JP2002373680A - Fuel cell and method of gas supply in fuel cell - Google Patents

Fuel cell and method of gas supply in fuel cell

Info

Publication number
JP2002373680A
JP2002373680A JP2001181120A JP2001181120A JP2002373680A JP 2002373680 A JP2002373680 A JP 2002373680A JP 2001181120 A JP2001181120 A JP 2001181120A JP 2001181120 A JP2001181120 A JP 2001181120A JP 2002373680 A JP2002373680 A JP 2002373680A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
oxidizing gas
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001181120A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
稔幸 鈴木
Yuichi Yatsugami
裕一 八神
剛 ▲高▼橋
Takeshi Takahashi
Toshiyuki Inagaki
敏幸 稲垣
Koetsu Hibino
光悦 日比野
Yasuyuki Asai
康之 浅井
Itsushin So
一新 曽
Mikio Wada
三喜男 和田
Tsutomu Ochi
勉 越智
Katsuhiro Kajio
克宏 梶尾
Haruhisa Niimi
治久 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001181120A priority Critical patent/JP2002373680A/en
Publication of JP2002373680A publication Critical patent/JP2002373680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To produce desired electric power and reduce size by effectively, using supply regions of fuel gas and oxidizing gas. SOLUTION: Separators 36 are formed and catalyst electrodes 32 and 33 are applied to opposite surfaces of an electrolyte membrane 31, in order that gas supply regions to which the separators 36 effectively supply fuel gas and oxidizing gas are inside the application regions of the catalyst electrodes 32 and 33 on the opposite surfaces of the electrolyte membrane 31, even under a manufacturing error and an assembly error. Generation of an electrochemical reaction in all regions of the gas supply regions can produce desired electric power from a fuel cell 20. Since electrochemical reaction can be generated in all regions of the gas supply regions, even under a manufacturing error and an assembly error, the separators 36 can be dimensionally reduced, and the fuel cell 20 can be made compact in size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池および燃
料電池におけるガスの供給方法に関し、詳しくは、触媒
を担持した触媒電極が両面に塗布された電解質膜と該電
解質膜の両面の触媒電極に燃料ガスと酸化ガスとを供給
するガス供給部材とを備える燃料電池およびこうした燃
料電池における燃料ガスや酸化ガスの触媒電極への供給
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell and a gas supply method in a fuel cell, and more particularly, to an electrolyte membrane having a catalyst electrode carrying a catalyst applied on both sides thereof and a catalyst electrode on both sides of the electrolyte membrane. The present invention relates to a fuel cell including a gas supply member for supplying a fuel gas and an oxidizing gas, and a method for supplying a fuel gas and an oxidizing gas to a catalyst electrode in such a fuel cell.

【0002】[0002]

【従来の技術】従来、この種の燃料電池としては、触媒
を担持した触媒電極が両面に塗布された電解質膜を備
え、電解質膜の両面の触媒電極に燃料ガスと酸化ガスと
を供給するものが種々提案されている。こうした燃料電
池では、高効率化のために、触媒電極の塗布面に丁度一
致するように燃料ガスや酸化ガスの流路面が設計されて
いる。こうして高効率化を図った燃料電池の一部は、車
載用として開発されている(例えば、特開2001−7
1753号公報など)。
2. Description of the Related Art Conventionally, this type of fuel cell has an electrolyte membrane coated with a catalyst electrode carrying a catalyst on both sides, and supplies a fuel gas and an oxidizing gas to the catalyst electrodes on both sides of the electrolyte membrane. Have been proposed. In such a fuel cell, the flow path surface of the fuel gas or the oxidizing gas is designed so as to exactly coincide with the coated surface of the catalyst electrode in order to increase the efficiency. Some of the fuel cells with high efficiency have been developed for use in vehicles (see, for example, JP-A-2001-7).
No. 1753).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、燃料ガ
スや酸化ガスの流路面を触媒電極の塗布面に丁度一致す
るように設計した燃料電池では、触媒電極に供給した燃
料を十分に利用することができない場合が生じる。設計
上、燃料ガスや酸化ガスの流路面が触媒電極の塗布面に
丁度一致するものとしても、製造誤差や組み付け誤差に
より、供給した燃料ガスや酸化ガスが触媒電極に供給さ
れない場合が生じ、所望の電力を発電することができな
い。所望の電力を得るために、燃料ガスや酸化ガスの流
路面を触媒電極の塗布面に対して大きくすることも考え
られるが、燃料電池が大型化してしまい、限られたスペ
ースに設置する車載用としては不向きなものになってし
まう。
However, in a fuel cell designed such that the flow surface of the fuel gas or the oxidizing gas exactly coincides with the coating surface of the catalyst electrode, the fuel supplied to the catalyst electrode can be sufficiently utilized. In some cases, it is not possible. Even if the flow path surface of the fuel gas or the oxidizing gas just coincides with the coated surface of the catalyst electrode due to design, the supplied fuel gas or the oxidizing gas may not be supplied to the catalyst electrode due to a manufacturing error or an assembly error. Power cannot be generated. In order to obtain the desired power, it is conceivable to increase the flow surface of the fuel gas or oxidizing gas with respect to the coating surface of the catalyst electrode. Would be unsuitable.

