JP2002372316A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JP2002372316A
JP2002372316A JP2001180993A JP2001180993A JP2002372316A JP 2002372316 A JP2002372316 A JP 2002372316A JP 2001180993 A JP2001180993 A JP 2001180993A JP 2001180993 A JP2001180993 A JP 2001180993A JP 2002372316 A JP2002372316 A JP 2002372316A
Authority
JP
Japan
Prior art keywords
pipe
diameter
capillary
groove
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001180993A
Other languages
Japanese (ja)
Inventor
Toshio Omori
俊夫 大森
Kazunao Takahashi
一尚 高橋
Hideo Ochiai
英夫 落合
Susumu Yamazaki
山崎  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001180993A priority Critical patent/JP2002372316A/en
Priority to CNB021047618A priority patent/CN1215301C/en
Priority to KR1020020008277A priority patent/KR20020096849A/en
Publication of JP2002372316A publication Critical patent/JP2002372316A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating device, being high in reliability, at a low cost. SOLUTION: The refrigerating device is provided with a compressor, a condenser, a capillary tube, and an evaporator. This is a refrigerating cycle through which a refrigerant is fed and circulated, in the order. A suction pipe through which the refrigerant is sucked from the evaporator toward the compressor and flows is provided with a large diameter part having a large diameter, small diameter parts having a small diameter and connected to the two ends of the large diameter part and a groove formed in the large diameter part along the axial direction of the suction pipe for containing the capillary tube in the inner side thereof. The inside surface of the groove is contact with a half or more of the periphery of the capillary tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫、冷凍庫、
除湿機等の冷媒を圧縮して冷却を行う冷凍装置に関す
る。
The present invention relates to a refrigerator, a freezer,
The present invention relates to a refrigeration system that compresses a refrigerant such as a dehumidifier to perform cooling.

【0002】[0002]

【従来の技術】従来の冷蔵庫等の冷凍サイクルは、圧縮
機で圧縮された高温高圧の冷媒のガスは凝縮器で凝縮さ
れて高圧の液体となり、凝縮器に接続された毛細管に流
入して、ここで減圧されて低温低圧の気体と液体とが混
合した冷媒となる。そして、毛細管から蒸発器に流入す
る。ここで蒸発器の外部と熱交換することで吸熱して気
体となり、その後、圧縮機への冷媒の吸込管を通って圧
縮機に再び戻るサイクル構成を成している。ここで、冷
凍サイクルの有効冷凍能力を向上させて、冷蔵庫等の省
エネルギ−を実現するために、吸込管と毛細管とを接合
材(例えば、半田付け)を用いてその外周面同士を接合
させ、この半田を介して熱伝導を行って熱交換を行わせ
ることが一般に行われている。
2. Description of the Related Art In a conventional refrigerating cycle of a refrigerator or the like, a gas of a high-temperature and high-pressure refrigerant compressed by a compressor is condensed by a condenser to become a high-pressure liquid, and flows into a capillary connected to the condenser. Here, the refrigerant is reduced in pressure and becomes a refrigerant in which a low-temperature low-pressure gas and liquid are mixed. And it flows into an evaporator from a capillary tube. Here, heat exchange with the outside of the evaporator causes heat to be absorbed and gas is formed, and thereafter, a cycle configuration is established in which the refrigerant returns to the compressor through a suction pipe of the refrigerant to the compressor. Here, in order to improve the effective refrigeration capacity of the refrigeration cycle and realize energy saving of a refrigerator or the like, the outer peripheral surfaces of the suction pipe and the capillary are joined to each other using a joining material (for example, soldering). In general, heat exchange is performed by conducting heat through the solder.

【0003】この技術では、上記の構成により、吸入管
内を通流して圧縮機に流入する冷媒が毛細管内の冷媒と
熱交換することで体積が減少して、圧縮機での圧縮効率
を向上させることができる。このような従来の技術で
は、通常の家庭用冷蔵庫のように、蒸発温度が−30℃
近辺と低い冷凍サイクルの場合には、例えば10〜15
%程度効率を向上することのできる手段となっている。
[0003] In this technique, the volume of the refrigerant flowing through the suction pipe and flowing into the compressor is reduced by heat exchange with the refrigerant in the capillary tube, thereby improving the compression efficiency of the compressor. be able to. In such a conventional technique, the evaporation temperature is −30 ° C. as in a normal home refrigerator.
In the case of a refrigeration cycle near and low, for example, 10 to 15
This means that the efficiency can be improved by about%.

【0004】上記のよう冷凍サイクルでは、2つのパイ
プを接触させるため接合材として半田を用いている。し
かし、半田を使用することで、半田に含まれる塩化物と
半田及び管の接合部に進入した水分との酸化による腐食
や、電位差による腐食、或いは接合部分の振動による破
壊等の不具合が指摘されていた。そこで、このような課
題を解決する技術の一例として、実開昭55−1599
75号(実願昭54−059879号)公報(従来技
術)に記載されている技術が知られている。
[0004] In the refrigeration cycle as described above, solder is used as a joining material to bring two pipes into contact with each other. However, the use of solder has led to problems such as corrosion due to oxidation of chloride contained in the solder and moisture entering the joint between the solder and the tube, corrosion due to a potential difference, and breakage due to vibration of the joint. I was Therefore, as an example of a technique for solving such a problem, Japanese Utility Model Laid-Open No. 55-1599 has been proposed.
A technique described in Japanese Patent Application No. 75 (Japanese Utility Model Application No. 54-059879) (prior art) is known.

【0005】この従来技術では、吸入管を構成するパイ
プの長手方向に設けられた凹み部分に沿わせて毛細管を
配置し、この互いに沿って配置された2つの管の全周に
発泡ポリエチレン樹脂を塗布した後、硬化させたもので
ある。また、この構成では半田を使用しておらず、半田
に含まれる鉛成分を使用することで衛生的にも環境的に
好ましくないという問題点を解決しようとするものであ
る。
[0005] In this prior art, a capillary tube is arranged along a concave portion provided in a longitudinal direction of a pipe constituting a suction tube, and a foamed polyethylene resin is applied to the entire periphery of the two tubes arranged along each other. After application, it is cured. Further, in this configuration, no solder is used, and the use of a lead component contained in the solder is intended to solve the problem of unfavorable hygiene and environment.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術では、、
吸込管と毛細管とを接触させる際、形成する凹みの工作
精度を高くしないと、接触の度合いにバラツキが生じや
すくなり、冷凍能力の低下を招いてしまうことになると
いう課題が有った。凹みを形成する工作精度を高くしよ
うとすると、製造コストが高くなってしまうという問題
点が有ることについては、上記従来技術では考慮されて
いなかった。
In the above prior art,
When the suction tube and the capillary tube are brought into contact with each other, there is a problem that unless the working accuracy of the dent to be formed is made high, the degree of contact is likely to vary, leading to a decrease in the refrigerating capacity. The prior art does not consider that there is a problem that the manufacturing cost is increased when the machining precision for forming the dent is increased.

【0007】また、従来技術のような構造では、同じ吸
込管の管径のままでは設けた凹み部により吸込管の断面
積が減少してしまうことから、そのままでは吸込管を流
れる冷媒の通流抵抗が大きくなってしまう。そこで、凹
み部を設ける吸込管の管径を大きくすることが考えられ
るが、そのため凹み部を設けた吸込管の両端には中継ぎ
パイプを追加して、管径が異なる他の冷凍サイクルの管
との接続を行っていた。したがって、吸込管を含む管の
ユニットの製品への組込には、組み込みの前に前記中継
ぎパイプを毛細管と共に吸込管側に取付ける組込作業を
行うことになる。この接続には、溶接や圧着、管径を拡
大する拡管等が考えられる。
In the structure of the prior art, if the pipe diameter of the suction pipe remains the same, the recessed portion reduces the cross-sectional area of the suction pipe. The resistance increases. Therefore, it is conceivable to increase the diameter of the suction pipe provided with the concave portion.For this reason, a relay pipe is added to both ends of the suction pipe provided with the concave portion, so that the suction pipe is provided with a pipe of another refrigeration cycle having a different pipe diameter. Connection was made. Therefore, when assembling the unit of the tube including the suction tube into the product, an assembling operation of attaching the relay pipe together with the capillary tube to the suction tube side is performed before assembling. For this connection, welding, crimping, pipe expansion for expanding the pipe diameter, and the like can be considered.

【0008】上記従来技術では、このようなパイプ同士
の接続を行う上で、効率よく製造しやすくコストを低減
できる構成については、何ら考慮されていなかった。ま
た、更に、中継ぎパイプの追加で溶接箇所が増加して信
頼性の低下しまうという課題についても考慮していなか
った。
In the above-mentioned prior art, no consideration has been given to a configuration capable of efficiently manufacturing and reducing costs in connecting such pipes. In addition, no consideration has been given to the problem that the addition of the relay pipe increases the number of welding points and lowers the reliability.

【0009】本発明の目的は、低コストで信頼性の高い
冷凍装置を提供することにある。
An object of the present invention is to provide a low-cost and highly reliable refrigeration system.

【0010】[0010]

【課題を解決するための手段】上記の目的は、圧縮機と
凝縮機と毛細管と蒸発器とを備え、これらの順に冷媒が
供給されて循環する冷凍サイクルであって、前記冷媒が
前記蒸発器から前記圧縮機に向かい吸い込まれて流れる
吸込管に設けられ管径が大きい太径部と、この太径部の
両端に接続された管径の小さい細径部と、この太径部に
前記吸込管の管軸方向に沿って設けられ前記毛細管がそ
の内側に収容された溝とを有し、前記溝の内側の表面が
前記毛細管の管周の1/2以上と接触する冷凍装置によ
り達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a refrigeration cycle comprising a compressor, a condenser, a capillary tube and an evaporator. A large-diameter portion provided in a suction pipe which is sucked and flows from the compressor toward the compressor, a small-diameter portion having a small pipe diameter connected to both ends of the large-diameter portion, and the suction port is connected to the large-diameter portion. This is achieved by a refrigerating device having a groove provided along the tube axis direction of the tube and having the capillary housed therein and a surface inside the groove being in contact with 1 / or more of the circumference of the capillary. You.

