JP2002541427A - Composite armor and manufacturing method thereof - Google Patents

Composite armor and manufacturing method thereof

Info

Publication number
JP2002541427A
JP2002541427A JP2000611025A JP2000611025A JP2002541427A JP 2002541427 A JP2002541427 A JP 2002541427A JP 2000611025 A JP2000611025 A JP 2000611025A JP 2000611025 A JP2000611025 A JP 2000611025A JP 2002541427 A JP2002541427 A JP 2002541427A
Authority
JP
Japan
Prior art keywords
silicon carbide
armored
composite component
fibers
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000611025A
Other languages
Japanese (ja)
Inventor
コンペア,ポール
ダーデン,ウィリアム,エス.
トレジャー,モンテ,エイ.
シングラー,ロバート,イー.
ディボナ,ガリー,エス.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Textron Systems Corp
Original Assignee
Textron Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textron Systems Corp filed Critical Textron Systems Corp
Publication of JP2002541427A publication Critical patent/JP2002541427A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00974Uses not provided for elsewhere in C04B2111/00 for pyrotechnic applications, e.g. blasting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】 装甲車両または装甲服中の複合成分は、そこに埋め込まれたセラミック繊維を有する反応焼結セラミックマトリックスを含む。好ましくは、反応焼結セラミックマトリックスはニトリド結合炭化ケイ素を含み、セラミック繊維は炭化ケイ素を含む。マトリックスは、さらにニトリド結合炭化ホウ素を含みうる。本発明の方法において、不織モノフィラメント炭化ケイ素の層が形成され、炭化ケイ素およびケイ素粉体を含むスリップが層の周囲に供され、層の周囲にマトリックスが形成される。次いで、ケイ素/炭化ケイ素マトリックスが反応焼結されて、本発明の複合成分が形成される。 SUMMARY A composite component in an armored vehicle or armored garment includes a reactive sintered ceramic matrix having ceramic fibers embedded therein. Preferably, the reaction sintered ceramic matrix comprises nitride bonded silicon carbide and the ceramic fibers comprise silicon carbide. The matrix may further include a nitride-bound boron carbide. In the method of the present invention, a layer of non-woven monofilament silicon carbide is formed, a slip comprising silicon carbide and silicon powder is provided around the layer, and a matrix is formed around the layer. The silicon / silicon carbide matrix is then reaction sintered to form the composite component of the present invention.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 関連出願 本出願は、1999年3月31日に出願された米国仮出願第60/127,2
45号の優先権を主張し、同出願が教示している内容は、参照により全て本発明
の開示の一部を構成するものとする。
Related Application This application is related to US Provisional Application No. 60 / 127,2, filed March 31, 1999.
No. 45, which claims priority and is incorporated by reference in its entirety, and is hereby incorporated by reference.

【0002】 背景技術 従来の装甲(armor)は一般に、KEVLARパラ−アラミドクロス(W
ilmington,Delaware,USAのE.I.DuPont de
Nemoursから入手可能)、SPECTRAポリエチレン織物(Morr
istown,New Jersey,USAのHoneywellから入手可
能)、繊維ガラスクロス、ゴム、またはアルミニウムハネカム(honeyco
mb)のような裏材料に付着された酸化アルミニウム(Al2 3 )、炭化ケイ
素(SiC)または炭化ホウ素(B4 C)のようなモノリシック成分を含む。こ
の種の装甲は、戦車、航空機、宇宙ステーション等のような乗物を保護し、例え
ば防弾チョッキに組み込まれる場合は軍人および警官を含む固体を保護するのに
日常的に使用される。
BACKGROUND OF THE INVENTION Conventional armor is generally known as KEVLAR para-aramid cloth (W
E. Ilmington, Delaware, USA. I. DuPont de
Nemours), SPECTRA polyethylene fabric (Morr)
available from Honeywell, iston, New Jersey, USA), fiberglass cloth, rubber, or aluminum honeycomb (honeyco).
mb) comprising a monolithic component such as aluminum oxide (Al 2 O 3 ), silicon carbide (SiC) or boron carbide (B 4 C) attached to a backing material. This type of armor is routinely used to protect vehicles such as tanks, aircraft, space stations, etc., and to protect solids including military personnel and police officers, for example, when incorporated in bulletproof vests.

【0003】 最近、モノリシック材料ではなく、むしろ複合材料から保護具を製造する努力
がなされている。複合材料を使用する主な利点は、モノリシック材料と比較して
高い破壊靱性を与えうることである。しかし、このような努力は、ホットプレス
複合材料に焦点を当てている。ホットプレスは緻密複合材料の製造に有効である
が、この方法はコストが高く、単純な形の製造に限定される。さらに、ホットプ
レスは一般に焼結補助剤を使用する必要があり、ホットプレスに必要とされる高
温(一般に1600℃より高い)がマトリックス中に配置される連続繊維を崩壊
させる傾向がある。
Recently, efforts have been made to manufacture protective gear from composite materials, rather than monolithic materials. The main advantage of using composite materials is that they can provide higher fracture toughness compared to monolithic materials. However, such efforts have focused on hot pressed composites. Although hot pressing is effective for producing dense composites, this method is expensive and is limited to producing simple shapes. Furthermore, hot pressing generally requires the use of sintering aids, and the high temperatures required for hot pressing (generally above 1600 ° C.) tend to disrupt the continuous fibers placed in the matrix.

【0004】 発明の要旨 本発明の複合成分(composite element)は、車両下部構造(substructure)
上の、または着用者を投射物から保護するために着用される装甲服(armored ga
rment)中の、装甲殻の成分である。本発明の複合成分は、セラミック繊維を埋
め込まれた反応焼結セラミックマトリックスを含む。
SUMMARY OF THE INVENTION [0004] The composite element of the present invention is a vehicle substructure.
Armored ga on top or to protect the wearer from projectiles
rment) is a component of the armor shell. The composite component of the present invention comprises a reaction sintered ceramic matrix with embedded ceramic fibers.

