JP2002372492A - Method for determining water in oil - Google Patents

Method for determining water in oil

Info

Publication number
JP2002372492A
JP2002372492A JP2001179653A JP2001179653A JP2002372492A JP 2002372492 A JP2002372492 A JP 2002372492A JP 2001179653 A JP2001179653 A JP 2001179653A JP 2001179653 A JP2001179653 A JP 2001179653A JP 2002372492 A JP2002372492 A JP 2002372492A
Authority
JP
Japan
Prior art keywords
oil
water
infrared
absorption
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001179653A
Other languages
Japanese (ja)
Inventor
Yuji Fujioka
裕二 藤岡
Keiji Iwata
圭司 岩田
Shinya Sakamoto
真也 坂本
Kosaku Shioda
浩作 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001179653A priority Critical patent/JP2002372492A/en
Publication of JP2002372492A publication Critical patent/JP2002372492A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and rapidly determining rustproof oil that is applied to a metal material, metal products, and metal components for giving rustproofness and/or lubrication properties, and/or rustproof oil that is applied to the lubricant by a small amount of sample, and/or water in the lubricant. SOLUTION: An infrared transmission window material whose solubility to 100 g water at 20 deg.C is 1 g or less is used to measured rustproof oil and/or its infrared absorption spectrum, thus determining water from the ratio of the absorption intensity (peak are or peak height) of O-H bond appearing at a wavenumber of 3700-2800 cm<-1> , or the absorption intensity (peak area or peak height) of C-H bond in hydrocarbon appearing at a wavenumber of 3200-2800 cm<-1> , and the absorption intensity (peak area or a peak height) of O-H bond appearing at a wavenumber of 3700-2800 cm<-1> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油中の水分定量方
法に関し、特に、金属材料、金属製品及び金属部品に塗
布し、防錆性及び/又は潤滑性を付与する防錆油及び/
又は潤滑油の水分定量方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining moisture in oil, and more particularly to a method for applying rust-preventive oil and / or lubricity to metal materials, metal products and metal parts to impart rust-preventive properties and / or lubricity.
Or, it relates to a method for determining the moisture content of lubricating oil.

【0002】[0002]

【従来の技術】防錆油及び/又は潤滑油が金属材料、金
属製品及び金属部品に対して機能を発現する際に、油中
に含まれる水分が影響を及ぼすことがある。特に日本国
内では、6月から8月は高温多湿の時季であり、空気中
の水分が油中に移行して油中の水分が増加し、防錆性や
潤滑性などの機能が低下することがあるため、油中の水
分を定量することは非常に重要である。
2. Description of the Related Art When a rust-preventive oil and / or a lubricating oil exerts a function on a metal material, a metal product and a metal part, moisture contained in the oil may affect the oil. Especially in Japan, June to August is a hot and humid season, and the moisture in the air migrates into the oil, increasing the moisture in the oil and deteriorating functions such as rust prevention and lubricity. Therefore, it is very important to determine the water content in the oil.

【0003】従来、一般的な水分の定量方法としては、
公知文献(例えば、日本分析化学会編「分析化学便覧」
(平成3年、丸善発行、p.111))に示されるように、試
料を真空乾燥、加熱乾燥、風乾などを行い、その質量減
少により定量する方法や、水分を水蒸気として放出さ
せ、適当な吸収剤に吸収させることにより、吸収剤の質
量増加として定量する方法などの質量測定による方法
(重量分析法)、カールフィッシャー法など滴定によっ
て水分量を測定する容量分析法、特定の試料に対して
は、水と反応して呈色する反応を利用して吸光度から定
量する方法、水とカーバイト、又は水素化カルシウムと
の反応を利用して、発生する気体の量から定量する方
法、ガスクロマトグラフィーによる定量方法などが知ら
れている。
[0003] Conventionally, as a general method of quantifying water,
Known literature (for example, “Analytical Chemistry Handbook” edited by the Japan Society for Analytical Chemistry)
As shown in (1991, Maruzen, p.111), the sample is vacuum dried, heat dried, air dried, etc., and the method of quantification by mass reduction is used. Mass spectrometry (mass spectrometry), such as a method of quantifying the increase in the mass of the absorbent by absorption into the absorbent, volumetric analysis, such as the Karl Fischer method, which measures the amount of water by titration, for specific samples Is a method of quantifying from the absorbance using a reaction that forms a color by reacting with water, a method of quantifying from the amount of gas generated using a reaction between water and carbide or calcium hydride, gas chromatography Quantitative methods by chromatography and the like are known.