【0011】さらに、前記細径部に設けられ前記冷媒が
流れる冷媒管に接続された接続部を備えたことにより達
成される。
[0011] It is further achieved by providing a connecting portion provided in the small diameter portion and connected to a refrigerant pipe through which the refrigerant flows.

【0012】さらに、前記吸込管に設けられ前記太径部
と前記細径部との間に形成されたテーバー形状部と、こ
のテーパー形状部に設けられた前記溝の端部とを有し、
この溝の端部から前記毛細管が延在することにより達成
される。
Further, it has a Taber-shaped portion provided in the suction pipe and formed between the large-diameter portion and the small-diameter portion, and an end of the groove provided in the tapered portion,
This is achieved by the capillary extending from the end of the groove.

【0013】また、圧縮機と凝縮機と毛細管と蒸発器と
を備え、これらの順に冷媒が供給されて循環する冷凍サ
イクルであって、前記冷媒が前記蒸発器から前記圧縮機
に向かい吸い込まれて流れる吸込管にこの吸込管の管軸
方向に沿って設けられ前記毛細管がその管径の1/2以
上の深さまで嵌め合わされた溝とを有し、この溝の前記
毛細管の管軸方向の溝の幅が前記毛細管の管径よりも小
さい冷凍装置により達成される。
A refrigeration cycle including a compressor, a condenser, a capillary, and an evaporator, in which a refrigerant is supplied and circulated in this order, wherein the refrigerant is sucked from the evaporator to the compressor. A groove provided in the flowing suction pipe along the pipe axis direction of the suction pipe, wherein the capillary is fitted to a depth of at least half the diameter of the pipe, and a groove in the pipe axis direction of the capillary of the groove. Is smaller than the diameter of the capillary tube.

【0014】さらに、前記溝は、前記吸込管の管軸から
その外周方向に向かうにつれて前記溝の幅が小さくなる
形状を備えたことにより達成される。
Further, the groove is achieved by providing a shape in which the width of the groove decreases from the pipe axis of the suction pipe toward the outer periphery thereof.

【0015】さらに、前記毛細管が前記溝に嵌め合わさ
れた部分の端部から前記吸込管から離れる方向に延在し
て取り付けられたことにより達成される。
[0015] Further, it is achieved that the capillary is attached so as to extend from the end of the portion fitted into the groove in a direction away from the suction tube.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の冷凍装置の第1の実施例
に係る冷凍サイクルの概略の構成を示すブロック図であ
る。図1において1は圧縮機、2は凝縮器、3は毛細
管、4は蒸発器、5は吸込パイプとなっており、圧縮機
1で圧縮された高温高圧のガスは各冷凍サイクル部品1
→2→3→4→5の順で冷媒が循環し、再び圧縮機1に
戻るサイクル構成を成している。
FIG. 1 is a block diagram showing a schematic configuration of a refrigeration cycle according to a first embodiment of the refrigeration apparatus of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a capillary tube, 4 is an evaporator, 5 is a suction pipe, and the high-temperature and high-pressure gas compressed by the compressor 1
The refrigerant circulates in the order of → 2 → 3 → 4 → 5 to return to the compressor 1 again.

【0018】また、図2、3は、吸込パイプと毛細管と
の部品構成を説明する図面である。図2は、図1に示す
吸込パイプ5と毛細管3の構成を説明する図である。図
3は、図2に示す吸込パイプ及び毛細管のY−Y横断面
における接触を示す断面図であり、特に図3(b)は、
図3(a)の溝6に毛細管3が嵌合される前の途中工程
を示す断面図である。図4は、図1に示す冷凍装置が組
込こまれた冷蔵庫の概略の構成を示す縦断面図である。
FIGS. 2 and 3 are views for explaining the components of the suction pipe and the capillary. FIG. 2 is a diagram illustrating the configuration of the suction pipe 5 and the capillary 3 shown in FIG. FIG. 3 is a cross-sectional view showing the Y-Y cross section of the suction pipe and the capillary shown in FIG. 2, and in particular, FIG.
FIG. 4 is a cross-sectional view showing an intermediate step before the capillary 3 is fitted into the groove 6 of FIG. FIG. 4 is a longitudinal sectional view showing a schematic configuration of a refrigerator in which the refrigerator shown in FIG. 1 is incorporated.

【0019】本実施の例では、吸込パイプ中央部5aの
直径は8〜8.5mm程度のパイプを使用している。こ
こで吸込パイプ5aの直径は、他の冷凍サイクルを構成
する冷媒管の管径よりも大きくしている。その理由は、
冷蔵庫等の冷凍サイクルの運転時に冷凍サイクル内を流
れる冷媒の流路抵抗を少なくすることで、圧縮機の出力
値を軽減させ冷蔵庫の消費電力の低減を図るためであ
る。
In the present embodiment, the diameter of the suction pipe central portion 5a is about 8 to 8.5 mm. Here, the diameter of the suction pipe 5a is set to be larger than the diameter of the refrigerant pipe constituting another refrigeration cycle. The reason is,
This is because the output value of the compressor is reduced and the power consumption of the refrigerator is reduced by reducing the flow path resistance of the refrigerant flowing in the refrigeration cycle during operation of the refrigeration cycle such as a refrigerator.

【0020】そして、上記圧縮機1と蒸発器4間に使用
する太径パイプ5aの両端にはテ−パ−部9を介して小
径(細径)パイプ8a、8bが成形されている。そして
この両端部のパイプ径は先のテ−パ−部9を介して直径
6mm程度に形成されている。そしてこの小径(細径)
パイプ8a、8bは、後述する図4の如く冷蔵庫側の圧
縮機側の接続パイプ1aと蒸発器側の接続パイプ4aに接
続されている。尚、この小径(細径)パイプの大きさは
製品側の接続パイプの大きさに合わせて変えられるもの
で先の6mmに限定されることはない。換言すると小径
(細径)パイプの大きさはテ−パ−部を介して好みの径
に成形加工することができるものである。又、上記太径
パイプ5aのテ−パ−部9においては異なる径の間がテ
−パ−形状をしているので、パイプ内部を流れる冷媒の
流路抵抗を妨げることなくスム−ズに循環できる冷凍サ
イクル構成となっている。
Small-diameter (small-diameter) pipes 8a and 8b are formed at both ends of a large-diameter pipe 5a used between the compressor 1 and the evaporator 4 via taper portions 9. The pipe diameter at both ends is formed to be about 6 mm in diameter via the tapered portion 9. And this small diameter (small diameter)
The pipes 8a and 8b are connected to a connection pipe 1a on the compressor side on the refrigerator side and a connection pipe 4a on the evaporator side as shown in FIG. The size of the small-diameter (small-diameter) pipe can be changed according to the size of the connection pipe on the product side, and is not limited to 6 mm. In other words, the size of the small-diameter (small-diameter) pipe can be formed into a desired diameter via the taper portion. Further, since the tapered portion 9 of the large diameter pipe 5a has a tapered shape between different diameters, it smoothly circulates without obstructing the flow path resistance of the refrigerant flowing inside the pipe. It has a refrigeration cycle configuration that can be used.

【0021】ここで前記吸込パイプの管径を冷凍サイク
ル部品側の管径より大きくしている理由は、冷凍サイク
ルの配管内の吸込み側の流路抵抗を少なくして圧縮機の
出力値を抑制することで冷凍能力の向上を図るためであ
る。したがって冷蔵庫等の冷凍能力は毛細管と吸込パイ
プとの接触による熱交換長さと吸込パイプの内径寸法
(吸込側断面積の大きさ)との組み合わせによる相乗効
果で冷凍サイクルの必要冷凍能力が確保されているもの
である。
The reason why the pipe diameter of the suction pipe is made larger than the pipe diameter of the refrigeration cycle parts is that the flow resistance on the suction side in the refrigeration cycle pipe is reduced to suppress the output value of the compressor. This improves the refrigeration capacity. Therefore, the refrigerating capacity of a refrigerator or the like is secured by the synergistic effect of a combination of the heat exchange length due to the contact between the capillary tube and the suction pipe and the inner diameter of the suction pipe (the size of the cross-sectional area on the suction side), thereby ensuring the necessary refrigerating capacity of the refrigerating cycle. Is what it is.