【0005】 本発明の方法において、不織モノフィラメント炭化ケイ素繊維の層を形成し、
炭化ケイ素(SiC)粉体およびケイ素粉体を含むスリップ(slip)を層の回り
に供して(cast)、層の回りにマトリックスを形成する。次に、マトリックスを
反応焼結させて、本発明の複合成分を形成する。その代わりとして、炭化ケイ素
粉体を少なくとも部分的に炭化ホウ素(B4 C)で置き換えることもできる。次
に、複合成分を車両下部構造または人によって着用される衣服に付着させて、車
両/着用者を弾道(ballistics)(例えば、用途に依存して銃弾、爆発物および
/またはミサイル)から保護する。
In the method of the present invention, a layer of non-woven monofilament silicon carbide fibers is formed,
A slip containing silicon carbide (SiC) powder and silicon powder is cast around the layer to form a matrix around the layer. Next, the matrix is reaction sintered to form the composite component of the present invention. Alternatively, the silicon carbide powder can be at least partially replaced by boron carbide (B 4 C). The composite component is then applied to the vehicle undercarriage or clothing worn by a person to protect the vehicle / wearer from ballistics (eg, bullets, explosives and / or missiles depending on the application). .

【0006】 本発明の複合成分および方法は、コスト、性能、製造容易性の点で、多くの利
点を有する。例えば、本発明の反応焼結複合成分は、ホットプレス複合材料より
低いコストで製造することができ、反応焼結法は、連続繊維強化材の組み込みを
可能にする。さらに、本発明の複合成分は、一般的なホットプレス複合材料と比
較してそれらの高多孔性にも拘わらず、多くの弾道衝撃に耐えることができる。
さらに、本発明の反応焼結複合成分は、種々の複雑な形状に簡単に形成すること
ができ、ホットプレス複合体と比較してはるかに優れたデザイン自由性であり、
車両および身体装甲に必要とされる最適な形により良く適合させることができる
。さらに、本発明の反応焼結法は、ホットプレスまたは焼結に必要とされるより
かなり低い温度および圧力において、マトリックス粒子を結合させる。
[0006] The composite components and methods of the present invention have many advantages in terms of cost, performance, and ease of manufacture. For example, the reaction sintered composite component of the present invention can be manufactured at a lower cost than a hot pressed composite, and the reaction sintering method allows for the incorporation of continuous fiber reinforcement. Furthermore, the composite components of the present invention can withstand many ballistic impacts despite their high porosity compared to common hot pressed composites.
Furthermore, the reaction-sintered composite component of the present invention can be easily formed into various complicated shapes, and has much better design freedom as compared to a hot-pressed composite,
It can be better adapted to the optimal shape required for the vehicle and body armor. Further, the reactive sintering method of the present invention binds the matrix particles at much lower temperatures and pressures than required for hot pressing or sintering.

【0007】 図面に示される本発明の好ましい態様についての下記の詳細な説明から、本発
明の前記およびその他の目的、特徴および利点が明らかである。図面は必ずしも
一定の縮小比ではなく、本発明の原理を示すことを重要視している。
[0007] The foregoing and other objects, features and advantages of the invention will be apparent from the following detailed description of preferred embodiments of the invention, as illustrated in the drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

【0008】 発明の詳細な説明 本発明は一般に、反応焼結セラミックマトリックスに埋め込まれたセラミック
繊維を含む少なくとも1つの複合成分を含んでなる装甲車両および装甲服に関す
る。本明細書において使用される「装甲」という用語は、弾道貫通を防止するよ
うにデザインされた保護被覆を意味する。さらに、「繊維」(fiber )および「
複数の繊維」(fibers)という用語は、本明細書において互換的に使用されて、
1つの長いフィラメントまたは複数のフィラメントを意味する。 「装甲服」お
よび「身体装甲(body armor)」という用語も、本明細書において互換的に使用
される。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to armored vehicles and armored garments comprising at least one composite component including ceramic fibers embedded in a reactive sintered ceramic matrix. The term "armor" as used herein refers to a protective covering designed to prevent ballistic penetration. In addition, "fiber" and "
The term "fibers" is used interchangeably herein,
Means one long filament or multiple filaments. The terms "armored clothing" and "body armor" are also used interchangeably herein.

【0009】 本発明の複合装甲の好ましい態様において、半硬質身体装甲を製造するための
KEVLARまたは繊維ガラスクロスのような織物か、あるいはゴムのスラブま
たはアルミニウムハネカムのような基材に、本発明の反応焼結複合成分を結合さ
せるかまたは固定させて複合装甲を製造する。図1に示す身体装甲10の場合は
、複合成分12が、銃弾または他の弾道による傷害から該チョッキの着用者を保
護するようにデザインされた衣服の成分である。後者の場合は、航空機、宇宙船
、または陸上車両(例えば、図2に示す戦車20)のような車両構成物24に、
複合装甲22を付着させて、銃弾、ミサイルおよび爆発物から車両を保護する。
In a preferred embodiment of the composite armor of the present invention, the present invention is applied to a fabric such as KEVLAR or fiberglass cloth for producing semi-rigid body armor, or to a substrate such as a rubber slab or aluminum honeycomb. The reaction sintering composite components are combined or fixed to produce a composite armor. In the case of the body armor 10 shown in FIG. 1, the composite component 12 is a component of the garment designed to protect the wearer of the vest from ammunition from bullets or other ballistics. In the latter case, a vehicle component 24 such as an aircraft, spacecraft, or land vehicle (eg, the tank 20 shown in FIG. 2)
A composite armor 22 is attached to protect the vehicle from bullets, missiles and explosives.

【0010】 本発明の装甲服または「身体装甲」は、硬質または半硬質デザインにすること
ができる。硬質身体装甲において、複合成分は一般に、人体の所定部分を覆うよ
うにデザインされた大きい成形パネルである。半硬質装甲服は一般に、例えばK
EVLARクロスのような織布弾道材料(moven ballistic material)で強化し
た比較的小さい可動結合プレートの形態の複数の複合成分を含む。
[0010] The armor or "body armor" of the present invention can be of a rigid or semi-rigid design. In rigid body armor, the composite component is generally a large molded panel designed to cover a given part of the human body. Semi-rigid armor clothing is generally
Includes a plurality of composite components in the form of relatively small movable coupling plates reinforced with a woven ballistic material such as EVLAR cloth.

【0011】 生体器官を保護する装甲服の使用は特に重要である。従って、本発明の好まし
い態様は、胴部を保護するチョッキのような衣服である。本発明の装甲服は、弾
道だけではなく、戦闘または事故(例えば、車両衝突事故)の際に傷害を生じう
るクラブおよび他の硬質物に対する保護を与える。本発明の複合成分が変形に対
して高抵抗性である故に、例えば銃弾のような投射物によって強い衝撃を受けた
際の装甲の変形によって非硬質装甲の着用者に重大な危険を与えうる鈍い外傷(
blunt trauma)に対しても、本発明の装甲は保護を与える。
The use of armor clothing to protect living organs is of particular importance. Accordingly, a preferred embodiment of the present invention is a vest-like garment that protects the torso. The armor suit of the present invention provides protection not only for ballistics but also for clubs and other hard objects that can cause injury in combat or accidents (eg, vehicle collisions). Due to the high resistance of the composite component of the present invention to deformation, dullness can pose a significant danger to non-rigid armor wearers due to armor deformation when subjected to strong impacts by projectiles such as bullets. Trauma (
Against blunt trauma), the armor of the present invention provides protection.