【0004】特に、容量分析法の一つであるカールフィ
ッシャー法は、実用上極めて重要な水分定量法であり、
アクアメトリーとも呼ばれ、油中の水分定量方法として
も繁用されている。カールフィッシャー法は、水がピリ
ジンおよびメタノール中でヨウ素及び二酸化硫黄を含む
カールフィッシャー試薬と反応することを利用してい
る。この方法は、感度及び精度とも良好で、広く利用さ
れているが、試料量は0.5g以上を必要とする。しか
し、金属材料、製品及び部品に対する防錆油及び/又は
潤滑油の塗布量は、数十mg/m2 〜数 g/m2 程度であり、
カールフィッシャー法で必要とする試料量を得るには、
1m2 以上の面積から試料を回収しなければならない。
しかも、溶剤を使用すると、溶剤中の水分の影響を受け
る恐れがある上、溶剤と試料(試料中の水分)を分離す
ることが困難なため、試料採取に溶剤を使用できない。
また、カールフィッシャー試薬が不安定で、使用のたび
に標準試薬を用いて標定しなければならず、さらに試薬
が水と反応するため、防湿系で測定を行わなければなら
ない。
[0004] In particular, the Karl Fischer method, which is one of the volumetric analysis methods, is a very important moisture determination method in practical use.
Also called aquametry, it has been widely used as a method for determining water in oil. The Karl Fischer method utilizes the reaction of water with Karl Fischer reagents containing iodine and sulfur dioxide in pyridine and methanol. This method has good sensitivity and accuracy and is widely used, but requires a sample amount of 0.5 g or more. However, metallic materials, the coating amount of the rust-preventive oil and / or lubricating oil to the product and part is several tens of mg / m 2 ~ Number g / m 2 approximately,
To obtain the required amount of sample by Karl Fischer method,
Samples must be collected from an area of 1 m 2 or more.
In addition, when a solvent is used, the solvent may be affected by moisture in the solvent, and it is difficult to separate the solvent from the sample (moisture in the sample). Therefore, the solvent cannot be used for sampling.
In addition, the Karl Fischer reagent is unstable and must be standardized using a standard reagent each time it is used. Further, since the reagent reacts with water, the measurement must be performed in a moisture-proof system.

【0005】一方、特開平9−96398号公報には、
赤外スペクトルを利用して、潤滑油の成分を分析して管
理するシステムが提案されている。
On the other hand, JP-A-9-96398 discloses that
A system that analyzes and manages components of a lubricating oil using an infrared spectrum has been proposed.

【0006】[0006]

【発明が解決しようとする課題】防錆油及び/又は潤滑
油は金属材料、金属製品及び金属部品に塗布して機能を
発現するため、塗布された状態における水分を測定する
必要がある。しかし、塗布量は非常に少ないため、水分
の混入の恐れのある溶剤を使わずに、大量に回収するこ
とは困難であり、わずかな試料で水分を定量できる方法
が望まれている。
The rust-preventive oil and / or lubricating oil is applied to a metal material, a metal product and a metal part to exhibit a function. Therefore, it is necessary to measure the moisture in the applied state. However, since the amount of application is very small, it is difficult to recover a large amount without using a solvent that may mix water, and a method that can quantify water with a small number of samples is desired.

【0007】赤外吸収スペクトルを測定する方法では、
試料量は数μl(数mg相当)と非常に少量で定量でき
る。赤外分光分析法は、試料に赤外光を照射し、分子振
動のうち、双極子能率の変化を起こす振動に起因する吸
収を測定する方法で、有機化合物に対する官能基の定性
及び定量分析、芳香族置換体の分析、高分子化合物の分
析、一部無機化合物の分析に広く用いられている。透過
法による液体又は液状試料の赤外吸収スペクトルの測定
は、通常2枚の赤外線透過材料(窓材)で挟んで薄膜化
し、あるいはスペーサーを挟んで光路長を調節して測定
を行うが、この時の光路長、すなわち試料の厚さは、試
料を溶剤等で希釈せず、そのまま測定する場合は10〜
100μm程度で、炭化水素のC−H結合のように吸光
係数の大きい吸収を測定する場合は10〜30μm程度
である。赤外吸収スペクトルを測定する際の赤外線の光
束は、10〜20mmφ程度であるので、ピーク強度から
油中の水分を定量する場合に必要な試料量は、1〜10
μlとごく少量であり、このような少量であれば、金属
材料、製品及び部品に塗布された防錆油及び/又は潤滑
油を、溶剤を使わずに容易に採取することができる。し
かし、赤外吸収スペクトルの測定に使用する従来の窓材
は、水分による影響を受けやすいという問題があるた
め、赤外分光分析法は、水に対してはほとんど使用され
ていない。
In a method for measuring an infrared absorption spectrum,
The sample amount can be determined in a very small amount of several μl (corresponding to several mg). Infrared spectroscopy is a method of irradiating a sample with infrared light and measuring the absorption due to the vibration that causes a change in dipole efficiency among the molecular vibrations. It is widely used for analysis of aromatic substituents, analysis of high molecular compounds, and analysis of some inorganic compounds. In the measurement of the infrared absorption spectrum of a liquid or a liquid sample by the transmission method, the measurement is usually performed by sandwiching two infrared transmitting materials (window materials) to form a thin film or adjusting the optical path length by interposing a spacer. The optical path length at the time, that is, the thickness of the sample is 10 to 10 when the sample is measured without dilution with a solvent or the like.
In the case of measuring absorption having a large extinction coefficient such as a C—H bond of a hydrocarbon at about 100 μm, it is about 10 to 30 μm. Since the luminous flux of the infrared ray at the time of measuring the infrared absorption spectrum is about 10 to 20 mmφ, the sample amount necessary for quantifying the water content in the oil from the peak intensity is 1 to 10
It is a very small amount of μl, and if it is such a small amount, rust preventive oil and / or lubricating oil applied to metal materials, products and parts can be easily collected without using a solvent. However, the conventional window material used for measuring the infrared absorption spectrum has a problem that it is easily affected by moisture, and thus infrared spectroscopy is hardly used for water.