【0022】さらに前記太径パイプ5a部の長手方向に
は図2,3に示す如く、パイプの内側の方向に凹まされ
て設けられた凹み部である溝6が形成され、この太径パ
イプ5aの溝6の内側に毛細管3を連続してL寸法の長
さで嵌合させている。その嵌め合わせは、溝の太径パイ
プ5aの管軸方向(深さ方向)について毛細管の管径の
1/2以上望ましくは2/3以上の大きさに亘って嵌め
合わされている。そして、溝6の内側の太径パイプ5a
の表面が、パイプの軸方向に直角な断面で見て、毛細管
3の管外周の表面の1/2以上、望ましく2/3以上に
接触している。また、本実施例の構成では、毛細管3の
溝の深さが浅くなる方向に向かうにつれて、太径パイプ
5aの溝の内側の毛細管3と接触する面は溝の幅が小さ
くなるように、傾斜して設けられている。つまり、毛細
管3の溝の幅方向の形状が、溝の深さが浅くなる方向に
向かうにつれ小さくなる、或は傾斜している形状の部分
の毛細管3表面で太径パイプ5aの溝の内側面と接触し
ている。すなわち、毛細管の溝の幅方向の大きさは、溝
の幅の大きさ、溝の管軸方向(溝の軸方向)を挟んで対
向する接触面の距離の最小の大きさよりも小さい部分を
有している。
As shown in FIGS. 2 and 3, a groove 6 is formed in the longitudinal direction of the large-diameter pipe 5a. The capillary 3 is continuously fitted to the inside of the groove 6 with a length of L dimension. In the fitting, the fitting is performed in a direction of the pipe axis (depth direction) of the large-diameter pipe 5a in the groove over a size of 1/2 or more, preferably 2/3 or more of the diameter of the capillary. And the large diameter pipe 5a inside the groove 6
Is in contact with or more, preferably 2 or more of the outer surface of the capillary 3 when viewed in a cross section perpendicular to the axial direction of the pipe. Further, in the configuration of the present embodiment, as the depth of the groove of the capillary tube 3 decreases, the surface of the large-diameter pipe 5a that comes into contact with the capillary tube 3 inclines so that the width of the groove becomes smaller. It is provided. In other words, the widthwise shape of the groove of the capillary 3 becomes smaller as the depth of the groove becomes smaller, or the inner surface of the groove of the large diameter pipe 5a on the surface of the capillary 3 in an inclined portion. Is in contact with That is, the size of the capillary in the width direction has a portion smaller than the minimum size of the width of the groove and the distance between the contact surfaces facing each other across the tube axis direction of the groove (axial direction of the groove). are doing.

【0023】このような構成により上記太径パイプ5a
と毛細管3との嵌め合いを確実にして密着するように
し、両者の間の接触面積を大きくして熱交換が効率よく
行われるように固定している。したがって、これらのパ
イプは、従来の技術のように接合材(半田材)或いは外
部から固定する樹脂等のシール材が無くとも、適切に接
触状態を保って固定され熱交換が出来るようにされてい
る。また、両者の間の接合部材が無いため、水分の進入
等による腐食や振動等による破壊といった劣化を抑制す
ることができる。
With such a configuration, the large-diameter pipe 5a
The capillary tube 3 and the capillary tube 3 are securely fitted to each other so as to be in close contact with each other, and the contact area between them is increased so that heat exchange is performed efficiently. Therefore, these pipes are appropriately fixed while maintaining a contact state so that heat can be exchanged, even if there is no sealing material such as a bonding material (solder material) or an externally fixed resin as in the prior art. I have. In addition, since there is no joining member between the two, deterioration such as corrosion due to ingress of moisture or destruction due to vibration can be suppressed.

【0024】次に、太径パイプ5aの溝6と毛細管3と
の組込み構成について説明する。図3(a)では、太径
パイプ5aに形成した溝6の深さh1は、両端に形成さ
れた小径(細径)パイプ部8a、8bの外周に達する深
さとしている。溝5の深さは、これより小さい深さ(8
a,8bに達しない深さ)としても良い。この溝6内に
毛細管の管径の1/2以上、望ましくは2/3以上が嵌
合するように設けられている。また、本実施例では、長
手方向に連続した溝6の深さh1の最下部を結ぶ線の延
長上に小径(細径)パイプの外周面が合致するように形
成した。このことにより、吸込太径パイプ5aの溝6の
引抜き成形加工も作り易くなり、また毛細管と吸込管と
の嵌合による両者の接触の面積が増えて外れ難くなると
ともに熱伝導性能が向上する。
Next, a description will be given of a configuration in which the groove 6 of the large diameter pipe 5a and the capillary 3 are assembled. In FIG. 3A, the depth h1 of the groove 6 formed in the large-diameter pipe 5a is set to reach the outer circumference of the small-diameter (small-diameter) pipe portions 8a and 8b formed at both ends. The depth of the groove 5 is smaller than the depth (8
a, 8b). The groove 6 is provided so that at least 1/2, preferably 2/3 or more, of the diameter of the capillary tube is fitted. Further, in this embodiment, the outer peripheral surface of the small-diameter (small-diameter) pipe is formed so as to coincide with the extension of the line connecting the lowermost portion of the depth h1 of the groove 6 continuous in the longitudinal direction. This facilitates the drawing process of the groove 6 of the large-diameter suction pipe 5a, and increases the area of contact between the capillary tube and the suction tube due to fitting thereof, making it difficult for the capillary tube and the suction tube to come off and improving the heat conduction performance.

【0025】次に上記に示す吸込パイプ組品を冷蔵庫側
に組み込んだ時の冷凍サイクル構成を図4に示す。図4
において5は圧縮機1と蒸発器4間に接続した吸込パイ
プで、この吸込パイプの中央部に太径パイプ5aが毛細
管3と共に内箱29と外箱30の間に充填された断熱材
31中に埋設されている。この太径パイプ5aの直径は
前述の如く8〜8.5mm程度と太い配管を使用し、こ
の上下端には絞り加工により成形された小径(細径)パ
イプ8a、8bが図示の如く配設されている。これら小
径(細径)パイプの直径は6mm程度が望ましい。冷蔵
庫等のサイクル部品のパイプ径は直径6〜6.5mm程
度が使用される。したがって圧縮機1と蒸発器4間に使
用される太径パイプ両端のパイプ径は6mm程度に成形
し、製品側からの各サイクル部品と直接に接続できる構
成となっている。図中のAとBは前記小径(細径)パイ
プ8a,8bと冷蔵庫内の蒸発器4側の接続パイプ4a
および圧縮機1側の接続パイプ1aとの溶接箇所をそれ
ぞれ示す。
Next, FIG. 4 shows a refrigeration cycle configuration when the above suction pipe assembly is incorporated in the refrigerator. FIG.
In the drawing, 5 is a suction pipe connected between the compressor 1 and the evaporator 4. In the heat insulating material 31, a large-diameter pipe 5 a is filled at the center of the suction pipe together with the capillary 3 between the inner box 29 and the outer box 30. Buried in The large-diameter pipe 5a has a large diameter of about 8 to 8.5 mm as described above, and small-diameter (small-diameter) pipes 8a and 8b formed by drawing are arranged at the upper and lower ends as shown in the figure. Have been. The diameter of these small diameter (small diameter) pipes is desirably about 6 mm. The diameter of a pipe for cycle parts such as a refrigerator is about 6 to 6.5 mm. Therefore, the diameter of the pipe at both ends of the large diameter pipe used between the compressor 1 and the evaporator 4 is formed to about 6 mm, so that it can be directly connected to each cycle component from the product side. A and B in the figure are the small-diameter (small-diameter) pipes 8a and 8b and the connecting pipe 4a on the evaporator 4 side in the refrigerator.
And a welded portion with the connection pipe 1a on the compressor 1 side are shown.

【0026】次に図3(a)は太径パイプ5aと毛細管
3との組品構成の断面図で、前記溝6の深さh1を直径
とする毛細管3を溝6内に配設した構成となっている。
そして、溝6の開口部h3の寸法、つまり太径パイプの
外周における溝の幅の最小となる寸法を、毛細管の管径
d1の寸法或は毛細管の溝の幅方向の寸法の最大となる
寸法より小さくなるように圧縮して形成し、太径パイプ
5aの外周面で毛細管3の表面を押圧して接触させてお
り、溝6内に配設された毛細管3が太径パイプ5aの溝
6内から飛び出ないようにしている。
FIG. 3A is a cross-sectional view of the assembled structure of the large-diameter pipe 5a and the capillary 3. The capillary 3 having a diameter equal to the depth h1 of the groove 6 is disposed in the groove 6. It has become.
Then, the dimension of the opening h3 of the groove 6, that is, the minimum dimension of the width of the groove on the outer periphery of the large-diameter pipe is determined by the dimension of the capillary diameter d1 or the maximum dimension of the capillary in the width direction. The capillary 3 is formed by being compressed so as to be smaller, and the outer surface of the large diameter pipe 5a is pressed against the surface of the capillary 3 so as to be in contact therewith. I try not to jump out from inside.

【0027】更に説明すると、溝内の深さh1の1/2
位置の高さhoに毛細管の中心3bがあり、この3bの水
平面を基準に下方側は毛細管の半円とする形状となって
いる。そしてこの半円形状と同じ溝6の内面6aが合致
するように形成している。
To explain further, one half of the depth h1 in the groove
There is a center 3b of the capillary at the height ho of the position, and the lower side is a semicircle of the capillary with respect to the horizontal plane of this 3b. The inner surface 6a of the same groove 6 as the semicircular shape is formed so as to match.

【0028】このようにすることで、溝内面6aは毛細
管3が嵌め合わされた際に、その毛細管の管軸方向の断
面上で毛細管3の外周の半周(1/2)或いは2/3周
以上の長さに亘って面接触をしていることになる。すな
わち、長さLに亘り、毛細管3の管の外表面は1/2以
上あるいは2/3以上が太径パイプ5aの溝(凹み部)
6aの表面で包まれるように接触している。
In this way, when the capillary 3 is fitted, the inner surface 6a of the groove is not less than half (1/2) or more than 2/3 of the outer circumference of the capillary 3 on the cross section of the capillary in the axial direction. Are in surface contact over the length of. That is, over the length L, the outer surface of the capillary 3 has a groove (concave portion) of the large-diameter pipe 5a which is 以上 or more or / or more.
6a so as to be wrapped around the surface.

