JP2002373834A - Method for manufacturing niobium capacitor - Google Patents

Method for manufacturing niobium capacitor

Info

Publication number
JP2002373834A
JP2002373834A JP2002108893A JP2002108893A JP2002373834A JP 2002373834 A JP2002373834 A JP 2002373834A JP 2002108893 A JP2002108893 A JP 2002108893A JP 2002108893 A JP2002108893 A JP 2002108893A JP 2002373834 A JP2002373834 A JP 2002373834A
Authority
JP
Japan
Prior art keywords
niobium
sintered body
capacitor
oxide film
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108893A
Other languages
Japanese (ja)
Other versions
JP4453890B2 (en
Inventor
Kazuhiro Omori
和弘 大森
Kazumi Naito
一美 内藤
Hiroshi Fukunaga
宏史 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002108893A priority Critical patent/JP4453890B2/en
Publication of JP2002373834A publication Critical patent/JP2002373834A/en
Application granted granted Critical
Publication of JP4453890B2 publication Critical patent/JP4453890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor which has excellent LC characteristics and a small decrease in capacity due to DC bias application, and to provide its manufacturing method. SOLUTION: By this manufacturing method for the niobium capacitor, the niobium capacitor is manufactured by exposing a dielectric oxide film to 100 to 140 deg.C in its some process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温寿命特性が良
好でバイアス変化の小さい新規なコンデンサ、とりわけ
単位質量あたりの容量が大きく、漏れ電流値(以下、L
Cと略記することがある)の小さいニオブ固体電解コン
デンサの製造方法に関する。
The present invention relates to a novel capacitor having a good high-temperature life characteristic and a small bias change, particularly a large capacitor per unit mass and a leakage current value (hereinafter referred to as "L").
C (may be abbreviated as C).

【0002】[0002]

【従来の技術】携帯電話やパーソナルコンピュータ等の
電子機器に使用されるコンデンサは、小型で大容量のも
のが望まれている。このようなコンデンサの中でもタン
タルコンデンサは大きさの割には容量が大きく、しかも
性能が良好なため、好んで使用されている。通常タンタ
ル電解コンデンサの誘電体として酸化タンタルが使用さ
れているが、さらに容量を大きくするためには、より誘
電率の高い酸化ニオブを誘電体としたニオブ固体電解コ
ンデンサが考えられている。本発明者は、ニオブ電解コ
ンデンサの中でも、一部を窒化したニオブの焼結体を電
極に用いた電解コンデンサは、とりわけ容量が大きくL
C特性が良好であることを提示した(特開平10−24
2004)。該公報における、一部を窒化したニオブの
焼結体を用いて作製したコンデンサは、容量が大きくL
C特性が良好ではあるものの、DCバイアス印加による
容量の低下が大きく、所望の容量を持つコンデンサを得
るために、焼結体を多量に用いるか、更に粒径の小さな
ニオブ粉を用いて焼結体を作製する必要があった。
2. Description of the Related Art Capacitors used in electronic devices such as cellular phones and personal computers are desired to be small in size and large in capacity. Among such capacitors, tantalum capacitors are preferably used because of their large capacity for their size and good performance. Normally, tantalum oxide is used as a dielectric of a tantalum electrolytic capacitor. To further increase the capacity, a niobium solid electrolytic capacitor using a niobium oxide having a higher dielectric constant as a dielectric has been considered. The present inventor has found that among niobium electrolytic capacitors, an electrolytic capacitor using a niobium sintered body partially nitrided as an electrode has a particularly large capacity and a large capacitance.
It has been suggested that the C characteristics are good (Japanese Patent Laid-Open No. 10-24).
2004). The capacitor manufactured using a niobium sintered body partially nitrided in the publication has a large capacity and a large capacitance.
Although the C characteristics are good, the capacitance is greatly reduced by the application of DC bias, and in order to obtain a capacitor having the desired capacitance, use a large amount of sintered body or sinter using niobium powder with a smaller particle size. The body needed to be made.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明の
目的は、LC特性が良好で、DCバイアス印加による容
量の低下が少ないコンデンサ、およびその製造方法を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a capacitor having good LC characteristics and a small decrease in capacitance due to application of a DC bias, and a method of manufacturing the same.

【0004】[0004]

【課題を解決するための手段】DCバイアス印加による
容量の低下は、ニオブ特有の性質であり、その理由は誘
電体層の主成分である酸化ニオブの不安定さにあると推
定される。
The decrease in capacitance due to the application of a DC bias is a characteristic peculiar to niobium, and is presumed to be due to the instability of niobium oxide, which is a main component of the dielectric layer.

【0005】本発明者らは、前述の課題を鋭意検討した
結果、誘電体層の主成分である酸化ニオブが熱に暴露す
ることにより安定化されることを見いだし、本発明を完
成するに至った。すなわち本発明は、以下のニオブコン
デンサの製造方法、その方法で得られるコンデンサ、そ
のコンデンサを用いた電子回路及び電子機器に関する。 (1)ニオブ焼結体の表面に酸化皮膜、この酸化皮膜上
に半導体層、この半導体層上に導電体層を形成し、外装
して封止するニオブコンデンサの製造方法において、ニ
オブ焼結体の表面に酸化皮膜が形成され、半導体層が形
成されていない焼結体を100℃〜1400℃の範囲の
温度に曝すことを特徴とするニオブコンデンサの製造方
法。 (2)ニオブ焼結体の表面に酸化皮膜、この酸化皮膜上
に有機半導体層、この有機半導体層上に導電体層を形成
し、外装して封止するニオブコンデンサの製造方法にお
いて、ニオブ焼結体の表面に酸化皮膜及び該酸化皮膜上
に有機半導体層が形成され、導電体層が形成されていな
い焼結体を100℃〜350℃の範囲の温度に曝すこと
を特徴とするニオブコンデンサの製造方法。 (3)ニオブ焼結体の表面に酸化皮膜、この酸化皮膜上
に有機半導体層、この有機半導体層上に導電体層を形成
し、樹脂で外装して封止するニオブコンデンサの製造方
法において、ニオブ焼結体の表面に酸化皮膜、半導体
層、及び導電体層が形成され、樹脂による外装封止がさ
れていない焼結体を100℃〜300℃の範囲の温度に
曝すことを特徴とするニオブコンデンサの製造方法。 (4)ニオブ焼結体が、1種以上のニオブ以外の元素を
50質量ppm〜400000質量ppm含む前項1乃
至3のいずれか1項に記載のニオブコンデンサの製造方
法。 (5)ニオブ焼結体が、ニオブ合金焼結体であって、合
金成分として、リチウム、ナトリウム、カリウム、ルビ
ジウム、セシウム、フランシウム、ベリリウム、マグネ
シウム、カルシウム、ストロンチウム、バリウム、ラジ
ウム、スカンジウム、イットリウム、ランタン、セリウ
ム、プラセオジム、ネオジム、サマリウム、ユーロピウ
ム、ガドリニウム、テルビウム、ジスプロシウム、ホル
ミウム、エルビウム、ツリウム、イッテルビウム、ルテ
チウム、チタン、ジルコニウム、ハフニウム、バナジウ
ム、タンタル、クロム、モリブデン、タングステン、マ
ンガン、レニウム、鉄、ルテニウム、オスミウム、コバ
ルト、ロジウム、イリジウム、ニッケル、パラジウム、
白金、銅、銀、金、亜鉛、カドミウム、水銀、ホウ素、
アルミニウム、ガリウム、インジウム、タリウム、炭
素、珪素、ゲルマニウム、スズ、鉛、リン、砒素、アン
チモン、ビスマス、セレン、テルル、ポロニウム、アス
タチンからなる群より選ばれる少なくとも1種の元素の
含有量の総和として50質量ppm〜400,000質
量ppm含む請求の範囲1乃至4のいずれか1項に記載
のニオブコンデンサの製造方法。 (6)ニオブ焼結体が、ホウ素、窒素、炭素及び硫黄の
元素からなる群より選ばれる少なくとも1種の元素を、
50ppm〜200,000ppm含む請求の範囲1乃
至5のいずれか1項に記載のニオブコンデンサの製造方
法。 (7)ニオブコンデンサの製造方法において、そのいず
れかの工程で誘電体酸化皮膜を100℃〜1400℃の
範囲の温度に曝した後に封止することを特徴とするニオ
ブコンデンサの製造方法。 (8)前項1乃至7のいずれか1項に記載の製造方法で
得られるコンデンサ。 (9)前項8に記載のコンデンサを使用した電子回路。 (10)前項8に記載のコンデンサを使用した電子機
器。
The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, have found that niobium oxide, which is a main component of the dielectric layer, is stabilized by exposure to heat, leading to the completion of the present invention. Was. That is, the present invention relates to the following method for manufacturing a niobium capacitor, a capacitor obtained by the method, an electronic circuit using the capacitor, and an electronic device. (1) A method for manufacturing a niobium capacitor in which an oxide film is formed on a surface of a niobium sintered body, a semiconductor layer is formed on the oxide film, and a conductor layer is formed on the semiconductor layer, and the package is packaged and sealed. A method for manufacturing a niobium capacitor, comprising exposing a sintered body having an oxide film formed on a surface thereof and having no semiconductor layer formed thereon to a temperature in a range of 100 ° C. to 1400 ° C. (2) In a method for manufacturing a niobium capacitor, an oxide film is formed on a surface of a niobium sintered body, an organic semiconductor layer is formed on the oxide film, and a conductor layer is formed on the organic semiconductor layer, and the package is packaged and sealed. A niobium capacitor characterized in that an oxide film is formed on the surface of the sintered body and an organic semiconductor layer is formed on the oxide film, and the sintered body on which the conductor layer is not formed is exposed to a temperature in the range of 100C to 350C. Manufacturing method. (3) A method for manufacturing a niobium capacitor in which an oxide film is formed on the surface of a niobium sintered body, an organic semiconductor layer is formed on the oxide film, and a conductor layer is formed on the organic semiconductor layer, and the package is covered with a resin and sealed. An oxide film, a semiconductor layer, and a conductor layer are formed on the surface of the niobium sintered body, and the sintered body that is not sealed with resin is exposed to a temperature in a range of 100 ° C to 300 ° C. Manufacturing method for niobium capacitors. (4) The method for manufacturing a niobium capacitor according to any one of the above items 1 to 3, wherein the niobium sintered body contains 50 mass ppm to 400,000 mass ppm of one or more elements other than niobium. (5) The niobium sintered body is a niobium alloy sintered body, and lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, Lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, Ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium,
Platinum, copper, silver, gold, zinc, cadmium, mercury, boron,
Aluminum, gallium, indium, thallium, carbon, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, selenium, tellurium, polonium, as the sum of the content of at least one element selected from the group consisting of astatine The method for manufacturing a niobium capacitor according to any one of claims 1 to 4, wherein the niobium capacitor includes 50 mass ppm to 400,000 mass ppm. (6) The niobium sintered body contains at least one element selected from the group consisting of boron, nitrogen, carbon and sulfur elements,
The method for producing a niobium capacitor according to any one of claims 1 to 5, comprising 50 ppm to 200,000 ppm. (7) A method for manufacturing a niobium capacitor, comprising exposing a dielectric oxide film to a temperature in the range of 100 ° C. to 1400 ° C. in any one of the steps, followed by sealing. (8) A capacitor obtained by the manufacturing method according to any one of the above items 1 to 7. (9) An electronic circuit using the capacitor described in (8). (10) An electronic device using the capacitor described in (8).