【0012】 National Institute of Justice(NIJ)に
よるStandard 0101.03において確立されている身体装甲の分類
系に基づいて、タイプI〜タイプIVの装甲「タイプ」が、所定の装甲製品が防
御しうる脅威(threat)レベルを示すことが確認されている。KEVLARクロ
スを使用する装甲のような布を基材とする装甲系は、一般に小口径弾道からの脅
威に対して使用され、一方、本発明の「硬質」装甲は、高レベルの脅威に対して
タイプIII、III−AまたはIVの身体装甲として使用するのに好ましい。
タイプIII−A装甲は、.44マグナムおよびサブマシンガン9mm銃弾に対
して保護するように設計される。タイプIII装甲は、高出力ライフル銃弾に対
して保護するように設計される。最後に、タイプIV装甲は、「装甲貫通」銃弾
に対して保護するように設計される。
[0012] Based on the body armor classification system established in Standard 0101.03 by the National Institute of Justice (NIJ), the type I to type IV armor "type" is a threat that a given armor product may protect against (Threat) level. Fabric-based armor systems, such as armor using KEVLAR cloth, are commonly used against threats from small caliber trajectories, while the "hard" armor of the present invention is highly resistant to high levels of threat. Preferred for use as Type III, III-A or IV body armor.
Type III-A armor consists of. Designed to protect against 44 magnum and 9mm submachine gun ammunition. Type III armor is designed to protect against high power rifle ammunition. Finally, Type IV armor is designed to protect against "armor-piercing" ammunition.

【0013】 好ましい態様において、セラミック繊維は炭化ケイ素から形成され、該繊維は
、SiC繊維および結合SiCマトリックスまたは結合B4 Cマトリックスを含
む複合物の約4〜約10体積%を構成する。複合成分が車両装甲またはタイプI
V身体装甲系として使用される場合、約6〜約10体積%の繊維含有量が好まし
い。タイプIIIまたはタイプIII−A身体装甲(非装甲貫通弾薬に対する保
護用)については、多くの衝撃に耐えることができる複合材料を、約4〜約6体
積%の繊維含有量で形成することができる。
In a preferred embodiment, the ceramic fibers are formed from silicon carbide, the fibers comprising about 4 to about 10% by volume of the composite comprising SiC fibers and a bonded SiC matrix or a bonded B 4 C matrix. Complex component is vehicle armor or type I
When used as a V-body armor system, a fiber content of about 6 to about 10% by volume is preferred. For Type III or Type III-A body armor (for protection against unarmored penetrating ammunition), composite materials that can withstand many impacts can be formed with a fiber content of about 4 to about 6% by volume. .

【0014】 好ましくは、繊維は、Textron Systems Corps.(Wi
lmington,Massachusetts,U.S.A.)から入手可能
なSCS−6(商標)繊維である。SCS−6(商標)繊維は、カーボンモノフ
ィラメントから製造され、直径140ミクロン(μm)の円形断面を有する。そ
の代わりとして、または追加として、79μm繊維(Textron Syst
ems Corp.からSCS−9A(商標)として商業的に入手可能)も使用
することができる。SCS−6(商標)繊維において、カーボンモノフィラメン
トは約35μmの直径である。該繊維を、シランブレンド、水素、アルゴンおよ
びプロパンの供給材料の化学蒸着によって約17μmの厚みの富炭素炭化ケイ素
緩衝剤で被覆されている。次に、該緩衝剤層を、化学蒸着によって適用される約
32μmの厚みの理論量の炭化ケイ素バルク層で被覆する。最後に、約3μmの
厚みの富炭素炭化ケイ素付着層を、化学蒸着によって炭化ケイ素バルク層上の表
面被膜として適用する。
[0014] Preferably, the fiber is Textron Systems Corps. (Wi
lmington, Massachusetts, U.S.A. S. A. SCS-6 (TM) fiber, available from S.I. SCS-6 ™ fiber is made from carbon monofilament and has a circular cross section of 140 microns (μm) in diameter. Alternatively or additionally, a 79 μm fiber (Textron System)
ems Corp. (Commercially available as SCS-9A ™). In SCS-6 ™ fibers, carbon monofilaments are about 35 μm in diameter. The fibers are coated with a carbon rich silicon carbide buffer of about 17 μm thickness by chemical vapor deposition of silane blend, hydrogen, argon and propane feeds. The buffer layer is then coated with a stoichiometric silicon carbide bulk layer of about 32 μm thickness applied by chemical vapor deposition. Finally, an approximately 3 μm thick carbon-rich silicon carbide deposition layer is applied by chemical vapor deposition as a surface coating on the silicon carbide bulk layer.

【0015】 繊維が埋め込まれている反応焼結セラミックマトリックスは、ニトリド結合炭
化ケイ素(nitride-bonded silicon carbide)および/またはニトリド結合炭化
ホウ素(nitride-bonded boron carbide)を含んで成るのが好ましい。モノリシ
ックセラミックを製造する方法から導かれる「反応焼結」法において、マトリッ
クスの少なくとも1つの成分を化学的に液体または気体と反応させる。この例に
おいて、炭化ケイ素粉体とケイ素金属とのブレンドを、ケイ素金属の窒化によっ
て固め、連続SiCフィラメント強化材を有するSi3 4 結合SiCマトリッ
クスを得る。ニトリド結合法は、ホットプレス材料または焼結材料より高い多孔
度(一般に約10%〜約20%)を有するマトリックスを一般に生じる。SiC
に基づくマトリックスが約20重量%の窒化ケイ素を含んでなる態様において、
得られる多孔度は約14%〜約18%である。さらに、マトリックスは立方晶窒
化ホウ素も含むことができる。立方晶窒化ホウ素のマトリックス濃度は、それに
対して防御するようにデザインされる弾道の性質に依存して選択される領域にお
いて、弾道貫通に対して最大のバリヤーを与える約20%であるのが好ましい。
1つの態様において、この領域は、衝撃に暴露される面から2mmで伸長する。
他の態様においては、この領域が、装甲の内部分にあるか、または衝撃から離れ
た内表面から伸長し、それによって、立方晶窒化ホウ素硬化領域に到達する前に
弾道を初期剪断にかけることができる。
[0015] The reaction sintered ceramic matrix in which the fibers are embedded preferably comprises nitride-bonded silicon carbide and / or nitride-bonded boron carbide. In a "reaction sintering" process, which is derived from a method for producing a monolithic ceramic, at least one component of the matrix is chemically reacted with a liquid or gas. In this example, a blend of silicon carbide powder and silicon metal is consolidated by nitridation of the silicon metal to obtain a Si 3 N 4 bonded SiC matrix with a continuous SiC filament reinforcement. The nitride bonding process generally results in a matrix having a higher porosity (typically about 10% to about 20%) than the hot pressed or sintered material. SiC
Wherein the matrix based on comprises about 20% by weight of silicon nitride,
The resulting porosity is between about 14% and about 18%. Further, the matrix can also include cubic boron nitride. The matrix concentration of cubic boron nitride is preferably about 20%, which provides the greatest barrier to ballistic penetration in regions selected depending on the nature of the ballistics designed to protect against it. .
In one embodiment, this region extends 2 mm from the surface exposed to the impact.
In another aspect, the region is in the inner portion of the armor or extends from an inner surface remote from impact, thereby subjecting the trajectory to initial shearing before reaching the cubic boron nitride hardened region. Can be.

【0016】 本発明の方法において、不織モノフィラメント炭化ケイ素繊維の層を形成し、
炭化ケイ素粉体およびケイ素粉体を含んで成るスリップを層の周囲に供して(ca
st)マトリックスを形成する。次に、マトリックスを反応焼結させて、複合成分
を形成する。次に、複合成分を車両構造物に付着させて装甲車両を製造するか、
または衣服に付着させて装甲服を形成する。
In the method of the present invention, a layer of non-woven monofilament silicon carbide fibers is formed,
A slip comprising silicon carbide powder and silicon powder is provided around the layer (ca
st) Form a matrix. Next, the matrix is reaction sintered to form a composite component. Next, the composite component is attached to the vehicle structure to produce an armored vehicle,
Alternatively, it is attached to clothing to form armored clothing.

【0017】 1つの態様において、各成分のおよその重量%が括弧に示されている下記の配
合のスリップで開始して、複合材料を製造する:炭化ケイ素粉体または炭化ケイ
素粉体と炭化ホウ素粉体の混合物(70%〜75%)、ケイ素粉体(8%〜12
%)、弁柄(red iron oxide)および珪酸ナトリウム(1%〜3%)および蒸留
水(10%〜20%)。SiCおよびケイ素を粒子サイズ分割によって粉砕した
好ましいスリップの特定の配合は以下の通りである: 0.1〜1.0μm β−SiC粒子 13.96% 1〜2μm β−SiC粒子 7.49% 2〜3μm β−SiC粒子 5.20% 3〜4μm β−SiC粒子 2.54% 4〜10μm β−SiC粒子 2.54% 80〜120μm β−SiC粒子 42.30% 5〜10μm ケイ素粒子 8.46% 10〜14μm ケイ素粒子 2.12% 弁柄 1.44% 珪酸ナトリウム 0.08% 水(蒸留水) 13.87%
In one embodiment, a composite material is prepared starting with a slip of the following formulation in which the approximate weight percent of each component is indicated in brackets: silicon carbide powder or silicon carbide powder and boron carbide Powder mixture (70% -75%), silicon powder (8% -12
%), Red iron oxide and sodium silicate (1-3%) and distilled water (10-20%). Specific formulations of preferred slips of SiC and silicon ground by particle size splitting are as follows: 0.1-1.0 μm β-SiC particles 13.96% 1-2 μm β-SiC particles 7.49% 2 7.-3 μm β-SiC particles 5.20% 3-4 μm β-SiC particles 2.54% 4-10 μm β-SiC particles 2.54% 80-120 μm β-SiC particles 42.30% 5-10 μm silicon particles 8. 46% 10 to 14 μm Silicon particles 2.12% Red stem 1.44% Sodium silicate 0.08% Water (distilled water) 13.87%

【0018】 電動式ドラムローラーの密閉容器内で、前記スリップを連続的に回転させるこ
とによって、攪拌し、混合する。密閉容器内で、緻密ゴムボールを使用して混合
工程を補助する。
The slip is continuously rotated in the closed container of the electric drum roller to stir and mix. In a closed container, a dense rubber ball is used to assist the mixing process.

【0019】 石膏型を使用して、この場合はプレートの形態において複合成分の最終形状を
形成する。型の周囲の縁の高さがプレートの厚みを決める。先ずスリップの薄い
層を型に入れ、次にSCS−6繊維の分離層をスリップの上に配置する。SCS
−6繊維を、0°および90°の交互の向きに配置し、等しく間隔を開けるかま
たはプレートの一方の側により近づけることもできる。繊維の各層は、スリップ
の交互適用の間に存在し、スリップは繊維の初めの層および終わりの層の上およ
び下に適用される。繊維の添加が終了した際に、最終適用のスリップを型の上ま
で入れる。
A gypsum mold is used to form the final shape of the composite component, in this case in the form of a plate. The height of the perimeter of the mold determines the thickness of the plate. First, a thin layer of the slip is placed in the mold, and then a separating layer of SCS-6 fiber is placed over the slip. SCS
The -6 fibers can be arranged in alternating 0 ° and 90 ° orientations, equally spaced or closer to one side of the plate. Each layer of fiber is between alternating applications of the slip, and the slip is applied above and below the first and last layers of fiber. When the fiber addition is finished, slip the final application slip over the mold.