【0029】次に、前記毛細管3の中心3bの水平面上
方側においては、太径パイプを圧縮して成形後、溝の開
口部の稜線は高さ方向において、毛細管中心3bと毛細
管外周と太径パイプ外周の接点3cとの間に位置し、図
中の6d、6d間が溝の開口部大きさ(h3)となる。
したがって溝6の開口部寸法h3は毛細管のd1寸法より
小さくなるように圧縮して成形されて、2つのパイプの
表面同士の接触面積が大きくなるとともに、両パイプの
固定が確実となる。
Next, on the upper side of the center 3b of the capillary 3 above the horizontal plane, after the large diameter pipe is compressed and formed, the ridgeline of the opening of the groove has the ridgeline of the capillary center 3b, the outer periphery of the capillary and the large diameter in the height direction. It is located between the contact 3c on the outer periphery of the pipe, and the area between 6d and 6d in the figure is the opening size (h3) of the groove.
Accordingly, the opening dimension h3 of the groove 6 is compressed and formed so as to be smaller than the dimension d1 of the capillary, so that the contact area between the surfaces of the two pipes is increased and the two pipes are reliably fixed.

【0030】次に、これら毛細管を圧着する前の形状を
図3(b)について説明すると、圧着(圧縮して両者を
接触させる)成形前の溝6の開口部の稜線は開口幅h2
(毛細管管径d1と同じ)寸法で、高さ位置については毛細
管の中心3bと外周接点3cとの間で図3(b)のh4
寸法の高さ位置に稜線6c、6cをそれぞれ形成してい
る。このような位置で溝内の毛細管3を嵌合し、その後
太径パイプ5aに毛細管3を圧着引抜き加工を施すこと
で、溝6の開口稜線6c、6cが毛細管の外周面3aに
押圧されて圧着される。
Next, the shape of these capillaries before crimping will be described with reference to FIG. 3 (b). The ridgeline of the opening of the groove 6 before crimping (compressing and bringing them into contact) has an opening width h2.
The dimensions (the same as the diameter d1 of the capillary tube) and the height position between the center 3b of the capillary tube and the outer peripheral contact 3c are h4 in FIG.
The ridgelines 6c, 6c are respectively formed at the height positions of the dimensions. The capillary 3 in the groove is fitted at such a position, and then the capillary 3 is subjected to press-drawing processing on the large-diameter pipe 5a, so that the opening ridge lines 6c, 6c of the groove 6 are pressed against the outer peripheral surface 3a of the capillary. It is crimped.

【0031】そして図3(a)の如く開口部稜線6c、
6cは該毛細管3の中心3bの水平面より上方の毛細管
外周面へと移動し、圧着引抜き加工後は6d、6dの位
置となり、前記毛細管が毛細管管径の1/2以上望まし
くは2/3以上にわたって溝6内に包み込まれるように
固定される。したがって、毛細管3bの水平面を基準
に、上方側は毛細管の外周6d、6dまで溝6の内周面
6a(毛細管の管周の1/2もしくは2/3以上)と面
接触することになる。この時6d、6dの高さ位置はh
5(図3(a))で、圧着前のh4より低くなる。つま
り、太径パイプの溝内に毛細管の管径の1/2もしくは
2/3以上を、長手方向の溝に連続して圧着できるので
太径パイプと毛細管との間で良好な熱交換が行えるもの
である。
Then, as shown in FIG.
6c moves to the outer peripheral surface of the capillary above the horizontal plane of the center 3b of the capillary 3 and becomes the position of 6d, 6d after crimping and drawing, and the capillary is at least 1/2 of the diameter of the capillary, preferably at least 2/3 of the diameter of the capillary. Is fixed so as to be wrapped in the groove 6. Therefore, based on the horizontal plane of the capillary 3b, the upper side comes into surface contact with the inner peripheral surface 6a of the groove 6 (1/2 or 2/3 or more of the capillary circumference) up to the outer periphery 6d of the capillary. At this time, the height position of 6d, 6d is h
5 (FIG. 3 (a)), it is lower than h4 before crimping. In other words, 1/2 or 2/3 or more of the diameter of the capillary tube can be continuously pressed into the groove in the longitudinal direction in the groove of the large diameter pipe, so that good heat exchange can be performed between the large diameter pipe and the capillary tube. Things.

【0032】ここで図2(b)において、毛細管3が太
径パイプ5aの溝6内に嵌合する状態から毛細管が圧着
された後の形状(図2(a))について設明する。図2
(b)で太径パイプ5aの溝6の最下部面は両端の小径
(細径)パイプ8a,8bの外周面と同一面となってお
り、この溝6内に毛細管3を入れて、その後、太径パイ
プの溝に毛細管を圧着引き抜き加工を施すことで図2
(a)の如き形状となる。
Here, in FIG. 2B, the shape (FIG. 2A) after the capillary tube 3 is crimped from the state where the capillary tube 3 is fitted into the groove 6 of the large diameter pipe 5a will be described. FIG.
In (b), the lowermost surface of the groove 6 of the large-diameter pipe 5a is flush with the outer peripheral surfaces of the small-diameter (small-diameter) pipes 8a and 8b at both ends. FIG. 2 shows that a capillary tube is subjected to crimping and pulling processing in a groove of a large diameter pipe.
The shape is as shown in FIG.

【0033】この図2(a)において毛細管3の両端部
分は、テ−パ−部9を境に吸込みパイプの外周面より離
れる方向に傾斜した形状となっている。これは、溝6の
L寸法間で溝6が毛細管を上記のように接合する際に、
溝6と溝が無い太径パイプ5a部分の境(溝の端部)に
おいて、テ−パ−部9の部分で、加えられた力により、
この毛細管を、テーパー部9から毛細管先端に向かうに
つれて、小径(細径)パイプ8a,8bから毛細管の最
先端部が持ち上がって離れる方向に変形しているのであ
る。このため、テ−パ−部9を境に毛細管3の先端側に
向かい除々に傾斜する形状となっている。
In FIG. 2A, both end portions of the capillary tube 3 have a shape inclined with respect to the taper portion 9 in a direction away from the outer peripheral surface of the suction pipe. This is because when the groove 6 joins the capillaries as described above between the L dimensions of the groove 6,
At the boundary between the groove 6 and the large-diameter pipe 5a having no groove (the end of the groove), the taper 9 causes
The capillary is deformed in a direction in which the tip of the capillary rises and separates from the small-diameter (small-diameter) pipes 8a and 8b from the tapered portion 9 to the capillary tip. For this reason, it has a shape gradually inclined toward the tip end side of the capillary tube 3 with the taper portion 9 as a boundary.

【0034】従来技術においては冷蔵庫への冷凍サイク
ルの組み込時に、冷凍サイクル側の接続パイプとつなぐ
ために吸込みパイプと組み合わせた組品の状態で、予め
毛細管の両端部分を吸込みパイプより離して傾斜させる
作業工程を行なっていた。この傾斜によってパイプ同士
の間隔を作りパイプの溶接、接続の作業を行うスペース
を確保することができる。一方、本実施の例では、上記
の如く毛細管の圧着引抜き工程の段階で、前記毛細管が
傾斜して吸込パイプから離れるので、本発明の構成にお
いてはこれらの工程が不要となり、吸込みパイプ組品の
製造工程の効率向上及び製造単価の低減になるものであ
る。
In the prior art, when a refrigeration cycle is assembled in a refrigerator, the two ends of the capillary are previously inclined away from the suction pipe in an assembled state in which the suction pipe is connected to the connection pipe on the refrigeration cycle side. Work process was performed. By this inclination, a space between the pipes is formed, and a space for welding and connecting the pipes can be secured. On the other hand, in the present embodiment, the capillary is inclined and separated from the suction pipe at the stage of the crimping and drawing step of the capillary as described above, so that these steps become unnecessary in the configuration of the present invention, and the suction pipe assembly is manufactured. This improves the efficiency of the manufacturing process and reduces the manufacturing cost.

【0035】そして、図3(b)は、前述の如く太径パ
イプ5aの溝6に前記毛細管3が圧着固定される前の断
面形状を示し、図示の如く太径パイプ5aの溝6の開口
部寸法h2は毛細管3の管径d1と同等になっている。
したがって、毛細管3が溝6内に入った場合、溝6内の
内周面6aは毛細管3の外周面3aとの面が合致するこ
とになる。そしてこの毛細管3を溝6内に嵌合(図3
(b))させて、その後前述の如く溝6の開口部寸法h
2を毛細管3の管径d1より小さいh3に圧着成形(図
3(a))させることで毛細管3のほぼ全周面(管径の
2/3以上)に亘り、太径パイプ5aの溝6内の内周面
6aにより包み込まれるように接合され接着がより密と
なり接触面積を大きくできる構成となる。
FIG. 3B shows a cross-sectional shape before the capillary tube 3 is fixed to the groove 6 of the large-diameter pipe 5a by crimping as described above, and the opening of the groove 6 of the large-diameter pipe 5a as shown in the drawing. The section size h2 is equal to the tube diameter d1 of the capillary tube 3.
Therefore, when the capillary 3 enters the groove 6, the inner peripheral surface 6 a in the groove 6 coincides with the outer peripheral surface 3 a of the capillary 3. Then, the capillary 3 is fitted into the groove 6 (FIG. 3).
(B)) and then the opening dimension h of the groove 6 as described above.
2 is press-formed (FIG. 3A) to h3 smaller than the pipe diameter d1 of the capillary 3 so that the groove 6 of the large-diameter pipe 5a extends over almost the entire peripheral surface (2/3 or more of the pipe diameter). It is joined so as to be wrapped by the inner peripheral surface 6a inside, so that the adhesion becomes denser and the contact area can be increased.