【0004】本発明の燃料電池および燃料電池における
ガスの供給方法は、燃料ガスや酸化ガスの供給領域を有
効に用いて所望の電力を得ることを目的の一つとする。
また、本発明の燃料電池および燃料電池におけるガスの
供給方法は、燃料電池の小型化を図ることを目的の一つ
とする。
An object of the fuel cell and the gas supply method in the fuel cell of the present invention is to obtain a desired electric power by effectively using a fuel gas or oxidizing gas supply region.
Another object of the present invention is to provide a fuel cell and a gas supply method in the fuel cell, which aim at miniaturization of the fuel cell.

【0005】[0005]

【課題を解決するための手段およびその作用・効果】本
発明の燃料電池および燃料電池におけるガスの供給方法
は、上述の目的の少なくとも一部を達成するために以下
の手段を採った。
Means for Solving the Problems and Actions and Effects Thereof The fuel cell of the present invention and the method for supplying gas in the fuel cell employ the following means in order to at least partially achieve the above object.

【0006】本発明の燃料電池は、触媒を担持した触媒
電極が両面に塗布された電解質膜と、該電解質膜の両面
の触媒電極に燃料ガスと酸化ガスとを供給するガス供給
部材とを備える燃料電池であって、前記ガス供給部材
は、前記電解質膜に塗布された触媒電極の塗布領域より
内側の領域に前記燃料ガスおよび前記酸化ガスを供給す
る部材であることを要旨とする。
[0006] The fuel cell of the present invention comprises an electrolyte membrane having a catalyst electrode carrying a catalyst applied on both sides thereof, and a gas supply member for supplying a fuel gas and an oxidizing gas to the catalyst electrodes on both sides of the electrolyte membrane. In the fuel cell, the gas supply member is a member that supplies the fuel gas and the oxidizing gas to a region inside a coating region of the catalyst electrode applied to the electrolyte membrane.

【0007】この本発明の燃料電池では、電解質膜に塗
布された触媒電極の塗布領域より内側の領域に燃料ガス
と酸化ガスとが供給されるから、燃料ガスや酸化ガスの
供給領域を有効に用いて所望の電力を得ることができ
る。この結果、ガス供給部材の外周縁寸法を小さくでき
るから、燃料電池の小型化を図ることができる。
In the fuel cell according to the present invention, since the fuel gas and the oxidizing gas are supplied to a region inside the coating region of the catalyst electrode coated on the electrolyte membrane, the supply region of the fuel gas and the oxidizing gas can be effectively used. To obtain the desired power. As a result, the outer peripheral dimension of the gas supply member can be reduced, so that the fuel cell can be downsized.

【0008】こうした本発明の燃料電池において、前記
電解質膜は、前記ガス供給部材により供給される前記燃
料ガスおよび前記酸化ガスの供給領域の外周部の所定の
範囲にも前記触媒電極が塗布されてなるものとすること
もできる。この態様の本発明の燃料電池において、前記
所定の範囲は、製造誤差および/または組み付け誤差が
生じても前記供給領域の外周部に前記燃料ガスおよび前
記酸化ガスが供給されないよう調整された範囲であるも
のとすることもできる。こうすれば、各部材の製造誤差
や各部材を組み付ける際の組み付け誤差が生じても、燃
料ガスや酸化ガスの供給領域を有効に用いることができ
る。
[0008] In the fuel cell of the present invention, the catalyst electrode is applied to the electrolyte membrane in a predetermined range of an outer peripheral portion of a supply region of the fuel gas and the oxidizing gas supplied by the gas supply member. It can also be. In the fuel cell according to the aspect of the present invention, the predetermined range is a range adjusted so that the fuel gas and the oxidizing gas are not supplied to the outer peripheral portion of the supply region even when a manufacturing error and / or an assembly error occurs. It can be. In this way, even if there is a manufacturing error of each member or an assembly error when assembling each member, the supply region of the fuel gas or the oxidizing gas can be used effectively.

【0009】本発明の燃料電池において、前記ガス供給
部材は、前記電解質膜の一方の面とにより燃料ガスの流
路を形成し前記燃料ガスを該一方の面に塗布された触媒
電極に供給する燃料ガス供給部材と、前記電解質膜の他
方の面とにより酸化ガスの流路を形成し前記酸化ガスを
該他方の面に塗布された触媒電極に供給する酸化ガス供
給部材とを備えるものとすることもできる。この態様の
本発明の燃料電池において、前記燃料ガス供給部材は、
前記燃料ガスの流路により前記電解質膜の一方の面に燃
料ガスを供給可能な燃料ガス供給領域では該一方の面に
塗布された触媒電極の塗布領域の一部が含まれないよう
前記燃料ガスの流路が形成されてなり、前記酸化ガス供
給部材は、前記酸化ガスの流路により前記電解質膜の他
方の面に酸化ガスを供給可能な酸化ガス供給領域では該
他方の面に塗布された触媒電極の塗布領域の一部が含ま
れないよう前記酸化ガスの流路が形成されてなるものと
することもできる。
In the fuel cell of the present invention, the gas supply member forms a fuel gas flow path with one surface of the electrolyte membrane, and supplies the fuel gas to a catalyst electrode applied to the one surface. A fuel gas supply member, and an oxidizing gas supply member that forms a flow path of the oxidizing gas by the other surface of the electrolyte membrane and supplies the oxidizing gas to the catalyst electrode applied to the other surface. You can also. In the fuel cell according to the aspect of the present invention, the fuel gas supply member includes:
The fuel gas is supplied in such a manner that the fuel gas supply region in which fuel gas can be supplied to one surface of the electrolyte membrane by the fuel gas flow path does not include a part of the application region of the catalyst electrode applied to the one surface. Is formed, and the oxidizing gas supply member is applied to the other surface in the oxidizing gas supply region where the oxidizing gas can be supplied to the other surface of the electrolyte membrane by the oxidizing gas flow channel. The oxidizing gas flow path may be formed so as not to include a part of the application region of the catalyst electrode.

【0010】本発明の燃料電池におけるガスの供給方法
は、触媒を担持した触媒電極が両面に塗布された電解質
膜を備え、該電解質膜の両面の触媒電極に燃料ガスと酸
化ガスとの供給を受けて発電する燃料電池における該燃
料ガスおよび該酸化ガスの前記触媒電極への供給方法で
あって、前記電解質膜に塗布された触媒電極の塗布領域
より内側の領域に前記燃料ガスおよび前記酸化ガスを供
給することを要旨とする。
A method for supplying gas in a fuel cell according to the present invention comprises an electrolyte membrane having a catalyst electrode carrying a catalyst applied on both sides thereof, and supplying a fuel gas and an oxidizing gas to the catalyst electrodes on both sides of the electrolyte membrane. A method for supplying the fuel gas and the oxidizing gas to the catalyst electrode in a fuel cell receiving and generating power, wherein the fuel gas and the oxidizing gas are provided in a region inside a coating region of the catalyst electrode applied to the electrolyte membrane. The point is to supply.

【0011】この本発明の燃料電池におけるガスの供給
方法よれば、電解質膜に塗布された触媒電極の塗布領域
より内側の領域に燃料ガスと酸化ガスとを供給するか
ら、燃料ガスや酸化ガスの供給領域を有効に用いて所望
の電力を得ることができる。この結果、燃料電池の小型
化を図ることができる。
According to the gas supply method for a fuel cell of the present invention, the fuel gas and the oxidizing gas are supplied to a region inside the coating region of the catalyst electrode applied to the electrolyte membrane. A desired power can be obtained by effectively using the supply area. As a result, the size of the fuel cell can be reduced.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態を実施
例を用いて説明する。図1は、本発明の一実施例である
固体高分子型の燃料電池20を構成する単位セル30の
構成の概略を模式的に示す構成図である。実施例の燃料
電池20は、単位セル30を複数積層して構成されてい
る。
Next, embodiments of the present invention will be described with reference to examples. FIG. 1 is a configuration diagram schematically showing a configuration of a unit cell 30 constituting a polymer electrolyte fuel cell 20 according to one embodiment of the present invention. The fuel cell 20 of the embodiment is configured by stacking a plurality of unit cells 30.

【0013】実施例の単位セル30は、図示するよう
に、湿潤状態で良好なプロトン伝導性を示す電解質膜3
1と、電解質膜31の両面に塗布された触媒電極32,
33と、触媒電極32,33の両側に配置されて燃料ガ
スや酸化ガスを触媒電極に供給するガス拡散電極34,
35と、ガス拡散電極34,35とにより燃料ガスや酸
化ガスの流路である燃料ガス流路37および酸化ガス流
路38を形成すると共に隣接する単位セル30の隔壁を
なすセパレータ36とを備える。各部材の材質は、通常
の固体高分子型の燃料電池に用いられる材質であり、本
発明の中核をなさないから、その詳細な説明は省略す
る。
As shown in the figure, the unit cell 30 of the embodiment comprises an electrolyte membrane 3 having good proton conductivity in a wet state.
1, a catalyst electrode 32 applied to both sides of the electrolyte membrane 31,
33, and gas diffusion electrodes 34, disposed on both sides of the catalyst electrodes 32, 33 to supply fuel gas or oxidizing gas to the catalyst electrodes.
35, and a separator 36 forming a fuel gas flow path 37 and an oxidizing gas flow path 38, which are flow paths for fuel gas and oxidizing gas, by the gas diffusion electrodes 34 and 35, and forming a partition wall of the adjacent unit cell 30. . The material of each member is a material used for a normal polymer electrolyte fuel cell, and does not form a core of the present invention, and thus a detailed description thereof will be omitted.

【0014】セパレータ36は、図示するように、ガス
拡散電極34,35とにより形成される燃料ガス流路3
7および酸化ガス流路38により、電解質膜31に塗布
された触媒電極32,33に燃料ガスや酸化ガスを供給
できるよう形成されている。電解質膜31の触媒電極3
2,33の塗布領域と燃料ガス流路37および酸化ガス
流路38により燃料ガスおよび酸化ガスが有効に供給さ
れるガス供給領域との関係を図2に示す。図中、実線の
範囲Aが触媒電極32,33の塗布領域であり、破線の
範囲Bがガス供給領域である。図示するように、触媒電
極32,33の塗布領域は、ガス供給領域のすべてを含
むよう触媒電極32,33が塗布されており、ガス供給
領域のすべての領域で電気化学反応による発電が可能に
なっている。したがって、単位セル30を構成する各部
の製造誤差や、単位セル30を組み付ける際に生じる組
み付け誤差があっても、ガス供給領域のすべてで電気化
学反応を有効に生じさせることができる。なお、触媒電
極32,33の塗布領域Aとガス供給領域Bとの領域差
として図2に図示されている間隔dは、製造誤差や組み
付け誤差によってもガス供給領域のすべてで電気化学反
応が有効に生じ得る長さとして設定すればよく、製造誤
差の許容範囲や組み付け精度によって定まる。
As shown in the figure, the separator 36 has a fuel gas passage 3 formed by the gas diffusion electrodes 34 and 35.
The fuel gas and the oxidizing gas can be supplied to the catalyst electrodes 32 and 33 applied to the electrolyte membrane 31 by the oxidizing gas flow path 38 and the oxidizing gas flow path 38. Catalyst electrode 3 of electrolyte membrane 31
FIG. 2 shows the relationship between the application areas 2 and 33 and the gas supply area where the fuel gas and the oxidizing gas are effectively supplied by the fuel gas flow path 37 and the oxidizing gas flow path 38. In the drawing, a range A indicated by a solid line is an application region of the catalyst electrodes 32 and 33, and a range B indicated by a broken line is a gas supply region. As shown in the figure, the application regions of the catalyst electrodes 32 and 33 are coated with the catalyst electrodes 32 and 33 so as to include all of the gas supply regions, so that power can be generated by an electrochemical reaction in all the regions of the gas supply regions. Has become. Therefore, even if there is a manufacturing error in each part constituting the unit cell 30 or an assembling error generated when assembling the unit cell 30, an electrochemical reaction can be effectively generated in the entire gas supply region. The distance d shown in FIG. 2 as the area difference between the application area A of the catalyst electrodes 32 and 33 and the gas supply area B is such that the electrochemical reaction is effective in all of the gas supply areas due to manufacturing errors and assembly errors. May be set as the length that can occur, and is determined by the allowable range of the manufacturing error and the assembly accuracy.

【0015】以上説明した実施例の燃料電池20によれ
ば、燃料ガスや酸化ガスを供給するガス供給領域のすべ
ての領域で電気化学反応を生じさせることができ、燃料
電池20から所望の電力を得ることができる。しかも、
製造誤差や組み付け誤差によってもガス供給領域のすべ
ての領域で電気化学反応を生じさせることができるか
ら、所望の電力を得るためにセパレータ36の寸法に対
して製造誤差や組み付け誤差などを考慮しなくてもよ
く、セパレータ36の寸法を小さくすることができる。
したがって、燃料電池20の小型化を図ることができ
る。
According to the fuel cell 20 of the embodiment described above, an electrochemical reaction can be caused in all regions of the gas supply region for supplying the fuel gas and the oxidizing gas. Obtainable. Moreover,
Since an electrochemical reaction can be caused in all regions of the gas supply region by a manufacturing error or an assembly error, it is necessary to consider a manufacturing error or an assembly error for the dimensions of the separator 36 in order to obtain a desired power. Alternatively, the size of the separator 36 can be reduced.
Therefore, the size of the fuel cell 20 can be reduced.

【0016】実施例の燃料電池20では、触媒電極3
2,33を両面に塗布した電解質膜31とガス拡散電極
34,35とセパレータ36とにより単位セル30を構
成したが、ガス拡散電極34,35を用いずに触媒電極
32,33に直接燃料ガスや酸化ガスを供給するものと
してもよい。この場合でも、燃料ガスや酸化ガスを供給
するガス供給領域のすべての領域で電気化学反応が生じ
るよう電解質膜31の両面に触媒電極32,33を塗布
すると共にセパレータ36を形成すればよい。
In the fuel cell 20 of the embodiment, the catalyst electrode 3
The unit cell 30 is composed of the electrolyte membrane 31 coated on both sides with the gas diffusion electrodes 34, 35, and the separator 36, but the fuel gas is directly supplied to the catalyst electrodes 32, 33 without using the gas diffusion electrodes 34, 35. Or an oxidizing gas may be supplied. Even in this case, the catalyst electrodes 32 and 33 may be applied to both surfaces of the electrolyte membrane 31 and the separator 36 may be formed so that the electrochemical reaction occurs in all regions of the gas supply region for supplying the fuel gas and the oxidizing gas.

【0017】以上、本発明の実施の形態について実施例
を用いて説明したが、本発明はこうした実施例に何等限
定されるものではなく、本発明の要旨を逸脱しない範囲
内において、種々なる形態で実施し得ることは勿論であ
る。
The embodiments of the present invention have been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various embodiments may be made without departing from the gist of the present invention. Of course, it can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である固体高分子型の燃料電
池20を構成する単位セル30の構成の概略を模式的に
示す構成図である。
FIG. 1 is a configuration diagram schematically showing a configuration of a unit cell 30 constituting a polymer electrolyte fuel cell 20 according to one embodiment of the present invention.

【図2】電解質膜31の触媒電極32,33の塗布領域
と燃料ガス流路37および酸化ガス流路38により燃料
ガスと酸化ガスとが有効に供給されるガス供給領域との
関係の一例を示す説明図である。
FIG. 2 shows an example of a relationship between an application area of catalyst electrodes 32 and 33 of an electrolyte membrane 31 and a gas supply area where a fuel gas and an oxidizing gas are effectively supplied by a fuel gas channel 37 and an oxidizing gas channel 38. FIG.

【符号の説明】[Explanation of symbols]

20 燃料電池、30 単位セル、31 電解質膜、3
2,33 触媒電極、34,35 ガス拡散電極、36
セパレータ、37 燃料ガス流路、38 酸化ガス流
路。
20 fuel cell, 30 unit cell, 31 electrolyte membrane, 3
2,33 catalyst electrode, 34,35 gas diffusion electrode, 36
Separator, 37 fuel gas flow path, 38 oxidizing gas flow path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲高▼橋 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 稲垣 敏幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 日比野 光悦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 浅井 康之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 曽 一新 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 和田 三喜男 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 越智 勉 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 梶尾 克宏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 新美 治久 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA06 BB03 CC10 CX05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor ▲ Takahashi Tsuyoshi Hashi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Toshiyuki 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Stock In-company (72) Inventor Mitsue Hibino 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yasuyuki Asai 1 Toyota Town Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Soh Renewed 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Mikio Wada 1 Toyota Town Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Tsutomu Ochi Toyota Town, Toyota City, Aichi Prefecture No. 1 Toyota Motor Corporation (72) Inventor Katsuhiro Kajio 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor (72) Inventor Haruhisa Niimi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H026 AA06 BB03 CC10 CX05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 触媒を担持した触媒電極が両面に塗布さ
れた電解質膜と、該電解質膜の両面の触媒電極に燃料ガ
スと酸化ガスとを供給するガス供給部材とを備える燃料
電池であって、 前記ガス供給部材は、前記電解質膜に塗布された触媒電
極の塗布領域より内側の領域に前記燃料ガスおよび前記
酸化ガスを供給する部材である燃料電池。
1. A fuel cell comprising: an electrolyte membrane having a catalyst electrode carrying a catalyst applied on both sides thereof; and a gas supply member for supplying a fuel gas and an oxidizing gas to the catalyst electrodes on both sides of the electrolyte membrane. The fuel cell, wherein the gas supply member is a member that supplies the fuel gas and the oxidizing gas to an area inside an application area of the catalyst electrode applied to the electrolyte membrane.
【請求項2】 前記電解質膜は、前記ガス供給部材によ
り供給される前記燃料ガスおよび前記酸化ガスの供給領
域の外周部の所定の範囲にも前記触媒電極が塗布されて
なる請求項1記載の燃料電池。
2. The catalyst electrode according to claim 1, wherein the electrolyte electrode is applied to a predetermined area of an outer peripheral portion of a supply region of the fuel gas and the oxidizing gas supplied by the gas supply member. Fuel cell.
【請求項3】 前記所定の範囲は、製造誤差および/ま
たは組み付け誤差が生じても前記供給領域の外周部に前
記燃料ガスおよび前記酸化ガスが供給されないよう調整
された範囲である請求項2記載の燃料電池。
3. The predetermined range is a range adjusted so that the fuel gas and the oxidizing gas are not supplied to an outer peripheral portion of the supply region even if a manufacturing error and / or an assembly error occurs. Fuel cell.
【請求項4】 前記ガス供給部材は、前記電解質膜の一
方の面とにより燃料ガスの流路を形成し前記燃料ガスを
該一方の面に塗布された触媒電極に供給する燃料ガス供
給部材と、前記電解質膜の他方の面とにより酸化ガスの
流路を形成し、前記酸化ガスを該他方の面に塗布された
触媒電極に供給する酸化ガス供給部材とを備える請求項
1ないし3いずれか記載の燃料電池。
4. A fuel gas supply member, comprising: a fuel gas flow path formed by one surface of the electrolyte membrane; and a fuel gas supply member configured to supply the fuel gas to a catalyst electrode applied to the one surface. 4. An oxidizing gas supply member, which forms an oxidizing gas flow path with the other surface of the electrolyte membrane and supplies the oxidizing gas to a catalyst electrode applied to the other surface. The fuel cell as described.
【請求項5】 請求項4記載の燃料電池であって、 前記燃料ガス供給部材は、前記燃料ガスの流路により前
記電解質膜の一方の面に燃料ガスを供給可能な燃料ガス
供給領域では該一方の面に塗布された触媒電極の塗布領
域の一部が含まれないよう前記燃料ガスの流路が形成さ
れてなり、 前記酸化ガス供給部材は、前記酸化ガスの流路により前
記電解質膜の他方の面に酸化ガスを供給可能な酸化ガス
供給領域では該他方の面に塗布された触媒電極の塗布領
域の一部が含まれないよう前記酸化ガスの流路が形成さ
れてなる燃料電池。
5. The fuel cell according to claim 4, wherein the fuel gas supply member is provided in a fuel gas supply region where the fuel gas can be supplied to one surface of the electrolyte membrane by the fuel gas flow path. The fuel gas flow path is formed so as not to include a part of the application area of the catalyst electrode applied to one surface, and the oxidizing gas supply member is configured to have a flow path of the oxidizing gas for the electrolyte membrane. A fuel cell in which the oxidizing gas flow path is formed such that the oxidizing gas supply region capable of supplying the oxidizing gas to the other surface does not include a part of the application region of the catalyst electrode applied to the other surface.
【請求項6】 触媒を担持した触媒電極が両面に塗布さ
れた電解質膜を備え、該電解質膜の両面の触媒電極に燃
料ガスと酸化ガスとの供給を受けて発電する燃料電池に
おける該燃料ガスおよび該酸化ガスの前記触媒電極への
供給方法であって、 前記電解質膜に塗布された触媒電極の塗布領域より内側
の領域に前記燃料ガスおよび前記酸化ガスを供給するガ
スの供給方法。
6. A fuel cell in a fuel cell, comprising: an electrolyte membrane coated on both sides with a catalyst electrode carrying a catalyst; and supplying fuel gas and oxidizing gas to the catalyst electrodes on both sides of the electrolyte membrane to generate power. And a method of supplying the oxidizing gas to the catalyst electrode, wherein the fuel gas and the oxidizing gas are supplied to a region inside a coating region of the catalyst electrode applied to the electrolyte membrane.
JP2001181120A 2001-06-15 2001-06-15 Fuel cell and method of gas supply in fuel cell Pending JP2002373680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181120A JP2002373680A (en) 2001-06-15 2001-06-15 Fuel cell and method of gas supply in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181120A JP2002373680A (en) 2001-06-15 2001-06-15 Fuel cell and method of gas supply in fuel cell

Publications (1)

Publication Number Publication Date
JP2002373680A true JP2002373680A (en) 2002-12-26

Family

ID=19021437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181120A Pending JP2002373680A (en) 2001-06-15 2001-06-15 Fuel cell and method of gas supply in fuel cell

Country Status (1)

Country Link
JP (1) JP2002373680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331718A (en) * 2005-05-24 2006-12-07 Hitachi Ltd Fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119928A (en) * 1992-10-02 1994-04-28 Mitsubishi Heavy Ind Ltd Fuel cell stack with solid high-polymer electrolyte
JPH0992308A (en) * 1995-09-20 1997-04-04 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2001015132A (en) * 1999-07-02 2001-01-19 Toyota Motor Corp Fuel cell
WO2002001658A1 (en) * 2000-06-29 2002-01-03 Nok Corporation Constituent part for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119928A (en) * 1992-10-02 1994-04-28 Mitsubishi Heavy Ind Ltd Fuel cell stack with solid high-polymer electrolyte
JPH0992308A (en) * 1995-09-20 1997-04-04 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2001015132A (en) * 1999-07-02 2001-01-19 Toyota Motor Corp Fuel cell
WO2002001658A1 (en) * 2000-06-29 2002-01-03 Nok Corporation Constituent part for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331718A (en) * 2005-05-24 2006-12-07 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
US10573905B2 (en) Power generation cell
CN1862865B (en) Fuel cell
JP2007329125A (en) Diffusion medium for seal support for improved fuel cell design
JP6649939B2 (en) Power generation cell
JP2008066264A (en) Laminating property improving structure of metal separator for fuel cell stack
JPWO2007123191A1 (en) Polymer electrolyte fuel cell
JP2008071506A (en) Solid polymer fuel cell
JP2006260916A (en) Fuel cell
JP2007207502A (en) Fuel cell
JP2020068062A (en) Fuel cell stack
JP2020126748A (en) Fuel cell stack and method of assembling the same
JP5111826B2 (en) Fuel cell
JP2006048983A (en) Fuel cell stack
JP2003229144A (en) Fuel cell
US6926982B2 (en) Fuel cell
JP2006236612A (en) Fuel cell
JP2020004520A (en) Fuel cell separator and fuel cell stack
JP2007299537A (en) Fuel cell
US8815464B2 (en) Fuel cell
JP2007165174A (en) Fuel cell
JP2011113785A (en) Fuel cell
JP2002373680A (en) Fuel cell and method of gas supply in fuel cell
JP2002373678A (en) Fuel cell and method of gas supply in fuel cell
JP2008293953A (en) Stack for fuel cell
US9923228B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228