【0008】特開平9−96398号公報で開示されて
いる潤滑油管理システムは、赤外スペクトルを利用して
潤滑油の成分を分析して管理するシステムであり、水分
も分析できるとされているが、実際には潤滑油成分の一
つであるフェノール系の酸化防止剤のO−H結合を検出
するものであって、水を検出している例は示されておら
ず、窓材についても言及していない。そこで、本発明者
らは、従来の窓材を用いて特開平9−96398号公報
の追試を行ったところ、水分の定量が行えない場合が多
発した。
The lubricating oil management system disclosed in Japanese Patent Application Laid-Open No. 9-96398 is a system for analyzing and managing components of lubricating oil using an infrared spectrum, and it is said that moisture can also be analyzed. However, it actually detects the O—H bond of a phenolic antioxidant, which is one of the lubricating oil components, and no example of detecting water is shown. Did not mention. Then, the present inventors performed a supplementary test of Japanese Patent Application Laid-Open No. 9-96398 using a conventional window material, and as a result, in many cases, it was not possible to quantify moisture.

【0009】本発明は、上記のような問題点を解決する
ものであって、金属材料、金属製品及び金属部品に塗布
された状態における防錆油及び/又は潤滑油中の水分を
簡便かつ迅速に定量することができる水分定量方法を提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides a simple and quick method for removing moisture in a rust-preventive oil and / or a lubricating oil applied to a metal material, a metal product and a metal part. It is an object of the present invention to provide a method for quantifying moisture that can be quantitatively determined.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために、鋭意検討した結果、本発明を完成し
たものである。即ち、本発明は、上記目的を達成するた
めに、以下のような手段を用いる。 (1)油の赤外吸収スペクトルを測定し、波数3700
〜2800cm-1に現れるO−H結合の吸収強度から、前
記油中の水分を定量することを特徴とする油中の水分定
量方法。 (2)油の赤外吸収スペクトルを測定し、波数3200
〜2800cm-1に現れる炭化水素のC−H結合の吸収強
度と、波数3700〜2800cm-1に現れるO−H結合
の吸収強度の比から、前記油中の水分を定量することを
特徴とする油中の水分定量方法。 (3)前記吸収強度が、前記波数範囲におけるピーク面
積又はピーク高さである上記(1)又は(2)に記載の
油中の水分定量方法。 (4)20℃の水100gに対する溶解度が1g以下で
ある赤外線透過窓材を有する測定セルに前記油を充填し
て、前記赤外吸収スペクトルを測定する上記(1)〜
(3)のいずれかに記載の油中の水分定量方法。 (5)前記赤外線透過窓材がフッ化カルシウム、フッ化
バリウム、フッ化リチウム、フッ化マグネシウム、サフ
ァイア又は塩化銀から選ばれる1種又は2種である上記
(4)記載の油中の水分定量方法。 (6)前記油が、防錆油及び/又は潤滑油である上記
(1)〜(5)のいずれかに記載の油中の水分定量方
法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, the present invention uses the following means to achieve the above object. (1) The infrared absorption spectrum of the oil was measured and the wave number was 3700.
A method for determining the water content in oil, comprising determining the water content in the oil from the absorption intensity of the O—H bond appearing at 22800 cm −1 . (2) The infrared absorption spectrum of the oil was measured and the wave number was 3200.
The water in the oil is quantified from the ratio of the absorption intensity of the C—H bond of the hydrocarbon appearing at 2800 cm −1 and the absorption intensity of the O—H bond appearing at the wave number of 3700 to 2800 cm −1. A method for determining water in oil. (3) The method for determining water in oil according to the above (1) or (2), wherein the absorption intensity is a peak area or a peak height in the wave number range. (4) The oil is filled in a measurement cell having an infrared transmission window material having a solubility of 1 g or less in 100 g of water at 20 ° C. and the infrared absorption spectrum is measured.
The method for determining water in oil according to any one of (3). (5) The water content in oil according to (4) above, wherein the infrared transmission window material is one or two selected from calcium fluoride, barium fluoride, lithium fluoride, magnesium fluoride, sapphire or silver chloride. Method. (6) The method according to any one of the above (1) to (5), wherein the oil is a rust-preventive oil and / or a lubricating oil.

【0011】[0011]

【発明の実施の形態】炭化水素のC−H結合には、波数
3200〜2800cm-1に観測される伸縮振動と、波数
1460、1380cm-1に観測される変角振動があり、
水のO−H結合にも波数3700〜2800cm-1に観測
される伸縮振動と、1700〜1500cm-1に観測され
る変角振動があるが、どちらも伸縮振動の方が強度が強
いため、O−H結合の吸収は波数3700〜2800cm
-1、C−H結合の吸収は波数3200〜2800cm-1
測定するのが良い。
BEST MODE FOR CARRYING OUT THE INVENTION C—H bonds of hydrocarbons include stretching vibrations observed at wave numbers of 3200 to 2800 cm −1 and bending vibrations observed at wave numbers of 1460 and 1380 cm −1 .
The O—H bond of water also has stretching vibration observed at a wave number of 3700 to 2800 cm −1 and bending vibration observed at 1700 to 1500 cm −1 , both of which have higher strength. The absorption of the OH bond has a wave number of 3700 to 2800 cm.
-1 and C-H bond absorption are preferably measured at wave numbers of 3200 to 2800 cm -1 .

【0012】次に、赤外吸収スペクトルの測定に使用す
る窓材の材質について、赤外線の透過特性や機械強度を
鋭意検討した結果、以下の特性が求められることを見出
した。 (1)赤外線の透過性が高いこと。 (2)水分による影響を受けにくいこと。 (3)機械的強度が優れること。
Next, as for the material of the window material used for the measurement of the infrared absorption spectrum, the following characteristics were found as a result of intensive studies on the infrared transmission characteristics and mechanical strength. (1) High transmittance of infrared rays. (2) It is hardly affected by moisture. (3) Excellent mechanical strength.

【0013】赤外線の透過性は、フレネルの公式(r=
{(n2 −n1 )/(n2 +n1 )}2 ;rは反射損
失、n1 は媒質1の、n2 は媒質2の屈折率で、大気か
ら窓材に入射するときは媒質1が大気、媒質2が窓材と
なる)により屈折率から算出され、吸収が無い限りは屈
折率が小さいほど透過率が高い。平行平板には入射面と
出射面の二つの界面があるため、1枚の平板を光が1回
通過するだけでも反射損失は2面で起こる。実際には窓
材を通して試料に照射した赤外光は、試料面を透過して
再度窓材を通過するため、実質的に検出器に到達するエ
ネルギーは、単一面透過率の4乗となる。すなわち、検
出器に到達するエネルギーは屈折率1.6では約80%
で、屈折率1.7では約75%まで減少する。また、試
料調製時に液膜中に気泡が混入することがあり、それを
確認するには可視光の透過率が高いものが望ましい。シ
リコンやゲルマニウムは、水への溶解度が非常に低い
が、屈折率が高いため赤外線の透過率が低く、また可視
光を透過しないため試料の状態を確認することができな
い。
The transmission of infrared radiation is determined by the Fresnel's formula (r =
{(N 2 −n 1 ) / (n 2 + n 1 )} 2 ; r is the reflection loss, n 1 is the refractive index of the medium 1, and n 2 is the refractive index of the medium 2, and the medium is incident on the window material from the atmosphere. 1 is the atmosphere, and the medium 2 is a window material), and as long as there is no absorption, the smaller the refractive index, the higher the transmittance. Since a parallel plate has two interfaces of an entrance surface and an exit surface, even if light passes through one plate only once, reflection loss occurs on two surfaces. Actually, the infrared light applied to the sample through the window material passes through the sample surface and passes through the window material again, so that the energy substantially reaching the detector is the fourth power of the single surface transmittance. That is, the energy reaching the detector is about 80% at a refractive index of 1.6.
The refractive index decreases to about 75% at a refractive index of 1.7. In addition, bubbles may be mixed into the liquid film at the time of sample preparation. To confirm this, it is desirable that the liquid film has a high visible light transmittance. Silicon and germanium have very low solubility in water, but have a high refractive index and thus low infrared transmittance, and do not transmit visible light, so that the state of the sample cannot be confirmed.

【0014】赤外線の透過窓材としては、一般的には臭
化カリウム(KBr)、塩化カリウム(KCl)及び塩
化ナトリウム(NaCl)が用いられる。これらは赤外
線の透過波長範囲が広く、屈折率が小さいため透過率も
高く、可視光にも透明であるが、何れも潮解性があるた
め、水が存在すると失透したり、面形状を損なうという
問題を招く。従って、窓材の水への溶解度は、20℃の
水100gに対し1g以下が好ましく、1g超では1回
の使用(数分間)で容易に接触面が溶解し、面形状が損
なわれてしまう。
As the infrared transmitting window material, potassium bromide (KBr), potassium chloride (KCl) and sodium chloride (NaCl) are generally used. These have a wide range of infrared transmission wavelengths, a high refractive index due to a small refractive index, and are transparent to visible light, but all are deliquescent and devitrified or impair the surface shape in the presence of water. Invite the problem. Therefore, the solubility of the window material in water is preferably 1 g or less with respect to 100 g of water at 20 ° C., and if it exceeds 1 g, the contact surface is easily dissolved in one use (several minutes) and the surface shape is impaired. .