【0006】[0006]

【発明の実施形態】以下、本発明のニオブコンデンサの
製造方法について説明する。一般に、ニオブコンデンサ
は、第一の電極上に酸化ニオブを主成分とした誘電体酸
化皮膜層を設け、さらにこの誘電体酸化皮膜層上に第二
の電極(対向電極)を設けることにより製造される。第
一の電極としては、ニオブ酸化物層を形成しやすいこと
から、ニオブまたはその合金が好んで使用され、さらに
高容量を得るためにそれらの焼結体が好んで用いられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a niobium capacitor according to the present invention will be described. In general, a niobium capacitor is manufactured by providing a dielectric oxide film layer containing niobium oxide as a main component on a first electrode and further providing a second electrode (counter electrode) on the dielectric oxide film layer. You. As the first electrode, niobium or an alloy thereof is preferably used because a niobium oxide layer is easily formed, and a sintered body thereof is preferably used to obtain a higher capacity.

【0007】例えば、ニオブ焼結体またはニオブ合金の
焼結体(以下、特に断りのない限り、これらの焼結体を
「ニオブ焼結体」と記す)に酸化ニオブを主成分とする
酸化皮膜層を電解化成等により形成し、この酸化皮膜層
の外側に対向電極として二酸化鉛、二酸化マンガンなど
の無機半導体層、またはドーパントを含んだポリピロー
ル、ポリチオフェン、ポリ(3,4−エチレンジオキシ
チオフェン)などの有機半導体層を形成する。さらに、
その上に接触抵抗を減じるために、カーボンペースト、
銀ペーストなどの導電ペーストの導電体層を形成してニ
オブコンデンサ素子が製造される。このニオブコンデン
サの素子は、耐熱性や耐湿性を付与するために、一般に
エポキシ樹脂やフェノール樹脂などの高分子の封止材料
で外装が形成され封止され実用に供せられる。
For example, a niobium sintered body or a sintered body of a niobium alloy (hereinafter, unless otherwise specified, these sintered bodies are referred to as “niobium sintered body”) have an oxide film containing niobium oxide as a main component. A layer is formed by electrolytic formation or the like, and an inorganic semiconductor layer such as lead dioxide, manganese dioxide or the like, or polypyrrole, polythiophene, or poly (3,4-ethylenedioxythiophene) containing a dopant is formed outside the oxide film layer as a counter electrode. An organic semiconductor layer is formed. further,
On top of that, to reduce the contact resistance, carbon paste,
A niobium capacitor element is manufactured by forming a conductive layer of a conductive paste such as a silver paste. In order to impart heat resistance and moisture resistance, the element of this niobium capacitor is generally formed with a polymer sealing material such as an epoxy resin or a phenol resin, sealed, and put to practical use.

【0008】本発明のニオブコンデンサの製造方法にお
いては、前記誘電体酸化皮膜層を、100℃〜1400
℃の高温に曝すことに特徴がある。高温に曝す工程は、
前記誘電体酸化皮膜層の形成後であればよいが、ニオブ
コンデンサを構成するその他の材料、例えば、半導体
層、導電体層などに使用する材質の熱に対する安定性に
よってその時期、温度が異なる。ニオブコンデンサにお
いてはポリピロールなどの有機半導体層が好んで用いら
れる。この場合、前記酸化皮膜を形成した焼結体を熱に
曝す時期は、酸化皮膜形成後であって、有機半導体層の
形成前が特に好ましい。また、前記誘電体酸化皮膜層を
曝す温度は、化成の温度以上、酸化皮膜の融点以下が好
ましい。例えば、100℃〜1400℃の温度が好まし
く、150℃〜1200℃がより好ましく、200℃〜
1000℃が特に好ましい。有機半導体層形成後(導電
体層形成前)に加熱する場合は、100℃〜350℃の
温度が好ましく、150℃〜300℃が特に好ましい。
導電体層形成後(外装封止前)に加熱する場合は、10
0℃〜300℃が好ましく、外装に用いる樹脂の硬化温
度より高く、270℃以下が特に好ましい。例えば、硬
化温度140℃の樹脂を用いる場合、150℃〜270
℃が特に好ましい。外装に用いる樹脂の硬化温度より高
い温度に設定するとよい理由は、樹脂の封止時の熱応力
の影響を緩和することにより半導体層内部のクラックの
発生を防ぎ、漏れ電流値の増加を防ぐためと考えられ
る。
In the method for manufacturing a niobium capacitor according to the present invention, the dielectric oxide film layer is formed at a temperature of 100 ° C. to 1400 ° C.
It is characterized by exposure to high temperature of ℃. The process of exposing to high temperature
The temperature and temperature may vary depending on the stability of the other materials constituting the niobium capacitor, for example, the materials used for the semiconductor layer, the conductor layer, and the like, to the heat after forming the dielectric oxide film layer. In a niobium capacitor, an organic semiconductor layer such as polypyrrole is preferably used. In this case, it is particularly preferable to expose the sintered body having the oxide film formed thereon to heat after the oxide film is formed and before the organic semiconductor layer is formed. The temperature at which the dielectric oxide film layer is exposed is preferably equal to or higher than the formation temperature and equal to or lower than the melting point of the oxide film. For example, a temperature of 100 ° C to 1400 ° C is preferable, 150 ° C to 1200 ° C is more preferable,
1000 ° C. is particularly preferred. When heating after forming the organic semiconductor layer (before forming the conductor layer), the temperature is preferably from 100C to 350C, particularly preferably from 150C to 300C.
When heating after forming the conductor layer (before encapsulation), 10
The temperature is preferably from 0 ° C. to 300 ° C., particularly preferably higher than the curing temperature of the resin used for the exterior, and not higher than 270 ° C. For example, when using a resin having a curing temperature of 140 ° C., 150 ° C. to 270
C is particularly preferred. The reason for setting the temperature higher than the curing temperature of the resin used for the exterior is to reduce the influence of thermal stress at the time of sealing the resin, to prevent the occurrence of cracks inside the semiconductor layer, and to prevent the leakage current value from increasing. it is conceivable that.