【0036】したがって、吸込太径パイプ5aと毛細管
3とはお互いの外周面(3aと6a)との面接触で熱交換
を行うことが可能となるものである。更に、毛細管付溝
6の内側面においては、前記毛細管を太径パイプが包む
格好となるので、太径パイプ内を流れる冷媒は太径パイ
プの肉厚を介しての長手方向の溝内に配置された毛細管
のより大きな外表面で熱交換できるものである。このよ
うな熱交換をさせる技術において、従来用いられてきた
接合材(半田材)を使わず冷蔵庫等の冷凍サイクルの必
要冷凍能力を確保でき、同時に省エネルギ−を実現でき
るものである。
Therefore, the large-diameter suction pipe 5a and the capillary 3 can perform heat exchange by surface contact with each other's outer peripheral surfaces (3a and 6a). Further, on the inner side surface of the groove 6 with a capillary, the capillary is surrounded by a large-diameter pipe, so that the refrigerant flowing through the large-diameter pipe is disposed in the longitudinal groove through the thickness of the large-diameter pipe. The heat exchange can be performed on the larger outer surface of the drawn capillary tube. In such a technique for exchanging heat, the required refrigerating capacity of a refrigerating cycle of a refrigerator or the like can be secured without using a bonding material (solder material) conventionally used, and at the same time, energy saving can be realized.

【0037】また、接合材無しで2つの部品を接合出来
るので、衛生的にも環境的にも好ましいものである。さ
らに接合材なしとすることで複雑な装置或いは設備等を
不要とできるので製品の原価低減が図れるものである。
また、一定形状を有するパイプ溝内に合致した部品(毛
細管)を嵌合させて一体化成形することで2つの部品の
接触度合いあるいは密着度を均一にできるので製品の冷
凍能力が向上し、信頼性の高い製品を顧客に提供出来る
ものである。
Also, since two parts can be joined without a joining material, it is preferable from a sanitary and environmental point of view. Furthermore, since there is no need for a joining material, complicated devices or equipment can be eliminated, so that the cost of products can be reduced.
In addition, by fitting a part (capillary tube) that fits in a pipe groove having a certain shape and integrally forming the same, the degree of contact or the degree of contact between the two parts can be made uniform, improving the refrigerating ability of the product and improving reliability. It can provide customers with highly productive products.

【0038】更に図5(a)は太径パイプに成形した溝
6の対向側(溝6の対称の位置)に溝6と同形状を有す
もう1ヶの溝66を設けた実施例を示す。この実施例の
製造方法は後述する図6の如き工程手順でおこなわれ
る。
FIG. 5 (a) shows an embodiment in which another groove 66 having the same shape as the groove 6 is provided on the opposite side (symmetrical position of the groove 6) of the groove 6 formed into a large diameter pipe. . The manufacturing method of this embodiment is performed according to a process procedure as shown in FIG.

【0039】すなわち、吸込太径パイプ5aのL寸法を
除く、両端部に小径(細径)パイプを成形するための治
具を設ける。その後、太径パイプ部に上記溝6、66を
引抜き加工にて成形する。その後、毛細管3、33を溝
内に嵌合させて太径パイプに毛細管を圧着引抜きすると
いう手順となる。また、本実施例の溝66内は図3
(a)と同構成(同形状)であり、溝66の深さh1は
両端に形成された小径(細径)パイプの外周までの深さ
とし、この溝内に毛細管33を嵌合するようになってい
るものである。
That is, a jig for forming a small-diameter (small-diameter) pipe is provided at both ends except for the L dimension of the suction large-diameter pipe 5a. Thereafter, the grooves 6, 66 are formed in the large-diameter pipe by drawing. After that, the procedure is such that the capillaries 3 and 33 are fitted in the grooves and the capillaries are crimped to the large diameter pipe. FIG. 3 shows the inside of the groove 66 of this embodiment.
(A) has the same configuration (same shape) as above, and the depth h1 of the groove 66 is the depth to the outer periphery of the small-diameter (small-diameter) pipe formed at both ends, and the capillary 33 is fitted into the groove. Is what it is.

【0040】このように太いパイプが作る円内に入るよ
う毛細管を太いパイプが有す溝内に取り付けるようにす
ることで前記毛細管の外周面と太いパイプの外周面との
面接触面積を大きく、しかも長手方向の溝付パイプ全長
に亘って確保できる。更に、太いパイプに溝(凹み部)
を形成することで前記太いパイプ内周面側の伝熱面積を
大きくすることが出来るので両者の間(毛細管と太いパ
イプ)の太径パイプ内を流れる冷媒は太径パイプの肉厚
を介して毛細管の広い外周面と熱交換できるので熱交換
量を大きく、また効率良く行うことが出来る。更に、太
径パイプの円内に毛細管を一体化出来ることで、吸込パ
イプ組品の出来上がり外観がシンプルとなり、製品側へ
の組込み作業がやり易くなる。また2部品を接合材無し
で一体化するので組品自体の軽量化にもなるものであ
る。
As described above, by attaching the capillary into the groove of the thick pipe so as to enter the circle formed by the thick pipe, the surface contact area between the outer peripheral surface of the capillary and the outer peripheral surface of the thick pipe is increased. Moreover, it can be secured over the entire length of the grooved pipe in the longitudinal direction. In addition, a groove (dent) in a thick pipe
Since the heat transfer area on the inner peripheral surface side of the thick pipe can be increased by forming the above, the refrigerant flowing in the thick pipe between the two (capillary tube and thick pipe) passes through the thickness of the thick pipe. Since the heat can be exchanged with the wide outer peripheral surface of the capillary tube, the heat exchange amount can be increased and the efficiency can be improved. Furthermore, since the capillary can be integrated into the circle of the large diameter pipe, the finished appearance of the suction pipe assembly is simplified, and the assembling work on the product side becomes easier. Further, since the two parts are integrated without a joining material, the weight of the assembly itself can be reduced.

【0041】次に図5(b)は、太径パイプ5aの溝6
と66に2つの毛細管3及び33が圧着固定される前の
断面形状を示す。本図は前述図3(b)の溝6と同形状
の溝66を対向側(溝6の対称の位置)に設けた場合の
実施例であり溝66内の円周面66aは毛細管33の外
周面33aとの面が合致するようにしたものである。
Next, FIG. 5 (b) shows the groove 6 of the large diameter pipe 5a.
And 66 show the cross-sectional shapes before the two capillaries 3 and 33 are fixed by crimping. This drawing shows an embodiment in which a groove 66 having the same shape as the groove 6 in FIG. 3B is provided on the opposite side (a position symmetrical to the groove 6). The outer peripheral surface 33a is made to coincide with the outer peripheral surface 33a.

【0042】次に本発明の吸込パイプと毛細管の製造方
法を図6を用いて説明する。図において、左側には左側
面から見た形状を、更にその右側には加工図全体形状を
それぞれ示す。
Next, a method for manufacturing a suction pipe and a capillary according to the present invention will be described with reference to FIG. In the figure, the shape seen from the left side is shown on the left side, and the whole shape of the processed drawing is shown on the right side.

【0043】まず(a)は本実施例の冷凍サイクルの素
材(銅管)で、上が吸込パイプ5で下方が毛細管3であ
り、このパイプ5の直径は12mm〜13mmと太目の
素材でその長さは例えば約2500〜3000mmであ
る。尚、この直径の大きさと長手方向の長さについては
製品の大きさあるいは仕様等により変わるものである。
また毛細管3の外径は1.8mm〜2.0mmでその長
さは例えば3000mmぐらいである。この毛細管の長
さについても前記同様製品の大きさ、仕様等により変わ
るものである。ここで吸込みパイプ5の直径を大きく設
定しているがこれは該パイプに溝を成形する為に予め太
めの素材としたものである。
First, (a) shows a material (copper tube) for the refrigeration cycle of the present embodiment. The upper part is a suction pipe 5 and the lower part is a capillary tube 3. The diameter of this pipe 5 is 12 mm to 13 mm, which is a thick material. The length is, for example, about 2500-3000 mm. The size of the diameter and the length in the longitudinal direction vary depending on the size or specifications of the product.
The outer diameter of the capillary 3 is 1.8 mm to 2.0 mm, and its length is, for example, about 3000 mm. The length of the capillaries also depends on the size, specifications, etc. of the product as described above. Here, the diameter of the suction pipe 5 is set to be large, but this is made of a thick material in advance in order to form a groove in the pipe.

【0044】次に、(b)は前記吸込パイプ両端の両端
先付工程で、成形加工させるために必要な押え代を確保
させる部分を最初に作るものである。この時に使用され
るのは図示の如きスェ−ジング治具により一定の直径に
縮管される。
Next, (b) is a process for firstly forming a portion for securing a press allowance required for forming in a step of pretending both ends of the suction pipe. At this time, the pipe is contracted to a predetermined diameter by a swaging jig as shown in the figure.

