta cgaacagtga tgccggggtc aacaacggtg 1860 tggcttctcc accggcacag cccacaatgg cgatgcgccc agtgaaggaa gagatcaccc 1920 gccctgagcg cacttctgcg gacagtggca cttacacttg cacttaccac ggctgcacgc 1980 ttcggtttga aacgcctacg aagctgcaga agcacaagcg cgaggcccac cgtcagacta 2040 cgcctggcgg ccacttggtt gggcgcgata cttccgcacg caactctcag gccggtcccc 2100 acaaatgtga gcggatcaat ccgtctacgg gaaagccatg caattctgtt ttctcccggc 2160 cttacgatct tacccggcac gaggacacga tccacaacgc acgcaagcag aaggtccggt 2220 gtcatctgtg cacggaagaa aagacctttt cgcgtaatga tgcgctgacc cggcacatgc 2280 gagtggtgca ccctgaggtc gattggcccg gcaagcaaag aaggagaggc agggagtaag 2340 cctgaatggg gttgtggtgt ca 2362 <210> 3 <211> 597 <212> PRT <213> Aspergillus oryzae <400> 3 Met Ala Pro Thr Val Gln Gly Gln Pro Ser Phe Ala Tyr Tyr Pro Thr 1 5 10 15 Ala Asp Ser Gln Arg Gln Gln Tyr Thr Ser His Pro Ala Glu Pro Gln 20 25 30 Pro Tyr Tyr Gly Gln Ile Gln Ala Phe Pro Gln Gln His Cys Leu Pro 35 40 45 Glu Gln Gln Pro Val Tyr Asn Ala Gln Pro Met Met Asn Met His Gln 50 55 60 Met Ala Thr Thr Asn Ala Phe Arg Gly Ala Met Asn Met Thr Pro Ile 65 70 75 80 Ala Ser Pro Gln Pro Ser His Leu Lys Pro Thr Ile Val Val Gln Gln 85 90 95 Gly Ser Pro Ala Leu Met Pro Leu Asp Thr Arg Phe Val Gly Asp Tyr 100 105 110 Tyr Ser Phe Pro Ser Thr Pro Pro Leu Ser Thr Ala Gly Ser Ser Ile 115 120 125 Ser Ser Pro Pro Ser Ser Ser Gly Thr Leu His Thr Pro Ile Asn Asp 130 135 140 Cys Phe Phe Ser Phe Glu Lys Val Glu Gly Val Lys Glu Gly Cys Glu 145 150 155 160 Ser Asp Val His Ala Glu Leu Leu Ala Ser Ala Asp Trp Thr Arg Ser 165 170 175 Ala Thr Ser Pro Pro Met Thr Pro Val Phe Ile Asn Ala Asn Ser Leu 180 185 190 Thr Ala Ser Gln Ser Ser Asp Phe Leu Ser Ala His Gly Ser Cys Pro 195 200 205 Ser Leu Ser Pro Ser Pro Leu Leu Val Ser Ser Val Phe Thr Pro Ser 210 215 220 Gln Ser Ala Phe Pro Val Glu Gln Ala Thr Ser Asp Phe Cys Asp Pro 225 230 235 240 Arg Gln Leu Thr Val Glu Ser Ser Val Asn Thr Ser Ser Pro Ala Glu 245 250 255 Leu Pro Pro Leu Pro Thr Leu Ser Cys Asp Glu Glu Glu Pro Lys Val 260 265 270 Val Leu Gly Ser Glu Ala Val Thr Leu Pro Val His Glu Asp Pro Ser 275 280 285 Pro Ala Tyr Thr Ser Ser Thr Glu Asp Pro Leu Ser Ser Leu Pro Thr 290 295 300 Phe Asp Ser Phe Ser Asp Leu Asp Ser Glu Asp Glu Phe Val Asn Arg 305 310 315 320 Leu Val Asp Phe His Pro Ser Gly Asn Thr Tyr Tyr Val Gly Glu Lys 325 330 335 Arg Gln Arg Leu Ser Ala Tyr Ser Phe Asp Asp Glu Glu Phe Leu Ser 340 345 350 Glu His Ser Leu Glu Asp Ser Ser Asp Asp Leu Glu Leu Ala His Ser 355 360 365 Gly Leu Ser Phe Leu Gly Cys Ala Asp Phe Ala Pro Ala Gln Ser Asp 370 375 380 Ala Ser Glu Thr Ala Asp Glu Met Lys Thr Lys Lys Arg Ser Asn Ser 385 390 395 400 Arg Lys Ser Leu Lys Arg Ala Asn Ser Glu Asp Gln Asp Ala Leu Lys 405 410 415 Lys Ala Gln Ala Pro Ile Asn Ser Arg Ala Asn Ser Thr Glu Ala Asn 420 425 430 Val Ala Gln Gln Ala Ala Ala Pro Ser Cys Ser Ala Ser Glu Ala Asn 435 445 440 Val Ser Ser Ser Cys Glu Ala Pro Ser Val Pro Val Ser Val Asn Arg 450 455 460 Arg Gly Arg Lys Gln Ser Leu Thr Asp Asp Pro Ser Lys Thr Phe Val 465 470 475 480 Cys Ser Leu Cys Ser Arg Arg Phe Arg Arg Gln Glu His Leu Lys Arg 485 490 495 His Tyr Arg Ser Leu His Thr Gln Asp Lys Pro Phe Glu Cys Asn Glu 500 505 510 Cys Gly Lys Lys Phe Ser Arg Ser Asp Asn Leu Ala Gln His Ala Arg 515 520 525 Thr His Ala Gly Gly Ser Ile Val Met Gly Val Leu Asp Thr Asn Asn 530 535 540 Ala Ser Glu Arg Tyr Asp Asn Arg Asp Ala Ser Thr Met Gly Ala Val 545 550 555 560 Leu Tyr Glu Ala Ala Thr Leu Arg Arg Pro Ser Arg Arg Leu Ala Asn 565 570 575 His Pro Lys Met Gly Phe Leu Thr His Pro His Arg Ser Ser Ala Arg 580 585 590 Gln Glu Ala Gln Ala 595 597 <210> 4 <211> 3167 <212> DNA <213> Aspergillus oryzae <400> 4 ggggccggtt gggggccctc ccggggttgg gttacgggaa aagtttcaag ggccaaagga 60 aaaaaaaggt aaaaaagatt tagggaaaaa aaggccaaaa aaaagggcct tggaaaaagg 120 aattcccaag aacctttccc ccaaaaggtt aattggggta ggggaaccat tggggtttct 180 taccaaggtt tttcccttta tcctttgccc ccttcaggga aaaatttact tattatccta 240 gggaatttgg ccccccccag gggggggatc cctgggattt aagggggggt gccccccggc 300 ccccccctaa gggggttccc ccctttttag ggattttttt ttttttggaa attaaatttc 360 ctttcccttt ttttttaaaa aaaataaaat cttttcggtt ttattttatt ttttataata 420 aaaaaattcc taattataat tataaatccg ggtattttta gggataaatt ctaggtttta 480 actaccctcc ctcccttttc cccgggcccc cccccctcca aatagacaag acggactaaa 540 actaaaaagt acggctccag tcctacgact aactctcact acgcacggcg ctactaagtc 600 gtagcacaag cagatcagtc tctcttttat ccactgtcca tccttctggc cgtctgtccc 660 tcttcccttt cccatatcgg ccctgtctct cgtttccccg cgactgtcca ttagtcctct 720 ttatttctta gtcttttcct tttttccctt tttagacttg tctcgattct ctgtccttcc 780 cttcgttatt tcttattttt tggctttgat ccccatctct ctcttctctc tcttctttta 840 ctcatcatct gtctccggta cctttgatcg tgatcgtccg aatccaaaag gtggctcgta 900 tcgaccagag gttcctgtcc ttccttctat cagatataac tataccgtac attcacactc 960 agaagcccag aagacgttgc atattttata aaccctaatt cggactgcac tcttctgcct 1020 tcagtcattc attcatccag aacaagagac atctacattc attcaaccta cagtgctcga 1080 catctatcat tagcaccaag ctgcctcgac atcaatctgg aacatcctga cttagactaa 1140 acatacttaa taatacccaa gaggttaagc agtgttcgct tgatcctcat cacattcatc 1200 attggttcgt ggaaggatga ctatatatca tacaggatgc ccatactgat ccctcgtctt 1260 ctagtcacaa tggacgctac atacaccatg gcaccaacgg tgcaaggaca accatcattt 1320 gcatactacc ccactgctga ttcacaaaga caacaataca caagccaccc ggctgagccc 1380 cagccatact atggacagat tcaggccttc cctcagcaac actgcctacc agagcaacaa 1440 ccggtctaca atgctcaacc