【0009】この高温に曝す雰囲気は、大気下であって
もよいし、He、Ne、Arなどの不活性ガス雰囲気下
であってもよい。また、減圧、常圧、加圧下のいずれの
条件下で行っても問題はない。特に、350℃以上の温
度を用いる場合、前記不活性ガス雰囲気で減圧下が好ま
しい。いずれの場合でも高温での保持時間は、数秒から
数十時間である。前記誘電体酸化皮膜層を熱に曝した
後、さらに電解酸化を行い誘電体酸化皮膜層を安定化す
ることも可能である。
The atmosphere exposed to the high temperature may be in the air or in an atmosphere of an inert gas such as He, Ne, or Ar. Further, there is no problem if the reaction is performed under any of reduced pressure, normal pressure, and increased pressure. In particular, when a temperature of 350 ° C. or higher is used, it is preferable that the pressure be reduced in the inert gas atmosphere. In any case, the holding time at a high temperature is several seconds to several tens of hours. After exposing the dielectric oxide film layer to heat, electrolytic oxidation can be further performed to stabilize the dielectric oxide film layer.

【0010】本発明で用いるニオブ焼結体について説明
する。ニオブ焼結体は、ニオブ合金焼結体であってもよ
く、酸化ニオブを主体とする誘電体酸化皮膜層が形成さ
れるものであればよい。本発明でニオブ合金とは、ニオ
ブ以外の合金成分の固溶体を含むものである。
The niobium sintered body used in the present invention will be described. The niobium sintered body may be a niobium alloy sintered body, as long as the dielectric oxide film layer mainly composed of niobium oxide is formed. In the present invention, the niobium alloy includes a solid solution of an alloy component other than niobium.

【0011】例えば、ニオブ焼結体としてはニオブ単体
の焼結体はもちろん好適に使用できるが、ニオブ焼結体
の一部を窒化、ホウ化、炭化、硫化の少なくとも1つの
方法で処理したものであってもよい。その結合量、すな
わち窒素、ホウ素、炭素、硫黄の含有量の総和は、焼結
体作製に用いる微粉の粒径、焼結体の比表面積、焼結体
の形状などによって変わるが、50質量ppm〜20
0,000質量ppm、好ましくは、200質量ppm
〜20,000質量ppmである。
For example, as the niobium sintered body, a niobium simple sintered body can of course be preferably used, but a niobium sintered body is obtained by treating a part of the niobium sintered body by at least one of nitriding, boriding, carbonizing and sulfurizing. It may be. The amount of the bond, that is, the sum of the contents of nitrogen, boron, carbon, and sulfur varies depending on the particle size of the fine powder used for producing the sintered body, the specific surface area of the sintered body, the shape of the sintered body, and the like, but is 50 mass ppm. ~ 20
0000 mass ppm, preferably 200 mass ppm
2020,000 ppm by mass.

【0012】ニオブ合金焼結体の他方の合金成分として
は、リチウム、ナトリウム、カリウム、ルビジウム、セ
シウム、フランシウム、ベリリウム、マグネシウム、カ
ルシウム、ストロンチウム、バリウム、ラジウム、スカ
ンジウム、イットリウム、ランタン、セリウム、プラセ
オジム、ネオジム、サマリウム、ユーロピウム、ガドリ
ニウム、テルビウム、ジスプロシウム、ホルミウム、エ
ルビウム、ツリウム、イッテルビウム、ルテチウム、チ
タン、ジルコニウム、ハフニウム、バナジウム、タンタ
ル、クロム、モリブデン、タングステン、マンガン、レ
ニウム、鉄、ルテニウム、オスミウム、コバルト、ロジ
ウム、イリジウム、ニッケル、パラジウム、白金、銅、
銀、金、亜鉛、カドミウム、水銀、ホウ素、アルミニウ
ム、ガリウム、インジウム、タリウム、炭素、珪素、ゲ
ルマニウム、スズ、鉛、リン、砒素、アンチモン、ビス
マス、セレン、テルル、ポロニウム、アスタチンからな
る群より選ばれる少なくとも1種があげられる。その含
有量の総和は、含まれる元素にもよるが、50質量pp
m〜400,000質量ppmが好ましく、そのLC特
性から100質量ppm〜50000質量ppmが特に
好ましい。さらにこれらのニオブ合金焼結体の一部を、
窒化、ホウ化、炭化、または硫化してもよい。その結合
量、すなわち窒素、ホウ素、炭素、硫黄の含有量の総和
は、他方の合金成分やその含有量などによって変わる
が、50質量ppm〜20,000質量ppm、好まし
くは、200質量ppm〜5,000質量ppmであ
る。
The other alloy components of the niobium alloy sintered body include lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, lanthanum, cerium, praseodymium, Neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, osmium, cobalt, Rhodium, iridium, nickel, palladium, platinum, copper,
Selected from the group consisting of silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, carbon, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, selenium, tellurium, polonium, and astatine At least one of them. The sum of the contents is 50 mass pp, although it depends on the contained elements.
m to 400,000 ppm by mass is preferred, and from the LC characteristics thereof, 100 ppm to 50,000 ppm by mass is particularly preferred. Furthermore, a part of these niobium alloy sintered bodies was
It may be nitrided, borated, carbonized, or sulfurized. The amount of the bond, that is, the sum of the contents of nitrogen, boron, carbon, and sulfur varies depending on the other alloy component and the content thereof, but is from 50 mass ppm to 20,000 mass ppm, preferably from 200 mass ppm to 5 mass ppm. 2,000 mass ppm.

【0013】ニオブ焼結体の表面に形成する誘電体酸化
皮膜層は、焼結体表層部分に設けられた焼結体自体の酸
化物層であってもよく、あるいは、焼結体の表面上に設
けられた他の誘電体酸化物の層であってもよいが、特に
ニオブ焼結体の酸化物を含む層であることが望ましい。
特に、酸化ニオブを主成分とする酸化物層であることが
望ましい。いずれの場合も酸化物層を設ける方法とし
て、従来公知の方法を用いることができる。例えば、酸
化ニオブを主体とする誘電体を電解酸化(電解化成また
は単に化成ともいう)で形成する場合、特開2000−
182899号公報に示されているように、0.1%リ
ン酸水溶液中で化成を行えばよい。
The dielectric oxide film layer formed on the surface of the niobium sintered body may be an oxide layer of the sintered body itself provided on the surface layer portion of the sintered body, or may be formed on the surface of the sintered body. May be used, but it is particularly preferable that the layer contains a niobium sintered body oxide.
In particular, an oxide layer containing niobium oxide as a main component is preferable. In any case, a conventionally known method can be used as a method for providing an oxide layer. For example, when a dielectric mainly composed of niobium oxide is formed by electrolytic oxidation (also referred to as electrolytic formation or simply formation), Japanese Patent Application Laid-Open No. 2000-2000
As shown in Japanese Patent No. 182899, chemical conversion may be performed in a 0.1% phosphoric acid aqueous solution.