【0045】(c)は両端絞り工程で、吸込パイプ5の
両端部を直径6mm程度、長さ250mm〜500mm
に成形加工させるものであり、この両端部分は本発明の
図2の小径(細径)パイプ8a(8b)に相当する部分であ
る。まず手順としては吸込パイプ5の素材(銅管)は太径
パイプ5aのL寸法を除く両端部に先の太径パイプの径
より小さい径に成形するための治具を取付け、この治具
により絞り加工を施して小径(細径)パイプの成形加工
を行なうものである。ここで小径(細径)パイプと太径
パイプの間をつなげるには太径部の径を徐々に小さくし
て小径(細径)パイプの大きさにする必要がある。した
がって一つのパイプで異なる径を作るには前記太径パイ
プ5aと両端小径(細径)パイプ8a(8b)との間に
は図示の如くテ−パ−部9(傾斜部)が介在することに
なる。このような形状にすることで吸込パイプ内の冷媒
の循環もスム−ズな流れを作ることができる。
(C) is a drawing process at both ends, in which both ends of the suction pipe 5 are about 6 mm in diameter and 250 mm to 500 mm in length.
The two end portions are portions corresponding to the small-diameter (small-diameter) pipes 8a (8b) of FIG. 2 of the present invention. First, as a procedure, a jig for forming the material (copper tube) of the suction pipe 5 to a diameter smaller than the diameter of the large diameter pipe 5a is attached to both ends of the large diameter pipe 5a except for the L dimension, and the jig is used. The drawing process is performed to form a small-diameter (small-diameter) pipe. Here, in order to connect between the small-diameter (small-diameter) pipe and the large-diameter pipe, it is necessary to gradually reduce the diameter of the large-diameter portion to the size of the small-diameter (small-diameter) pipe. Therefore, in order to make different diameters with one pipe, a taper portion 9 (inclined portion) is interposed between the large diameter pipe 5a and the small diameter (small diameter) pipes 8a (8b) at both ends as shown in the figure. become. By adopting such a shape, the circulation of the refrigerant in the suction pipe can produce a smooth flow.

【0046】次に(d)は、吸込パイプの溝付引抜き工
程(1回目)で吸込パイプの中央部分(5a)L寸法部
の全長に亘り、溝を成形する工程である。尚、本加工工
程図は吸込パイプに溝6を2つ設けた場合で本発明の実
施例では図5(a),(b)に相当する。中央部5aが
本発明の太径パイプで溝付き引抜き後のパイプ径は8.
0〜8.5mm程度の大きさに成形される。
Next, (d) is a step of forming a groove over the entire length of the L portion of the central portion (5a) of the suction pipe in the suction pipe grooved drawing step (first time). This working process diagram is a case where two grooves 6 are provided in the suction pipe, and corresponds to FIGS. 5A and 5B in the embodiment of the present invention. The central part 5a is the large diameter pipe of the present invention, and the pipe diameter after drawing with a groove is 8.
It is formed into a size of about 0 to 8.5 mm.

【0047】(e)は、吸込パイプ5aの溝内に毛細管
3を嵌合させた後に圧着引抜きを施す2回目の工程を示
す。本工程は手順3の吸込パイプに長手方向の溝6に毛
細管3を嵌合させ、この溝内の毛細管を溝を構成する部
材である吸込パイプの部材で包み込むように圧着引抜き
成形を施す工程となっている。この圧着引抜きに当たっ
ては図示の如く専用の圧着引抜き治具により2つの溝の
開口部を毛細管の管径より小さく成形するものである。
これによって毛細管は吸込パイプ溝内に一体的に固定さ
れることになる。この毛細管3の圧着引抜き工程後にお
いては前述説明した如く手順4の小径(細径)パイプ8
a,8bに対応する毛細管3の両端部分がテ−パ−部9
の端部より除々に傾斜形状となる。
(E) shows a second step in which the capillary tube 3 is fitted into the groove of the suction pipe 5a and then the crimping and drawing is performed. In this step, the capillary 3 is fitted into the longitudinal groove 6 of the suction pipe in the step 3, and the capillary in the groove is subjected to crimping and drawing so as to be wrapped by the suction pipe member constituting the groove. Has become. In this crimping and drawing, the openings of the two grooves are formed to be smaller than the diameter of the capillary by using a special crimping and drawing jig as shown in the figure.
As a result, the capillary is integrally fixed in the suction pipe groove. After the crimping and drawing step of the capillary 3, as described above, the small-diameter (small-diameter) pipe 8 of the procedure 4 is used.
Both ends of the capillary 3 corresponding to a and 8b are tapered portions 9
Gradually becomes an inclined shape from the end.

【0048】(f)は切断工程で、吸込パイプの両端先
付部の切り捨て、及び毛細管両端部の切り捨てを行う工
程である。これにより組品形状が完成となる。
(F) is a cutting step in which both ends of the suction pipe are cut off and both ends of the capillary are cut off. This completes the assembled shape.

【0049】最後は完成品の洗浄工程(図示せず)で吸
込パイプ組品の汚れ、他を除去させて吸込パイプ組品が
完成となる。
Finally, in a washing process (not shown) of the finished product, the suction pipe assembly is removed from dirt and other components, thereby completing the suction pipe assembly.

【0050】以上のように本発明の製造工程においては
吸込パイプに毛細管を入れる為の溝を作り、この溝に毛
細管を嵌合させて圧着させ一体化したので従来の如き複
雑な設備を必要とせず簡単な製造工程で組品を作ことが
可能となる。したがってコスト的にも安価な製品を顧客
に提供できるものである。
As described above, in the manufacturing process of the present invention, a groove for accommodating a capillary in the suction pipe is formed, and the capillary is fitted into the groove, press-fitted and integrated, so that complicated equipment as in the prior art is required. It is possible to produce an assembly with a simple manufacturing process. Therefore, a low-cost product can be provided to the customer.

【0051】次に、先の(f)で完成した吸込パイプ組
品5を湾曲或は折り曲げ成形した実施例を図7により説
明する。(A)は曲げ成形品の上面図、(B)は(A)
のX−Xから見た横断面形状の拡大図を示し、太径パイ
プ5a外周部に成形した溝6内に毛細管を嵌め合わせて
収容した毛細管付きパイプを所定の形状折り曲げ成形し
た実施例である。(B)において、溝6内の毛細管3は
太径パイプ5aの中心6bの水平面上の溝6内に毛細管3
を配設した実施例であるが、この毛細管3の位置につい
ては太径パイプの直径がつくる円内であればいずれの位
置でも所定の形状に折り曲げ成形することが可能であ
り、本実施例に限定されることはない。
Next, an embodiment in which the suction pipe assembly 5 completed in (f) above is bent or bent will be described with reference to FIG. (A) is a top view of a bent product, and (B) is (A).
FIG. 3 is an enlarged view of a cross-sectional shape as viewed from XX of FIG. 1, and is an example in which a pipe with a capillary in which a capillary is fitted and housed in a groove 6 formed on the outer periphery of the large-diameter pipe 5a is bent into a predetermined shape. . In (B), the capillary 3 in the groove 6 is inserted into the groove 6 on the horizontal plane at the center 6b of the large diameter pipe 5a.
In this embodiment, the capillary 3 can be bent into a predetermined shape at any position within a circle formed by the diameter of the large-diameter pipe. It is not limited.

【0052】さらに、図8に示す本発明の実施例の変形
例は、パイプ外周部に形成した溝6内に毛細管3を収め
た毛細管付太径パイプ5aを図面の紙面に対して平行に
なるように折り曲げ成形して所望の形を作るとき、溝6
内に収められた毛細管3の中心3bと毛細管付太径パイ
プ5aの中心6bとを結ぶ線が上記紙面(曲がった管軸
が形成する面)に対して直交するように折り曲げ成形し
た実施例である。この図8(B)は、図8(A)をZ−
Zから見た横断面形状の拡大図である。
Further, in a modification of the embodiment of the present invention shown in FIG. 8, a large-diameter pipe 5a with a capillary in which a capillary 3 is accommodated in a groove 6 formed on the outer periphery of the pipe is parallel to the drawing sheet. To form the desired shape by bending
In this embodiment, a line connecting the center 3b of the capillary 3 accommodated in the inside and the center 6b of the large diameter pipe 5a with a capillary is bent so as to be orthogonal to the paper surface (the surface formed by the curved tube axis). is there. FIG. 8B is a diagram showing FIG.
FIG. 2 is an enlarged view of a cross-sectional shape as viewed from Z.

【0053】本実施例は、図8(B)の如く溝付きパイ
プ5aの曲げ中心6bと毛細管3の曲げ中心3bとが、図
紙面上方から見て同心軸となっており、パイプ5aの曲
げ半径(曲率半径)は毛細管3の曲げ半径と同じ場合で
ある。この曲げ形状によれば、毛細管3及び溝6周辺へ
の応力(伸び、縮み)が小さくなり、これらのパイプへ
の歪みの残留や応力の集中等の悪影響が小さくなる。こ
のためこれらの曲げ変形を行っている際に、毛細管3と
太径パイプ5aとの接触状態、圧着の状態が損なわれ
て、例えば毛細管3の一部がパイプ5aから突出してし
まい、この部分での熱伝導性能が低下するといった問題
が生じることが抑制される。
In this embodiment, as shown in FIG. 8 (B), the bending center 6b of the grooved pipe 5a and the bending center 3b of the capillary 3 are concentric axes as viewed from above in the drawing. The radius (radius of curvature) is the same as the bending radius of the capillary 3. According to this bent shape, stress (elongation and contraction) around the capillary tube 3 and the groove 6 is reduced, and adverse effects such as residual strain and stress concentration on these pipes are reduced. Therefore, during these bending deformations, the contact state between the capillary 3 and the large-diameter pipe 5a and the state of crimping are impaired. For example, a part of the capillary 3 protrudes from the pipe 5a. This suppresses a problem that the heat conduction performance of the slag decreases.

【0054】すなわち、本実施例では、曲げ変形を行う
ものでも、溝6内面と毛細管3外周面との接触を良好に
保つことができる。また、本実施例は毛細管が1個の場
合であるが、毛細管3bの対向する位置にも溝6及び毛
細管3を設けた場合についても、上記作用を奏すること
ができる。
That is, in the present embodiment, even when bending deformation occurs, good contact between the inner surface of the groove 6 and the outer peripheral surface of the capillary tube 3 can be maintained. In this embodiment, the number of the capillaries is one. However, the above-described effect can be obtained also in the case where the groove 6 and the capillaries 3 are provided also at the positions facing the capillaries 3b.

【0055】尚、図7,8の(A)おいてW寸法、及び
P1等の各寸法の長さは溝付き吸込パイプの長さにより
自由に変えられることは勿論である。また本実施例の形
状は折り曲げ数が1個で曲げピッチP1であるが、曲げ
数が複数個で曲げピッチが異なる組み合わせなっても良
いものである。更に、本実施例では小径(細径)パイプ
8a、8bの配設位置が異なる方向になっているが、こ
れら小径(細径)パイプの配設位置等についても限定さ
れることはない。
In FIGS. 7 and 8A, the length of each dimension such as the dimension W and the dimension P1 can of course be freely changed by the length of the grooved suction pipe. Although the shape of the present embodiment has one bending number and the bending pitch P1, a combination of a plurality of bending numbers and different bending pitches may be used. Furthermore, in the present embodiment, the arrangement positions of the small-diameter (small-diameter) pipes 8a and 8b are in different directions, but the arrangement positions of these small-diameter (small-diameter) pipes are not limited.

【0056】以上の如く毛細管付吸込みパイプは毛細管
が前記溝内に収められているので外観がシンプルとなり
曲げ成形も加工し易すくなり、製品側への組込み作業も
やり易くなるものである。
As described above, the suction pipe with a capillary tube has a simple appearance because the capillary tube is accommodated in the groove, so that the bending process can be easily performed and the assembling work on the product side can be easily performed.

【0057】以上説明したように、上記実施例によれ
ば、2つの部品を鉛半田無しで太径パイプと毛細管との
あいだで熱交換が行えるように密着させたので環境的に
も、衛生的にも好ましものである。
As described above, according to the above-described embodiment, the two parts are brought into close contact with each other so that heat can be exchanged between the large-diameter pipe and the capillary pipe without lead soldering. Is also preferred.

【0058】また、従来の如き接合材を介して一体化さ
せるための生産設備が不要となるのでコスト的にも製造
原価が安価にすることができるものである。 また、パ
イプの連続した溝内に毛細管管径の1/2以上望ましく
は2/3以上を連続して嵌合させたので2つのパイプの
密着度合が均一にできるので製品の冷凍能力の向上につ
ながるものである。
Further, since the production equipment for integrating through a bonding material as in the related art is not required, the manufacturing cost can be reduced in terms of cost. Further, since at least 1/2 of the diameter of the capillary tube, preferably at least 2/3 of the diameter of the capillary tube is continuously fitted in the continuous groove of the pipe, the degree of close contact between the two pipes can be made uniform. It is connected.

【0059】また、太径パイプの両端を絞り加工を施す
ことで製品側への接続パイプに合った小径(細径)パイ
プの大きさにできるので、中継ぎパイプを不要にでき、
また部品点数の削減が図れる。また溶接箇所を少なくさ
せることで冷凍サイクルの信頼性向上が図れるものであ
る。
Further, by drawing both ends of the large-diameter pipe, the size of the small-diameter (small-diameter) pipe suitable for the connection pipe to the product side can be reduced.
Also, the number of parts can be reduced. Also, by reducing the number of welding points, the reliability of the refrigeration cycle can be improved.

【0060】また、溝の深さを直径とする毛細管を該溝
内に配設し、該溝内への毛細管嵌合後は溝の開口部を毛
細管の直径より小さく成形したことで前記毛細管が太径
パイプの溝内に包み込む格好となるので飛び出さないよ
うに一体的に溝内へ固着することができ、両者の接合が
維持され、熱交換効率の低下の発生が抑制され、冷凍サ
イクルの信頼性が向上する。
A capillary having a diameter equal to the depth of the groove is provided in the groove, and after the capillary is fitted into the groove, the opening of the groove is formed smaller than the diameter of the capillary, so that the capillary is formed. Since it is suitable to be wrapped in the groove of the large diameter pipe, it can be fixed integrally in the groove so that it does not jump out, the joining of both is maintained, the occurrence of a decrease in heat exchange efficiency is suppressed, and the refrigeration cycle Reliability is improved.

【0061】さらには、太いパイプ部に形成した溝の深
さを両端の小径(細径)パイプ部の外周までの深さと
し、この溝内に毛細管管径のほぼほぼ全周面を嵌合する
ようにしたので太パイプの溝の成形加工が容易かつスム
−スに出来ると共に溝内周面と毛細管との外周面との面
接触を長手方向の溝付パイプ全長にわたって熱交換が行
うことが出来る。
Further, the depth of the groove formed in the thick pipe portion is set to the depth to the outer periphery of the small-diameter (small-diameter) pipe portion at both ends, and substantially the entire peripheral surface of the diameter of the capillary tube is fitted into the groove. As a result, the forming process of the groove of the thick pipe can be easily and smoothly performed, and the surface contact between the inner peripheral surface of the groove and the outer peripheral surface of the capillary tube can be performed with heat exchange over the entire length of the grooved pipe in the longitudinal direction. .

【0062】また、毛細管が、吸込パイプの太い径部に
嵌合している部分より、その先端に向かうに伴って吸込
パイプから離れるように傾斜して配設されるので、冷凍
サイクルを構成する他の冷媒管との接続が容易に行え、
製造が容易となる。
Further, since the capillary is disposed so as to be inclined away from the suction pipe as it goes toward the tip from the portion fitted to the large diameter portion of the suction pipe, a refrigeration cycle is constituted. Easy connection with other refrigerant pipes,
Manufacturing becomes easy.

【0063】さらには、太いパイプと小径(細径)パイ
プ部間にテ−パ−部を設けたので、一つのパイプで径の
異なる継ぎ目なしの部品成形が出来るようになった。
Further, since a taper portion is provided between a thick pipe and a small-diameter (small-diameter) pipe portion, it is possible to form seamless parts having different diameters with one pipe.

【0064】さらには、太いパイプの直径が作る円内に
入るよう毛細管を太いパイプが有す溝内に取り付けたの
で、毛細管の外周面と太径パイプとの接触面積を大きく
確保でき、更に太いパイプ内の伝熱面積が大きく出来、
毛細管のほぼ全周面を太径パイプが包む格好になるので
太径パイプ内を流れる冷媒は太径パイプの肉厚を介して
毛細管のほぼ全周面と熱交換できるものである。
Further, since the capillary is mounted in the groove of the thick pipe so as to be within the circle formed by the diameter of the thick pipe, a large contact area between the outer peripheral surface of the capillary and the large diameter pipe can be ensured, and the larger diameter can be obtained. The heat transfer area inside the pipe can be increased,
Since the large diameter pipe wraps almost the entire peripheral surface of the capillary, the refrigerant flowing in the large diameter pipe can exchange heat with almost the entire peripheral surface of the capillary via the thickness of the large diameter pipe.

【0065】[0065]

【発明の効果】以上の通り、本発明によれば、信頼性の
高い冷凍装置を提供できる。また、本発明によれば、製
造が容易で低コストで製造できる冷凍装置を提供でき
る。
As described above, according to the present invention, a highly reliable refrigeration apparatus can be provided. Further, according to the present invention, it is possible to provide a refrigeration apparatus that can be easily manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷凍装置の第1の実施例に係る冷凍サ
イクルの構成の概略を示すブロック図である。
FIG. 1 is a block diagram schematically illustrating a configuration of a refrigeration cycle according to a first embodiment of a refrigeration apparatus of the present invention.

【図2】図1に示す冷凍装置の吸込パイプ及び毛細管の
構成を示す断面図である。
FIG. 2 is a sectional view showing a configuration of a suction pipe and a capillary of the refrigeration apparatus shown in FIG.

【図3】図2に示す冷凍装置の吸込太パイプと毛細管と
の接触状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a contact state between a thick suction pipe and a capillary of the refrigeration apparatus shown in FIG. 2;

【図4】図1に示す冷凍装置が組込こまれた冷蔵庫の概
略の構成を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a schematic configuration of a refrigerator in which the refrigerator shown in FIG. 1 is incorporated.

【図5】図1に示す冷凍装置の吸込太径パイプと2つの
毛細管との接触状態を示す横断面図である。
5 is a cross-sectional view showing a contact state between a large-diameter suction pipe and two capillaries of the refrigeration apparatus shown in FIG.

【図6】図1に示す冷凍装置の吸込径パイプと毛細管と
の嵌め合わせの工程を示す説明図である。
FIG. 6 is an explanatory view showing a process of fitting a suction diameter pipe and a capillary of the refrigeration apparatus shown in FIG. 1;

【図7】本発明の第1の実施例の変形例である冷凍装置
の、所定の形状に折り曲げ成形された毛細管付パイプを
示す図である。
FIG. 7 is a view showing a pipe with a capillary which is bent and formed into a predetermined shape in a refrigeration apparatus which is a modification of the first embodiment of the present invention.