catgatgaac atgcatcaga tggctaccac caatgccttc 1500 cgcggagcaa tgaacatgac tcccatcgcc tctccccaac catctcacct gaagcccaca 1560 atcgtcgtcc agcagggttc cccagccctc atgcctttgg acacaaggtt cgtcggtgac 1620 tactatagct tcccttctac ccctccactc tccaccgcgg gaagttctat cagcagcccg 1680 ccatccagca gtggcacctt gcacacccca atcaacgact gcttcttctc attcgaaaag 1740 gtggagggtg taaaggaggg ttgtgaaagt gacgtccatg ccgagctttt ggccagtgcc 1800 gactggactc ggtcagcaac ttcgcctccc atgactcctg gtatgttttc ttctcatcag 1860 ttgagtaggg ggttggaacc agtctaactt cttctagtct tcatcaacgc caattctctc 1920 accgccagtc agagctcaga cttcctctct gcccacgggt cttgcccctc tctttctcct 1980 tcgcctctcc tggtatcttc cgtgtttact ccgtctcagt cggctttccc tgttgagcag 2040 tcgcctctcc tggtatcttc cgtgtttact ccgtctcagt cggctttccc tgttgagcag 2040 gccacctccg acttctgtga ccctcggcag ctgactgtcg agtcttccgt caacacatcc 2100 tctcccgctg agcttcctcc tttgcccact ctctcctgcg atgaggagga accgaaggtg 2160 gtcctgggaa gcgaggctgt gactttgcca gttcatgagg acccatcacc cgcttacact 2220 agctctaccg aggaccccct cagttcgttg cccacttttg acagcttctc cgaccttgat 2280 tcggaggacg agtttgtcaa ccgcttggtt gacttccatc ccagcggtaa tacttactac 2340 gtgggcgaaa agagacagcg cctcagcgca tactccttcg atgacgagga gttcttgagc 2400 gagcacagct tggaagattc ttcagacgac ctggagttgg cccactctgg cctttctttc 2460 ctgggatgcg ccgatttcgc tccggctcaa agtgatgcca gcgagaccgc tgacgagatg 2520 aagacaaaga agcgaagcaa ctcccgcaag tctctcaaga gagcaaactc tgaggaccag 2580 gatgctctca agaaggcaca ggcaccgatc aacagccggg ccaacagcac agaggccaac 2640 gtggctcagc aggcagctgc tccgtcctgc tcagcctcgg aagccaatgt atctagctcc 2700 tgcgaggccc catctgttcc tgtgtcggtc aaccgccggg gtcgtaagca atccctgacg 2760 gatgatcctt ccaagacctt tgtctgctct ctctgctctc gtcgtttccg tcgtcaggag 2820 caccttaagc gtcactaccg ctctctgcac acccaggaca agcccttcga gtgcaacgag 2880 tgtggtaaga agttttctcg gagtgacaac cttgcgcagc atgccaggac ccatgccggt 2940 ggctctatcg tgatgggtgt cctggacacg aacaacgcat ctgaacggta tgataatcgc 3000 gacgcgagta ccatgggtgc tgtgctctat gaagctgcca cgctgcggcg accaagtcga 3060 cgactagcga atcatccgaa gatggggttt ctgacgcacc ctcatcgatc gtcggcccgc 3120 caagaagcgc aagcgtgacg agcactttag ttgcccccat tgccggt 3167 <210> 5 <211> 468 <212> PRT <213> Aspergillus oryzae <400> 5 Met Ala Ser Ile Asp Pro Asn Val Pro Thr Thr Thr Leu Pro Tyr Thr 1 5 10 15 Cys Asn Thr Cys Leu Val Ala Phe Arg Gly Ser Asp Ala Gln Arg Asp 20 25 30 His Met Arg Lys Asp Trp His Leu Tyr Asn Met Lys Arg Arg Ile Ala 35 40 45 Ser Leu Pro Pro Val Ser Gln Glu Val Phe Asn Asp Lys Val Leu Ala 50 55 60 Ala Lys Ala Thr Thr Ser Ala Ala Ala Ala Lys Ala Ser Phe Glu Lys 65 70 75 80 Thr Cys Val Ala Cys Gln Lys Thr Phe Phe Ser Glu Asn Ser Tyr Gln 85 90 95 Asn His Val Lys Ser Ser Lys His Lys Ala Arg Glu Ala Gln Met Leu 100 105 110 Arg Asp Ser Ala Asp Asp Ala Ser Ser Val Met Ser Ser Thr Phe Ser 115 120 125 Leu Gly Glu Pro Val Asn Lys Pro Arg Glu Arg Ser Glu Val Ser Lys 130 135 140 Val Thr Glu Ser Leu Lys Asn Ala Thr Ile Glu Glu Asp Asp Glu Asp 145 150 155 160 Glu Glu Met Glu Glu Gln Gly Phe Ser Ala Ser Arg Cys Leu Phe Cys 165 170 175 Asn Glu Lys Ser Ser Asp Leu Gln Gln Asn Thr Glu His Met Phe Lys 180 185 190 Thr His Gly Met Phe Ile Pro Glu Lys Asp Tyr Leu Val Asp Leu Glu 195 200 205 Gly Leu Val His Tyr Leu Tyr Arg Lys Ile Asn Glu Asn Ser Glu Cys 210 215 220 Leu Tyr Cys His Ala Val Arg Asn Asn Pro Glu Gly Ala Arg Thr His 225 230 235 240 Met Arg Asp Lys Gly His Cys Met Ile Ala Phe Glu Lys Gln Asp Glu 245 250 255 Gln Val Glu Ile Gly Gln Phe Tyr Asp Phe Arg Ser Thr Tyr Ser Asp 260 265 270 Gly Glu Gly Glu Asp Glu Glu Asp Ser Ile Met Glu Asp Gly Gly Val 275 280 285 Lys Val Asp Gly Glu Asp Asp Glu Gly Trp Glu Thr Glu Thr Ser Ala 290 295 300 Ser Ser Met Asp Asp Asp Glu Asp Glu Leu Asp Asp Thr Lys Gly Gln 305 310 315 320 Val Tyr Ala Thr Glu Phe Glu Leu His Leu Pro Ser Gly Arg Thr Ala 325 330 335 Gly His Arg Ser Leu Ala Lys Tyr Tyr Arg Gln Asn Leu Arg Asn Tyr 340 345 350 Pro Thr Ala Glu Glu Arg Ala Ala Arg Gln Leu Ala Ile Glu Asn Gly 355 360 365 Glu Ile Glu Glu Glu Glu Pro Lys Pro Arg Gly Arg Asp Leu Asn Arg 370 375 380 Ala Val Pro Glu Ala Phe Ala Ala Glu Leu Glu Arg Lys Asp Arg Thr 385 390 395 400 Arg Ala Gln Arg Gln Glu Lys Arg Tyr Thr Ala Arg Val Asn Arg Ala 405 410 415 Ala Asn Asn Gln Lys His Phe Arg Val Cys Phe Ile Pro Leu Leu Ile 420 425 430 Ile Arg Gln Ala Asn Thr Pro Ser Arg Ile Pro Ser Cys Ser Arg Phe 435 440 445 Leu Tyr Leu Ile Cys Leu Arg Ala Cys Trp His Cys Leu Ala Lys Ser 450 455 460 Trp Ser Tyr Gly 465 468 <210> 6 <211> 2337 <212> DNA <213> Aspergillus oryzae <400> 6 tggtcgacgg cccgggctgg tatcatacgg actgacacac cagcctcagg cgccaagcat 60 gaggccggct gactaacatt aaatggaaga agtatgatcc gatcgttgat gcactaggct 120 tgatatagat agggccttcc cagacaggat tagtggaggg gcacgtgcaa tcaacgtcat 180 gttctctaaa agcggcatgg gcaatggttt tcaatgtgtg gtccgggtta tcggcgacat 240 cgattactag cccgatcttt tctgtcgagg ggcaatattg cgcccgcttc actttctcgc 300 tagatacttc ctaccggctt ttatttctaa tcaggcccaa aactttctgt gacgactacg 360 cctggttttg ctttttcatt gctcttgcaa aaacgaatac ccccgcgcaa tatatattcc 420 cacaaccgat cgccttttca tcaaatttat ttctgtgata cccacctttt ttttttttgt 480 tccatatcag gaactgtcag aaatcatggc ctccatcgat ccaaatgtac caacaactac 540 gttgccatat acctgcaaca cctgtctcgt tgcttttcgc ggtagcgatg ctcagcggga 600 tcatatgcgc aaggactggc agtaagtttg ttggaaaata tacgactcag aatgcattac 660 taatgttcgg tcgactcaag tctctataac atgaagcgcc gcatcgcgtc tctgccccca 720 gtgtcccagg aggtttttaa cgacaaggtc