【0014】本発明において使用する半導体層の組成お
よび作成方法には、特に制限はないが、アルミ電解コン
デンサ業界で公知である電解液、有機半導体、無機半導
体から選ばれた少なくとも1種の化合物があげられる。
The composition of the semiconductor layer used in the present invention and the method of forming it are not particularly limited, but at least one compound selected from an electrolytic solution, an organic semiconductor and an inorganic semiconductor known in the aluminum electrolytic capacitor industry. can give.

【0015】電解液の具体例としては、イソブチルトリ
プロピルアンモニウムボロテトラフルオロライド電解質
を5質量%溶解したジメチルホルムアミドとエチレング
リコールの混合液、テトラエチルアンモニウムボロテト
ラフルオロライドを7質量%溶解したプロピレンカーボ
ネートとエチレングリコールの混合液などがあげられ
る。
Specific examples of the electrolyte include a mixture of dimethylformamide and ethylene glycol in which 5% by mass of an isobutyltripropylammonium borotetrafluorolide electrolyte is dissolved, and propylene carbonate in which 7% by mass of tetraethylammonium borotetrafluorolide is dissolved. A mixed solution of ethylene glycol and the like can be mentioned.

【0016】有機半導体の具体例としては、ベンゾピロ
リン4量体とクロラニルからなる有機半導体、テトラチ
オテトラセンを主成分とする有機半導体、テトラシアノ
キアノジメタンを主成分とする有機半導体、下記一般式
(1)または(2)
Specific examples of the organic semiconductor include an organic semiconductor composed of a benzopyrroline tetramer and chloranil, an organic semiconductor composed mainly of tetrathiotetracene, an organic semiconductor composed mainly of tetracyanoquinodimethane, and the following general formula: (1) or (2)

【0017】[0017]

【化1】 Embedded image

【0018】[0018]

【化2】 Embedded image

【0019】(式中、R1〜R4は、互いに同一であって
も相違してもよく、各々水素原子、炭素数1〜10の直
鎖もしくは分岐状の飽和もしくは不飽和のアルキル基、
アルコキシ基あるいはアルキルエステル基、ハロゲン原
子、ニトロ基、シアノ基、1級、2級もしくは3級アミ
ノ基、CF3基、フェニル基及び置換フェニル基からな
る群から選ばれる一価基を表わす。R1とR2及びR3
4の炭化水素鎖は互いに任意の位置で結合して、かか
る基により置換を受けている炭素原子と共に少なくとも
1つ以上の3〜7員環の飽和または不飽和炭化水素の環
状構造を形成する二価鎖を形成してもよい。前記環状結
合鎖には、カルボニル、エーテル、エステル、アミド、
スルフィド、スル カルボニル、エーテル、エステル、
アミド、スルフィド、スルフィニル、スルホニル、イミ
ノの結合を任意の位置に含んでもよい。Xは酸素、硫黄
又は窒素原子を表し、R5はXが窒素原子の時のみ存在
して、独立して水素又は炭素数1〜10の直鎖もしくは
分岐状の飽和もしくは不飽和のアルキル基を表す。)で
示される繰り返し単位を含む重合体に、ドーパントをド
ープした導電性高分子を主成分とする有機半導体などが
あげられる。中でも、ポリピロール、ポリ(3,4−エ
チレンジオキシチオフェン)が特に好ましい。
(Wherein, R 1 to R 4 may be the same or different from each other, and each represents a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms,
A monovalent group selected from the group consisting of an alkoxy group or an alkyl ester group, a halogen atom, a nitro group, a cyano group, a primary, secondary or tertiary amino group, a CF 3 group, a phenyl group and a substituted phenyl group. The hydrocarbon chains of R 1 and R 2 and R 3 and R 4 may be bonded to each other at any position to form a saturated or unsaturated at least one or more 3- to 7-membered ring together with the carbon atom substituted by such a group. A divalent chain forming a cyclic structure of a saturated hydrocarbon may be formed. The cyclic bond chain includes carbonyl, ether, ester, amide,
Sulfide, sulfcarbonyl, ether, ester,
An amide, sulfide, sulfinyl, sulfonyl, or imino bond may be included at any position. X represents an oxygen, sulfur or nitrogen atom, R 5 is present only when X is a nitrogen atom, and independently represents hydrogen or a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms. Represent. Examples of the polymer containing a repeating unit represented by the formula (1) include an organic semiconductor mainly composed of a conductive polymer doped with a dopant. Among them, polypyrrole and poly (3,4-ethylenedioxythiophene) are particularly preferred.

【0020】無機半導体の例としては、二酸化鉛または
二酸化マンガンを主成分とする無機半導体、四三酸化鉄
からなる無機半導体などがあげられる。このような半導
体は単独でも2種以上を組み合わせて使用してもよい。
Examples of the inorganic semiconductor include an inorganic semiconductor containing lead dioxide or manganese dioxide as a main component, and an inorganic semiconductor made of triiron tetroxide. Such semiconductors may be used alone or in combination of two or more.

【0021】さらに他方の電極が固体の場合には、例え
ば他方の電極上にカーボンペースト、銀ペーストなどの
導電ペーストを順次積層し、導電層を形成させる。本発
明における導電ペーストとして、従来公知の導電ペース
トを1種以上使用することができる。
When the other electrode is solid, for example, a conductive paste such as a carbon paste and a silver paste is sequentially laminated on the other electrode to form a conductive layer. As the conductive paste in the present invention, one or more conventionally known conductive pastes can be used.

【0022】次に行う外装は、例えば、エポキシ樹脂、
フェノール樹脂等の公知の高分子樹脂による樹脂外装
が、ディッピング、キャスティング、モールディング、
ポッティング、粉体塗装などの公知の方法により行われ
る。
The exterior to be performed next is, for example, an epoxy resin,
Resin exterior with known polymer resin such as phenolic resin, dipping, casting, molding,
It is performed by a known method such as potting and powder coating.

【0023】この様に、ニオブ焼結体およびニオブ合金
焼結体に誘電体酸化皮膜層を形成した後に100℃〜1
400℃の温度に誘電体酸化皮膜層を曝す操作を用いて
作製したコンデンサは、誘電体酸化皮膜層が安定化され
DCバイアス印加による容量の変化が小さく、LC値が
小さく、耐熱性の高い、信頼性の高いコンデンサであ
る。また、本発明のコンデンサを用いると、同容量の従
来のコンデンサに比べて、より小型のコンデンサ製品を
得ることができる。
As described above, after forming the dielectric oxide film layer on the niobium sintered body and the niobium alloy sintered body, 100 ° C. to 1 ° C.
The capacitor manufactured using the operation of exposing the dielectric oxide film layer to a temperature of 400 ° C. has a stable dielectric oxide film layer, a small change in capacitance due to DC bias application, a small LC value, and a high heat resistance. It is a highly reliable capacitor. Further, when the capacitor of the present invention is used, a smaller capacitor product can be obtained as compared with a conventional capacitor having the same capacity.

【0024】このような特性を持つ本発明のコンデンサ
は、例えば、アナログ回路及びデジタル回路中で多用さ
れるバイパスコンデンサ、カップリングコンデンサとし
ての用途や、従来のタンタルコンデンサの用途にも適用
できる。
The capacitor of the present invention having such characteristics can be applied to, for example, a bypass capacitor and a coupling capacitor which are frequently used in analog circuits and digital circuits, and also to a conventional tantalum capacitor.

【0025】一般に、このようなコンデンサは電子回路
中で多用されるので、本発明のコンデンサを用いれば、
電子部品の配置や排熱の制約が緩和され、信頼性の高い
電子回路を従来より狭い空間に収めることができる。
In general, such a capacitor is frequently used in an electronic circuit. Therefore, if the capacitor of the present invention is used,
Restrictions on the arrangement of electronic components and exhaust heat are relaxed, and a highly reliable electronic circuit can be accommodated in a smaller space than before.