【図8】本発明の第1の実施例の別の変形例である冷凍
装置の、所定の形状に折り曲げ成形された毛細管付パイ
プを示す図である。
FIG. 8 is a diagram showing a capillary-equipped pipe bent and formed into a predetermined shape in a refrigeration apparatus which is another modification of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1‥圧縮機 1a‥圧縮機接続パイプ 2‥凝縮器 3‥毛細管 3a‥毛細管外周面 33‥他方の毛細管 4‥蒸発器 4a‥蒸発器接続パイプ 5‥吸込パイプ 5a‥太径パイプ 6‥溝 6a‥溝内周面 66‥他方の溝 66a‥他方の溝内周面 7‥溝の開口部 8a(8b)‥小径(細径)パイプ部 9‥テ−パ−部 29‥内箱 30‥外箱 31‥断熱材(ウレタン発泡材) 1 1 compressor 1a compressor connection pipe 2 condenser 3 capillary 3a capillary outer peripheral surface 33 other capillary 4 evaporator 4a evaporator connection pipe 5 suction pipe 5a large diameter pipe 6 groove 6a ‥ Groove inner peripheral surface 66 ‥ The other groove 66a ‥ The other groove inner peripheral surface 7 ‥ Groove opening 8a (8b) ‥ Small diameter (small diameter) pipe portion 9 ‥ Taper portion 29 ‥ Inner box 30 ‥ Outside Box 31 Insulation (urethane foam)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 落合 英夫 栃木県下都賀郡大平町大字富田800番地 株式会社日立栃木テクノロジー内 (72)発明者 山崎 進 栃木県下都賀郡大平町大字富田800番地 株式会社日立栃木テクノロジー内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Ochiai 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Within Tochigi Technology Co., Ltd. Inside Tochigi Technology

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と凝縮機と毛細管と蒸発器とを備
え、これらの順に冷媒が供給されて循環する冷凍サイク
ルであって、 前記冷媒が前記蒸発器から前記圧縮機に向かい吸い込ま
れて流れる吸込管に設けられ管径が大きい太径部と、こ
の太径部の両端に接続された管径の小さい細径部と、こ
の太径部に前記吸込管の管軸方向に沿って設けられ前記
毛細管がその内側に収容された溝とを有し、前記溝の内
側の表面が前記毛細管の管周の1/2以上と接触する冷
凍装置。
1. A refrigeration cycle comprising a compressor, a condenser, a capillary tube, and an evaporator, in which a refrigerant is supplied and circulated in these order, wherein the refrigerant is sucked from the evaporator to the compressor. A large-diameter portion having a large pipe diameter provided in the flowing suction pipe, a small-diameter portion having a small pipe diameter connected to both ends of the large-diameter section, and provided in the large-diameter section along the pipe axis direction of the suction pipe. A refrigerating device, wherein the capillary has a groove accommodated therein, and the inner surface of the groove contacts one half or more of the circumference of the capillary.
【請求項2】前記細径部に設けられ前記冷媒が流れる冷
媒管に接続された接続部を備えた請求項1に記載の冷凍
装置。
2. The refrigeration apparatus according to claim 1, further comprising a connection portion provided in the small diameter portion and connected to a refrigerant pipe through which the refrigerant flows.
【請求項3】前記吸込管に設けられ前記太径部と前記細
径部との間に形成されたテーバー形状部と、このテーパ
ー形状部に設けられた前記溝の端部とを有し、この溝の
端部から前記毛細管が延在する請求項1または2に記載
の冷凍装置。
3. A taper-shaped portion provided in the suction pipe and formed between the large-diameter portion and the small-diameter portion, and an end of the groove provided in the tapered portion. The refrigeration apparatus according to claim 1, wherein the capillary extends from an end of the groove.
【請求項4】圧縮機と凝縮機と毛細管と蒸発器とを備
え、これらの順に冷媒が供給されて循環する冷凍サイク
ルであって、 前記冷媒が前記蒸発器から前記圧縮機に向かい吸い込ま
れて流れる吸込管にこの吸込管の管軸方向に沿って設け
られ前記毛細管がその管径の1/2以上の深さまで嵌め
合わされた溝とを有し、この溝の前記毛細管の管軸方向
の溝の幅が前記毛細管の管径よりも小さい冷凍装置。
4. A refrigeration cycle comprising a compressor, a condenser, a capillary tube, and an evaporator, in which a refrigerant is supplied and circulated in these order, wherein the refrigerant is sucked from the evaporator toward the compressor. A groove provided in the flowing suction pipe along the pipe axis direction of the suction pipe, wherein the capillary is fitted to a depth of at least half the diameter of the pipe, and a groove in the pipe axis direction of the capillary of the groove. A refrigerating device having a width smaller than the diameter of the capillary.
【請求項5】前記溝は、前記吸込管の管軸からその外周
方向に向かうにつれて前記溝の幅が小さくなる形状を備
えた請求項1乃至4のいずれかに記載の冷凍装置。
5. The refrigerating apparatus according to claim 1, wherein the groove has a shape such that a width of the groove decreases from a pipe axis of the suction pipe toward an outer peripheral direction thereof.
【請求項6】前記毛細管が前記溝に嵌め合わされた部分
の端部から前記吸込管から離れる方向に延在して取り付
けられた請求項1乃至5のいずれかに記載の冷凍装置。
6. The refrigerating apparatus according to claim 1, wherein said capillary is attached so as to extend in a direction away from said suction tube from an end of a portion fitted into said groove.
JP2001180993A 2001-06-15 2001-06-15 Refrigerating device Pending JP2002372316A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001180993A JP2002372316A (en) 2001-06-15 2001-06-15 Refrigerating device
CNB021047618A CN1215301C (en) 2001-06-15 2002-02-10 Freezer
KR1020020008277A KR20020096849A (en) 2001-06-15 2002-02-16 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001180993A JP2002372316A (en) 2001-06-15 2001-06-15 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2002372316A true JP2002372316A (en) 2002-12-26

Family

ID=19021326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180993A Pending JP2002372316A (en) 2001-06-15 2001-06-15 Refrigerating device

Country Status (3)

Country Link
JP (1) JP2002372316A (en)
KR (1) KR20020096849A (en)
CN (1) CN1215301C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267770A (en) * 2007-04-20 2008-11-06 Kanou Reiki:Kk Capillary tube embracing heat exchanger
WO2012043804A1 (en) * 2010-10-01 2012-04-05 シャープ株式会社 Heat exchange device, evaporator, and refrigeration storage unit
JP2012078022A (en) * 2010-10-01 2012-04-19 Sharp Corp Heat exchange device, and refrigeration storage unit with the same
KR101153142B1 (en) * 2011-09-06 2012-06-04 태성전기(주) The cooling-pipe on refrigerative for cooling system
CN104567116A (en) * 2014-12-22 2015-04-29 合肥美的电冰箱有限公司 Evaporator assembly and refrigerator with evaporator assembly
US20150198381A1 (en) * 2014-01-16 2015-07-16 Whirlpool Corporation Method of forming a refrigeration heat exchanger
JP2020186887A (en) * 2019-05-17 2020-11-19 アクア株式会社 refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673422A (en) * 2013-12-14 2014-03-26 广东奥马电器股份有限公司 Energy-saving air return pipe assembly, machining method and mold
DE102018213671A1 (en) * 2018-08-14 2020-02-20 BSH Hausgeräte GmbH Household refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267770A (en) * 2007-04-20 2008-11-06 Kanou Reiki:Kk Capillary tube embracing heat exchanger
WO2012043804A1 (en) * 2010-10-01 2012-04-05 シャープ株式会社 Heat exchange device, evaporator, and refrigeration storage unit
JP2012078022A (en) * 2010-10-01 2012-04-19 Sharp Corp Heat exchange device, and refrigeration storage unit with the same
KR101153142B1 (en) * 2011-09-06 2012-06-04 태성전기(주) The cooling-pipe on refrigerative for cooling system
US20150198381A1 (en) * 2014-01-16 2015-07-16 Whirlpool Corporation Method of forming a refrigeration heat exchanger
US9821420B2 (en) * 2014-01-16 2017-11-21 Whirlpool Corporation Method of forming a refrigeration heat exchanger
CN104567116A (en) * 2014-12-22 2015-04-29 合肥美的电冰箱有限公司 Evaporator assembly and refrigerator with evaporator assembly
JP2020186887A (en) * 2019-05-17 2020-11-19 アクア株式会社 refrigerator
EP3971495A4 (en) * 2019-05-17 2022-07-06 Haier Smart Home Co., Ltd. Refrigerator

Also Published As

Publication number Publication date
CN1392382A (en) 2003-01-22
CN1215301C (en) 2005-08-17
KR20020096849A (en) 2002-12-31

Similar Documents

Publication Publication Date Title
US6257846B1 (en) Sealed compressor having pipe connectors and method of joining pipe connectors to sealed casing
JP2002372316A (en) Refrigerating device
KR20080063150A (en) Heat exchanger
US10982796B2 (en) Dual pipe
WO2017109933A1 (en) Heat exchanger, air conditioner equipped with same, and manufacturing method for flattened u-bend pipes
JP2000337261A (en) Compressor
JP2003050065A (en) Method of manufacturing pipe for freezing cycle
JP2013066911A (en) Connection body of copper tube and stainless steel pipe and manufacturing method thereof
JPH1113671A (en) Closed compressor
CN110325737A (en) Compressor
JP2004150788A (en) Pipe joint structure and connecting method for pipe joint
US7086668B2 (en) Coupling assembly
JP2001038436A (en) Manufacture of hollow element
JPH07125529A (en) Manufacture of pipe joint
JPH11183075A (en) Heat exchanger
KR101951327B1 (en) Refrigerator
JP2000283664A (en) Heat exchanging pipe of refrigeration cycle and method of manufacture of heat exchange pipe
KR100503486B1 (en) Refrigerant pipe connecting structure of a refrigerator and connecting method thereof
JP4486370B2 (en) Vibration absorption tube
JPS59131781A (en) Enclosed type motor-compressor
KR20130114522A (en) Suction pipe assembly having spirally wound capillary tube and method for manufacturing suction pipe assembly
JPH1122681A (en) Hermetic coolant compressor and connection pipe assembling method
US6991264B2 (en) Compressor and method of connecting pipe to the same
KR20090092918A (en) Method of making muffler
KR20090077285A (en) Hermetic type compressor