【0020】 石膏型から未乾燥体(green body)を取り出し、100℃〜120℃に設定し
たオーブンで乾燥させる。乾燥したプレートを炉に入れ、真空下に置く。炉の温
度を5℃/分の速度で上昇させる。500℃において、真空システムを分離し、
炉に窒素を充填する。窒化サイクルの残りを通じて窒素圧を800トルに維持し
て、純粋ケイ素金属を窒化ケイ素に変換し、それによって炭化ケイ素マトリック
スを「ニトリド結合」させる。950℃において、1150℃に達するまで勾配
速度(ramp rate )を2.5℃/分に減少させ、1150℃において温度を6時
間維持する。次に、その温度を0.42℃/分の速度で1250℃に上昇させる
。次に、温度を1250℃で6時間維持し、次に、0.28℃/分の速度で13
50℃に上昇させる。次に、温度を1350℃で8時間維持し、次に、0.37
5℃/分の速度で1395℃に上昇させる。最後に、温度を1395℃で6時間
維持し、サイクルを終了させ、次に、室温に冷却する。セラミックプレートを炉
から取り出し、ある態様においては、ダイアモンド鋸歯で機械加工して最終的に
必要とされるプレート寸法にする。
The green body is removed from the gypsum mold and dried in an oven set at 100 ° C. to 120 ° C. Place the dried plate in the oven and place under vacuum. Raise the furnace temperature at a rate of 5 ° C./min. At 500 ° C., isolate the vacuum system,
Fill the furnace with nitrogen. Maintaining the nitrogen pressure at 800 Torr throughout the rest of the nitridation cycle converts the pure silicon metal to silicon nitride, thereby "nitriding" the silicon carbide matrix. At 950 ° C., ramp rate is reduced to 2.5 ° C./min until 1150 ° C. is reached, and the temperature is maintained at 1150 ° C. for 6 hours. Next, the temperature is increased to 1250 ° C. at a rate of 0.42 ° C./min. The temperature is then maintained at 1250 ° C. for 6 hours, and then
Raise to 50 ° C. The temperature is then maintained at 1350 ° C. for 8 hours, then 0.37
Increase to 1395 ° C. at a rate of 5 ° C./min. Finally, the temperature is maintained at 1395 ° C. for 6 hours to complete the cycle and then cooled to room temperature. The ceramic plate is removed from the furnace and, in one embodiment, machined with diamond saw blades to the final required plate dimensions.

【0021】 前記の方法で製造されるセラミックプレートは、連続炭化ケイ素繊維強化材を
有するα−Si3 4 結合炭化ケイ素を含有する。密度範囲は2.65〜2.7
0g/ccである。
The ceramic plate manufactured by the above method contains α-Si 3 N 4 bonded silicon carbide having a continuous silicon carbide fiber reinforcement. Density range 2.65 to 2.7
0 g / cc.

【0022】 代替的な態様においては、粒子材料を置き換えて、セラミックプレートの特性
硬度および密度を変化させることができる。1つの例において、スリップの配合
が前記と同様であるが、但し、80〜120μmのSiC粒子の代わりに50μ
mの炭化ホウ素粒子を使用する。この置き換えは、プレートの密度を2.35g
/cm3 に減少させるにもかかわらず、最終ニトリド結合複合プレートの弾道性
能に実質的に影響を与えない。
In an alternative embodiment, the particulate material can be replaced to change the characteristic hardness and density of the ceramic plate. In one example, the slip formulation is the same as above, except that instead of 80-120 μm SiC particles, 50 μm
m boron carbide particles are used. This replacement reduces the density of the plate to 2.35 g.
/ Cm 3 , despite substantially reducing the ballistic performance of the final nitride-bound composite plate.

【0023】 極めて高い硬度がプレートに必要とされる場合、好ましくは約30〜65μm
の粒子サイズの立方晶窒化ホウ素の粒子が、炭化ケイ素粒子または炭化ホウ素粒
子の一部に代わって使用される。立方晶窒化ホウ素がスリップの約20%を構成
し、最も硬質な領域が必要とされる位置、一般に表面に、層が配置される段階に
おいて、このスリップを型に添加するのが好ましい。この領域において得られる
硬度は、プレートの他の部分より40%〜50%高い硬度にすることができる。
そのように硬質化されたプレートの可能な用途は、より高い弾道性能が要求され
るタイプIVの身体装甲系および車両装甲系を含む。
If very high hardness is required for the plate, preferably about 30-65 μm
Particles of cubic boron nitride having a particle size of are used in place of some of the silicon carbide particles or boron carbide particles. The cubic boron nitride makes up about 20% of the slip and it is preferred to add this slip to the mold at the stage where the layer is placed where the hardest areas are needed, generally at the surface. The hardness obtained in this region can be 40% to 50% higher than the rest of the plate.
Possible uses of such hardened plates include Type IV body armor systems and vehicle armor systems where higher ballistic performance is required.

【0024】 多孔性は材料の破壊靱性を減少させると一般に考えられるが、本発明の比較的
に高い多孔性の複合成分は、より緻密なホットプレス材料の性能と比較して有利
な性能を示すと考えられる。本発明の複合成分における気孔は、材料が高衝撃に
暴露された際に、エネルギーの分散を遅らせる亀裂発生物として作用すると考え
られ、一方、複合材料の繊維は、該成分を結合させつつ亀裂を鈍くし、エネルギ
ーを吸収する。さらに、繊維の富炭素表面被覆は、本発明の亀裂抑止性を助長さ
せると考えられる。従って、本発明の複合成分は、粉砕せずに高速投射物からの
多くの衝撃に耐える性能を有する。
Although porosity is generally thought to reduce the fracture toughness of the material, the relatively porous composite components of the present invention exhibit advantageous performance as compared to the performance of denser hot pressed materials. it is conceivable that. It is believed that the porosity in the composite component of the present invention acts as a crack generator that delays the dispersion of energy when the material is exposed to high impact, while the fibers of the composite material crack while binding the component. Dulls and absorbs energy. In addition, it is believed that the carbon-rich surface coating of the fibers promotes the crack inhibiting properties of the present invention. Thus, the composite component of the present invention has the ability to withstand many impacts from high-speed projectiles without grinding.

【0025】 実験 本発明を下記の実施例によって説明するが、本発明の範囲を限定することを意
図するものではない。
EXPERIMENTAL The invention is illustrated by the following examples, which are not intended to limit the scope of the invention.

【0026】 実施例1 本発明の複合成分を、前記の方法によって形成した。特に、スリップは、炭化
ケイ素粉体(74%)、ケイ素粉体(11%)、弁柄(1.5%)、珪酸ナトリ
ウム(<1%)および蒸留水(14%)を含んでなった。繊維強化材は、マトリ
ックス/繊維複合材料の10体積%を形成し、相互に直交して配置される一組の
連続繊維層の形態であった。複合成分は、2.7g/cm3 の密度および約15
%の多孔度を有していた。American Society For Tes
ting and Materials(ASTM)standard C11
61−94に従って行った4点曲げ試験において、極限応力は137.5MPa
であり、曲げ率は107.9GPであった。ASTM standard C1
34−97に従って行われる動的機械共振(dynamic mechanical resonance;D
MR)試験を使用した場合は、曲げ率のより高い数値(138GPa)が得られ
た。
Example 1 A composite component of the present invention was formed by the method described above. In particular, the slip comprised silicon carbide powder (74%), silicon powder (11%), petiole (1.5%), sodium silicate (<1%) and distilled water (14%). . The fiber reinforcement formed 10% by volume of the matrix / fiber composite and was in the form of a set of continuous fiber layers arranged orthogonal to one another. The composite component has a density of 2.7 g / cm 3 and about 15
% Porosity. American Society For Tes
ting and Materials (ASTM) standard C11
In a four-point bending test performed according to 61-94, the ultimate stress was 137.5 MPa.
And the bending ratio was 107.9 GP. ASTM standard C1
34-97, dynamic mechanical resonance (D)
When the MR) test was used, a higher bending modulus (138 GPa) was obtained.

【0027】 実施例2 本実施例において、本発明のニトリド結合炭化ケイ素複合材料を前記の実施例
と同様に製造したが、但し、繊維の向きは単一方向に限定した。4点曲げ試験は
、この実施例に使用した場合に、繊維の方向において172MPaの強度および
127GPaの弾性率を示した。ここでもまた、動的機械共振(DMR)試験を
使用した場合は、曲げ率のより高い数値(154GPa)が得られた。
Example 2 In this example, the nitride-bonded silicon carbide composite material of the present invention was produced in the same manner as in the above example, except that the fiber orientation was limited to a single direction. A four point bending test showed a strength of 172 MPa and a modulus of 127 GPa in the fiber direction when used in this example. Again, higher values of flexural modulus (154 GPa) were obtained when using the dynamic mechanical resonance (DMR) test.

【0028】 実施例3 比較のために、繊維を使用せずに、前記実施例に従って非強化ニトリド結合炭
化ケイ素マトリックスを形成した。4点曲げ試験によって測定した場合に、マト
リックスが58MPaの極限応力および117GPaの弾性率を有することが見
出された。ここでもまた、動的機械共振(DMR)試験によって得た測定値は、
曲げ率のより高い数値(124GPa)を示した。
Example 3 For comparison, an unreinforced nitride-bonded silicon carbide matrix was formed according to the previous example without using fibers. The matrix was found to have an ultimate stress of 58 MPa and a modulus of 117 GPa as measured by a four-point bending test. Again, the measurements obtained from the Dynamic Mechanical Resonance (DMR) test are:
A higher value (124 GPa) of the bending rate was shown.

【0029】 均等物 本発明の好ましい態様に関して、本発明を詳しく示し説明したが、特許請求の
範囲によって規定される本発明の意図および範囲を逸脱せず、形態および細部に
おいてそれらに種々の変更を加えうることを当業者は理解するであろう。
Equivalents While the present invention has been particularly shown and described with respect to preferred embodiments thereof, various modifications may be made in form and detail without departing from the spirit and scope of the invention as defined by the appended claims. Those skilled in the art will appreciate that they can be added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の装甲服の態様を示す図である。FIG. 1 is a view showing an embodiment of an armor suit of the present invention.

【図2】 本発明の装甲車両の態様を示す図である。FIG. 2 is a diagram showing an embodiment of an armored vehicle according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,TZ,UG,ZW ),EA(AM,AZ,BY,KG,KZ,MD,RU, TJ,TM),AE,AG,AL,AM,AT,AU, AZ,BA,BB,BG,BR,BY,CA,CH,C N,CR,CU,CZ,DE,DK,DM,DZ,EE ,ES,FI,GB,GD,GE,GH,GM,HR, HU,ID,IL,IN,IS,JP,KE,KG,K P,KR,KZ,LC,LK,LR,LS,LT,LU ,LV,MA,MD,MG,MK,MN,MW,MX, NO,NZ,PL,PT,RO,RU,SD,SE,S G,SI,SK,SL,TJ,TM,TR,TT,TZ ,UA,UG,US,UZ,VN,YU,ZA,ZW (72)発明者 ダーデン,ウィリアム,エス. アメリカ合衆国 マサチューセッツ 01740 ボルトン,バルヴィル ロード 190 (72)発明者 トレジャー,モンテ,エイ. アメリカ合衆国 ニューハンプシャー 03076 ペルハム,オーバールック ドラ イブ 3 (72)発明者 シングラー,ロバート,イー. アメリカ合衆国 マサチューセッツ 02478 ベルモント,セルウィン ロード 53 (72)発明者 ディボナ,ガリー,エス. アメリカ合衆国 ニューハンプシャー 03031 アムハースト,ダグラス ドライ ブ 13 Fターム(参考) 2C014 KK01 4G001 BA22 BA23 BA62 BA86 BB22 BB23 BB86 BC44 BD11 BD14──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR , HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA , ZW (72) Inventors Darden, William, S .; United States Massachusetts 01740 Bolton, Belleville Road 190 (72) Inventor Treasure, Monte, A. United States New Hampshire 03076 Pelham, Overlook Drive 3 (72) Inventor Singler, Robert, E. United States Massachusetts 02478 Belmont, Selwyn Road 53 (72) Inventor Divona, Garry, S.E. United States New Hampshire 03031 Amherst, Douglas Drive 13 F-term (reference) 2C014 KK01 4G001 BA22 BA23 BA62 BA86 BB22 BB23 BB86 BC44 BD11 BD14

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】 a)反応焼結セラミックマトリックス;および b)該セラミックマトリックスに埋め込まれたセラミック繊維、 を含有してなる少なくとも1つの複合成分を含んでなる装甲殻を有してなる装甲
車両。
1. An armored vehicle having an armor shell comprising at least one composite component comprising: a) a reaction sintered ceramic matrix; and b) ceramic fibers embedded in the ceramic matrix.
【請求項2】 反応焼結セラミックマトリックスが、ニトリド結合炭化ケイ
素およびニトリド結合炭化ホウ素からなる群より選ばれた少なくとも1つの部材
を含んでなる、請求項1記載の装甲車両。
2. The armored vehicle according to claim 1, wherein the reaction sintered ceramic matrix comprises at least one member selected from the group consisting of nitride-bonded silicon carbide and nitride-bonded boron carbide.
【請求項3】 反応焼結セラミックマトリックスがニトリド結合炭化ケイ素
を含んでなる、請求項1記載の装甲車両。
3. The armored vehicle of claim 1, wherein the reaction sintered ceramic matrix comprises nitride-bonded silicon carbide.
【請求項4】 セラミック繊維が炭化ケイ素を含んでなる、請求項3記載の
装甲車両。
4. The armored vehicle according to claim 3, wherein the ceramic fibers comprise silicon carbide.
【請求項5】 セラミック繊維が不織モノフィラメントの形態である、請求
項4記載の装甲車両。
5. The armored vehicle according to claim 4, wherein the ceramic fibers are in the form of a non-woven monofilament.
【請求項6】 反応焼結セラミックマトリックスが多孔性である、請求項5
記載の装甲車両。
6. The reaction sintered ceramic matrix is porous.
The armored vehicle described.
【請求項7】 複合成分の多孔度が約10%〜約20%の範囲である、請求
項6記載の装甲車両。
7. The armored vehicle of claim 6, wherein the porosity of the composite component ranges from about 10% to about 20%.
【請求項8】 複合成分における不織モノフィラメントセラミック繊維の量
が、約6体積%〜約10体積%の範囲である、請求項5記載の装甲車両。
8. The armored vehicle of claim 5, wherein the amount of nonwoven monofilament ceramic fibers in the composite component ranges from about 6% to about 10% by volume.
【請求項9】 不織モノフィラメント炭化ケイ素繊維が、約79μm〜約1
40μmの範囲の平均直径を有してなる、請求項5記載の装甲車両。
9. A nonwoven monofilament silicon carbide fiber having a thickness of about 79 μm to about 1 μm.
An armored vehicle according to claim 5, having an average diameter in the range of 40 µm.
【請求項10】 不織モノフィラメント炭化ケイ素繊維が約140μmの平
均直径を有してなる、請求項9記載の装甲車両。
10. The armored vehicle according to claim 9, wherein the non-woven monofilament silicon carbide fibers have an average diameter of about 140 μm.
【請求項11】 不織モノフィラメント炭化ケイ素繊維が、マトリックス内
で層状に平行に並んでなる、請求項5記載の装甲車両。
11. The armored vehicle according to claim 5, wherein the non-woven monofilament silicon carbide fibers are arranged in a matrix in a layered manner.
【請求項12】 反応焼結セラミックマトリックス中に立方晶窒化ホウ素を
さらに含有してなる、請求項5記載の装甲車両。
12. The armored vehicle according to claim 5, further comprising cubic boron nitride in the reaction sintered ceramic matrix.
【請求項13】 立方晶窒化ホウ素が、反応焼結セラミックマトリックスの
領域内に選択的に濃縮されてなる、請求項12記載の装甲車両。
13. An armored vehicle according to claim 12, wherein the cubic boron nitride is selectively enriched in the region of the reaction sintered ceramic matrix.
【請求項14】 a)反応焼結セラミックマトリックス;および b)該セラミックマトリックス中に埋め込まれたセラミック繊維、 を含有し、弾道貫通から装甲服の着用者を保護するように適合されている少なく
とも1つの複合成分を含有してなる装甲服。
14. At least one of: a) a reactive sintered ceramic matrix; and b) ceramic fibers embedded in the ceramic matrix, wherein the at least one is adapted to protect a wearer of armored garment from ballistic penetration. Armored clothing containing two composite components.
【請求項15】 反応焼結セラミックマトリックスが、ニトリド結合炭化ケ
イ素およびニトリド結合炭化ホウ素からなる群より選ばれた少なくとも1つの部
材を含んでなる、請求項14記載の装甲服。
15. The armored garment of claim 14, wherein the reaction sintered ceramic matrix comprises at least one member selected from the group consisting of nitride-bonded silicon carbide and nitride-bonded boron carbide.
【請求項16】 反応焼結セラミックマトリックスがニトリド結合炭化ケイ
素を含んでなる、請求項14記載の装甲服。
16. The armor garment of claim 14, wherein the reaction sintered ceramic matrix comprises nitride bonded silicon carbide.
【請求項17】 セラミック繊維が炭化ケイ素を含んでなる、請求項16記
載の装甲服。
17. The armor suit according to claim 16, wherein the ceramic fibers comprise silicon carbide.
【請求項18】 セラミック繊維が不織モノフィラメントの形態である、請
求項17記載の装甲服。
18. The armored garment of claim 17, wherein the ceramic fibers are in the form of a non-woven monofilament.
【請求項19】 ニトリド結合炭化ケイ素マトリックスが多孔性である、請
求項18記載の装甲服。
19. The armor suit of claim 18, wherein the nitride-bonded silicon carbide matrix is porous.
【請求項20】 複合成分の多孔度が約10%〜約20%の範囲である、請
求項19記載の装甲服。
20. The armored garment of claim 19, wherein the porosity of the composite component ranges from about 10% to about 20%.
【請求項21】 複合成分中の不織モノフィラメントセラミック繊維の量が
約4体積%〜約6体積%の範囲である、請求項19記載の装甲服。
21. The armored garment of claim 19, wherein the amount of nonwoven monofilament ceramic fibers in the composite component ranges from about 4% to about 6% by volume.
【請求項22】 不織モノフィラメントセラミック繊維がマトリックス内に
層状に平行に並んでなる、請求項19記載の装甲服。
22. The armored garment of claim 19, wherein the non-woven monofilament ceramic fibers are layered in parallel in a matrix.
【請求項23】 反応焼結セラミックが立方晶窒化ホウ素を含んでなる、請
求項15記載の装甲服。
23. The armor suit of claim 15, wherein the reaction sintered ceramic comprises cubic boron nitride.
【請求項24】 立方晶窒化ホウ素が、反応焼結セラミックマトリックスの
領域内に選択的に濃縮されてなる、請求項23記載の装甲服。
24. The armor suit of claim 23, wherein the cubic boron nitride is selectively enriched in regions of the reaction sintered ceramic matrix.
【請求項25】 複合成分を強化する織布弾道繊維をさらに含んでなる、請
求項14記載の装甲服。
25. The armored garment of claim 14, further comprising a woven ballistic fiber that reinforces the composite component.
【請求項26】 a)不織モノフィラメント炭化ケイ素繊維の層を形成する
工程; b)炭化ケイ素粉体およびケイ素粉体を含むスリップを不織モノフィラメント炭
化ケイ素繊維の層の周囲に供して、粉体/繊維組成物を形成する工程、 c)粉体/繊維組成物を反応焼結させて、反応焼結複合成分を形成する工程;お
よび d)車両の下部構造の周囲に防御物を形成する反応焼結複合成分を車両の下部構
造に付着させる工程、 を含む、複合成分を形成し、それを装甲車両に組み込む方法。
26. a) forming a layer of non-woven monofilament silicon carbide fibers; b) subjecting a slip comprising silicon carbide powder and silicon powder to a periphery of the layer of non-woven monofilament silicon carbide fibers to form a powder. C) reacting the powder / fiber composition to form a reactive sintered composite component; and d) reacting to form a defense around the vehicle undercarriage. Attaching the sintered composite component to a vehicle undercarriage, comprising: forming a composite component and incorporating it into an armored vehicle.
【請求項27】 スリップが炭化ホウ素粉体をさらに含んでなる、請求項2
6記載の方法。
27. The slip of claim 2, further comprising a boron carbide powder.
6. The method according to 6.
【請求項28】 a)不織モノフィラメント炭化ケイ素繊維の層を形成する
工程; b)炭化ケイ素粉体およびケイ素粉体を含むスリップを不織モノフィラメント炭
化ケイ素繊維の層の周囲に供して、粉体/繊維組成物を形成する工程、 c)粉体/繊維組成物を反応焼結させて、反応焼結複合成分を形成する工程;お
よび d)投射物から個体を防御するために個体により着用されうる衣服に反応焼結複
合成分を付着させる工程、 を含む、装甲服の形成方法。
28. a) forming a layer of non-woven monofilament silicon carbide fibers; b) subjecting a slip comprising silicon carbide powder and silicon powder to a periphery of the layer of non-woven monofilament silicon carbide fibers to form a powder. C) reactive sintering the powder / fiber composition to form a reactive sintered composite component; and d) worn by the individual to protect the individual from projectiles. Attaching the reactive sintered composite component to the garment.
【請求項29】 スリップが炭化ホウ素粉体をさらに含んでなる、請求項2
8記載の方法。
29. The slip of claim 2, further comprising a boron carbide powder.
8. The method according to 8.
JP2000611025A 1999-03-31 2000-03-31 Composite armor and manufacturing method thereof Pending JP2002541427A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12724599P 1999-03-31 1999-03-31
US60/127,245 1999-03-31
PCT/US2000/008990 WO2000062007A2 (en) 1999-03-31 2000-03-31 Composite armor and fabrication method