【0026】さらに、本発明のコンデンサを用いれば、
従来より小型で信頼性の高い電子機器、例えば、コンピ
ュータ、PCカード等のコンピュータ周辺機器、携帯電
話などのモバイル機器、家電製品、車載機器、人口衛
星、通信機器等を得ることが出来る。
Further, by using the capacitor of the present invention,
It is possible to obtain smaller and more reliable electronic devices than before, such as computer peripheral devices such as computers and PC cards, mobile devices such as mobile phones, home appliances, in-vehicle devices, artificial satellites, and communication devices.

【0027】[0027]

【実施例】以下、実施例をもって本発明をさらに具体的
に説明するが、本発明はこれらの例に限定されるもので
はない。なお、各例において、チップ加工したコンデン
サの容量と漏れ電流値は、以下の方法により測定した。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In each example, the capacitance and leakage current value of the chip-processed capacitor were measured by the following methods.

【0028】(1)コンデンサの容量測定 室温において、作製したチップの端子間にヒューレット
パッカード社製LCR測定器(プレシジョンLCRメー
ターHP4284A型)に接続し、120Hzで、DC
バイアスを1.5Vかけたときの容量をチップ加工した
コンデンサの容量とした。また、DCバイアス印加に対
する性能の向上をより明確にするため、下記式に表され
るCVの変化を「CV残存率」とした。 CV残存率(%)=(DCバイアス1.5V印加のCV
値/無印加CV値)×100
(1) Measurement of Capacitance of Capacitor At room temperature, an LCR measuring device (precision LCR meter HP4284A type) was connected between terminals of the manufactured chip, and DC was measured at 120 Hz.
The capacity when a bias of 1.5 V was applied was taken as the capacity of the capacitor processed by the chip. Further, in order to further clarify the improvement of the performance with respect to the application of the DC bias, the change in CV represented by the following equation was defined as “CV residual rate”. CV residual ratio (%) = (CV with 1.5 V DC bias applied)
Value / No applied CV value) × 100

【0029】(2)コンデンサの漏れ電流測定 室温において、定格電圧値(2.5V、4V、6.3
V、10V、16V、25V等)のうち、誘電体作製時
の化成電圧(直流、20V)の約1/3〜約1/4に近
い直流電圧(6.3V)を、作製したチップの端子間に
1分間印加し続けた後に測定された電流値をチップに加
工したコンデンサの漏れ電流値とした。
(2) Measurement of leakage current of capacitor At room temperature, the rated voltage value (2.5 V, 4 V, 6.3)
V, 10 V, 16 V, 25 V, etc.), a DC voltage (6.3 V) close to about 1/3 to about 1/4 of the formation voltage (DC, 20 V) at the time of producing the dielectric material, The current value measured after the application was continued for one minute in between was defined as the leakage current value of the capacitor processed into the chip.

【0030】実施例1:ニオブインゴット100gをS
US304製の容器に入れ、400℃で10時間水素を
導入し続けた。冷却後、水素化されたニオブ塊を、SU
S製ボールを入れたSUS304製のポットに入れ10
時間粉砕した。次に、SUS304製のスパイクミル
に、この水素化物を水で20体積%のスラリーにしたも
のおよびジルコニアボールを入れ、10℃以下で7時間
湿式粉砕した。このスラリーを遠心沈降の後、デカンテ
ーションして粉砕物を取得した。粉砕物を1.33×1
2Pa、50℃の条件で乾燥した。続いて、水素化ニ
オブ粉を1.33×10-2Pa、400℃で1時間加熱
し脱水素した。作製したニオブ粉の平均粒径は、0.8
μmであった。得られたニオブ粉を4×10-3Paの減
圧下、1000℃で造粒した。その後、造粒塊を解砕
し、平均粒径100μmのニオブ造粒粉を得、窒素気流
下、300℃4時間加熱し、窒化した。
Example 1: 100 g of niobium ingot was added to S
The vessel was placed in a container made of US304, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated niobium mass is
Put in an SUS304 pot containing S balls and put 10
Crushed for hours. Next, a 20 volume% slurry of this hydride and water and a zirconia ball were put into a SUS304 spike mill and wet-pulverized at 10 ° C. or lower for 7 hours. After centrifugal sedimentation of this slurry, decantation was performed to obtain a pulverized product. 1.33 × 1 crushed material
Drying was performed under the conditions of 0 2 Pa and 50 ° C. Subsequently, the niobium hydride powder was dehydrogenated by heating at 1.33 × 10 −2 Pa and 400 ° C. for 1 hour. The average particle size of the prepared niobium powder is 0.8
μm. The obtained niobium powder was granulated at 1000 ° C. under a reduced pressure of 4 × 10 −3 Pa. Thereafter, the granulated mass was pulverized to obtain a niobium granulated powder having an average particle size of 100 μm, and was heated at 300 ° C. for 4 hours in a nitrogen stream to be nitrided.

【0031】このようにして得られた、ニオブ造粒粉を
0.3mmφのニオブ線と共に成形し、およそ0.3c
m×0.18cm×0.45cmの成形体(約0.1
g)を作製した。
The niobium granulated powder thus obtained was molded together with a 0.3 mmφ niobium wire to obtain a powder of about 0.3 c.
m × 0.18 cm × 0.45 cm (approximately 0.1
g) was prepared.

【0032】次にこれらの成形体を4×10-3Paの減
圧下、1200℃で30分放置することにより焼結体を
得た。得られた焼結体を、0.1%リン酸水溶液中で、
80℃の温度で1000分間、20Vの電圧で化成する
ことにより、表面に誘電体酸化皮膜層を形成した。
Next, these compacts were left under a reduced pressure of 4 × 10 −3 Pa at 1200 ° C. for 30 minutes to obtain sintered compacts. The obtained sintered body is placed in a 0.1% phosphoric acid aqueous solution,
A dielectric oxide film layer was formed on the surface by forming at a temperature of 80 ° C. for 1000 minutes at a voltage of 20 V.

【0033】次に、表面に誘電体層を形成した焼結体を
大気下、常圧で、285℃の温度に30分間暴露させ
た。室温まで冷却後、さらに0.1%リン酸水溶液中
で、80℃の温度で200分間、20Vの電圧で化成を
行った。続いて、誘電体酸化皮膜層の上に、過硫酸アン
モニウム10%水溶液とアントラキノンスルホン酸0.
5%水溶液の等量混合液を接触させた後、ピロール蒸気
を触れさせる操作を少なくとも5回行うことによりポリ
ピロールからなる有機半導体層を形成した。
Next, the sintered body having the dielectric layer formed on the surface was exposed to a temperature of 285 ° C. for 30 minutes under atmospheric pressure at atmospheric pressure. After cooling to room temperature, formation was further carried out in a 0.1% phosphoric acid aqueous solution at a temperature of 80 ° C. for 200 minutes at a voltage of 20 V. Subsequently, a 10% aqueous solution of ammonium persulfate and 0.1 ml of anthraquinonesulfonic acid were placed on the dielectric oxide film layer.
After an equal amount of a 5% aqueous solution was brought into contact with the mixture, an operation of contacting with pyrrole vapor was performed at least five times to form an organic semiconductor layer made of polypyrrole.

【0034】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、日東ペルノックス(株)製粉体エポキシ樹脂PCE
273で5回粉体塗装を155℃で行い、さらに155
℃で2時間硬化し外装封止して、チップ型コンデンサを
作製した。このコンデンサの容量とLC値の平均(n=
各100個)を表1に示した。尚、LC値は6.3V、
1分間印加したときの値である。
Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon. Next, after mounting the lead frame, Nitto Pernox Co., Ltd. powder epoxy resin PCE
Powder coating was performed five times at 273 ° C. at 155 ° C.
The composition was cured at a temperature of 2 ° C. for 2 hours and sealed with an exterior to produce a chip-type capacitor. Average of capacitance and LC value of this capacitor (n =
100 each) are shown in Table 1. The LC value was 6.3 V,
This is the value when applying for 1 minute.