【0015】また、2枚の窓材で液体を挟んで光路長を
調節するため、窓材の機械的強度、特に硬度も重要であ
る。塩化タリウム(TlCl)、臭化タリウム(TlB
r)、塩化/臭化タリウム(TlCl/TlBr:KR
S−6)、臭化/よう化タリウム(TlBr/TlI:
KRS−5)は、水に対する溶解度が小さく、水を含む
試料の測定に良く用いられるが、非常に柔らかいため傷
が付き易く、繰り返し使用できない。また、TlCl、
TlBr、KRS−6、KRS−5、セレン化亜鉛(Z
nSe)は材料が有害であるため、使用上好ましくな
い。
Further, since the optical path length is adjusted by sandwiching the liquid between the two window members, the mechanical strength, particularly the hardness, of the window members is also important. Thallium chloride (TlCl), thallium bromide (TlB)
r), thallium chloride / thallium bromide (TlCl / TlBr: KR
S-6), thallium bromide / iodide (TlBr / TlI:
KRS-5) has low solubility in water and is often used for measurement of a sample containing water. However, KRS-5) is so soft that it is easily scratched and cannot be used repeatedly. Also, TlCl,
TlBr, KRS-6, KRS-5, zinc selenide (Z
nSe) is not preferable in use because the material is harmful.

【0016】以上のような試験・調査結果を基に、水分
を含む防錆油及び/又は潤滑油の赤外吸収スペクトルの
測定に適する窓材を鋭意検討した結果、20℃の水10
0gに対する溶解度が1g以下で、波数4000〜15
00cm-1の赤外線の透過率が高い窓材、特にCaF2
BaF2 、LiF、MgF2 、サファイア、又はAgC
l、より好ましくはCaF2 又はBaF2 を使用するこ
とにより、防錆油及び/又は潤滑油中の水分を正確に定
量できる赤外吸収スペクトルが得られることを確認し
た。
Based on the results of the above-mentioned tests and investigations, as a result of intensive studies on window materials suitable for measuring the infrared absorption spectrum of rust-preventive oil and / or lubricating oil containing water, water 10 ° C. at 20 ° C.
The solubility to 0 g is 1 g or less, and the wave number is 4000 to 15.
Window material having a high infrared transmittance of 00 cm -1 , particularly CaF 2 ,
BaF 2 , LiF, MgF 2 , sapphire, or AgC
1, more preferably, using CaF 2 or BaF 2 , it was confirmed that an infrared absorption spectrum capable of accurately quantifying the moisture in the rust preventive oil and / or the lubricating oil was obtained.

【0017】以下、本発明の実施の形態を図面に基づい
て説明する。図1は、赤外吸収スペクトルを測定するた
めの試料のセッティング方法の一例を示した概略図であ
る。試料1は、2枚の赤外線透過窓材2に挟んで薄膜化
し、赤外線光束3を照射して透過光束4を測定する。ス
ペーサー5は、10〜30μmのものを使用することが
好ましいが、スペーサーを使用せず、2枚の窓材で挟む
だけで試料を薄膜化しても良い。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an example of a method for setting a sample for measuring an infrared absorption spectrum. The sample 1 is thinned by being sandwiched between two infrared transmitting window members 2, and irradiated with an infrared light beam 3 to measure a transmitted light beam 4. It is preferable to use the spacer 5 having a thickness of 10 to 30 μm. However, the sample may be thinned just by sandwiching it between two windows without using a spacer.

【0018】図2は、スペーサーに15μmのアルミニ
ウム箔を使用して測定した防錆油の赤外吸収スペクトル
であり、防錆油に含まれる水分由来のO−H結合の吸収
6と、防錆油由来のC−H結合の吸収7が観測される。
O−H結合の吸収と、防錆油由来のC−H結合の吸収の
ピーク分割法には垂直分割法、谷渡りベースライン法等
があり、何れの方法も使えるが、O−H結合の吸収は幅
が広いので、図2に示すようなピークの谷と谷を結んで
ベースラインとする、谷渡りベースライン法を用いるの
が良い。スペーサーを用いて光路長(試料の厚さ)を一
定にする場合は、O−H結合の吸収6の強度(ピーク面
積又はピーク高さ)から検量線を用いて水分を定量でき
る。また、光路長が一定でない場合は、O−H結合の吸
収6とC−H結合の吸収7の強度(ピーク面積又はピー
ク高さ)比から水分を定量できる。ピーク強度として
は、ピークの面積、ピークトップの高さ(ピーク高さ)
の何れを用いても良いが、ピーク面積を用いる方が精度
が高いので好ましい。
FIG. 2 is an infrared absorption spectrum of the rust-preventive oil measured using a 15 μm aluminum foil as a spacer. The absorption 6 of the O—H bond derived from water contained in the rust-preventive oil and the rust-preventive oil are shown. Absorption 7 of oil-derived C—H bonds is observed.
There are a vertical splitting method and a valley-baseline method for peak splitting of absorption of OH bond and absorption of C—H bond derived from rust preventive oil, and any of these methods can be used. Since is wide, it is preferable to use a valley-crossing baseline method in which valleys of peaks are connected to form a baseline as shown in FIG. When the optical path length (the thickness of the sample) is made constant by using the spacer, the water content can be quantified using the calibration curve from the intensity (peak area or peak height) of the absorption 6 of the OH bond. When the optical path length is not constant, water can be quantified from the intensity (peak area or peak height) ratio of the absorption 6 of the O—H bond and the absorption 7 of the C—H bond. As peak intensity, peak area, peak top height (peak height)
May be used, but it is preferable to use the peak area because the accuracy is high.

【0019】[0019]

【実施例】(実施例1)2枚のBaF2 を窓材に使用し
た光路長25μm固定のセルで、水分を添加した防錆油
の赤外吸収スペクトルを測定し、図2におけるO−H結
合の吸収6に相当するピーク面積を吸光度で測定した結
果を図3に示す。水分とO−H結合の吸収ピークの面積
には良好な直線関係があり、赤外吸収スペクトルの吸収
強度から水分を定量できた。また、測定後の窓材(Ba
2 )を調べたところ、窓材には全く損傷がなかった。
(Example 1) The infrared absorption spectrum of a rust preventive oil to which water was added was measured in a cell having a fixed optical path length of 25 μm using two sheets of BaF 2 as a window material. FIG. 3 shows the result of measuring the peak area corresponding to the absorption 6 of the bond by absorbance. There was a good linear relationship between the water and the area of the absorption peak of the O—H bond, and the water could be quantified from the absorption intensity of the infrared absorption spectrum. The window material after the measurement (Ba
Inspection of F 2 ) revealed that the window material was not damaged at all.

【0020】(比較例1)2枚のKBrを窓材に使用し
て、実施例1と同様の試料及びセルで測定したところ、
測定後は窓材のKBrの表面が曇り、試料と接した部分
にはKBrの水への溶出によって生じた凹みが見られ、
繰り返し使用ができなかった。
(Comparative Example 1) Measurement was performed using the same sample and cell as in Example 1 using two KBr windows.
After the measurement, the surface of the KBr of the window material became cloudy, and a dent caused by the elution of KBr into water was observed in a portion in contact with the sample,
It could not be used repeatedly.

【0021】(実施例2)2枚のCaF2 を窓材に使用
し、スペーサーを用いずに光路長を固定しないで、水分
を添加した防錆油の赤外吸収スペクトルを測定して、図
2におけるO−H結合の吸収6に相当するピーク面積
(吸光度)とC−H結合の吸収7に相当するピーク面積
(吸光度)の比を算出した。図4に水分とO−H/C−
Hピーク面積比の関係を示す。水分とO−H/C−Hピ
ーク面積比の間にも良好な直線関係があり、赤外吸収ス
ペクトルのピーク強度(面積)比からも水分を定量でき
た。測定後のCaF2 窓材も全く損傷が無く、繰り返し
使用が可能であった。
Example 2 Using two sheets of CaF 2 as a window material, measuring the infrared absorption spectrum of a rust-preventive oil to which water was added without using a spacer and fixing the optical path length. The ratio of the peak area (absorbance) corresponding to the O—H bond absorption 6 and the peak area (absorbance) corresponding to the C—H bond absorption 7 in Example 2 was calculated. FIG. 4 shows moisture and OH / C-
The relationship of H peak area ratio is shown. There was also a good linear relationship between the water and the OH / CH peak area ratio, and the water could be quantified also from the peak intensity (area) ratio of the infrared absorption spectrum. The CaF 2 window material after the measurement was not damaged at all and could be used repeatedly.

【0022】(実施例3)防錆性に潤滑性を付与した防
錆潤滑油に水分を添加して鋼管に塗布し、引き抜き加工
時の引抜き力(潤滑性の指標で、引抜き力が小さいほど
潤滑性が良好)を調査した。図5に、水分と引抜き力の
関係を示す。水分が増えると引抜きに必要な力が大きく
なり、加工不良を生ずる。この加工不良は、引抜き力4
1000N以上で発生するため、防錆潤滑油中の水分は
1.5質量%以下で管理する必要がある。そこで、鋼管
に防錆潤滑油を塗布して10日間曝露し、鋼管表面から
随時約10μl防錆潤滑油を採取して、図4の検量線を
用いて水分を定量した。図6は、鋼管表面に塗布された
防錆潤滑油中の水分の推移である。10日間曝露後の水
分は0.87質量%で、潤滑性を十分維持できる水準で
あった。このような塗布された状態における微量試料中
の水分の定量は、カールフィッシャー法では困難であ
り、本発明が有効である。
(Example 3) Water is added to a rust-preventive lubricating oil having lubricating properties and applied to a steel pipe, and the drawing force at the time of drawing (the index of lubricity, the smaller the drawing force, the smaller the drawing force). Lubricity). FIG. 5 shows the relationship between the water content and the pull-out force. When the moisture increases, the force required for drawing increases, resulting in processing defects. This processing failure is caused by a pulling force of 4
Since water is generated at 1000 N or more, it is necessary to control the moisture in the rust preventive lubricating oil to 1.5 mass% or less. Therefore, a steel pipe was coated with a rust-preventive lubricating oil and exposed for 10 days. About 10 μl of the rust-preventive lubricating oil was sampled from the surface of the steel pipe as needed, and the water content was quantified using the calibration curve of FIG. FIG. 6 shows the transition of the water content in the rust-preventive lubricating oil applied to the steel pipe surface. Moisture after exposure for 10 days was 0.87% by mass, which was a level that could sufficiently maintain lubricity. The quantification of water in a trace amount of sample in such a coated state is difficult by the Karl Fischer method, and the present invention is effective.

【0023】[0023]

【発明の効果】本発明によれば、使用の度に標準試薬に
よる試薬の標定を行う必要のあるカールフィッシャー法
に比べて、防錆油及び/又は潤滑油中の水分を正確、簡
便、かつ迅速に行えるだけでなく、カールフィッシャー
法や特開平9−96398号公報による方法では困難で
あった金属材料、金属製品及び金属部品に塗布された微
量の防錆油及び/又は潤滑油中の水分を容易、かつ正確
に定量することができる。従って、本発明によれば、従
来困難であった防錆油及び/又は潤滑油の金属材料、金
属製品及び金属部品に対する機能の管理を好適に行うこ
とができる。
According to the present invention, the water content in the rust-preventive oil and / or the lubricating oil can be determined accurately, simply, and in comparison with the Karl Fischer method, which requires the standardization of the reagent with the standard reagent each time it is used. Not only can it be performed quickly, but also a small amount of moisture in the rust-preventive oil and / or lubricating oil applied to metal materials, metal products and metal parts, which has been difficult by the Karl Fischer method or the method disclosed in JP-A-9-96398. Can be easily and accurately quantified. Therefore, according to the present invention, it is possible to appropriately manage the function of the rust-preventive oil and / or the lubricating oil for the metal material, the metal product, and the metal component, which has been difficult in the past.

【図面の簡単な説明】[Brief description of the drawings]

【図1】赤外吸収スペクトルを測定するための試料のセ
ッティング方法の概略図である。
FIG. 1 is a schematic view of a sample setting method for measuring an infrared absorption spectrum.

【図2】スペーサーに15μmのアルミニウム箔を使用
して測定した防錆油の赤外吸収スペクトルを示す図であ
る。
FIG. 2 is a diagram showing an infrared absorption spectrum of a rust preventive oil measured using a 15 μm aluminum foil as a spacer.

【図3】光路長を一定とした時の水分とO−H結合の吸
収ピークの面積の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the moisture and the area of the absorption peak of the O—H bond when the optical path length is fixed.

【図4】光路長を一定とせずに測定した時の水分とO−
H/C−Hピーク面積比の関係を示す図である。
FIG. 4 shows the relationship between water and O- when measured without changing the optical path length.
It is a figure which shows the relationship of H / CH peak area ratio.

【図5】水分と引抜き力の関係を示す図である。FIG. 5 is a diagram showing a relationship between moisture and a drawing force.

【図6】鋼管表面の防錆潤滑油中の水分の変化を示す図
である。
FIG. 6 is a diagram showing a change in moisture in a rust-preventive lubricating oil on the surface of a steel pipe.

【符号の説明】[Explanation of symbols]

1 試料 2 赤外線透過窓材 3 赤外線光束 4 透過赤外線光束 5 スペーサー 6 水分由来のO−H結合の吸収 7 防錆油由来のC−H結合の吸収 REFERENCE SIGNS LIST 1 Sample 2 Infrared transmitting window material 3 Infrared light beam 4 Transmitted infrared light beam 5 Spacer 6 Absorption of O—H bond derived from moisture 7 Absorption of C—H bond derived from rust preventive oil