Publications (1)

Publication Number Publication Date
JP2002541427A true JP2002541427A (en) 2002-12-03

Family

ID=22429082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000611025A Pending JP2002541427A (en) 1999-03-31 2000-03-31 Composite armor and manufacturing method thereof

Country Status (4)

Country Link
EP (1) EP1166030A2 (en)
JP (1) JP2002541427A (en)
AU (1) AU6488500A (en)
WO (1) WO2000062007A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016861A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Protective member and protective body using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609452B1 (en) 2000-01-11 2003-08-26 M Cubed Technologies, Inc. Silicon carbide armor bodies, and methods for making same
US7104177B1 (en) 2000-01-11 2006-09-12 Aghajanian Michael K Ceramic-rich composite armor, and methods for making same
US6862970B2 (en) 2000-11-21 2005-03-08 M Cubed Technologies, Inc. Boron carbide composite bodies, and methods for making same
US6995103B2 (en) 2000-11-21 2006-02-07 M Cubed Technologies, Inc. Toughness enhanced silicon-containing composite bodies, and methods for making same
CA2428958A1 (en) 2000-11-21 2002-09-06 M Cubed Technologies, Inc. Boron carbide composite bodies, and methods for making same
DK177002B1 (en) * 2003-09-29 2010-11-15 Niras As Explosion protection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236786A (en) * 1986-05-08 1993-08-17 Lanxide Technology Company, Lp Shaped ceramic composites with a barrier
AU6390790A (en) * 1989-10-30 1991-05-02 Lanxide Corporation Anti-ballistic materials and methods of making the same
FR2723193B1 (en) * 1990-11-07 1996-12-13 France Etat BALLISTIC PROTECTION MATERIAL
EP0697093B1 (en) * 1993-05-07 1997-03-19 KENNAMETAL HERTEL AG Werkzeuge + Hartstoffe Ceramic material and armour plate made therefrom
US5955391A (en) * 1996-03-29 1999-09-21 Kabushiki Kaisha Toshiba Ceramic matrix composite and method of manufacturing the same
AU1273899A (en) * 1997-10-24 1999-05-17 Lanxide Technology Company, Lp Armor material and methods of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016861A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Protective member and protective body using the same

Also Published As

Publication number Publication date
WO2000062007A3 (en) 2001-02-08
WO2000062007A2 (en) 2000-10-19
AU6488500A (en) 2000-11-14
EP1166030A2 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
US7238414B2 (en) Fiber-reinforced composite for protective armor, and method for producing the fiber-reinforced composition and protective armor
US5443917A (en) Ceramic armor
US6609452B1 (en) Silicon carbide armor bodies, and methods for making same
US7104177B1 (en) Ceramic-rich composite armor, and methods for making same
US8105967B1 (en) Lightweight ballistic armor including non-ceramic-infiltrated reaction-bonded-ceramic composite material
US8628857B2 (en) Ballistic plate and method of fabrication thereof
Matchen Applications of ceramics in armor products
EP1633558B1 (en) Layered metallic material formed from iron based glass alloys
Reddy et al. Ceramic composite armour for ballistic protection
WO2023221297A1 (en) Method for manufacturing ceramic having multi-hit capability, and bulletproof insert plate
JP2002541427A (en) Composite armor and manufacturing method thereof
CN113277863A (en) Ceramic composite material and preparation method thereof, bulletproof plate and armor protection equipment
US11873257B2 (en) Boron carbide and silicon carbide armour
JP2001192275A (en) Element formed from fiber-reinforced composite material containing ceramic matrix
EP2146178A2 (en) Armour panel
KR102336916B1 (en) armor plate
AU2010281291A1 (en) Polymer ceramic composite
US20230034822A1 (en) Armor plating made of fine-grain boron carbide and silicon carbide
CN204574947U (en) Bionic flexible protective gear
CN101165106A (en) Strontium aluminate salt dope and impact-resisting coat fibre textile fabric
Colombo et al. Ceramic–polymer composites for ballistic protection
US20080060508A1 (en) Lightweight armor composite, method of making same, and articles containing the same
Scott New ballistic products and technologies
Cegła et al. Hybrid ceramic-textile composite armour structures for a strengthened bullet-proof vest
KR20230043866A (en) Profiled shield elements