【0035】実施例2〜5 実施例1と同様な方法で、表1に示した各合金種のニオ
ブ合金インゴットを出発原料にニオブ合金焼結体を得
た。誘電体酸化皮膜形成後、表1に示した温度に曝し、
有機半導体層、導電体層を形成した後、チップ型コンデ
ンサを作製した。このコンデンサの容量とLC値の平均
(n=各100個)を表1に示した。尚、LC値は6.
3V、1分間印加したときの値である。
Examples 2 to 5 In the same manner as in Example 1, niobium alloy sintered bodies were obtained from niobium alloy ingots of the respective alloy types shown in Table 1 as starting materials. After the dielectric oxide film is formed, it is exposed to the temperature shown in Table 1,
After forming the organic semiconductor layer and the conductor layer, a chip capacitor was manufactured. Table 1 shows the average of the capacitance and the LC value of this capacitor (n = 100 each). In addition, LC value is 6.
It is a value when 3 V is applied for one minute.

【0036】実施例6 亜鉛を1000質量ppm含むニオブ亜鉛合金を出発原
料に実施例1と同様な方法で水素化、粉砕、脱水素を行
い平均粒径0.8μmのニオブ亜鉛合金粉を得た。得ら
れたニオブ亜鉛合金粉を4×10-3Paの減圧下、11
50℃で造粒した。その後、造粒塊を解砕し、平均粒径
120μmのニオブ造粒粉を得た。
Example 6 A niobium zinc alloy powder having an average particle diameter of 0.8 μm was obtained from a niobium zinc alloy containing 1000 mass ppm of zinc as a starting material by hydrogenation, pulverization and dehydrogenation in the same manner as in Example 1. . The obtained niobium zinc alloy powder was dried under reduced pressure of 4 × 10 −3 Pa,
Granulated at 50 ° C. Thereafter, the granulated mass was crushed to obtain a niobium granulated powder having an average particle size of 120 μm.

【0037】このようにして得られた、ニオブ亜鉛造粒
粉を0.3mmφのニオブ線と共に成形し、およそ0.
3cm×0.18cm×0.45cmの成形体(約0.
1g)を作製した。
The niobium zinc granulated powder obtained in this manner was molded together with a 0.3 mmφ niobium wire to obtain a powder of about 0.1 mm.
A 3 cm x 0.18 cm x 0.45 cm molded body (approximately
1g) was prepared.

【0038】次にこれらの成形体を4×10-3Paの減
圧下、1250℃で30分放置することにより焼結体を
得た。得られた焼結体を、0.1%リン酸水溶液中で、
80℃の温度で1000分間、20Vの電圧で化成する
ことにより、表面に誘電体酸化皮膜層を形成した。
Next, these compacts were left under a reduced pressure of 4 × 10 −3 Pa at 1250 ° C. for 30 minutes to obtain sintered compacts. The obtained sintered body is placed in a 0.1% phosphoric acid aqueous solution,
A dielectric oxide film layer was formed on the surface by forming at a temperature of 80 ° C. for 1000 minutes at a voltage of 20 V.

【0039】続いて、表面に誘電体層を形成した焼結体
を4×10-3Paの減圧下、500℃の温度に30分間
暴露させた。室温まで冷却後、この焼結体を、過硫酸ア
ンモニウム25質量%を含む水溶液(溶液1)に浸漬し
た後引き上げ、80℃で30分乾燥させ、次いでこの燒
結体を、3,4−エチレンジオキシチオフェン18質量
%を含むイソプロパノール溶液(溶液2)に浸漬した後
引き上げ、100℃の雰囲気に10分放置することで酸
化重合を行った。これを再び溶液1に浸漬し、さらに前
記と同様に処理した。溶液1に浸漬してから酸化重合を
行うまでの操作を8回繰り返した後、50℃の温水で1
0分洗浄を行い、100℃で30分乾燥を行うことによ
りポリ(3,4−エチレンジオキシチオフェン)からな
る有機半導体層を形成した。
Subsequently, the sintered body having the dielectric layer formed on the surface was exposed to a temperature of 500 ° C. for 30 minutes under a reduced pressure of 4 × 10 −3 Pa. After cooling to room temperature, the sintered body was immersed in an aqueous solution (solution 1) containing 25% by mass of ammonium persulfate, pulled up, dried at 80 ° C. for 30 minutes, and then sintered with 3,4-ethylenedioxy. After being immersed in an isopropanol solution (solution 2) containing 18% by mass of thiophene, it was pulled up and left in an atmosphere of 100 ° C. for 10 minutes to carry out oxidative polymerization. This was immersed again in solution 1 and further treated as described above. The operation from immersion in the solution 1 to oxidative polymerization was repeated eight times, and then repeated with 50 ° C. warm water.
After washing for 0 minutes and drying at 100 ° C. for 30 minutes, an organic semiconductor layer made of poly (3,4-ethylenedioxythiophene) was formed.

【0040】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、日本チバガイギー(株)製エポキシ樹脂XNR12
13でディッピングを1回行い、硬化を150℃で2時
間行い、外装封止して、チップ型コンデンサを作製し
た。このチップ型コンデンサの容量とLC値の平均(n
=各50個)を表1に示した。尚、LC値は室温で6.
3V、1分間印加した時の値である。
Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon. Next, after mounting a lead frame, an epoxy resin XNR12 manufactured by Ciba-Geigy Japan
13, dipping was performed once, curing was performed at 150 ° C. for 2 hours, and sealing was performed to prepare a chip capacitor. Average of the capacitance and LC value of this chip type capacitor (n
= 50 each) are shown in Table 1. The LC value was 6.
It is a value when 3 V is applied for one minute.

【0041】実施例7〜8 実施例6と同様な方法で、表1に示した各合金種のニオ
ブ合金インゴットを出発原料にニオブ合金焼結体を得
た。これを、誘電体酸化皮膜形成後、表1に示した温度
に曝し、有機半導体層、導電体層を形成した後、チップ
型コンデンサを作製した。このコンデンサの容量とLC
値の平均(n=各100個)を表1に示した。尚、LC
値は6.3V、1分間印加したときの値である。
Examples 7 and 8 In the same manner as in Example 6, niobium alloy sintered bodies were obtained from niobium alloy ingots of the respective alloy types shown in Table 1 as starting materials. This was exposed to the temperatures shown in Table 1 after the formation of the dielectric oxide film, and after forming the organic semiconductor layer and the conductor layer, a chip capacitor was produced. The capacitance of this capacitor and LC
Table 1 shows the average of the values (n = 100 each). In addition, LC
The value is a value when 6.3 V is applied for 1 minute.

【0042】実施例9 アンチモンを10000質量ppm含むニオブアンチモ
ン合金を出発原料に実施例1と同様な方法で水素化、粉
砕、脱水素を行い平均粒径0.8μmのニオブアンチモ
ン合金粉を得た。得られたニオブアンチモン合金粉を4
×10-3Paの減圧下、1100℃で造粒した。その
後、造粒塊を解砕し、平均粒径95μmのニオブアンチ
モン造粒粉を得た。
Example 9 A niobium-antimony alloy powder having an average particle diameter of 0.8 μm was obtained from a niobium-antimony alloy containing 10000 mass ppm of antimony as a starting material in the same manner as in Example 1. . The obtained niobium antimony alloy powder was
Granulation was performed at 1100 ° C. under a reduced pressure of × 10 −3 Pa. Thereafter, the granulated mass was pulverized to obtain a niobium antimony granulated powder having an average particle size of 95 μm.

【0043】このようにして得られた、ニオブアンチモ
ン造粒粉を0.3mmφのニオブ線と共に成形し、およ
そ0.3cm×0.18cm×0.45cmの成形体
(約0.1g)を作製し、これらの成形体を4×10-3
Paの減圧下、1250℃で30分放置することにより
焼結体を得た。得られた焼結体を、0.1%リン酸水溶
液中で、80℃の温度で1000分間、20Vの電圧で
化成することにより、表面に誘電体酸化皮膜層を形成し
た。
The niobium-antimony granulated powder thus obtained is molded together with a niobium wire having a diameter of 0.3 mm to form a compact (about 0.1 g) of about 0.3 cm × 0.18 cm × 0.45 cm. Then, these compacts were reduced to 4 × 10 -3
It was left at 1250 ° C. for 30 minutes under a reduced pressure of Pa to obtain a sintered body. The obtained sintered body was formed in a 0.1% aqueous solution of phosphoric acid at a temperature of 80 ° C. for 1000 minutes at a voltage of 20 V to form a dielectric oxide film layer on the surface.