フロントページの続き (72)発明者 坂本 真也 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 潮田 浩作 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 Fターム(参考) 2G057 AA01 AB02 AB06 AC01 BA01 BB10 2G059 AA01 BB04 CC09 EE01 EE12 FF04 HH01 HH06 LL02 MM12Continued on the front page (72) Inventor Shinya Sakamoto 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu Works (72) Inventor Hirosaku Shioda 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu F-term in the ironworks (reference) 2G057 AA01 AB02 AB06 AC01 BA01 BB10 2G059 AA01 BB04 CC09 EE01 EE12 FF04 HH01 HH06 LL02 MM12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 油の赤外吸収スペクトルを測定し、波数
3700〜2800cm-1に現れるO−H結合の吸収強度
から、前記油中の水分を定量することを特徴とする油中
の水分定量方法。
An oil absorption spectrum of oil is measured, and the water content of the oil is determined from the absorption intensity of an O—H bond appearing at a wave number of 3700 to 2800 cm −1. Method.
【請求項2】 油の赤外吸収スペクトルを測定し、波数
3200〜2800cm-1に現れる炭化水素のC−H結合
の吸収強度と、波数3700〜2800cm-1に現れるO
−H結合の吸収強度の比から、前記油中の水分を定量す
ることを特徴とする油中の水分定量方法。
2. The infrared absorption spectrum of the oil is measured, and the absorption intensity of the C—H bond of the hydrocarbon appearing at a wave number of 3200 to 2800 cm −1 and the O intensity appearing at a wave number of 3700 to 2800 cm −1 are measured.
-A method for determining the water content in oil, wherein the water content in the oil is determined from the ratio of the absorption intensities of -H bonds.
【請求項3】 前記吸収強度が、前記波数範囲における
ピーク面積又はピーク高さである請求項1又は2に記載
の油中の水分定量方法。
3. The method according to claim 1, wherein the absorption intensity is a peak area or a peak height in the wave number range.
【請求項4】 20℃の水100gに対する溶解度が1
g以下である赤外線透過窓材を有する測定セルに前記油
を充填して、前記赤外吸収スペクトルを測定する請求項
1〜3のいずれか1項に記載の油中の水分定量方法。
4. The solubility in 100 g of water at 20 ° C. is 1
The method for quantifying water in oil according to any one of claims 1 to 3, wherein the oil is filled in a measurement cell having an infrared transmission window material of not more than g and the infrared absorption spectrum is measured.
【請求項5】 前記赤外線透過窓材がフッ化カルシウ
ム、フッ化バリウム、フッ化リチウム、フッ化マグネシ
ウム、サファイア又は塩化銀から選ばれる1種又は2種
である請求項4記載の油中の水分定量方法。
5. The water in oil according to claim 4, wherein the infrared transmitting window material is one or two kinds selected from calcium fluoride, barium fluoride, lithium fluoride, magnesium fluoride, sapphire and silver chloride. Quantitation method.
【請求項6】 前記油が、防錆油及び/又は潤滑油であ
る請求項1〜5のいずれか1項に記載の油中の水分定量
方法。
6. The method according to claim 1, wherein the oil is a rust preventive oil and / or a lubricating oil.
JP2001179653A 2001-06-14 2001-06-14 Method for determining water in oil Withdrawn JP2002372492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179653A JP2002372492A (en) 2001-06-14 2001-06-14 Method for determining water in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179653A JP2002372492A (en) 2001-06-14 2001-06-14 Method for determining water in oil

Publications (1)

Publication Number Publication Date
JP2002372492A true JP2002372492A (en) 2002-12-26

Family

ID=19020194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179653A Withdrawn JP2002372492A (en) 2001-06-14 2001-06-14 Method for determining water in oil

Country Status (1)

Country Link
JP (1) JP2002372492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
KR20120117642A (en) * 2011-04-14 2012-10-24 이엠디 밀리포어 코포레이션 Devices and methods for infrared(ir) based quantitation of biomolecules
CN108362252A (en) * 2018-01-19 2018-08-03 上海理工大学 The test method of window chinky altitude

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
KR20120117642A (en) * 2011-04-14 2012-10-24 이엠디 밀리포어 코포레이션 Devices and methods for infrared(ir) based quantitation of biomolecules
KR101635802B1 (en) 2011-04-14 2016-07-04 이엠디 밀리포어 코포레이션 Devices and methods for infrared(IR) based quantitation of biomolecules
CN108362252A (en) * 2018-01-19 2018-08-03 上海理工大学 The test method of window chinky altitude

Similar Documents

Publication Publication Date Title
JP4933271B2 (en) Handheld device with a disposable element for chemical analysis of multiple specimens
Crosby et al. Measurement of photoluminescence quantum yields. Review
JP4911606B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
JP2012098303A (en) Attenuated total reflection optical probe, and aqueous solution spectrometer using the same
Adeeyinwo et al. Basic calibration of UV/visible spectrophotometer
CN1087424A (en) Defective in the glass that detects
JPS6140520A (en) Spectrophotometer
Renschler et al. Determination of quantum yields of fluorescence by optimizing the fluorescence intensity
US4181441A (en) Internal reflectance spectrometer
Bitensky Microdensitometry
US20180231458A1 (en) Normalizing the response of a fluorescence instrument using spectral response
Khachornsakkul et al. A Portable Reflective Absorbance Spectrophotometric Smartphone Device for the Rapid and Highly Accurate Determination of Amlodipine in Pharmaceutical Formulation and Human Urine Samples
JP2002372492A (en) Method for determining water in oil
JP2007279025A (en) Attenuated total reflection type optical probe, and aqueous solution spectrometric measuring device using the same
JP2807777B2 (en) Optical absorption spectrum measuring device using slab optical waveguide
WO2005100955A1 (en) Method and apparatus for determining the absorption of weakly absorbing and/or scattering liquid samples
CN111103247A (en) Ultraviolet-visible spectrophotometer
Yamazaki et al. Determination of heavy-metal concentrations in water by PIXE analysis using Zr as an internal standard
Devoy et al. Validation of a standardised method for determining beryllium in human urine at nanogram level
JP2017062186A (en) Element for oil detection, oil detector and oil detection method
Fong et al. Near-IR multiplex bandpass spectrometer utilizing liquid molecular filters
RU2305272C2 (en) Ir-spectrometer cell for detecting low volatile matters in volatile fluids
CN215812392U (en) Portable spectrum method water quality detection sensor
RU2207564C2 (en) Procedure determining concentration of alcohol and facility for its implementation
Matsuoka et al. Fundamental Studies on Ion-Exchanger Phase Absorptiometry

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902