cttgctgcca aagccacaac tagtgctgcc 780 gccgccaaag cttcctttga gaagacatgt gtcgcctgcc agaagacatt cttcagcgag 840 aactcgtatc agaaccacgt gaagagttcc aagcacaagg cccgtgaggc acagatgctt 900 agagacagcg ccgatgatgc atcgtctgtc atgagttcta ctttctctct gggcgagcca 960 gtcaacaagc ctcgtgagcg gtcggaggtg tcgaaagtta cggagagtct caagaacgct 1020 accatcgaag aggatgacga agatgaggaa atggaagagc agggcttctc ggcctcccgt 1080 tgtcttttct gtaatgagaa atcttcagat cttcaacaaa acaccgagca catgttcaag 1140 acccacggca tgttcatacc agagaaggac tatcttgttg atttggaggg acttgtccac 1200 tatctttatc ggaagatcaa tgagaacagt gaatgtttat actgccatgc cgtccgaaac 1260 ggtgagggtg aggatgagga ggactcgatc atggaggatg gtggtgtcaa ggtggatggc 1440 gaggatgatg agggatggga aaccgaaact tctgcatctt ctatggatga cgatgaggat 1500 gagctcgacg acacgaaggg acaggtctat gcgacagagt ttgagctgca tttgccctca 1560 ggccgcactg caggtcaccg atcgctcgcc aaatactacc gccagaactt gcgtaactac 1620 cctacagcgg aagaacgggc agctcgtcag ctggctattg aaaatggcga gattgaggag 1680 gaggaaccga aacccagggg tcgcgacctc aatcgggccg ttgttagccg tggcaatggc 1740 ggtattgggt atgatcggtg ctactgacag ccagaagcat ttgctgctga gcttgaacgc 1800 aaagaccgga ctcgtgccca gcgacaagag aagcggtaca cagctcgggt caaccgggct 1860 gccaataacc agaagcactt cagggtatgt ttcatccctt tactgataat aagacaagct 1920 aacaccccct ctaggatccc ctcctgcagt agattcctgt atctgatttg tttgcgtgca 1980 tgttggcatt gtttggcaaa atcatggagt tacggctgaa tgacctgtag atactcatgg 2040 caagataaaa agtgattatt aagaagatga aggatattac ttcgcattcc tgctatcttt 2100 actattttag acagtgctgc atcttatgac ggatataccg aaggtctacc agactgaagg 2160 tgaatcaagt cctacatcta accccccgac caaaccctaa gtcaccacat ctcacagaac 2220 cgatagcaaa cttacaatca agcaccataa caacaaacca ggaccacaaa taataatata 2280 tgaacatcat atcactttac cagcccgggc cgtcgaccac gcgtgcccta tagtgag 2337 <210> 7 <211> 97 <212> DNA <213> Artificial Sequence <400> 7 gagaactaag agaatggcgg cacgggcaga tgtcgggatg atcactttta gtcectccga 60 cgcaatatcg atttcaattg gatccgccac gctgcat 97[Sequence list]            SEQUENCE LISTING <110> National Research Institute of Brewing; Gekkeikan Inc., Ltd. <120> DNA-encoding Transfer factor Regulating Expression of Koji-mo ld            Gene in Solid Culture <130> 6431 <141> 2001-6-27 <160> 7 <210> 1 <211> 717 <212> PRT <213> Aspergillus oryzae <400> 1 Met Ser Met Tyr Pro Ser Ile Arg Asn Lys Gly Phe Ile Ser Glu Pro   1 5 10 15 Thr Ser Thr Pro Phe Ile Asn Phe Gln Asp Pro Val Phe Ile Gln Asp              20 25 30 Glu Phe Leu Pro Asp Leu Ser Gln Glu Ala Ala Leu Gln Phe Tyr Asn          35 40 45 Gln Gln Leu Pro Arg Leu Gln Ser Pro Phe Gln Tyr His Ser Gly Leu      50 55 60 Glu Phe Tyr Ser Pro Pro Ser Ser Ala Pro Ser Ser Pro Thr Ser Ser  65 70 75 80 Pro Ala Ser Ser Thr Thr His Leu Pro Ala Thr Thr Ala Val Ala Ala                  85 90 95 Glu Tyr Pro Asn Ser Phe Glu Ala Pro Ser Met Thr Pro Val Ser Ser             100 105 110 Tyr Asn Ser Ala Phe Asn Ile Gln His Thr Ala Thr Pro Pro Ser Ser         115 120 125 Gln Pro Tyr Leu Ser Gln Tyr Pro Gln Tyr Leu Phe Glu Asn Ser Pro     130 135 140 Met Leu Ala Gln Gln Pro Val Ala Asn Thr His Gly Trp Glu Asn Asn 145 150 155 160 Leu Gln Leu Leu Ser Ser Ala Arg Met Gln His Lys Ala Ser Pro Ser                 165 170 175 Thr Ser Ser Thr Arg Ser Ala Pro Ala Gly Ser Ser Tyr Gln Arg Ser             180 185 190 Asn Ala Ser Thr Leu Ser Lys Pro Leu Pro Thr Pro Val Gln Thr Pro         195 200 205 Ile Gln Asn Ser Phe Leu Ala Ala Pro Tyr Gln Gln Asn Tyr Asp Thr     210 215 220 Ser Val His Asp Gly Ser Gln Ala Glu Ala Glu Met Val Arg Arg Ala 225 230 235 240 Val Met Glu Gln Gln Gln Lys Gln Gln Gln Gln Gln Ser His His Gln                 245 250 255 His Gln Pro Ser Asp Tyr Ser Leu Ala Pro Ser Val Ser Ser Val Ser             260 265 270 His Asn Ser Pro Val Thr Pro Gln Ile Lys Pro Glu Glu Leu Asp Glu         275 280 285 Ala Ser Lys Ala Met Val Asn Gly Glu Lys Arg Tyr Pro Asp Ile Asp     290 295 300 Arg Trp Met Asp Asp Tyr Leu His Leu Asp Ala Phe Ala Asp Tyr Asn 305 310 315 320 Asn His Asn Gly Asn Asn Leu Pro Ile Gly Ile Pro Lys Ile Asn Arg                 325 330 335 Thr Met Ser Asp Ile Tyr Gln Asp Glu Leu Tyr Asn Pro Ala Leu Met             340 345 350 Pro Thr Pro Gln Val Ser Lys Gln Thr Thr Asn Gln Gln Asn Leu Leu         355 360 365 Asn Pro Phe Arg Asn Val Phe Ala Asp Arg Leu Gln Ala Ala Asn Gln     370 375 380 Gly His Met Thr Ala Arg Ser His Ser Pro Val Val Asn Met His Arg 385 390 395 400 Asp Arg Ser Pro Phe Arg Gln Asn Ser Pro Leu Ala Ala Glu Tyr Asn                 405 410 415 Asn Gly Phe Gln Gln Pro Gln Met Ala Thr Ser Val Pro Met Thr Gln             420 425 430 Asn Val Gly Gln Ser Gln Gly Glu Gly Glu Pro Lys Thr Met Ser Pro         435 440 445 Lys Asp Ala Leu Leu Asp Phe Asn Glu Gly Asp Asp Ala Gly Ile Pro     450 455 460 Leu Phe Pro Thr Ser Gln Pro Asp Phe Asn Leu Gly Glu Ala Leu Gly 465 470 475 480 Leu Arg Arg Glu Ser Ser Ser Ser Phe Pro Gln Ser Gln Asn Phe Thr                 485 490 495 Ser Met Glu Ser Phe Pro Thr Gln Tyr Thr Thr Pro Asn Gly Leu Pro             500 505 510 Gln Gln Tyr Pro Phe Ala Gln Gln Gln Gln Asp His Gln Gln Gln Gln         515 520 525 Gln Asn Asn Leu Leu His Gln Thr Pro Glu Phe Pro Ala Ser Leu Pro     530 535 540 His Phe Glu Ser Thr Asn Ser Asp Ala Gly Val Asn Asn Gly Val Ala 545 550 555 560 Ser Pro Pro Ala Gln Pro Thr Met Ala Met Arg Pro Val Lys Glu Glu                 565 570 575 Ile Thr Arg Pro Glu Arg Thr Ser Ala Asp Ser Gly Thr Tyr Thr Cys             580 585 590 Thr Tyr His Gly Cys Thr Leu Arg Phe Glu Thr Pro Thr Lys Leu Gln         595 600 605 Lys His Lys Arg Glu Ala His Arg Gln Thr Thr Pro Gly Gly His Leu     610 615 620 Val Gly Arg Asp Thr Ser Ala Arg Asn Ser Gln Ala Gly Pro His Lys 625 630 635 640 Cys Glu Arg Ile Asn Pro Ser Thr Gly Lys Pro Cys Asn Ser Val Phe                 645 650 655 Ser Arg Pro Tyr Asp Leu Thr Arg His Glu Asp Thr Ile His Asn Ala             660 665 670 Arg Lys Gln Lys Val Arg Cys His Leu Cys Thr Glu Glu Lys Thr Phe         675 680 685 Ser Arg Asn Asp Ala Leu Thr Arg His Met Arg Val Val His Pro Glu     690 695 700 Val Asp Trp Pro Gly Lys Gln Arg Arg Arg Gly Arg Glu 705 710 715 717 <210> 2 <211> 2362 <212> DNA <213> Aspergillus oryzae <400> 2 ccacttcata ttcgcagtgt tcggggataa agataatcgg atcttgggcc gttggaactt 60 ttatttggag gcttgggtgc catacctagt acttaacttc tggaacctcc cccagtggcg 120 aatcctctga acttccccat ccactccggc gtcataccct tgacgtccat ttgttgaaag 180 agaacatgtc catgtaccct tcgatacgca ataagggttt tatcagtgaa ccaacatcta 240 cccccttcat caatttccaa gaccccgttt tcatccagga cgagttcctt cccgacttgt 300 cgcaggaggc cgcattacag ttctacaacc agcaactacc caggctccaa tcacctttcc 360 agtaccactc gggtcttgaa ttttactctc cgccatcttc cgcgccgtcg tcaccgactt 420 cctctccagc ctcttccacc acccacctgc cagcgaccac agcggtggct gcggaatacc 480 ccaactcctt tgaggctcct tcgatgacac ccgtgtcctc ctataactct gcattcaaca 540 ttcagcatac cgcgacacca ccgtcctcac agccatactt gtcacaatac ccccaatacc 600 tttttgaaaa ctccccaatg ttggcgcaac agcctgtcgc aaacacccac ggctgggaaa 660 acaacctgca gctgctgagc tcggctcgca tgcagcacaa ggcatcaccg agtacctcgt 720 cgactcgatc tgcacctgca gggagctcgt accaaagatc taacgcttct acgctgtcga 780 agcctctacc cactcccgtc cagacaccta tccagaactc gtttctcgcc gcgccctatc 840 agcagaacta tgacacttcg gtgcatgatg gtagccaagc tgaagcggag atggtgagac 900 gggctgtgat ggaacagcag cagaagcagc aacagcaaca aagtcaccat cagcatcagc 960 caagtgatta ctcactggca ccttcggtat catcagtgag ccacaactca cctgttactc 1020 ctcagataaa accggaggaa cttgacgagg cctcgaaggc gatggtcaat ggtgagaaac 1080 gatatcctga tatagaccga tggatggatg attacttaca tctcgatgcc tttgcagact 1140 acaataacca caacggaaac aaccttccga tcggcattcc caaaatcaac cgaactatgt 1200 cggacatcta ccaagatgag ctctataacc cagctctcat gccgactcct caagtctcca 1260 aacagactac gaaccagcag aatcttctga acccgttcag aaacgtcttt gctgatcgac 1320 tgcaagccgc caatcagggc cacatgactg cacggtctca ttctcctgtt gttaacatgc 1380 accgggatcg gtctcctttc cgacagaact cgcccctggc tgctgagtac aacaatgggt 1440 tccagcagcc ccagatggcg accagtgtgc ctatgactca aaatgtaggc caaagtcaag 1500 gagaaggaga accgaagact atgtctccta aggatgccct gttggacttc aacgagggag 1560 atgacgccgg gattcctttg ttcccaacaa gtcaacctga cttcaacctt ggtgaagcac 1620 tcggcctccg acgtgaaagc tcatcatcct tcccgcagtc gcagaacttt acttccatgg 1680 agtcattccc cacgcaatac actacaccga atggacttcc ccagcagtat cccttcgcgc 1740 agcagcaaca agaccatcag cagcaacaac agaacaacct cctgcaccag acccccgaat 1800 tccctgcatc ccttcctcac tttgagtcta cgaacagtga tgccggggtc aacaacggtg 1860 tggcttctcc accggcacag cccacaatgg cgatgcgccc agtgaaggaa gagatcaccc 1920 gccctgagcg cacttctgcg gacagtggca cttacacttg cacttaccac ggctgcacgc 1980 ttcggtttga aacgcctacg aagctgcaga agcacaagcg cgaggcccac cgtcagacta 2040 cgcctggcgg ccacttggtt gggcgcgata cttccgcacg caactctcag gccggtcccc 2100 acaaatgtga gcggatcaat ccgtctacgg gaaagccatg caattctgtt ttctcccggc 2160 cttacgatct tacccggcac gaggacacga tccacaacgc acgcaagcag aaggtccggt 2220 gtcatctgtg cacggaagaa aagacctttt cgcgtaatga tgcgctgacc cggcacatgc 2280 gagtggtgca ccctgaggtc gattggcccg gcaagcaaag aaggagaggc agggagtaag 2340 cctgaatggg gttgtggtgt ca 2362 <210> 3 <211> 597 <212> PRT <213> Aspergillus oryzae <400> 3 Met Ala Pro Thr Val Gln Gly Gln Pro Ser Phe Ala Tyr Tyr Pro Thr   1 5 10 15 Ala Asp Ser Gln Arg Gln Gln Tyr Thr Ser His Pro Ala Glu Pro Gln              20 25 30 Pro Tyr Tyr Gly Gln Ile Gln Ala Phe Pro Gln Gln His Cys Leu Pro          35 40 45 Glu Gln Gln Pro Val Tyr Asn Ala Gln Pro Met Met Asn Met His Gln      50 55 60 Met Ala Thr Thr Asn Ala Phe Arg Gly Ala Met Asn Met Thr Pro Ile  65 70 75 80 Ala Ser Pro Gln Pro Ser His Leu Lys Pro Thr Ile Val Val Gln Gln                  85 90 95 Gly Ser Pro Ala Leu Met Pro Leu Asp Thr Arg Phe Val Gly Asp Tyr             100 105 110 Tyr Ser Phe Pro Ser Thr Pro Pro Leu Ser Thr Ala Gly Ser Ser Ile         115 120 125 Ser Ser Pro Pro Ser Ser Ser Gly Thr Leu His Thr Pro Ile Asn Asp     130 135 140 Cys Phe Phe Ser Phe Glu Lys Val Glu Gly Val Lys Glu Gly Cys Glu 145 150 155 160 Ser Asp Val His Ala Glu Leu Leu Ala Ser Ala Asp Trp Thr Arg Ser                 165 170 175 Ala Thr Ser Pro Pro Met Thr Pro Val Phe Ile Asn Ala Asn Ser Leu             180 185 190 Thr Ala Ser Gln Ser Ser Asp Phe Leu Ser Ala His Gly Ser Cys Pro         195 200 205 Ser Leu Ser Pro Ser Pro Leu Leu Val Ser Ser Val Phe Thr Pro Ser     210 215 220 Gln Ser Ala Phe Pro Val Glu Gln Ala Thr Ser Asp Phe Cys Asp Pro 225 230 235 240 Arg Gln Leu Thr Val Glu Ser Ser Val Asn Thr Ser Ser Pro Ala Glu                 245 250 255 Leu Pro Pro Leu Pro Thr Leu Ser Cys Asp Glu Glu Glu Pro Lys Val             260 265 270 Val Leu Gly Ser Glu Ala Val Thr Leu Pro Val His Glu Asp Pro Ser         275 280 285 Pro Ala Tyr Thr Ser Ser Thr Glu Asp Pro Leu Ser Ser Leu Pro Thr     290 295 300 Phe Asp Ser Phe Ser Asp Leu Asp Ser Glu Asp Glu Phe Val Asn Arg 305 310 315 320 Leu Val Asp Phe His Pro Ser Gly Asn Thr Tyr Tyr Val Gly Glu Lys                 325 330 335 Arg Gln Arg Leu Ser Ala Tyr Ser Phe Asp Asp Glu Glu Phe Leu Ser             340 345 350 Glu His Ser Leu Glu Asp Ser Ser Asp Asp Leu Glu Leu Ala His Ser         355 360 365 Gly Leu Ser Phe Leu Gly Cys Ala Asp Phe Ala Pro Ala Gln Ser Asp     370 375 380 Ala Ser Glu Thr Ala Asp Glu Met Lys Thr Lys Lys Arg Ser Asn Ser 385 390 395 400 Arg Lys Ser Leu Lys Arg Ala Asn Ser Glu Asp Gln Asp Ala Leu Lys                 405 410 415 Lys Ala Gln Ala Pro Ile Asn Ser Arg Ala Asn Ser Thr Glu Ala Asn             420 425 430 Val Ala Gln Gln Ala Ala Ala Pro Ser Cys Ser Ala Ser Glu Ala Asn         435 445 440 Val Ser Ser Ser Cys Glu Ala Pro Ser Val Pro Val Ser Val Asn Arg     450 455 460 Arg Gly Arg Lys Gln Ser Leu Thr Asp Asp Pro Ser Lys Thr Phe Val 465 470 475 480 Cys Ser Leu Cys Ser Arg Arg Phe Arg Arg Gln Glu His Leu Lys Arg                 485 490 495 His Tyr Arg Ser Leu His Thr Gln Asp Lys Pro Phe Glu Cys Asn Glu             500 505 510 Cys Gly Lys Lys Phe Ser Arg Ser Asp Asn Leu Ala Gln His Ala Arg         515 520 525 Thr His Ala Gly Gly Ser Ile Val Met Gly Val Leu Asp Thr Asn Asn     530 535 540 Ala Ser Glu Arg Tyr Asp Asn Arg Asp Ala Ser Thr Met Gly Ala Val 545 550 555 560 Leu Tyr Glu Ala Ala Thr Leu Arg Arg Pro Ser Arg Arg Leu Ala Asn                 565 570 575 His Pro Lys Met Gly Phe Leu Thr His Pro His Arg Ser Ser Ala Arg             580 585 590 Gln Glu Ala Gln Ala         595 597 <210> 4 <211> 3167 <212> DNA <213> Aspergillus oryzae <400> 4 ggggccggtt gggggccctc ccggggttgg gttacgggaa aagtttcaag ggccaaagga 60 aaaaaaaggt aaaaaagatt tagggaaaaa aaggccaaaa aaaagggcct tggaaaaagg 120 aattcccaag aacctttccc ccaaaaggtt aattggggta ggggaaccat tggggtttct 180 taccaaggtt tttcccttta tcctttgccc ccttcaggga aaaatttact tattatccta 240 gggaatttgg ccccccccag gggggggatc cctgggattt aagggggggt gccccccggc 300 ccccccctaa gggggttccc ccctttttag ggattttttt ttttttggaa attaaatttc 360 ctttcccttt ttttttaaaa aaaataaaat cttttcggtt ttattttatt ttttataata 420 aaaaaattcc taattataat tataaatccg ggtattttta gggataaatt ctaggtttta 480 actaccctcc ctcccttttc cccgggcccc cccccctcca aatagacaag acggactaaa 540 actaaaaagt acggctccag tcctacgact aactctcact acgcacggcg ctactaagtc 600 gtagcacaag cagatcagtc tctcttttat ccactgtcca tccttctggc cgtctgtccc 660 tcttcccttt cccatatcgg ccctgtctct cgtttccccg cgactgtcca ttagtcctct 720 ttatttctta gtcttttcct tttttccctt tttagacttg tctcgattct ctgtccttcc 780 cttcgttatt tcttattttt tggctttgat ccccatctct ctcttctctc tcttctttta 840 ctcatcatct gtctccggta cctttgatcg tgatcgtccg aatccaaaag gtggctcgta 900 tcgaccagag gttcctgtcc ttccttctat cagatataac tataccgtac attcacactc 960 agaagcccag aagacgttgc atattttata aaccctaatt cggactgcac tcttctgcct 1020 tcagtcattc attcatccag aacaagagac atctacattc attcaaccta cagtgctcga 1080 catctatcat tagcaccaag ctgcctcgac atcaatctgg aacatcctga cttagactaa 1140 acatacttaa taatacccaa gaggttaagc agtgttcgct tgatcctcat cacattcatc 1200 attggttcgt ggaaggatga ctatatatca tacaggatgc ccatactgat ccctcgtctt 1260 ctagtcacaa tggacgctac atacaccatg gcaccaacgg tgcaaggaca accatcattt 1320 gcatactacc ccactgctga ttcacaaaga caacaataca caagccaccc ggctgagccc 1380 cagccatact atggacagat tcaggccttc cctcagcaac actgcctacc agagcaacaa 1440 ccggtctaca atgctcaacc catgatgaac atgcatcaga tggctaccac caatgccttc 1500 cgcggagcaa tgaacatgac tcccatcgcc tctccccaac catctcacct gaagcccaca 1560 atcgtcgtcc agcagggttc cccagccctc atgcctttgg acacaaggtt cgtcggtgac 1620 tactatagct tcccttctac ccctccactc tccaccgcgg gaagttctat cagcagcccg 1680 ccatccagca gtggcacctt gcacacccca atcaacgact gcttcttctc attcgaaaag 1740 gtggagggtg taaaggaggg ttgtgaaagt gacgtccatg ccgagctttt ggccagtgcc 1800 gactggactc ggtcagcaac ttcgcctccc atgactcctg gtatgttttc ttctcatcag 1860 ttgagtaggg ggttggaacc agtctaactt cttctagtct tcatcaacgc caattctctc 1920 accgccagtc agagctcaga cttcctctct gcccacgggt cttgcccctc tctttctcct 1980 tcgcctctcc tggtatcttc cgtgtttact ccgtctcagt cggctttccc tgttgagcag 2040 tcgcctctcc tggtatcttc cgtgtttact ccgtctcagt cggctttccc tgttgagcag 2040 gccacctccg acttctgtga ccctcggcag ctgactgtcg agtcttccgt caacacatcc 2100 tctcccgctg agcttcctcc tttgcccact ctctcctgcg atgaggagga accgaaggtg 2160 gtcctgggaa gcgaggctgt gactttgcca gttcatgagg acccatcacc cgcttacact 2220 agctctaccg aggaccccct cagttcgttg cccacttttg acagcttctc cgaccttgat 2280 tcggaggacg agtttgtcaa ccgcttggtt gacttccatc ccagcggtaa tacttactac 2340 gtgggcgaaa agagacagcg cctcagcgca tactccttcg atgacgagga gttcttgagc 2400 gagcacagct tggaagattc ttcagacgac ctggagttgg cccactctgg cctttctttc 2460 ctgggatgcg ccgatttcgc tccggctcaa agtgatgcca gcgagaccgc tgacgagatg 2520 aagacaaaga agcgaagcaa ctcccgcaag tctctcaaga gagcaaactc tgaggaccag 2580 gatgctctca agaaggcaca ggcaccgatc aacagccggg ccaacagcac agaggccaac 2640 gtggctcagc aggcagctgc tccgtcctgc tcagcctcgg aagccaatgt atctagctcc 2700 tgcgaggccc catctgttcc tgtgtcggtc aaccgccggg gtcgtaagca atccctgacg 2760 gatgatcctt ccaagacctt tgtctgctct ctctgctctc gtcgtttccg tcgtcaggag 2820 caccttaagc gtcactaccg ctctctgcac acccaggaca agcccttcga gtgcaacgag 2880 tgtggtaaga agttttctcg gagtgacaac cttgcgcagc atgccaggac ccatgccggt 2940 ggctctatcg tgatgggtgt cctggacacg aacaacgcat ctgaacggta tgataatcgc 3000 gacgcgagta ccatgggtgc tgtgctctat gaagctgcca cgctgcggcg accaagtcga 3060 cgactagcga atcatccgaa gatggggttt ctgacgcacc ctcatcgatc gtcggcccgc 3120 caagaagcgc aagcgtgacg agcactttag ttgcccccat tgccggt 3167 <210> 5 <211> 468 <212> PRT <213> Aspergillus oryzae <400> 5 Met Ala Ser Ile Asp Pro Asn Val Pro Thr Thr Thr Leu Pro Tyr Thr   1 5 10 15 Cys Asn Thr Cys Leu Val Ala Phe Arg Gly Ser Asp Ala Gln Arg Asp              20 25 30 His Met Arg Lys Asp Trp His Leu Tyr Asn Met Lys Arg Arg Ile Ala          35 40 45 Ser Leu Pro Pro Val Ser Gln Glu Val Phe Asn Asp Lys Val Leu Ala      50 55 60 Ala Lys Ala Thr Thr Ser Ala Ala Ala Ala Lys Ala Ser Phe Glu Lys  65 70 75 80 Thr Cys Val Ala Cys Gln Lys Thr Phe Phe Ser Glu Asn Ser Tyr Gln                  85 90 95 Asn His Val Lys Ser Ser Lys His Lys Ala Arg Glu Ala Gln Met Leu             100 105 110 Arg Asp Ser Ala Asp Asp Ala Ser Ser Val Met Ser Ser Thr Phe Ser         115 120 125 Leu Gly Glu Pro Val Asn Lys Pro Arg Glu Arg Ser Glu Val Ser Lys     130 135 140 Val Thr Glu Ser Leu Lys Asn Ala Thr Ile Glu Glu Asp Asp Glu Asp 145 150 155 160 Glu Glu Met Glu Glu Gln Gly Phe Ser Ala Ser Arg Cys Leu Phe Cys                 165 170 175 Asn Glu Lys Ser Ser Asp Leu Gln Gln Asn Thr Glu His Met Phe Lys             180 185 190 Thr His Gly Met Phe Ile Pro Glu Lys Asp Tyr Leu Val Asp Leu Glu         195 200 205 Gly Leu Val His Tyr Leu Tyr Arg Lys Ile Asn Glu Asn Ser Glu Cys     210 215 220 Leu Tyr Cys His Ala Val Arg Asn Asn Pro Glu Gly Ala Arg Thr His 225 230 235 240 Met Arg Asp Lys Gly His Cys Met Ile Ala Phe Glu Lys Gln Asp Glu                 245 250 255 Gln Val Glu Ile Gly Gln Phe Tyr Asp Phe Arg Ser Thr Tyr Ser Asp             260 265 270 Gly Glu Gly Glu Asp Glu Glu Asp Ser Ile Met Glu Asp Gly Gly Val         275 280 285 Lys Val Asp Gly Glu Asp Asp Glu Gly Trp Glu Thr Glu Thr Ser Ala     290 295 300 Ser Ser Met Asp Asp Asp Glu Asp Glu Leu Asp Asp Thr Lys Gly Gln 305 310 315 320 Val Tyr Ala Thr Glu Phe Glu Leu His Leu Pro Ser Gly Arg Thr Ala                 325 330 335 Gly His Arg Ser Leu Ala Lys Tyr Tyr Arg Gln Asn Leu Arg Asn Tyr             340 345 350 Pro Thr Ala Glu Glu Arg Ala Ala Arg Gln Leu Ala Ile Glu Asn Gly         355 360 365 Glu Ile Glu Glu Glu Glu Pro Lys Pro Arg Gly Arg Asp Leu Asn Arg     370 375 380 Ala Val Pro Glu Ala Phe Ala Ala Glu Leu Glu Arg Lys Asp Arg Thr 385 390 395 400 Arg Ala Gln Arg Gln Glu Lys Arg Tyr Thr Ala Arg Val Asn Arg Ala                 405 410 415 Ala Asn Asn Gln Lys His Phe Arg Val Cys Phe Ile Pro Leu Leu Ile             420 425 430 Ile Arg Gln Ala Asn Thr Pro Ser Arg Ile Pro Ser Cys Ser Arg Phe         435 440 445 Leu Tyr Leu Ile Cys Leu Arg Ala Cys Trp His Cys Leu Ala Lys Ser     450 455 460 Trp Ser Tyr Gly 465 468 <210> 6 <211> 2337 <212> DNA <213> Aspergillus oryzae <400> 6 tggtcgacgg cccgggctgg tatcatacgg actgacacac cagcctcagg cgccaagcat 60 gaggccggct gactaacatt aaatggaaga agtatgatcc gatcgttgat gcactaggct 120 tgatatagat agggccttcc cagacaggat tagtggaggg gcacgtgcaa tcaacgtcat 180 gttctctaaa agcggcatgg gcaatggttt tcaatgtgtg gtccgggtta tcggcgacat 240 cgattactag cccgatcttt tctgtcgagg ggcaatattg cgcccgcttc actttctcgc 300 tagatacttc ctaccggctt ttatttctaa tcaggcccaa aactttctgt gacgactacg 360 cctggttttg ctttttcatt gctcttgcaa aaacgaatac ccccgcgcaa tatatattcc 420 cacaaccgat cgccttttca tcaaatttat ttctgtgata cccacctttt ttttttttgt 480 tccatatcag gaactgtcag aaatcatggc ctccatcgat ccaaatgtac caacaactac 540 gttgccatat acctgcaaca cctgtctcgt tgcttttcgc ggtagcgatg ctcagcggga 600 tcatatgcgc aaggactggc agtaagtttg ttggaaaata tacgactcag aatgcattac 660 taatgttcgg tcgactcaag tctctataac atgaagcgcc gcatcgcgtc tctgccccca 720 gtgtcccagg aggtttttaa cgacaaggtc cttgctgcca aagccacaac tagtgctgcc 780 gccgccaaag cttcctttga gaagacatgt gtcgcctgcc agaagacatt cttcagcgag 840 aactcgtatc agaaccacgt gaagagttcc aagcacaagg cccgtgaggc acagatgctt 900 agagacagcg ccgatgatgc atcgtctgtc atgagttcta ctttctctct gggcgagcca 960 gtcaacaagc ctcgtgagcg gtcggaggtg tcgaaagtta cggagagtct caagaacgct 1020 accatcgaag aggatgacga agatgaggaa atggaagagc agggcttctc ggcctcccgt 1080 tgtcttttct gtaatgagaa atcttcagat cttcaacaaa acaccgagca catgttcaag 1140 acccacggca tgttcatacc agagaaggac tatcttgttg atttggaggg acttgtccac 1200 tatctttatc ggaagatcaa tgagaacagt gaatgtttat actgccatgc cgtccgaaac 1260 ggtgagggtg aggatgagga ggactcgatc atggaggatg gtggtgtcaa ggtggatggc 1440 gaggatgatg agggatggga aaccgaaact tctgcatctt ctatggatga cgatgaggat 1500 gagctcgacg acacgaaggg acaggtctat gcgacagagt ttgagctgca tttgccctca 1560 ggccgcactg caggtcaccg atcgctcgcc aaatactacc gccagaactt gcgtaactac 1620 cctacagcgg aagaacgggc agctcgtcag ctggctattg aaaatggcga gattgaggag 1680 gaggaaccga aacccagggg tcgcgacctc aatcgggccg ttgttagccg tggcaatggc 1740 ggtattgggt atgatcggtg ctactgacag ccagaagcat ttgctgctga gcttgaacgc 1800 aaagaccgga ctcgtgccca gcgacaagag aagcggtaca cagctcgggt caaccgggct 1860 gccaataacc agaagcactt cagggtatgt ttcatccctt tactgataat aagacaagct 1920 aacaccccct ctaggatccc ctcctgcagt agattcctgt atctgatttg tttgcgtgca 1980 tgttggcatt gtttggcaaa atcatggagt tacggctgaa tgacctgtag atactcatgg 2040 caagataaaa agtgattatt aagaagatga aggatattac ttcgcattcc tgctatcttt 2100 actattttag acagtgctgc atcttatgac ggatataccg aaggtctacc agactgaagg 2160 tgaatcaagt cctacatcta accccccgac caaaccctaa gtcaccacat ctcacagaac 2220 cgatagcaaa cttacaatca agcaccataa caacaaacca ggaccacaaa taataatata 2280 tgaacatcat atcactttac cagcccgggc cgtcgaccac gcgtgcccta tagtgag 2337 <210> 7 <211> 97 <212> DNA <213> Artificial Sequence <400> 7 gagaactaag agaatggcgg cacgggcaga tgtcgggatg atcactttta gtcectccga 60 cgcaatatcg atttcaattg gatccgccac gctgcat 97

【図面の簡単な説明】[Brief description of drawings]

【図1】glaBプロモーター中の固体培養高発現に必
須な領域の同定を示す。
FIG. 1 shows the identification of a region essential for high expression in solid culture in the glaB promoter.

【図2】glaBプロモーターcis因子を用いたプロ
モータータイトレーションアッセイを示す。
FIG. 2 shows a promoter titration assay using the glaB promoter cis factor.

【図3】sgbR1、sgbR2及びsgbR3のノー
ザン解析用のパターンを示す図面代用写真である。
FIG. 3 is a drawing-substituting photograph showing a pattern for Northern analysis of sgbR1, sgbR2, and sgbR3.

【図4】sgbR1、sgbR2及びsgbR3のコサ
プレッションアッセイを示す。
FIG. 4 shows cosuppression assays for sgbR1, sgbR2 and sgbR3.

【図5】sgbR1、sgbR2及びsgbR3のゲル
シフトアッセイのパターンを示す図面代用写真である。
FIG. 5 is a drawing-substituting photograph showing a pattern of a gel shift assay of sgbR1, sgbR2, and sgbR3.

【図6】本転写因子sgbR1タンパク質のアミノ酸配
列を示す。
FIG. 6 shows the amino acid sequence of the present transcription factor sgbR1 protein.

【図7】同上続きを示す。FIG. 7 shows the continuation of the above.

【図8】同上続きを示す。FIG. 8 shows the continuation of the above.

【図9】本転写因子sgbR1遺伝子の塩基配列を示
す。
FIG. 9 shows the nucleotide sequence of the present transcription factor sgbR1 gene.

【図10】同上続きを示す。FIG. 10 shows the continuation of the above.

【図11】本転写因子sgbR2タンパク質のアミノ酸
配列を示す。
FIG. 11 shows the amino acid sequence of the present transcription factor sgbR2 protein.

【図12】同上続きを示す。FIG. 12 shows the continuation of the above.

【図13】同上続きを示す。FIG. 13 shows the continuation of the above.

【図14】本転写因子sgbR2遺伝子の塩基配列を示
す。
FIG. 14 shows the nucleotide sequence of the transcription factor sgbR2 gene.

【図15】同上続きを示す。FIG. 15 shows the continuation of the above.

【図16】本転写因子sgbR3タンパク質のアミノ酸
配列を示す。
FIG. 16 shows the amino acid sequence of the present transcription factor sgbR3 protein.

【図17】同上続きを示す。FIG. 17 shows the continuation of the above.

【図18】同上続きを示す。FIG. 18 shows the continuation of the above.

【図19】本転写因子sgbR3遺伝子の塩基配列を示
す。
FIG. 19 shows the nucleotide sequence of the transcription factor sgbR3 gene.

【図20】同上続きを示す。FIG. 20 shows the continuation of the above.

【図21】固体培養発現遺伝子cis因子(97bp)
の塩基配列を示す。
FIG. 21: Solid culture expression gene cis factor (97 bp)
The base sequence of is shown.

【図22】プロモーター解析用プラスミドpNGUSを
示す。
FIG. 22 shows a plasmid pNGUS for promoter analysis.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 5/10 C12N 15/00 A C12P 21/02 5/00 A (72)発明者 秦 洋二 京都市伏見区片原町300 月桂冠株式会社 総合研究所内 (72)発明者 川戸 章嗣 京都市伏見区下鳥羽小柳町24 月桂冠株式 会社総合研究所内 (72)発明者 赤尾 健 広島県東広島市鏡山三丁目7番1号 独立 行政法人 酒類総合研究所内 Fターム(参考) 4B024 AA20 BA80 DA11 FA02 4B064 AG01 CA19 CC24 4B065 AA26X AA63X AA63Y AB01 CA24 4H045 AA10 AA20 BA10 CA15 FA74─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12N 5/10 C12N 15/00 A C12P 21/02 5/00 A (72) Inventor Yoji Hata Fushimi, Kyoto 300 Katahara-cho, Gekkei-cho Co., Ltd. in the General Research Institute (72) Inventor Shoji Kawado 24 Shimotoba Koyanagi-cho, Fushimi-ku, Kyoto City In the General Research Institute, Keikei-sha Co., Ltd. (72) Ken Akao 3-7-1 Kagamiyama, Higashihiroshima City, Hiroshima Prefecture No. F-term in the National Institute of Alcoholic Beverages (Reference) 4B024 AA20 BA80 DA11 FA02 4B064 AG01 CA19 CC24 4B065 AA26X AA63X AA63Y AB01 CA24 4H045 AA10 AA20 BA10 CA15 FA74

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1、3、5にそれぞれ
示すアミノ酸配列の少なくともひとつを有する、固体培
養応答性のcis因子下流の遺伝子の転写を制御するタ
ンパク質。
1. A protein which controls the transcription of a gene downstream of a cis factor which is responsive to solid-state culture, and which has at least one of the amino acid sequences shown in SEQ ID NOs: 1, 3 and 5, respectively.
【請求項2】 配列番号2、4、6にそれぞれ示す塩基
配列の少なくともひとつを有する、固体培養応答性のc
is因子下流の遺伝子の転写を制御するタンパク質をコ
ードする遺伝子のDNA。
2. A solid-culture responsive c having at least one of the nucleotide sequences shown in SEQ ID NOs: 2, 4, and 6, respectively.
DNA of a gene encoding a protein that controls the transcription of a gene downstream of the is factor.
【請求項3】 請求項2に記載のDNAの内、少なくと
もコーディング領域を含んでなる組換えベクター。
3. A recombinant vector comprising at least a coding region of the DNA according to claim 2.
【請求項4】 組換えベクターpSGBR1、又はpS
GBR2、又はpSGBR3。
4. A recombinant vector pSGBR1 or pS
GBR2, or pSGBR3.
【請求項5】 請求項3又は4に記載の組換えベクター
を導入してなる形質転換体。
5. A transformant obtained by introducing the recombinant vector according to claim 3 or 4.
【請求項6】 形質転換体、Escherichia
coli SGBR1(FERM P−18357)、
又はEscherichia coli SGBR2
(FERM P−18358)、又はEscheric
hia coli SGBR3(FERM P−183
59)。
6. A transformant, Escherichia
coli SGBR1 (FERM P-18357),
Or Escherichia coli SGBR2
(FERM P-18358), or Escheric
hia coli SGBR3 (FERM P-183
59).
【請求項7】 請求項2に記載のDNAを導入してなる
麹菌において、固体培養応答性のcis因子下流の遺伝
子の転写を制御するタンパク質を生産させる方法。
7. A method for producing a protein which controls transcription of a gene downstream of a cis factor responsive to solid culture in the koji mold into which the DNA according to claim 2 is introduced.
【請求項8】 請求項1に記載のタンパク質を麹菌体内
で発現させ、固体培養発現遺伝子群の生産を制御する方
法。
8. A method of controlling the production of a solid culture-expressed gene group by expressing the protein according to claim 1 in Aspergillus oryzae.
JP2001190356A 2001-06-22 2001-06-22 Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria Withdrawn JP2003000240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190356A JP2003000240A (en) 2001-06-22 2001-06-22 Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190356A JP2003000240A (en) 2001-06-22 2001-06-22 Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria

Publications (1)

Publication Number Publication Date
JP2003000240A true JP2003000240A (en) 2003-01-07

Family

ID=19029135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190356A Withdrawn JP2003000240A (en) 2001-06-22 2001-06-22 Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria

Country Status (1)

Country Link
JP (1) JP2003000240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034782A1 (en) 2005-09-26 2007-03-29 Noda Institute For Scientific Research Recombinant vector capable of increasing secretion of koji mold protease
WO2015100856A1 (en) * 2013-12-30 2015-07-09 广东启智生物科技有限公司 Genetic recombinant saccharomyces cerevisiae capable of degrading and utilizing kitchen wastes
JP2021528985A (en) * 2018-06-27 2021-10-28 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Means and methods for increasing protein expression by the use of transcription factors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034782A1 (en) 2005-09-26 2007-03-29 Noda Institute For Scientific Research Recombinant vector capable of increasing secretion of koji mold protease
US7842799B2 (en) 2005-09-26 2010-11-30 Noda Institute For Scientific Research Recombinant vector capable of increasing secretion of Koji mold protease
WO2015100856A1 (en) * 2013-12-30 2015-07-09 广东启智生物科技有限公司 Genetic recombinant saccharomyces cerevisiae capable of degrading and utilizing kitchen wastes
US10584359B2 (en) 2013-12-30 2020-03-10 Guangdong Recyclean Low-Carbon Technology Genetically recombinant Saccharomyces cerevisiae for degrading kitchen waste
JP2021528985A (en) * 2018-06-27 2021-10-28 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Means and methods for increasing protein expression by the use of transcription factors

Similar Documents

Publication Publication Date Title
KR102504198B1 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
KR102253479B1 (en) Promoter variant
CN109477115B (en) Expression system for eukaryotes
EP2106447B1 (en) Method for methanol independent induction from methanol inducible promoters in pichia
WO1997044470A1 (en) Novel yeast promoters suitable for expression cloning in yeast and heterologous expression of proteins in yeast
Sophianopoulou et al. The proline transport protein of Aspergillus nidulans is very similar to amino acid transporters of Saccharomyces cerevisiae
Sakamoto et al. Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia
WO1996032475A2 (en) Methods for preparing dna-binding proteins
EP3265475B1 (en) Constitutive yeast llp promoter-based expression system
EP1799821A2 (en) Homologous amds genes as selectable marker
US8710205B2 (en) Transcription factor
JP2003000240A (en) Dna encoding transcription factor for controlling solid culture-expressing gene of koji bacteria
US7285399B2 (en) Compositions and methods using the yeast YMR107W promoter
EP2013342A1 (en) Auto- inducible sodium phosphate symporter promoter from pichia pastoris and method for producing recombinant protein using it
JPH08266290A (en) Penicillin v amide hydrolase gene from fusarium oxysporum
JPWO2006046694A1 (en) Gene screening method using yeast with ergosterol synthase expressed inducibly
US7718398B2 (en) Promoters having a modified transcription efficiency and derived from methyltrophic yeast
Janus et al. Identification of a minimal cre1 promoter sequence promoting glucose-dependent gene expression in the β-lactam producer Acremonium chrysogenum
JP4587750B2 (en) Candida utilis-derived gene encoding transcriptional activation protein
JP4671394B2 (en) Promoter DNA from Candida utilis
WO2023184539A1 (en) Methanol-inducible promoter and use thereof in preparation of l-alanyl-l-glutamine
Hynes et al. Regulation of acetamide catabolism
Hynes et al. Regulation of the amdS gene in Aspergillus nidulans
JP2003144171A (en) New promoter derived from microorganism of genus aspergillus
CN114606255A (en) Method for detecting multiple gene regulation downstream genes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080430

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090622