【0044】次に、60%硝酸マンガン水溶液に浸漬後
190℃で120分加熱することを繰り返して、誘電体
酸化皮膜上に半導体層として二酸化マンガン層を形成し
た。続いて、Ar雰囲気下、400℃の温度に30分暴
露した。室温まで冷却後、半導体層上に、カーボン層、
銀ペースト層を順次積層した。次にリードフレームを載
せた後、日東電工(株)製のエポキシ樹脂MPシリーズ
でトランスファー成形を行い、190℃で30分間硬化
することによって外装封止して、チップ型コンデンサを
作製した。このチップ型コンデンサの容量とLC値の平
均(n=各100個)を表1に示した。尚、LC値は室
温で6.3V、1分間印加した時の値である。
Next, immersion in a 60% aqueous manganese nitrate solution and subsequent heating at 190 ° C. for 120 minutes were repeated to form a manganese dioxide layer as a semiconductor layer on the dielectric oxide film. Subsequently, the substrate was exposed to a temperature of 400 ° C. for 30 minutes in an Ar atmosphere. After cooling to room temperature, a carbon layer,
Silver paste layers were sequentially laminated. Next, after mounting a lead frame, transfer molding was performed with an epoxy resin MP series manufactured by Nitto Denko Corporation, and the package was cured at 190 ° C. for 30 minutes to seal the exterior, thereby producing a chip-type capacitor. Table 1 shows the average of the capacitance and the LC value (n = 100 each) of the chip type capacitor. The LC value is a value when 6.3 V is applied at room temperature for 1 minute.

【0045】実施例10〜11 実施例10は実施例1と、実施例11は実施例2と同様
な方法で、ニオブ焼結体、およびニオブジルコニウムガ
リウム合金焼結体を得た。誘電体酸化皮膜形成後、実施
例9と同様な方法で半導体層を形成後、表1に示した温
度に曝し、導電体層を形成した後、チップ型コンデンサ
を作製した。このコンデンサの容量とLC値の平均(n
=各100個)を表1に示した。尚、LC値は6.3
V、1分間印加したときの値である。
Examples 10 to 11 In Example 10, a niobium sintered body and a niobium zirconium gallium alloy sintered body were obtained in the same manner as in Example 1 and Example 11 in Example 2. After the formation of the dielectric oxide film, a semiconductor layer was formed in the same manner as in Example 9, and then exposed to the temperature shown in Table 1, and a conductor layer was formed. The average of the capacitance and LC value of this capacitor (n
= 100 each) are shown in Table 1. The LC value was 6.3.
V is a value when one minute is applied.

【0046】比較例1〜3 比較例1は実施例1、比較例2は実施例6、比較例3は
実施例9で得た誘電体酸化皮膜層を形成した焼結体を熱
に曝すことなく、各実施例と同様な方法で半導体層、導
電体層、エポキシ樹脂による外装封止を順次行い、チッ
プ型コンデンサを作製した。このコンデンサの容量とL
C値の平均(n=各100個)を表1に示した。尚、L
C値は6.3V、1分間印加したときの値である。
Comparative Examples 1 to 3 Comparative Example 1 is Example 1, Comparative Example 2 is Example 6, and Comparative Example 3 is that the sintered body formed with the dielectric oxide film layer obtained in Example 9 is exposed to heat. Instead, the semiconductor layer, the conductor layer, and the exterior sealing with an epoxy resin were sequentially performed in the same manner as in each example, to produce a chip-type capacitor. The capacitance of this capacitor and L
Table 1 shows the average of the C values (n = 100 each). Note that L
The C value is a value when 6.3 V is applied for one minute.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明により、高温寿命特性が良好でバ
イアス変化の小さなコンデンサ、とりわけ単位質量あた
りの容量が大きく、漏れ電流値の小さいニオブ固体電解
コンデンサ、及びその製造方法が提供される。
According to the present invention, there is provided a capacitor having good high-temperature life characteristics and a small bias change, particularly a niobium solid electrolytic capacitor having a large capacity per unit mass and a small leakage current value.

フロントページの続き (72)発明者 福永 宏史 神奈川県川崎市大川町5−1 昭和電工株 式会社研究開発センター内Continued on the front page (72) Inventor Hiroshi Fukunaga 5-1 Okawacho, Kawasaki City, Kanagawa Prefecture Showa Denko R & D Center

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ニオブ焼結体の表面に酸化皮膜、この酸化
皮膜上に半導体層、この半導体層上に導電体層を形成
し、外装して封止するニオブコンデンサの製造方法にお
いて、ニオブ焼結体の表面に酸化皮膜が形成され、半導
体層が形成されていない焼結体を100℃〜1400℃
の範囲の温度に曝すことを特徴とするニオブコンデンサ
の製造方法。
In a method for manufacturing a niobium capacitor, an oxide film is formed on a surface of a niobium sintered body, a semiconductor layer is formed on the oxide film, and a conductor layer is formed on the semiconductor layer. A sintered body in which an oxide film is formed on the surface of the sintered body and no semiconductor layer is formed is heated at 100 ° C. to 1400 ° C.
A method for producing a niobium capacitor, characterized by exposing to a temperature in the range of:
【請求項2】ニオブ焼結体の表面に酸化皮膜、この酸化
皮膜上に有機半導体層、この有機半導体層上に導電体層
を形成し、外装して封止するニオブコンデンサの製造方
法において、ニオブ焼結体の表面に酸化皮膜及び該酸化
皮膜上に有機半導体層が形成され、導電体層が形成され
ていない焼結体を100℃〜350℃の範囲の温度に曝
すことを特徴とするニオブコンデンサの製造方法。
2. A method for manufacturing a niobium capacitor, comprising: forming an oxide film on a surface of a niobium sintered body, an organic semiconductor layer on the oxide film, and a conductor layer on the organic semiconductor layer, and packaging and sealing the niobium capacitor. An oxide film is formed on the surface of the niobium sintered body, and an organic semiconductor layer is formed on the oxide film, and the sintered body without the conductor layer is exposed to a temperature in the range of 100 ° C to 350 ° C. Manufacturing method for niobium capacitors.
【請求項3】ニオブ焼結体の表面に酸化皮膜、この酸化
皮膜上に有機半導体層、この有機半導体層上に導電体層
を形成し、樹脂で外装して封止するニオブコンデンサの
製造方法において、ニオブ焼結体の表面に酸化皮膜、半
導体層、及び導電体層が形成され、樹脂による外装封止
がされていない焼結体を100℃〜300℃の範囲の温
度に曝すことを特徴とするニオブコンデンサの製造方
法。
3. A method for manufacturing a niobium capacitor in which an oxide film is formed on a surface of a niobium sintered body, an organic semiconductor layer is formed on the oxide film, and a conductor layer is formed on the organic semiconductor layer, and the package is covered with a resin and sealed. Wherein an oxide film, a semiconductor layer, and a conductor layer are formed on the surface of a niobium sintered body, and the sintered body that is not sealed with a resin is exposed to a temperature in a range of 100 ° C to 300 ° C. Manufacturing method for a niobium capacitor.
【請求項4】ニオブ焼結体が、1種以上のニオブ以外の
元素を50質量ppm〜400000質量ppm含む請
求項1乃至3のいずれか1項に記載のニオブコンデンサ
の製造方法。
4. The method for producing a niobium capacitor according to claim 1, wherein the niobium sintered body contains 50 mass ppm to 400,000 mass ppm of one or more elements other than niobium.
【請求項5】ニオブ焼結体が、ニオブ合金焼結体であっ
て、合金成分として、リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウム、フランシウム、ベリリウ
ム、マグネシウム、カルシウム、ストロンチウム、バリ
ウム、ラジウム、スカンジウム、イットリウム、ランタ
ン、セリウム、プラセオジム、ネオジム、サマリウム、
ユーロピウム、ガドリニウム、テルビウム、ジスプロシ
ウム、ホルミウム、エルビウム、ツリウム、イッテルビ
ウム、ルテチウム、チタン、ジルコニウム、ハフニウ
ム、バナジウム、タンタル、クロム、モリブデン、タン
グステン、マンガン、レニウム、鉄、ルテニウム、オス
ミウム、コバルト、ロジウム、イリジウム、ニッケル、
パラジウム、白金、銅、銀、金、亜鉛、カドミウム、水
銀、ホウ素、アルミニウム、ガリウム、インジウム、タ
リウム、炭素、珪素、ゲルマニウム、スズ、鉛、リン、
砒素、アンチモン、ビスマス、セレン、テルル、ポロニ
ウム、アスタチンからなる群より選ばれる少なくとも1
種の元素の含有量の総和として50質量ppm〜40
0,000質量ppm含む請求の範囲1乃至4のいずれ
か1項に記載のニオブコンデンサの製造方法。
5. The niobium sintered body is a niobium alloy sintered body, wherein lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, Yttrium, lantern, cerium, praseodymium, neodymium, samarium,
Europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel,
Palladium, platinum, copper, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, carbon, silicon, germanium, tin, lead, phosphorus,
At least one selected from the group consisting of arsenic, antimony, bismuth, selenium, tellurium, polonium, and astatine
50 mass ppm to 40 as a total of the contents of the seed elements
The method for producing a niobium capacitor according to any one of claims 1 to 4, wherein the niobium capacitor includes 0000 mass ppm.
【請求項6】ニオブ焼結体が、ホウ素、窒素、炭素及び
硫黄の元素からなる群より選ばれる少なくとも1種の元
素を、50ppm〜200,000ppm含む請求の範
囲1乃至5のいずれか1項に記載のニオブコンデンサの
製造方法。
6. The niobium sintered body according to claim 1, wherein said niobium sintered body contains at least one element selected from the group consisting of boron, nitrogen, carbon and sulfur in an amount of 50 ppm to 200,000 ppm. 4. The method for producing a niobium capacitor according to claim 1.
【請求項7】ニオブコンデンサの製造方法において、そ
のいずれかの工程で誘電体酸化皮膜を100℃〜140
0℃の範囲の温度に曝した後に封止することを特徴とす
るニオブコンデンサの製造方法。
7. A method for manufacturing a niobium capacitor, wherein a dielectric oxide film is formed at a temperature of 100.degree.
A method for manufacturing a niobium capacitor, comprising sealing after exposing to a temperature in the range of 0 ° C.
【請求項8】請求項1乃至7のいずれか1項に記載の製
造方法で得られるコンデンサ。
8. A capacitor obtained by the manufacturing method according to claim 1.
【請求項9】請求項8に記載のコンデンサを使用した電
子回路。
9. An electronic circuit using the capacitor according to claim 8.
【請求項10】請求項8に記載のコンデンサを使用した
電子機器。
10. An electronic device using the capacitor according to claim 8.
JP2002108893A 2001-04-12 2002-04-11 Niobium capacitor manufacturing method. Expired - Fee Related JP4453890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108893A JP4453890B2 (en) 2001-04-12 2002-04-11 Niobium capacitor manufacturing method.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001113391 2001-04-12
JP2001-113391 2001-04-12
JP2002108893A JP4453890B2 (en) 2001-04-12 2002-04-11 Niobium capacitor manufacturing method.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009218102A Division JP4817468B2 (en) 2001-04-12 2009-09-18 Niobium Capacitor Manufacturing Method

Publications (2)

Publication Number Publication Date
JP2002373834A true JP2002373834A (en) 2002-12-26
JP4453890B2 JP4453890B2 (en) 2010-04-21

Family

ID=26613464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108893A Expired - Fee Related JP4453890B2 (en) 2001-04-12 2002-04-11 Niobium capacitor manufacturing method.

Country Status (1)

Country Link
JP (1) JP4453890B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093994A (en) * 2003-08-13 2005-04-07 Showa Denko Kk Chip-like solid electrolytic capacitor and manufacturing method therefor
JP2005101562A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Chip solid electrolytic capacitor and its manufacturing method
JP2005123605A (en) * 2003-09-26 2005-05-12 Showa Denko Kk Method for manufacturing capacitor
JP2006108173A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2006108170A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP2007096264A (en) * 2005-08-29 2007-04-12 Sanyo Electric Co Ltd Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor
WO2010070878A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Solid electrolytic capacitor and method for manufacturing same
KR101043935B1 (en) 2003-09-26 2011-06-29 쇼와 덴코 가부시키가이샤 Production method of a capacitor
JP2011155314A (en) * 2005-11-07 2011-08-11 Sanyo Electric Co Ltd Process for fabrication of solid electrolytic capacitor
CN113077989A (en) * 2021-03-31 2021-07-06 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Preparation method of anode tantalum block of low-oxygen-content solid electrolyte tantalum capacitor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596543B2 (en) * 2003-01-31 2010-12-08 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP2005093994A (en) * 2003-08-13 2005-04-07 Showa Denko Kk Chip-like solid electrolytic capacitor and manufacturing method therefor
JP2005101562A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Chip solid electrolytic capacitor and its manufacturing method
JP2005123605A (en) * 2003-09-26 2005-05-12 Showa Denko Kk Method for manufacturing capacitor
JP4488303B2 (en) * 2003-09-26 2010-06-23 昭和電工株式会社 Capacitor manufacturing method
KR101043935B1 (en) 2003-09-26 2011-06-29 쇼와 덴코 가부시키가이샤 Production method of a capacitor
JP2006108173A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2006108170A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2007096264A (en) * 2005-08-29 2007-04-12 Sanyo Electric Co Ltd Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor
JP2011155314A (en) * 2005-11-07 2011-08-11 Sanyo Electric Co Ltd Process for fabrication of solid electrolytic capacitor
WO2010070878A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Solid electrolytic capacitor and method for manufacturing same
JP2011003909A (en) * 2008-12-15 2011-01-06 Showa Denko Kk Solid electrolytic capacitor
JP4592822B1 (en) * 2008-12-15 2010-12-08 昭和電工株式会社 Solid electrolytic capacitor
JP4547466B2 (en) * 2008-12-15 2010-09-22 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
JPWO2010070878A1 (en) * 2008-12-15 2012-05-24 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
US8529642B2 (en) 2008-12-15 2013-09-10 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
CN113077989A (en) * 2021-03-31 2021-07-06 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Preparation method of anode tantalum block of low-oxygen-content solid electrolyte tantalum capacitor
CN113077989B (en) * 2021-03-31 2023-05-12 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Preparation method of anode tantalum block of low-oxygen-content solid electrolyte tantalum capacitor

Also Published As

Publication number Publication date
JP4453890B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4453890B2 (en) Niobium capacitor manufacturing method.
JP4562986B2 (en) Niobium powder, sintered body thereof, and capacitor using the same
JP5283240B2 (en) Niobium for capacitors and capacitors using the niobium sintered body
JP4614374B2 (en) Powder composition, sintered body using the composition, and capacitor using the sintered body
JP4817468B2 (en) Niobium Capacitor Manufacturing Method
KR100572886B1 (en) Production Process for Niobium Capacitor
JP3624898B2 (en) Niobium powder, sintered body using the same, and capacitor using the same
AU2002247999A1 (en) Production process for niobium capacitor
KR20020079801A (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
US6660057B1 (en) Powder composition for capacitor, sintered body using the composition and capacitor using the sintered body
KR101016657B1 (en) Tantalum sintered body and capacitor using the sintered body
JP2002231583A (en) Niobium powder for capacitor, sintered body using the same niobium powder, and capacitor using the same sintered body
JP4707164B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
KR20040062674A (en) Niobium alloy, sintered body thereof, and capacitor using the same
WO2001081029A1 (en) Niobium powder, sintered compact thereof and capacitor
RU2267182C2 (en) Niobium powder, sintered niobium material and capacitor made from this sintered material
JPS596501B2 (en) Manufacturing method of solid electrolytic capacitor
JP4451235B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001307963A (en) Niobium for capacitor, sintered body, and capacitor
JP2002343687A (en) Niobium for capacitor, and capacitor using niobium sintered body
KR101035880B1 (en) Method for producing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees