JP2002365105A - Method for measuring two-phase fluid and device for measuring it - Google Patents

Method for measuring two-phase fluid and device for measuring it

Info

Publication number
JP2002365105A
JP2002365105A JP2001175398A JP2001175398A JP2002365105A JP 2002365105 A JP2002365105 A JP 2002365105A JP 2001175398 A JP2001175398 A JP 2001175398A JP 2001175398 A JP2001175398 A JP 2001175398A JP 2002365105 A JP2002365105 A JP 2002365105A
Authority
JP
Japan
Prior art keywords
phase fluid
fluid
solid particles
differential pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001175398A
Other languages
Japanese (ja)
Other versions
JP3887184B2 (en
Inventor
Tatsuya Ichihara
達也 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamatake Industrial Systems Co Ltd
Original Assignee
Yamatake Industrial Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Industrial Systems Co Ltd filed Critical Yamatake Industrial Systems Co Ltd
Priority to JP2001175398A priority Critical patent/JP3887184B2/en
Publication of JP2002365105A publication Critical patent/JP2002365105A/en
Application granted granted Critical
Publication of JP3887184B2 publication Critical patent/JP3887184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measuring accuracy and measure density or volumetric flow of two-phase fluid and a volumetric content of solid particles even if the volumetric flow of the solid particles are unknown. SOLUTION: In a part 11 for measuring, the density γA+ S, the volumetric flow QA+ S of the two-phase fluid A+S, and the volumetric content ϕs of the solid particles S are obtained from differential pressure ΔPA measure by an orifice flowmeter 3 and the differential pressure ΔPA+ S measured by a flowmeter 7 for the two-phase flow by repeating approximate calculation. In this case, since measuring values of the volumetric flow Qs of the solid particles S, measured by a load cell 4, are not used, the measuring accuracy is improved and it is possible to measure even if the volumetric flow Qs of the solid particles S are unknown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、静電粉体塗装や
微粉炭燃料などに用いて好適な2相流体測定方法および
測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-phase fluid measuring method and a measuring apparatus suitable for use in electrostatic powder coating and pulverized coal fuel.

【0002】[0002]

【従来の技術】図6に従来の2相流体測定装置を使用し
た2相流体コントロールシステムの一例を示す。同図に
おいて、1は送風機、2は送風機1からの空気流量を調
整する調整弁、3はオリフィス流量計、4は固体粒子
(粉体)Sが蓄えられたロードセル、5はロードセル4
からの固体粒子Sの供給量を調整する調整弁、6はロー
ドセル4からの固体粒子Sの容積流量Qsを検出する流
量計、7はベンチュリータイプの2相流流量計、8は単
管密度計、9は第1のコントローラ、10Aは第2のコ
ントローラである。
2. Description of the Related Art FIG. 6 shows an example of a two-phase fluid control system using a conventional two-phase fluid measuring device. In the figure, 1 is a blower, 2 is an adjusting valve for adjusting the air flow rate from the blower 1, 3 is an orifice flow meter, 4 is a load cell in which solid particles (powder) S are stored, 5 is a load cell 4
A regulating valve for regulating the supply amount of solid particles S from the load cell, 6 a flow meter for detecting the volume flow rate Qs of the solid particles S from the load cell 4, 7 a venturi type two-phase flow meter, 8 a single tube density meter , 9 is a first controller and 10A is a second controller.

【0003】送風機1からの空気Aはロードセル4から
の固体粒子Sと混合され2相流体A+Sとされる。オリ
フィス流量計3は固体粒子Sと混合される前の空気Aの
流量に応じた差圧ΔPA を出力する。2相流流量計7は
そこを流れる2相流体A+Sの流量に応じた差圧ΔP
A+S を出力する。
The air A from the blower 1 is mixed with the solid particles S from the load cell 4 to form a two-phase fluid A + S. The orifice flow meter 3 outputs a differential pressure ΔP A corresponding to the flow rate of the air A before being mixed with the solid particles S. The two-phase flow meter 7 has a differential pressure ΔP corresponding to the flow rate of the two-phase fluid A + S flowing therethrough.
Outputs A + S.

【0004】2相流流量計7については、例えば特開平
5−133786号公報(特許第2733717号)な
どに示されているのでここでの詳しい説明は省略する
が、絞り機構で生じる差圧をリモートシール形差圧発信
器を使用して検出する。受圧部が広いので2相流体の流
量に応じた差圧を支障なく検出することができる。単管
密度計8は、2相流体A+Sの流出路部分の配管を立ち
上げてその途中に設けられており、そこを流れる2相流
体A+Sの上下h間(h≒1.5m)の差圧ΔPhを出
力する。
The two-phase flow meter 7 is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-133786 (Japanese Patent No. 2733717), and thus detailed description thereof will be omitted. Detect using a remote seal type differential pressure transmitter. Since the pressure receiving portion is wide, a differential pressure corresponding to the flow rate of the two-phase fluid can be detected without any trouble. The single-tube density meter 8 is provided in the middle of the pipe at the outlet of the two-phase fluid A + S, and is provided in the middle of the pipe. The differential pressure between the upper and lower h of the two-phase fluid A + S (h ≒ 1.5 m) is flowing through the pipe. ΔPh is output.

【0005】このシステムにおいて、コントローラ9
は、オリフィス流量計3からの差圧ΔPA を入力とし、
この差圧ΔPA から固体粒子Sとの混合部への空気Aの
容量流量QA をQA =K1 ・(ΔPA /γA 1/2 とし
て求め(K1 はオリフィス流量計3の係数、γA は既知
のパラメータとして設定されている空気の密度)、混合
部への空気Aの容積流量QA が所定値となるように調整
弁2の開度を制御する。
In this system, the controller 9
Receives the differential pressure ΔP A from the orifice flow meter 3 as an input,
From this differential pressure ΔP A, the volumetric flow rate Q A of air A to the mixing section with the solid particles S is determined as Q A = K 1 · (ΔP A / γ A ) 1/2 (K 1 is the orifice flow meter 3 The coefficient, γ A, is the density of air set as a known parameter), and controls the opening of the regulating valve 2 so that the volume flow rate Q A of air A to the mixing section becomes a predetermined value.

【0006】コントローラ10Aは、単管密度計8から
の差圧ΔPhを入力とし、ΔPh=γA+S ・hなる式か
ら、γA+S =ΔPh/hとして2相流体A+Sの密度
(流体Aと固体粒子Sとの混合密度)γA+S を求める。
また、この求めた2相流体A+Sの密度γA+S と2相流
流量計7からの差圧ΔPA+S とから2相流体A+Sの容
積流量QA+S をQA+S =K2 ・(ΔPA+S /γA+S
1/2 として求める(K2 は2相流流量計7の係数)。そ
して、この求めた密度γA+S や容積流量QA+S が2相流
体A+Sの用途に応じた所定の範囲となるように、流量
計6からの固体粒子Sの容積流量Qsを見ながら、調整
弁5の開度を制御する。
The controller 10A receives the differential pressure ΔPh from the single tube density meter 8 as an input, and obtains the density of the two-phase fluid A + S by setting γ A + S = ΔPh / h from the equation ΔPh = γ A + S · h. (Mixing density of A and solid particles S) γ A + S is determined.
Further, based on the obtained density γ A + S of the two-phase fluid A + S and the differential pressure ΔP A + S from the two-phase flow meter 7, the volume flow Q A + S of the two-phase fluid A + S is calculated as Q A + S = K 2・ (ΔP A + S / γ A + S )
Obtaining 1/2 (coefficient K 2 is two-phase flow flowmeter 7). Then, while observing the volume flow rate Qs of the solid particles S from the flow meter 6, the determined density γ A + S and the volume flow rate Q A + S fall within predetermined ranges according to the use of the two-phase fluid A + S. , The opening of the regulating valve 5 is controlled.

【0007】なお、サイコロ状の固体粒子では2相流体
A+Sの容積流量QA+S に占める質量流量WA+S の割合
が30%程度、球状の固体粒子では50%程度になる
と、抵抗の増大により管路が詰まる虞れが大となる。ラ
フな制御として、管路が詰まらないように、2相流体A
+Sの密度γA+S ,質量流量WA+S ,容積流量QA+S
基づいて固体粒子Sの供給量を制御することもある。な
お、質量流量WA+S は、容積流量QA+S と同様にして、
2相流体A+Sの密度γA+S と2相流流量計7からの差
圧ΔPA+S とから求めることが可能である。
When the mass flow rate W A + S occupies about 30% of the volume flow rate Q A + S of the two-phase fluid A + S in the dice-shaped solid particles and about 50% in the case of the spherical solid particles, the resistance decreases. Due to the increase, there is a high possibility that the pipeline is clogged. As a rough control, two-phase fluid A
The supply amount of the solid particles S may be controlled based on the density γ A + S of + S , the mass flow rate W A + S , and the volume flow rate Q A + S. The mass flow rate W A + S is the same as the volume flow rate Q A + S ,
Can be determined from the differential pressure [Delta] P A + S from two-phase fluid A + S density gamma A + S and two-phase flow flowmeter 7.

【0008】しかしながら、このシステムでは、コント
ローラ10Aにおいて2相流体A+Sの密度γA+S や容
積流量QA+S を求めるために、2相流流量計7に加えて
単管密度計8を使用しており、単管密度計8を使用する
分、コストが高くなる。また、単管密度計8を設けるた
めに2相流体A+Sの流出路部分に5m前後の配管の立
ち上げLを必要とし、これもコストアップの要因とな
る。さらに、2相流流量計7による計測差圧ΔPA+S
誤差分に単管密度計8による計測差圧ΔPhの誤差分が
プラスされるため、測定精度があまりよくない。特に、
単管密度計8による計測差圧ΔPhの誤差分が大きく、
測定精度を悪化させている。
However, in this system, a single tube density meter 8 is used in addition to the two-phase flow meter 7 in order to obtain the density γ A + S and the volume flow rate Q A + S of the two-phase fluid A + S in the controller 10A. The cost is increased by using the single tube density meter 8. Further, in order to provide the single-tube density meter 8, it is necessary to set up a pipe L of about 5 m at the outlet of the two-phase fluid A + S, which also causes a cost increase. Further, the error of the differential pressure ΔP A + S measured by the two-phase flow meter 7 is added to the error of the differential pressure ΔPh measured by the single tube density meter 8, so that the measurement accuracy is not very good. In particular,
The error of the differential pressure ΔPh measured by the single tube density meter 8 is large,
The measurement accuracy has deteriorated.

【0009】〔従来例2(先願)〕そこで、本出願人
は、先に特願2000−45920として、単管密度計
を使用せずに、簡単かつシンプルなシステム構成で、2
相流体の密度や容積流量を精度よく測定することの可能
な2相流体測定方法および測定装置を提案した。
[Conventional example 2 (prior application)] The applicant of the present invention has previously disclosed, as Japanese Patent Application No. 2000-45920, a simple and simple system configuration without using a single tube density meter.
A two-phase fluid measurement method and a measurement device capable of accurately measuring the density and volume flow rate of a phase fluid have been proposed.

【0010】図7はこの特願2000−45920(先
願)に示された2相流体測定装置を使用した2相流体コ
ントロールシステムのシステム構成図である。同図にお
いて、図6と同一符号は同一或いは同等構成要素を示
し、その説明は省略する。このシステムでは、従来例1
(図6)で必要とされていた単管密度計8を省略した構
成とされており、2相流体A+Sの流出路部分の配管の
立ち上げLをなくし、簡単かつシンプルなシステム構成
とされている。
FIG. 7 is a system configuration diagram of a two-phase fluid control system using the two-phase fluid measurement device disclosed in Japanese Patent Application No. 2000-45920 (prior application). 6, the same reference numerals as those in FIG. 6 denote the same or equivalent components, and a description thereof will be omitted. In this system, conventional example 1
The single pipe density meter 8 required in (FIG. 6) is omitted, and the start-up L of the pipe at the outlet of the two-phase fluid A + S is eliminated, so that a simple and simple system configuration is provided. I have.

【0011】このシステムの概略を説明すると、コント
ローラ10Bにおいて、2相流流量計7からの計測差圧
ΔPA+S と流量計6からの固体粒子Sの容積流量Qsと
から2相流体A+Sの密度γA+S や容積流量QA+S ,固
体粒子Sの容積含有率φsなどを近似計算の繰り返しに
より求め、密度γA+S や容積流量QA+S が2相流体A+
Sの用途に応じた所定の範囲となるように、調整弁5の
開度を制御する。
To explain the outline of this system, the controller 10B determines the two-phase fluid A + S from the measured differential pressure ΔP A + S from the two-phase flow meter 7 and the volumetric flow rate Qs of the solid particles S from the flow meter 6. density gamma a + S and volumetric flow rate Q a + S, determined by the repetition of such an approximate calculation volume content φs of the solid particles S, density gamma a + S and volumetric flow rate Q a + S is two-phase fluid a +
The opening of the regulating valve 5 is controlled so as to be in a predetermined range according to the use of S.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、この先
願のシステムでは、従来例1のシステムに対して上述し
たような利点を有しているが、流量計6が検出するロー
ドセル4からの固体粒子Sの容積流量Qsを使用して2
相流体A+Sの密度γA+S や容積流量QA+S ,固体粒子
Sの容積含有率φsを測定するようにしているため、測
定精度の大きな向上が望めなかった。
However, the system of the prior application has the above-mentioned advantages over the system of the prior art 1, but the solid particles S from the load cell 4 detected by the flow meter 6 are detected. Using the volumetric flow rate Qs of 2
Phase Fluid A + density of S gamma A + S and volumetric flow rate Q A + S, because you have to measure the volume content φs of the solid particles S, was expected significant improvement in measurement accuracy.

【0013】すなわち、ロードセル4は固体粒子Sをフ
ィードすることを目的としており、混合部への固体粒子
Sのフィード量を精度よく測定することの可能な構造と
はなっていない。このため、流量計6からコントローラ
10Bへの固体粒子Sの容積流量Qsに無視することの
できない誤差が生じ、測定精度を悪化させる。また、測
定原理として、混合部への固体粒子Sの容積流量Qsが
既知であることが必要とされ、固体粒子Sの容積流量Q
sが未知の状態での2相流体A+Sの密度γA+ S や容積
流量QA+S ,固体粒子Sの容積含有率φsの測定は不可
能であった。
That is, the load cell 4 is intended to feed the solid particles S, and does not have a structure capable of accurately measuring the amount of the solid particles S fed to the mixing section. Therefore, a non-negligible error occurs in the volume flow rate Qs of the solid particles S from the flow meter 6 to the controller 10B, and the measurement accuracy is deteriorated. Further, as a measurement principle, it is necessary that the volume flow rate Qs of the solid particles S to the mixing section is known, and the volume flow rate Qs
It was impossible to measure the density γ A + S of the two-phase fluid A + S, the volume flow rate Q A + S , and the volume content φs of the solid particles S in a state where s is unknown.

【0014】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、測定精度の
向上を図ることの可能な、また固体粒子の容積流量が未
知であっても2相流体の密度や容積流量,固体粒子の容
積含有率などを測定することの可能な、2相流体測定方
法および測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to improve the measurement accuracy and to improve the accuracy even when the volume flow rate of solid particles is unknown. It is an object of the present invention to provide a two-phase fluid measuring method and a measuring device capable of measuring the density and volume flow rate of a two-phase fluid, the volume content of solid particles, and the like.

【0015】[0015]

【課題を解決するための手段】このような目的を達成す
るために本発明は、流体に固体粒子を混合して2相流体
とし、固体粒子と混合される前の流体の流路にその流体
の流量を差圧として検出する第1の流量計を設け、2相
流体の流路にその2相流体の流量を差圧として検出する
第2の流量計を設け、第1の流量計からの計測差圧と第
2の流量計からの計測差圧とから2相流体の密度,容積
流量および固体粒子の容積含有率の少なくとも1つを近
似計算の繰り返しにより求めるようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a two-phase fluid in which solid particles are mixed with a fluid, and the two-phase fluid is mixed in a fluid passage before being mixed with the solid particles. A first flow meter for detecting the flow rate of the two-phase fluid as a differential pressure, and a second flow meter for detecting the flow rate of the two-phase fluid as a differential pressure. At least one of the density, the volume flow rate, and the volume content of the solid particles of the two-phase fluid is obtained by repeating the approximate calculation from the measured differential pressure and the differential pressure measured from the second flow meter.

【0016】この発明によれば、第1の流量計(例え
ば、オリフィス流量計)からの計測差圧(ΔPA )と第
2の流量計(例えば、ベンチュリータイプの2相流流量
計)からの計測差圧(ΔPA+S )とから、2相流体の密
度(γA+S ),容積流量(QA+ S )および固体粒子の容
積含有率(φs)の少なくとも1つが近似計算の繰り返
しにより求められる。
According to the present invention, the measured differential pressure (ΔP A ) from the first flow meter (for example, the orifice flow meter) and the measured differential pressure (ΔP A ) from the second flow meter (for example, a venturi type two-phase flow meter) are used. From the measured differential pressure (ΔP A + S ), at least one of the density of the two-phase fluid (γ A + S ), the volumetric flow rate (Q A + S ), and the volume content of solid particles (φs) is obtained by repeating the approximate calculation. Desired.

【0017】また、本発明は、流体に固体粒子を混合し
て2相流体とし、固体粒子と混合される前の流体の流路
にその流体の流量を差圧として検出する第1の流量計を
設け、2相流体の流路にその2相流体の流量を差圧とし
て検出する第2の流量計を設け、第1の流量計からの計
測差圧より求められる流体の容積流量を2相流体の容積
流量の第1近似値とし、第1の流量計からの計測差圧と
第2の流量計からの計測差圧とから2相流体における固
体粒子の容積含有率の第1近似値を求め、この固体粒子
の容積含有率の第1近似値と2相流体の容積流量の第1
近似値とから2相流体の容積流量の第2近似値を求め、
この2相流体の容積流量の第2近似値と第2の流量計か
らの計測差圧とから2相流体の密度の第2近似値を求
め、この2相流体の密度の第2近似値から2相流体にお
ける固体粒子の容積含有率の第2近似値を求め、この2
相流体における固体粒子の容積含有率の第2近似値を第
1近似値に置き換えて、所定の条件が成立するまで上記
の近似計算を繰り返すようにしたものである。
The present invention also provides a first flow meter for mixing a solid particle with a fluid to form a two-phase fluid, and detecting a flow rate of the fluid as a differential pressure in a flow path of the fluid before being mixed with the solid particle. And a second flow meter for detecting the flow rate of the two-phase fluid as a differential pressure is provided in the flow path of the two-phase fluid, and the volume flow rate of the fluid determined from the differential pressure measured from the first flow meter is determined by the two-phase flow rate. The first approximate value of the volume content of solid particles in the two-phase fluid is determined from the measured differential pressure from the first flow meter and the differential pressure measured from the second flow meter as the first approximate value of the volume flow rate of the fluid. A first approximation of the volume content of the solid particles and a first approximation of the volume flow rate of the two-phase fluid
Calculating a second approximate value of the volume flow rate of the two-phase fluid from the approximate value;
A second approximate value of the density of the two-phase fluid is determined from the second approximate value of the volume flow rate of the two-phase fluid and the measured differential pressure from the second flow meter, and the second approximate value of the density of the two-phase fluid is determined. A second approximation of the volume content of solid particles in the two-phase fluid was determined and this 2
The second approximation of the volume content of solid particles in the phase fluid is replaced with a first approximation, and the above approximation calculation is repeated until a predetermined condition is satisfied.

【0018】この発明によれば、第1の流量計(例え
ば、オリフィス流量計)からの計測差圧(ΔPA )より
求められる流体の容積流量(QA )が2相流体の容積流
量の第1近似値(Q)とされ、第1の流量計からの計測
差圧(ΔPA )と第2の流量計からの計測差圧(ΔP
A+S )とから2相流体における固体粒子の容積含有率の
第1近似値(φ)が求められ、この固体粒子の容積含有
率の第1近似値(φ)と2相流体の容積流量の第1近似
値(Q=QA )とから2相流体の容積流量の第2近似値
(Q’)が求められ、この2相流体の容積流量の第2近
似値(Q’)と第2の流量計からの計測差圧(Δ
A+S )とから2相流体の密度の第2近似値(γ’)が
求められ、この2相流体の密度の第2近似値(γ’)か
ら2相流体における固体粒子の容積含有率の第2近似値
(φ’)が求められ、この2相流体における固体粒子の
容積含有率の第2近似値(φ’)が第1近似値(φ)に
置き換えられ(φ←φ’)、所定の条件が成立するまで
上記の近似計算が繰り返される。所定の条件が成立すれ
ば、この近似計算はストップされる。
According to the present invention, the volumetric flow rate (Q A ) of the fluid obtained from the measured differential pressure (ΔP A ) from the first flow meter (for example, the orifice flow meter) is the second volume flow rate of the two-phase fluid. 1 (Q), and the measured differential pressure (ΔP A ) from the first flow meter and the measured differential pressure (ΔP A ) from the second flow meter
A + S ) to obtain a first approximate value (φ) of the volume content of solid particles in the two-phase fluid, and a first approximate value (φ) of the volume content of the solid particles and the volume flow rate of the two-phase fluid From the first approximate value (Q = Q A ) of the two-phase fluid, a second approximate value (Q ′) of the two-phase fluid volume flow rate is obtained. 2 from the flowmeter (Δ
P A + S ) to obtain a second approximate value (γ ′) of the density of the two-phase fluid, and from the second approximate value (γ ′) of the density of the two-phase fluid, the volume content of solid particles in the two-phase fluid A second approximate value (φ ′) of the volume fraction of the solid particles in the two-phase fluid is replaced with a first approximate value (φ) (φ ← φ ′). ), The above approximate calculation is repeated until a predetermined condition is satisfied. If the predetermined condition is satisfied, this approximation calculation is stopped.

【0019】所定の条件としては、例えば、2相流体に
おける固体粒子の容積含有率の第2近似値(φ’)と第
1近似値(φ)との差がほゞ等しくなったとき、近似計
算の繰り返し回数が所定値に達したときなどとする。
As the predetermined condition, for example, when the difference between the second approximate value (φ ′) and the first approximate value (φ) of the volume content of solid particles in the two-phase fluid becomes almost equal, It is assumed that the number of repetitions of the calculation reaches a predetermined value.

【0020】[0020]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。図1はこの発明の一実施の形態を示す2
相流体測定装置の要部を示す図である。同図において、
3はオリフィス流量計、4は固体粒子(粉体)Sが蓄え
られたロードセル、7はベンチュリータイプの2相流流
量計であり、これらについては図6や図7に示したシス
テム構成に用いられているものと同じであるのでその説
明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention.
It is a figure showing an important section of a phase fluid measuring device. In the figure,
Reference numeral 3 denotes an orifice flow meter, 4 denotes a load cell in which solid particles (powder) S are stored, 7 denotes a venturi type two-phase flow meter, which is used in the system configuration shown in FIGS. Therefore, the description is omitted.

【0021】この実施の形態では、オリフィス流量計3
が検出する空気Aの流量に応じた差圧ΔPA と2相流流
量計7が検出する2相流体A+Sの流量に応じた差圧Δ
A+ S を測定部11へ与え、測定部11において、この
計測差圧ΔPA とΔPA+S とから2相流体A+Sの密度
γA+S ,容積流量QA+S および固体粒子Sの含有率φs
を以下に説明する近似計算の繰り返しによって求める。
なお、測定部11は、中央演算装置(CPU)および記
憶装置を含む演算装置(例えばコンピュータ)であっ
て、プログラムと協働することにより、後述する演算処
理フローに従って演算処理を実行する。
In this embodiment, the orifice flow meter 3
Differential pressure Δ but in accordance with the flow rate of the two-phase fluid A + S in which the differential pressure [Delta] P A and two-phase flow flowmeter 7 corresponding to the flow rate of the air A to be detected is detected
Gives P A + S to the measuring part 11, the measuring unit 11, from this measurement differential pressure [Delta] P A and [Delta] P A + S of a two-phase fluid A + S density gamma A + S, the volumetric flow rate Q A + S and solid particles S Content rate φs
Is obtained by repeating the approximate calculation described below.
The measuring unit 11 is an arithmetic device (for example, a computer) including a central processing unit (CPU) and a storage device, and executes an arithmetic process according to an arithmetic processing flow described later by cooperating with a program.

【0022】〔第1近似計算〕空気Aの容積流量QA
2相流体A+Sの容積流量QA+S の第1近似値
(QA+ S 1 とする。 QA =(QA+S 1 ・・・・(1) この(1)式と差圧流量計の基礎式である下記(2),
(3)式により、QA+ S =(QA+S 1 とした場合、下
記の(4)式ができる。
[0022] and [first approximation] first approximation of the volumetric flow Q A + S volumetric flow rate Q A two-phase fluid A + S of the air A (Q A + S) 1 . Q A = (Q A + S ) 1 (1) This formula (1) and the following formula (2), which is the basic formula of the differential pressure flow meter,
If Q A + S = (Q A + S ) 1 according to the equation (3), the following equation (4) is obtained.

【0023】 QA =K1 ・(ΔPA /γA 1/2 ・・・・(2) QA+S =K2 ・(ΔPA+S /γA+S1/2 ・・・・(3) γA+S =γA ・(ΔPA+S /ΔPA )(K2 /K1 2 ・・・・(4)Q A = K 1 · (ΔP A / γ A ) 1/2 ··· (2) Q A + S = K 2 · (ΔP A + S / γ A + S ) 1/2 ··· ·· (3) γ A + S = γ A · (ΔP A + S / ΔP A ) (K 2 / K 1 ) 2 ··· (4)

【0024】固体粒子の容積含有率φsから2相流体A
+Sの密度γA+S を計算する基礎式である下記(5)式
と上記(4)式とから(6)式ができる。 γA+S =γA ・(1−φs)+φs・γS ・・・・(5) φs=〔(ΔPA+S /ΔPA )・(K2 /K1 2 −1〕/〔(γS /γA ) −1〕 ・・・・(6) この(6)式より得られるφsを固体粒子Sの容積含有
率の第1近似値φ1 とする。
From the volume content of solid particles φs, the two-phase fluid A
Equation (6) is obtained from the following equation (5), which is a basic equation for calculating the density γ A + S of + S, and equation (4). γ A + S = γ A · (1−φs) + φs · γ S (5) φs = [(ΔP A + S / ΔP A ) · (K 2 / K 1 ) 2 −1] / [ (Γ S / γ A ) −1] (6) Let φs obtained from the equation (6) be the first approximate value φ 1 of the volume content of the solid particles S.

【0025】なお、(5)式は、図2を基に導かれる。
すなわち、2相流体A+Sの密度はγA+S であり、固体
粒子Sの密度はγsであり、空気Aの密度はγA であ
り、2相流体A+Sの容積流量はQA+S 、空気Aの容積
流量はQA 、固体流体Sの容積流量はQsであり、固体
粒子Sの容積含有率をφsとすれば、空気Aの容積含有
率は(1−φs)で表される。この場合、QA+S ・γ
A+S =QA ・γA ・(1−φs)+Qs・φs・γsと
なり、QA+S を1とすれば、上記(5)式が導かれる。
The expression (5) is derived based on FIG.
That is, the density of the two-phase fluid A + S is γ A + S , the density of the solid particles S is γs, the density of the air A is γ A , the volume flow rate of the two-phase fluid A + S is Q A + S , The volume flow rate of A is Q A , the volume flow rate of the solid fluid S is Qs, and the volume content rate of the solid particles S is φs, and the volume content rate of the air A is expressed by (1−φs). In this case, Q A + S · γ
If A + S = Q A · γ A · (1-φs) + Qs · φs · γs next, the Q A + S 1 and the above equation (5) is derived.

【0026】〔第2近似計算〕(6)式で計算したφ1
で(1)式の第1近似値(QA+S 1 を補正し、下記
(7)式を作る。 QA =(QA+S 1 ’・(1−φ1 ) ・・・・(7) この(7)式より、 (QA+S 1 ’=QA /(1−φ1 ) ・・・・(8) として、(QA+S 1 ’を求め、この(QA+S 1 ’を
容積流量QA+S の第2近似値(QA+S 2 とする。
[Second approximation calculation] φ 1 calculated by equation (6)
Then, the first approximation value (Q A + S ) 1 of the equation (1) is corrected to create the following equation (7). Q A = (Q A + S ) 1 ′ · (1−φ 1 ) (7) From the equation (7), (Q A + S ) 1 ′ = Q A / (1−φ 1 ) (8), (Q A + S ) 1 ′ is obtained, and this (Q A + S ) 1 ′ is used as the second approximate value (Q A + S ) 2 of the volume flow rate Q A + S. .

【0027】この第2近似値(QA+S 2 を(3)式に
代入し、下記(9)式を作る。 (QA+S 2 =K2 ・(ΔPA+S /γA+S 1/2 ・・・・(9) この(9)式より、 γA+S =〔K2 /(QA+S 22 ・ΔPA+S ・・・・(10) として、γA+S を求め、このγA+S を2相流体の密度の
第2近似値(γA+S 2とする。
By substituting the second approximate value (Q A + S ) 2 into the equation (3), the following equation (9) is created. (Q A + S ) 2 = K 2 · (ΔP A + S / γ A + S ) 1/2 (9) From the equation (9), γ A + S = [K 2 / (Q A + S ) 2 ] 2 · ΔP A + S ... (10), γ A + S is obtained, and this γ A + S is a second approximate value of the density of the two-phase fluid (γ A + S ). Assume 2 .

【0028】次に、この第2近似値(γA+S 2
(5)式に代入し、下記(11)式を作る。 (γA+S 2 =γA ・(1−φs)+φs・γS ・・・・(11) この(11)式より、下記(12)式を作り、 φs={〔(γA+S 2 /γA 〕−1}/{〔γS /γA 〕−1} ・・・・ (12) この(12)式より得られるφsを固体粒子Sの容積含
有率の第2近似値φ2とする。
Next, the second approximation value (γ A + S ) 2 is substituted into the equation (5) to produce the following equation (11). (Γ A + S ) 2 = γ A · (1−φs) + φs · γ S (11) From the equation (11), the following equation (12) is formed, and φs = {[(γ A + S ) 2 / γ A ] -1} / {[γ S / γ A ] -1} (12) φs obtained from the equation (12) is a second approximation of the volume content of the solid particles S. the value φ 2.

【0029】〔第3近似計算〕(12)式で計算したφ
2 で(1)式の第1近似値(QA+S 1 を補正し、下記
(13)式を作る。 QA =(QA+S 1 ’・(1−φ2 ) ・・・・(13) この(13)式より、 (QA+S 1 ’=QA /(1−φ2 ) ・・・・(14) として、(QA+S 1 ’を求め、この(QA+S 1 ’を
容積流量QA+S の第3近似値(QA+S 3 とする。
[Third approximation calculation] φ calculated by equation (12)
In step 2 , the first approximation value (Q A + S ) 1 in equation (1) is corrected to create equation (13) below. Q A = (Q A + S ) 1 ′ · (1−φ 2 ) (13) From the expression (13), (Q A + S ) 1 ′ = Q A / (1−φ 2 ) as ... (14), and (Q a + S) 'seek, the (Q a + S) 1' 1 the third approximation of the volumetric flow rate Q a + S (Q a + S) 3 .

【0030】この第3近似値(QA+S 3 を(3)式に
代入し、下記(15)式を作る。 (QA+S 3 =K2 ・(ΔPA+S /γA+S 1/2 ・・・・(15) この(15)式より、 γA+S =〔K2 /(QA+S 32 ・ΔPA+S ・・・・(16) として、γA+S を求め、このγA+S を2相流体の密度の
第3近似値(γA+S 3とする。
By substituting the third approximate value (Q A + S ) 3 into the equation (3), the following equation (15) is created. (Q A + S ) 3 = K 2 · (ΔP A + S / γ A + S ) 1/2 (15) From the equation (15), γ A + S = [K 2 / (Q A + S ) 3 ] 2 · ΔP A + S ... (16), γ A + S is obtained, and γ A + S is a third approximate value of the density of the two-phase fluid (γ A + S ). Assume 3 .

【0031】次に、この第3近似値(γA+S 3
(5)式に代入し、下記(17)式を作る。 (γA+S 3 =γA ・(1−φs)+φs・γS ・・・・(17) この(17)式より、下記(18)式を作り、 φs={〔(γA+S 3 /γA 〕−1}/{〔γS /γA 〕−1} ・・・・ (18) この(18)式より得られるφsを固体粒子Sの容積含
有率の第3近似値φ3とする。以下、同様の手順で計算
を繰り返し、第n近似まで進める。
Next, the third approximation value (γ A + S ) 3 is substituted into the equation (5) to produce the following equation (17). (Γ A + S ) 3 = γ A · (1−φs) + φs · γ S (17) From the expression (17), the following expression (18) is created, and φs = {[(γ A + S ) 3 / γ A ] -1} / {[γ S / γ A ] -1} (18) φs obtained from the equation (18) is the third approximation of the volume content of the solid particles S. the value φ 3. Hereinafter, the calculation is repeated in the same procedure, and the process proceeds to the n-th approximation.

【0032】〔第n近似計算〕n−1回の繰り返し計算
で求めたφn-1 で(1)式の第1近似値(QA+S 1
補正し、下記(19)式を作る。 QA =(QA+S 1 ’・(1−φn-1 ) ・・・・(19) この(19)式より、 (QA+S 1 ’=QA /(1−φn-1 ) ・・・・(20) として、(QA+S 1 ’を求め、この(QA+S 1 ’を
容積流量QA+S の第n近似値(QA+S n とする。
[N-th approximation calculation] The first approximation value (Q A + S ) 1 of the equation (1) is corrected by φ n-1 obtained by n-1 repetitive calculations, and the following equation (19) is obtained. create. Q A = (Q A + S ) 1 ′ · (1−φ n−1 ) (19) From this equation (19), (Q A + S ) 1 ′ = Q A / (1−φ as n-1) ···· (20) , (Q a + S) ' seek, the (Q a + S) 1' 1 the n-th approximation of the volumetric flow rate Q a + S (Q a + S ) N.

【0033】この第n近似値(QA+S n を(3)式に
代入し、下記(21)式を作る。 (QA+S n =K2 ・(ΔPA+S /γA+S 1/2 ・・・・(21) この(21)式より、 γA+S =〔K2 /(QA+S n 2 ・ΔPA+S ・・・・(22) として、γA+S を求め、このγA+S を2相流体の密度の
第n近似値(γA+S nとする。
By substituting the n-th approximate value (Q A + S ) n into the equation (3), the following equation (21) is created. (Q A + S ) n = K 2 · (ΔP A + S / γ A + S ) 1/2 (21) From the equation (21), γ A + S = [K 2 / (Q A + S ) n ] 2 · ΔP A + S (22), γ A + S is obtained, and this γ A + S is calculated as the n-th approximate value of the density of the two-phase fluid (γ A + S ). Let it be n .

【0034】次に、この第n近似値(γA+S n
(5)式に代入し、下記(23)式を作る。 (γA+S n =γA ・(1−φs)+φs・γS ・・・・(23) この(23)式より、下記(24)式を作り、 φs={〔(γA+S n /γA 〕−1}/{〔γS /γA 〕−1} ・・・ ・(24) この(24)式より得られるφsを固体粒子Sの容積含
有率の第n近似値φnとする。
Next, the n-th approximate value (γ A + S ) n is substituted into the equation (5) to produce the following equation (23). (Γ A + S ) n = γ A · (1−φs) + φs · γ S (23) From the expression (23), the following expression (24) is created, and φs = {[(γ A + S ) n / γ A ] -1} / {[γ S / γ A ] -1} (24) The φs obtained from the equation (24) is the n-th approximation of the volume content of the solid particles S. the value φ n.

【0035】〔近似計算の繰り返しの停止〕第n−1近
似計算で求めたφn-1 と第n近似計算で求めたφn との
差をφn で除してその百分率δを求め、すなわち100
・(φn-1 −φn )/φn を算出し、この算出した値δ
=100・(φn-1 −φn )/φn と所定値εとを比較
する。δ<εになった場合に、すなわち下記の(25)
式が成立した場合に、繰り返し計算を停止する。 100・(φn-1 −φn )/φn <ε ・・・・(25)
[Stop of repetition of approximation calculation] The difference between φ n-1 obtained in the ( n−1) th approximation calculation and φ n obtained in the nth approximation calculation is divided by φ n to obtain a percentage δ, That is, 100
・ Calculate (φ n-1 −φ n ) / φ n and calculate the calculated value δ
= 100 · (φ n-1 −φ n ) / φ n is compared with a predetermined value ε. When δ <ε, ie, the following (25)
When the formula holds, the calculation is repeatedly stopped. 100 · (φ n-1 −φ n ) / φ n <ε (25)

【0036】〔実証〕上述した繰り返し計算の手法で、
2相流体A+Sの密度γA+S や容積流量QA+ S ,固体粒
子Sの容積含有率φsを測定することができることを、
例題を基に実証する。この実証では、オリフィス流量計
3側、2相流流量計7側の流体仕様を次のとおりとす
る。
[Demonstration] In the above-described iterative calculation method,
The fact that the density γ A + S and the volume flow rate Q A + S of the two-phase fluid A + S and the volume content φs of the solid particles S can be measured are as follows.
Demonstrate based on an example. In this demonstration, the fluid specifications of the orifice flow meter 3 and the two-phase flow meter 7 are as follows.

【0037】〔オリフィス流量計3側:空気〕 空気の流量QA :1000〔m3 /h〕 空気の密度:γA :1.2929〔kg/m3 〕 圧力:p=0〔MPa.G〕 温度:t=0〔℃〕 配管内径:D=100〔mm〕 絞り直径比:β=0.60〔−−−〕 差圧:ΔPA =14.772〔KPa〕 流量計係数:K1 =1000/(14.772/1.2
929)1/2 =295.84 流出係数:c=0.6064
[Orifice flow meter 3 side: air] Air flow rate Q A : 1000 [m 3 / h] Air density: γ A : 1.2929 [kg / m 3 ] Pressure: p = 0 [MPa. G] Temperature: t = 0 [° C.] Piping inner diameter: D = 100 [mm] Restriction diameter ratio: β = 0.60 [−−−] Differential pressure: ΔP A = 14.772 [KPa] Flow meter coefficient: K 1 = 1000 / (14.772 / 1.2
929) 1/2 = 295.84 Discharge coefficient: c = 0.6064

【0038】〔2相流流量計7側:空気と微粉体との混
合2相流〕 2相流体の流量:QA+S =1010〔m3 /h〕 固体粒子の密度:γs=1000〔kg/m3 〕 固体粒子の容積含有率:φs=0.00990099
〔−−−〕 2相流体の密度:γA+S =1.2929×(1.0−
0.00990099)+1000×0.009900
99=11.1811〔kg/m3 〕 圧力:p=0〔MPa.G〕 温度:t=0〔℃〕 配管内径:D=100〔mm〕 絞り直径比:β=0.60〔−−−〕 差圧:ΔPA+S =53.515〔KPa〕 流量計係数:K2 =1010/(53.515/11.
1811)1/2 =461.66 流出係数 :c=0.95
[Two-phase flow meter 7 side: Mixed two-phase flow of air and fine powder] Flow rate of two-phase fluid: Q A + S = 1010 [m 3 / h] Density of solid particles: γs = 1000 [ kg / m 3 ] Volume content of solid particles: φs = 0.999999
[−−−] Density of two-phase fluid: γ A + S = 1.2929 × (1.0−
0.0099999) + 1000 × 0.009900
99 = 11.1811 [kg / m 3 ] Pressure: p = 0 [MPa. G] Temperature: t = 0 [° C.] Piping inner diameter: D = 100 [mm] Diameter ratio: β = 0.60 [−−−] Differential pressure: ΔP A + S = 53.515 [KPa] Flow meter coefficient : K 2 = 1010 / (53.515 / 11.
1811) 1/2 = 461.66 Outflow coefficient: c = 0.95

【0039】〔繰り返し計算〕繰り返し計算により2相
流体A+Sの密度γA+S ,容積流量QA+S および固体粒
子Sの含有率φsを求める。入手できるデータはオリフ
ィス流量計3からの計測差圧ΔPA と2相流流量計7か
らの計測差圧ΔPA+S のみである。これらの差圧を使
い、固体粒子Sの含有率φsが収束する迄、繰り返し計
算を行う。実際の測定では、収束の確認は(25)式で
行うが、今回は上述した流体仕様に示したとおり、固体
粒子の容積含有率φsがφs=0.00990099と
して予め判っているので、この容積含有率φs=0.0
0990099を理論含有率とし、この理論含有率φs
と比較した。
[Iterative calculation] The density γ A + S , the volume flow rate Q A + S of the two-phase fluid A + S, and the content φs of the solid particles S are obtained by iterative calculation. The available data are only the measured differential pressure ΔP A from the orifice flow meter 3 and the measured differential pressure ΔP A + S from the two-phase flow meter 7. Using these differential pressures, calculations are repeated until the content φs of the solid particles S converges. In the actual measurement, the convergence is confirmed by the equation (25). However, this time, as shown in the above-mentioned fluid specification, the volume fraction φs of the solid particles is known in advance as φs = 0.999999, so Content φs = 0.0
0990099 as the theoretical content, and the theoretical content φs
And compared.

【0040】〔第1近似計算〕(4)式により、 γA+S =γA ・(ΔPA+S /ΔPA )・(K2 /K1
2 =1.2929・(53.515/14.772)・
(461.66/295.84)2 =11.406〔k
g/m3 〕を得る。 (6)式により、 φ1 =〔(ΔPA+S /ΔPA )・(K2 /K1 2
1〕/〔(γS /γA )−1〕=〔(53.515/1
4.772 )(461.66/295.84) 2
1〕/〔(1000/1.2929)−1〕=0.01
0126を得る。
[First approximation calculation] By the equation (4), γA + S = ΓA・ (ΔPA + S/ ΔPA ) ・ (KTwo/ K1)
Two = 1.2929 · (53.515 / 14.772) ·
(461.66 / 295.84)Two = 11.406 [k
g / mThree] Is obtained. From equation (6), φ1= [(ΔPA + S/ ΔPA ) ・ (KTwo/ K1)Two −
1] / [(γS / ΓA) -1] = [(53.515 / 1
4.772) (461.66 / 295.84) Two −
1] / [(1000 / 1.2929) -1] = 0.01
0126 is obtained.

【0041】固体粒子Sの理論含有率φsがφs=0.
00990099であるので、このφs=0.0099
0099と計算により得られたφ1 =0.010126
とから、δ=100・(φ1 −φs)/φs=100・
(0.010126−0.00990099)/0.0
0990099を計算する。この場合、δ=2.27%
となる。
If the theoretical content φs of the solid particles S is φs = 0.
0999999, this φs = 0.999
0099 and φ 1 = 0.010126 obtained by calculation
From this, δ = 100 · (φ 1 −φs) / φs = 100 ·
(0.010126-0.0099099) /0.0
Calculate 099099. In this case, δ = 2.27%
Becomes

【0042】〔第2近似計算〕(7)式により、 QA =(QA+S 2 ・(1−φ1 ) (QA+S 2 =QA /(1−φ1 ) (QA+S 2 =1000/(1−0.010126)=
1010.2〔m3 /h〕を得る。 この(QA+S 2 =1010.2を(10)式に代入す
ると、 (γA+S 2 =〔K2 /(QA+S 22 ・ΔPA+S
〔461.66/1010.2〕2 ×53.515=1
1.1765〔kg/m3 〕が得られる。
[Second approximation calculation] From the equation (7), Q A = (Q A + S ) 2 · (1-φ 1 ) (Q A + S ) 2 = Q A / (1-φ 1 ) ( Q A + S ) 2 = 1000 / (1-0.010126) =
1010.2 [m 3 / h] are obtained. By substituting (Q A + S ) 2 = 1010.2 into equation (10), (γ A + S ) 2 = [K 2 / (Q A + S ) 2 ] 2 · ΔP A + S =
[461.66 / 1010.2] 2 × 53.515 = 1
1.1765 [kg / m 3 ] are obtained.

【0043】この計算により得られた(γA+S 2 =1
1.1765を(12)式に代入すると、 φ2 ={〔(γA+S 2 /γA 〕−1}/{〔γS /γ
A 〕−1}={〔(11.1765/1.2929〕−
1}/{〔1000/1.2929〕−1}=0.00
98965が得られる。
A + S ) 2 = 1 obtained by this calculation
Substituting 1.1765 into equation (12) gives φ 2 = {[(γ A + S ) 2 / γ A ] −1} /} [γ S / γ
A ] -1} = {[(11.1765 / 1.2929]-
1 / {[1000 / 1.2929] -1} = 0.00
98965 are obtained.

【0044】固体粒子Sの理論含有率φsがφs=0.
00990099であるので、このφs=0.0099
0099と計算により得られたφ2 =0.009896
5とから、δ=100・(φ2 −φs)/φs=100
(0.0098965−0.00990099)/0.
00990099を計算する。この場合、δ=0.04
6%となる。
The theoretical content φs of the solid particles S is φs = 0.
0999999, this φs = 0.999
0099 and φ 2 = 0.009896 obtained by calculation
From 5, δ = 100 · (φ 2 −φs) / φs = 100
(0.0098965-0.0099099) / 0.
0999999 is calculated. In this case, δ = 0.04
6%.

【0045】〔第3近似計算〕(13)式により、 QA =(QA+S 3 ・(1−φ2 ) (QA+S 3 =QA /(1−φ2 ) (QA+S 3 =1000/(1−0.0098965)
=1009.995〔m3 /h〕を得る。 この計算した(QA+S 3 =1009.995を(1
6)式に代入すると、 (γA+S 3 =〔K2 /(QA+S 32 ・ΔPA+S
〔461.66/1009.995〕2 ×53.515
=11.1810〔kg/m3 〕が得られる。
[Third approximation calculation] From the equation (13), Q A = (Q A + S ) 3 · (1-φ 2 ) (Q A + S ) 3 = Q A / (1-φ 2 ) ( Q A + S ) 3 = 1000 / (1-0.0098965)
= 1009.995 [m 3 / h]. The calculated (Q A + S ) 3 = 1009.9995 is calculated as (1
Substituting into equation 6), (γ A + S ) 3 = [K 2 / (Q A + S ) 3 ] 2 · ΔP A + S =
[461.66 / 1009.995] 2 × 53.515
= 11.1810 [kg / m 3 ].

【0046】この計算により得られた(γA+S 3 =1
1.1810を(18)式に代入すると、 φ3 ={〔(γA+S 3 /γA 〕−1}/{〔γS /γ
A 〕−1}={〔(11.1810/1.2929〕−
1}/{〔1000/1.2929〕−1}=0.00
99009が得られる。
A + S ) 3 = 1 obtained by this calculation
By substituting 1.1810 into equation (18), φ 3 = {[(γ A + S ) 3 / γ A ] −1} / {[γ S / γ
A ] -1} = {[(11.1810 / 1.2929]-
1 / {[1000 / 1.2929] -1} = 0.00
99009 is obtained.

【0047】固体粒子Sの理論含有率φsがφs=0.
00990099であるので、このφs=0.0099
0099と計算により得られたφ3 =0.009900
9とから、δ=100・(φ3 −φs)/φs=100
(0.0099009−0.00990099)/0.
00990099を計算する。この場合、δ=0.00
1%となる。
The theoretical content φs of the solid particles S is φs = 0.
0999999, this φs = 0.999
0099 and φ 3 = 0.009900 obtained by calculation
From equation 9, δ = 100 · (φ 3 −φs) / φs = 100
(0.0090909-0.0090099) / 0.
0999999 is calculated. In this case, δ = 0.00
1%.

【0048】〔第4近似計算〕第3近似計算と同様にし
て、 QA =(QA+S 4 ・(1−φ3 ) (QA+S 4 =QA /(1−φ3 ) (QA+S 4 =1000/(1−0.0099009)
=1010.00〔m 3 /h〕を得る。 この計算した(QA+S 4 =1010.00から(γ
A+S 4 を逆算し、 (γA+S 4 =〔K2 /(QA+S 42 ・ΔPA+S
〔461.66/1010.00〕2 ×53.515=
11.1809〔kg/m3 〕を得る。
[Fourth approximation calculation] In the same manner as the third approximation calculation
QA= (QA + S)Four・ (1-φThree(QA + S)Four= QA/ (1-φThree(QA + S)Four = 1000 / (1-0.0099009)
= 1010.00 [m Three/ H]. This calculated (QA + S)Four = 1010.00 to (γ
A + S)Four, And (γA + S)Four = [KTwo/ (QA + S)Four ]Two・ ΔPA + S =
[461.66 / 1010.00]Two× 53.515 =
11.1809 [kg / mThree] Is obtained.

【0049】この計算により得られた(γA+S 4 =1
1.1809より、 φ4 ={〔(γA+S 4 /γA 〕−1}/{〔γS /γ
A 〕−1}={〔(11.1809/1.2929〕−
1}/{〔1000/1.2929〕−1}=0.00
990081が得られる。
A + S ) 4 = 1 obtained by this calculation
From 1.1809, φ 4 = {[(γ A + S ) 4 / γ A ] -1} / {[γ S / γ
A ] -1} = {[(11.1809 / 1.2929]-
1 / {[1000 / 1.2929] -1} = 0.00
990081 is obtained.

【0050】固体粒子Sの理論含有率φsがφs=0.
00990099であるので、このφs=0.0099
0099と計算により得られたφ4 =0.009900
81とから、δ=100・(φ4 −φs)/φs=10
0・(0.00990081−0.00990099)
/0.00990099を計算する。この場合、δ=
0.002%となる。
The theoretical content φs of the solid particles S is φs = 0.
0999999, this φs = 0.999
0099 and φ 4 = 0.009900 obtained by calculation
From 81, δ = 100 · (φ 4 −φs) / φs = 10
0 · (0.0090081-0.0090099)
/0.00999999 is calculated. In this case, δ =
0.002%.

【0051】図3(a)および(b)に第1近似から第
4近似までの実証結果を示す。この例では、第3近似ま
で繰り返し計算すれば収束が完了し、それ以上の繰り返
し計算は無意味であることが分かる。また、3%程度の
誤差が許されるときは繰り返し計算は必要なく、第1近
似で完了できることも分かる。
FIGS. 3A and 3B show verification results from the first approximation to the fourth approximation. In this example, it can be seen that the convergence is completed if the calculation is repeatedly performed up to the third approximation, and the further repeated calculation is meaningless. Also, it can be seen that when an error of about 3% is allowed, iterative calculation is not necessary and the first approximation can be completed.

【0052】〔近似計算を繰り返す演算処理フロー〕図
4に測定部11での2相流体A+Sの密度γA+S ,容積
流量QA+S および固体粒子Sの含有率φsの演算処理フ
ローを示す。
[Calculation Processing Flow for Repeating Approximation Calculation] FIG. 4 shows a calculation processing flow of the density γ A + S , the volume flow rate Q A + S of the two-phase fluid A + S, and the content φs of the solid particles S in the measuring section 11. Show.

【0053】測定部11は、先ず、オリフィス流量計3
からの計測差圧ΔPA より前記(2)式に従って空気A
の容積流量QA を求め、この求めたQA を2相流体A+
Sの容積流量QA+S の第1近似値Qとする(ステップ4
01)。また、オリフィス流量計3からの計測差圧ΔP
A および2相流流量計7からの計測差圧ΔPA+S を前記
(6)式に代入し、2相流体A+Sにおける固体粒子S
の容積含有率φsの第1近似値φ(=φ1 )を求める
(ステップ402)。
The measuring section 11 first sets the orifice flow meter 3
From the measured differential pressure ΔP A according to the above equation (2).
The volumetric flow rate Q of the determined A, the obtained Q A two-phase fluid A +
The first approximate value Q of the volume flow rate QA + S of S (step 4)
01). Also, the measured differential pressure ΔP from the orifice flow meter 3
A and the measured differential pressure ΔP A + S from the two-phase flow meter 7 are substituted into the above equation (6) to obtain solid particles S in the two-phase fluid A + S.
A first approximation value φ (= φ 1 ) of the volume content ratio φs is obtained (step 402).

【0054】この第1近似値φを前記(8)式に代入
し、容積流量QA+S の第2近似値Q’(=(QA+S
2 )を求める(ステップ403)。なお、この計算にお
いて、(8)式のQA にはステップ401で求めた空気
Aの容積流量QA 、すなわち容積流量QA+S の第1近似
値Qを代入し、Q’=QA /(1−φ)=Q/(1−
φ)として容積流量QA+S の第2近似値Q’を求める。
The first approximate value φ is substituted into the above equation (8), and the second approximate value Q ′ of the volume flow rate Q A + S (= (Q A + S )
2 ) is obtained (step 403). In this calculation, the volume flow rate Q A of the air A obtained in step 401, that is, the first approximate value Q of the volume flow rate Q A + S is substituted for Q A in the equation (8), and Q ′ = Q A / (1-φ) = Q / (1-
A second approximate value Q ′ of the volume flow rate Q A + S is obtained as φ).

【0055】そして、この求めた容積流量QA+S の第2
近似値Q’および2相流流量計7からの計測差圧ΔP
A+S を前記(10)式に代入し、2相流体A+Sの密度
γA+Sの第2近似値γ’(=(γA+S 2 )を求める
(ステップ404)。そして、この求めた第2近似値
γ’を前記(12)式に代入し、2相流体A+Sにおけ
る固体粒子Sの容積含有率φsの第2近似値φ’(=φ
2 )を求める(ステップ405)。
Then, the second of the obtained volume flow rate Q A + S
Approximate value Q ′ and measured differential pressure ΔP from two-phase flow meter 7
A + S is substituted into the above equation (10) to obtain a second approximate value γ ′ (= (γ A + S ) 2 ) of the density γ A + S of the two-phase fluid A + S (step 404). Then, the obtained second approximate value γ ′ is substituted into the equation (12), and the second approximate value φ ′ (= φ) of the volume content φs of the solid particles S in the two-phase fluid A + S is obtained.
2 ) is obtained (step 405).

【0056】そして、測定部11は、ステップ402で
求めた2相流体A+Sにおける固体粒子Sの容積含有率
φsの第1近似値φとステップ405で求めた第2近似
値φ’との差を第2近似値φ’で除してその百分率δを
求め、すなわち100・(φ n-1 −φn )/φn を算出
し、この算出した値δ=100・(φn-1 −φn )/φ
n と所定値εとを比較する(ステップ406)。δ≧ε
であれば、ステップ407へ進み、φをφ’に置き換え
て、すなわち第2近似値φ’を第1近似値φに置き換え
て、δ<εとなるまでステップ403〜406の近似計
算を繰り返す。本実施の形態において、εは、例えば
0.05%として定めている。
Then, the measuring section 11 determines in step 402
The determined volume content of the solid particles S in the two-phase fluid A + S
The first approximation φ of φs and the second approximation obtained in step 405
The difference from the value φ ′ is divided by the second approximation φ ′ to obtain the percentage δ
Calculated, that is, 100 · (φ n-1−φn ) / Φn Calculate
Then, the calculated value δ = 100 · (φn-1−φn ) / Φ
n Is compared with a predetermined value ε (step 406). δ ≧ ε
If so, proceed to step 407 and replace φ with φ ′
That is, the second approximate value φ 'is replaced with the first approximate value φ.
And the approximation of steps 403 to 406 until δ <ε
Repeat the calculation. In the present embodiment, ε is, for example,
It is set as 0.05%.

【0057】ステップ406において、δ<εとなれ
ば、すなわち2相流体A+Sにおける固体粒子Sの容積
含有率φsの第1近似値φ(=φn-1 )と第2近似値
φ’(=φn )との差がほゞ等しくなれば、ステップ4
08へ進み、このときのφ’すなわちステップ405で
求められた最終の第2近似値φ’(=φn )を2相流体
A+Sにおける固体粒子Sの容積含有率φsとする。ま
た、このときのQ’すなわちステップ403で求められ
た最終の第2近似値Q’(=(QA+S n )を2相流体
A+Sの容積流量QA+S とする。また、このときのγ’
すなわちステップ404で求められた最終の第2近似値
γ’(=(γA+S n )を2相流体A+Sの密度γA+S
とする。
In step 406, if δ <ε, that is, the first approximate value φ (= φ n-1 ) and the second approximate value φ ′ (=) of the volume fraction φs of the solid particles S in the two-phase fluid A + S If the difference from φ n ) is almost equal, step 4
08, the φ ′ at this time, that is, the final second approximate value φ ′ (= φ n ) obtained in step 405 is defined as the volume content rate φs of the solid particles S in the two-phase fluid A + S. Further, Q ′ at this time, that is, the final second approximate value Q ′ (= (Q A + S ) n ) obtained in step 403 is defined as the volume flow rate Q A + S of the two-phase fluid A + S. Also, γ 'at this time
That is, the final second approximate value γ ′ (= (γ A + S ) n ) obtained in step 404 is used as the density γ A + S of the two-phase fluid A + S.
And

【0058】このように、本実施の形態の2相流体測定
装置によれば、オリフィス流量計3からの計測差圧ΔP
A と2相流流量計7からの計測差圧ΔPA+S とから、2
相流体A+Sの密度γA+S ,容積流量QA+S および固体
粒子Sの容積含有率φsが求められるので、すなわちロ
ードセル4からの固体粒子Sの容積流量Qsの計測値を
使用しないので、測定精度が向上するものとなる。
As described above, according to the two-phase fluid measuring device of the present embodiment, the measured differential pressure ΔP from the orifice flow meter 3
From A and the measured differential pressure ΔP A + S from the two-phase flow meter 7,
Density gamma A + S phase fluid A + S, since the volumetric flow rate Q A + S and volume content φs of the solid particles S are determined, that is, without using a measurement of volumetric flow rate Qs of the solid particles S from the load cell 4, Measurement accuracy is improved.

【0059】また、この実施の形態では、ロードセル4
からの固体粒子Sの容積流量Qsを使用しないので、固
体粒子Sの容積流量Qsが未知の状態で、2相流体A+
Sの密度γA+S や容積流量QA+S ,固体粒子Sの容積含
有率φsを測定することが可能となる。したがって、容
積流量Qsを計測する必要がなく、ロードセル4からの
固体粒子Sの出口に流量計を設けなくてもよい。
In this embodiment, the load cell 4
Is not used, the volume flow Qs of the solid particles S is not known, and the two-phase fluid A +
It is possible to measure the density γ A + S of S , the volume flow rate Q A + S , and the volume content φs of the solid particles S. Therefore, there is no need to measure the volume flow rate Qs, and it is not necessary to provide a flow meter at the outlet of the solid particles S from the load cell 4.

【0060】なお、ロードセル4からの固体粒子Sの容
積流量Qsが一定(ロードセル4からのフィード量が固
定)であれば、先願(図7)の方法でも流量計6を省略
することが可能である。しかし、この場合、ロードセル
4からの固体粒子Sの容積流量Qsは既知の値として、
コントローラ10Bへセットしておく必要がある。これ
に対して、本実施の形態では、ロードセル4からの固体
粒子Sの容積流量Qsが既知である必要はなく、固体粒
子Sの容積流量Qsを測定部11にセットしておくとい
うようなことは行わなくてもよい。
If the volume flow rate Qs of the solid particles S from the load cell 4 is constant (the feed amount from the load cell 4 is fixed), the flow meter 6 can be omitted in the method of the prior application (FIG. 7). It is. However, in this case, the volume flow rate Qs of the solid particles S from the load cell 4 is a known value.
It must be set in the controller 10B. On the other hand, in the present embodiment, the volume flow rate Qs of the solid particles S from the load cell 4 does not need to be known, and the volume flow rate Qs of the solid particles S is set in the measurement unit 11. Need not be performed.

【0061】また、この実施の形態では、繰り返される
近似計算中、固体粒子Sの容積含有率の第2近似値φ’
(=φn )と第1近似値φ(=φn-1 )とがほゞ等しく
なったときに近似計算をストップするようにしたが、近
似計算の繰り返し回数を定め、所定回数に達したらスト
ップするようにしてもよい。実際には、2回程度の近似
計算の繰り返しで、2相流体A+Sの真値に近い密度γ
A+S ,容積流量QA+S,固体粒子Sの容積含有率φsを
得ることができる。
Further, in this embodiment, during the repeated approximate calculation, the second approximate value φ ′ of the volume content of the solid particles S is obtained.
(= Φ n ) and the first approximation value φ (= φ n-1 ) stop the approximation calculation when they are almost equal to each other. You may make it stop. Actually, the density γ close to the true value of the two-phase fluid A + S is obtained by repeating the approximation calculation about twice.
A + S , the volume flow rate Q A + S , and the volume content φs of the solid particles S can be obtained.

【0062】また、本実施の形態では、2相流体A+S
の密度γA+S ,容積流量QA+S ,固体粒子Sの容積含有
率φsの3つを全て求めるようにしたが、これらの値を
全て求めなくてもよく、必要な値だけ求めるようにして
もよい。また、容積流量QA+ S と2相流体A+Sの密度
γA+S とから、WA+S =QA+S ・γA+S として、質量流
量WA+S を求めることも可能である。
In this embodiment, the two-phase fluid A + S
, The density γ A + S , the volume flow rate Q A + S , and the volume fraction φs of the solid particles S are all determined. However, it is not necessary to determine all of these values, and only the required values are determined. It may be. Further, from the density gamma A + S volumetric flow rate Q A + S and two-phase fluid A + S, as W A + S = Q A + S · γ A + S, it is also possible to determine the mass flow rate W A + S .

【0063】また、本実施の形態では、2相流体A+S
を空気Aと固体粒子Sとを混合したものとしたが、空気
に代えて他の気体を用いるようにしてもよい。また、液
体と固体とを混合した2相流体としてもよい。また、本
実施の形態では、空気の密度γA や固体粒子Sの密度γ
sを既知のパラメータとして測定部11に設定するよう
にしているが、計測値として測定部11に与えるように
してもよい。
In this embodiment, the two-phase fluid A + S
Is a mixture of air A and solid particles S, but another gas may be used instead of air. Alternatively, a two-phase fluid in which a liquid and a solid are mixed may be used. Further, in the present embodiment, the density γ A of the air and the density γ of the solid particles S
Although s is set to the measuring unit 11 as a known parameter, it may be provided to the measuring unit 11 as a measured value.

【0064】また、本実施の形態では、2相流体の測定
原理を説明するためにその要部を抽出して説明したが、
図6や図7に示したと同様に2相流体コントロールシス
テムに使用することが可能である。この場合のシステム
構成を図5に示す。この2相流体コントロールシステム
では、コントローラ10Cにおいて、オリフィス流量計
3からの計測差圧ΔPA と2相流流量計7からの計測差
圧ΔPA+S とから2相流体A+Sの密度γA+S や容積流
量QA+S ,固体粒子Sの容積含有率φsを近似計算の繰
り返しにより求め、密度γA+S や容積流量QA+S が2相
流体A+Sの用途に応じた所定の範囲となるように、調
整弁5の開度を制御する。
Further, in the present embodiment, the principal parts have been extracted and described for explaining the principle of measurement of the two-phase fluid.
It can be used in a two-phase fluid control system as shown in FIGS. FIG. 5 shows a system configuration in this case. In the two-phase fluid control system, the controller 10C uses the measured differential pressure ΔP A from the orifice flow meter 3 and the measured differential pressure ΔP A + S from the two-phase flow meter 7 to determine the density γ A + of the two-phase fluid A + S. S and the volume flow rate Q A + S and the volume content φs of the solid particles S are obtained by repeating approximation calculations, and the density γ A + S and the volume flow rate Q A + S are within predetermined ranges according to the use of the two-phase fluid A + S. The opening of the regulating valve 5 is controlled so that

【0065】また、本実施の形態において、流量計3は
オリフィス流量計に限られるものではなく、2相流流量
計7もベンチュリータイプのものに限れるものでもな
い。2相流流量計7の機能としては、固体粒子の流れで
詰まりが生じにくいことが望まれる。また、図5に示し
た構成では、送風機1を用いて固体粒子Sとの混合部に
空気Aを送るようにしているが、2相流体A+Sの流出
側に吸引機を設けて空気を引っ張るようにしてもよい。
In this embodiment, the flow meter 3 is not limited to the orifice flow meter, and the two-phase flow meter 7 is not limited to the venturi type flow meter. As a function of the two-phase flow meter 7, it is desired that clogging hardly occurs in the flow of the solid particles. In the configuration shown in FIG. 5, the air A is sent to the mixing section with the solid particles S using the blower 1, but a suction device is provided on the outflow side of the two-phase fluid A + S to pull the air. It may be.

【0066】[0066]

【発明の効果】以上説明したことから明らかなように本
発明によれば、第1の流量計(例えば、オリフィス流量
計)からの計測差圧(ΔPA )と第2の流量計(例え
ば、ベンチュリータイプの2相流流量計)からの計測差
圧(ΔPA+S )とから、2相流体の密度(γA+S ),容
積流量(QA+S )および固体粒子の容積含有率
(φA+S )の少なくとも1つが近似計算の繰り返しによ
り求められるので、すなわち混合部への固体粒子の容積
流量の計測値を使用しないので、測定精度の向上を図る
ことが可能となる。また、混合部への固体粒子の容積流
量が未知の状態で、2相流体の密度(γA+S )や容積流
量(QA+S ),固体粒子Sの容積含有率(φs)などを
測定することが可能となる。
As is apparent from the above description, according to the present invention, the measured differential pressure (ΔP A ) from the first flow meter (for example, orifice flow meter) and the second flow meter (for example, From the measured differential pressure (ΔP A + S ) from the venturi type two-phase flow meter, the density (γ A + S ), volumetric flow rate (Q A + S ) and volumetric content of solid particles of the two-phase fluid Since at least one of (φ A + S ) is obtained by repeating the approximate calculation, that is, since the measured value of the volume flow rate of the solid particles to the mixing section is not used, it is possible to improve the measurement accuracy. In the state where the volume flow rate of the solid particles to the mixing section is unknown, the density (γ A + S ), the volume flow rate (Q A + S ) of the two-phase fluid, and the volume content rate (φs) of the solid particles S are determined. It becomes possible to measure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態を示す2相流体測定装
置の要部を示す図である。
FIG. 1 is a diagram showing a main part of a two-phase fluid measurement device according to an embodiment of the present invention.

【図2】 γA+S =γA ・(1−φs)+φs・γS
る式が導かれる基になる図である。
FIG. 2 is a diagram from which an equation of γ A + S = γ A · (1−φs) + φs · γ S is derived.

【図3】 第1近似から第4近似までの実証結果を示す
図である。
FIG. 3 is a diagram showing verification results from a first approximation to a fourth approximation.

【図4】 この2相流体測定装置の測定部における2相
流体A+Sの密度γ A+S ,容積流量QA+S および固体粒
子Sの容積含有率φsの演算処理フローを示す図であ
る。
FIG. 4 shows two phases in a measuring section of the two-phase fluid measuring device.
Density γ of fluid A + S A + S, Volume flow QA + SAnd solid grains
FIG. 9 is a diagram showing a calculation processing flow of a volume content rate φs of a child S.
You.

【図5】 この2相流体測定装置を使用した2相流体コ
ントロールシステムのシステム構成図である。
FIG. 5 is a system configuration diagram of a two-phase fluid control system using the two-phase fluid measurement device.

【図6】 従来の2相流体測定装置を使用した2相流体
コントロールシステムのシステム構成図である。
FIG. 6 is a system configuration diagram of a two-phase fluid control system using a conventional two-phase fluid measurement device.

【図7】 先願に示された2相流体測定装置を使用した
2相流体コントロールシステムのシステム構成図であ
る。
FIG. 7 is a system configuration diagram of a two-phase fluid control system using the two-phase fluid measurement device shown in the prior application.

【符号の説明】[Explanation of symbols]

1…送風機、2…調整弁、3…オリフィス流量計、4…
ロードセル、5…調整弁、6…流量計、7…2相流流量
計、9…第1のコントローラ、10C…第2のコントロ
ーラ、11…測定部、A…空気、S…固体粒子(粉
体)、A+S…2相流体。
DESCRIPTION OF SYMBOLS 1 ... Blower, 2 ... Adjusting valve, 3 ... Orifice flow meter, 4 ...
Load cell, 5: regulating valve, 6: flow meter, 7: two-phase flow meter, 9: first controller, 10C: second controller, 11: measuring unit, A: air, S: solid particles (powder ), A + S: two-phase fluid.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 流体に固体粒子を混合して2相流体と
し、 前記固体粒子と混合される前の前記流体の流路にその流
体の流量を差圧として検出する第1の流量計を設け、 前記2相流体の流路にその2相流体の流量を差圧として
検出する第2の流量計を設け、 前記第1の流量計からの計測差圧と前記第2の流量計か
らの計測差圧とから前記2相流体の密度,容積流量およ
び固体粒子の容積含有率の少なくとも1つを近似計算の
繰り返しにより求めるようにしたことを特徴とする2相
流体測定方法。
1. A first flowmeter for mixing a solid particle with a fluid to form a two-phase fluid, and detecting a flow rate of the fluid as a differential pressure in a flow path of the fluid before being mixed with the solid particles. A second flow meter for detecting a flow rate of the two-phase fluid as a differential pressure in the flow path of the two-phase fluid, and measuring a differential pressure from the first flow meter and measuring from the second flow meter; A two-phase fluid measurement method, wherein at least one of the density, the volume flow rate and the volume content of solid particles of the two-phase fluid is obtained from the differential pressure by repeating approximation calculation.
【請求項2】 流体に固体粒子を混合して2相流体と
し、 前記固体粒子と混合される前の前記流体の流路にその流
体の流量を差圧として検出する第1の流量計を設け、 前記2相流体の流路にその2相流体の流量を差圧として
検出する第2の流量計を設け、 前記第1の流量計からの計測差圧より求められる前記流
体の容積流量を前記2相流体の容積流量の第1近似値と
し、 前記第1の流量計からの計測差圧と前記第2の流量計か
らの計測差圧とから前記2相流体における固体粒子の容
積含有率の第1近似値を求め、 この固体粒子の容積含有率の第1近似値と前記2相流体
の容積流量の第1近似値とから前記2相流体の容積流量
の第2近似値を求め、 この2相流体の容積流量の第2近似値と前記第2の流量
計からの計測差圧とから前記2相流体の密度の第2近似
値を求め、 この2相流体の密度の第2近似値から前記2相流体にお
ける固体粒子の容積含有率の第2近似値を求め、 この2相流体における固体粒子の容積含有率の第2近似
値を第1近似値に置き換えて、所定の条件が成立するま
で上記の近似計算を繰り返すようにしたことを特徴とす
る2相流体測定方法。
2. A first flow meter for mixing a solid particle with a fluid to form a two-phase fluid and detecting a flow rate of the fluid as a differential pressure in a flow path of the fluid before being mixed with the solid particles. A second flowmeter for detecting a flow rate of the two-phase fluid as a differential pressure in the flow path of the two-phase fluid, and determining a volume flow rate of the fluid obtained from a measured differential pressure from the first flowmeter; The first approximate value of the volume flow rate of the two-phase fluid is obtained. From the measured differential pressure from the first flow meter and the differential pressure measured from the second flow meter, the volume content of solid particles in the two-phase fluid is calculated. Determining a first approximate value; determining a second approximate value of the volume flow rate of the two-phase fluid from the first approximate value of the volume content of the solid particles and the first approximate value of the volume flow rate of the two-phase fluid; The two-phase fluid is obtained from a second approximate value of the volume flow rate of the two-phase fluid and a measured differential pressure from the second flow meter. The second approximation of the density of the solid particles in the two-phase fluid is obtained from the second approximation of the density of the two-phase fluid, and the volume of the solid particles in the two-phase fluid is obtained. A two-phase fluid measurement method, wherein the second approximate value of the content is replaced with a first approximate value, and the above-described approximate calculation is repeated until a predetermined condition is satisfied.
【請求項3】 請求項2に記載された2相流体測定方法
において、前記所定の条件を前記2相流体における固体
粒子の容積含有率の第2近似値と第1近似値との差がほ
ゞ等しくなったときとしたことを特徴とする2相流体測
定方法。
3. The two-phase fluid measurement method according to claim 2, wherein the predetermined condition is such that a difference between a second approximate value and a first approximate value of the volume content of solid particles in the two-phase fluid is substantially equal to the first approximate value. 2 A two-phase fluid measurement method characterized in that it is equal.
【請求項4】 請求項2に記載された2相流体測定方法
において、前記所定の条件を前記近似計算の繰り返し回
数が所定値に達したときとしたことを特徴とする2相流
体測定方法。
4. The two-phase fluid measurement method according to claim 2, wherein the predetermined condition is that the number of repetitions of the approximate calculation reaches a predetermined value.
【請求項5】 流体を流す流体流手段と、 流れてくる流体に固体粒子を混合して2相流体とする固
体粒子混合手段と、 前記固体粒子と混合される前の前記流体の流路に設けら
れその流体の流量を差圧として検出する第1の流量計
と、 前記2相流体の流路に設けられその2相流体の流量を差
圧として検出する第2の流量計と、 前記第1の流量計からの計測差圧と前記第2の流量計か
らの計測差圧とから前記2相流体の密度,容積流量およ
び固体粒子の容積含有率の少なくとも1つを近似計算の
繰り返しにより求める近似計算手段とを備えたことを特
徴とする2相流体測定装置。
5. A fluid flow means for flowing a fluid, solid particle mixing means for mixing solid particles into a flowing fluid to form a two-phase fluid, and a fluid flow path before being mixed with the solid particles. A first flow meter provided to detect the flow rate of the fluid as a differential pressure; a second flow meter provided in the flow path of the two-phase fluid to detect the flow rate of the two-phase fluid as a differential pressure; From the measured differential pressure from the first flow meter and the differential pressure measured from the second flow meter, at least one of the density, the volume flow rate, and the volume content of the solid particles of the two-phase fluid is obtained by repeating approximate calculation. A two-phase fluid measurement device comprising: an approximation calculation unit.
【請求項6】 流体を流す流体流手段と、 流れてくる流体に固体粒子を混合して2相流体とする固
体粒子混合手段と、 前記固体粒子と混合される前の前記流体の流路に設けら
れその流体の流量を差圧として検出する第1の流量計
と、 前記2相流体の流路に設けられその2相流体の流量を差
圧として検出する第2の流量計と、 前記第1の流量計からの計測差圧より求められる前記流
体の容積流量を前記2相流体の容積流量の第1近似値と
し、前記第1の流量計からの計測差圧と前記第2の流量
計からの計測差圧とから前記2相流体における固体粒子
の容積含有率の第1近似値を求め、この固体粒子の容積
含有率の第1近似値と前記2相流体の容積流量の第1近
似値とから前記2相流体の容積流量の第2近似値を求
め、この2相流体の容積流量の第2近似値と前記第2の
流量計からの計測差圧とから前記2相流体の密度の第2
近似値を求め、この2相流体の密度の第2近似値から前
記2相流体における固体粒子の容積含有率の第2近似値
を求め、この2相流体における固体粒子の容積含有率の
第2近似値を第1近似値に置き換えて、所定の条件が成
立するまで上記の近似計算を繰り返す近似計算手段とを
備えたことを特徴とする2相流体測定装置。
6. A fluid flow means for flowing a fluid, solid particle mixing means for mixing solid particles with a flowing fluid to form a two-phase fluid, and a fluid flow path before being mixed with the solid particles. A first flow meter provided to detect the flow rate of the fluid as a differential pressure; a second flow meter provided in the flow path of the two-phase fluid to detect the flow rate of the two-phase fluid as a differential pressure; The volume flow rate of the fluid obtained from the measured differential pressure from the first flow meter is defined as a first approximate value of the volume flow rate of the two-phase fluid, and the measured differential pressure from the first flow meter and the second flow meter A first approximation of the volume content of solid particles in the two-phase fluid from the measured differential pressure from A second approximate value of the volumetric flow rate of the two-phase fluid from The from the measurement differential pressure from the second approximate value second flowmeter density of the two-phase fluid 2
An approximate value is determined, a second approximate value of the volume content of solid particles in the two-phase fluid is determined from the second approximate value of the density of the two-phase fluid, and a second approximate value of the volume content of solid particles in the two-phase fluid is determined. A two-phase fluid measurement device, comprising: approximation calculating means for replacing the approximation value with a first approximation value and repeating the approximation calculation until a predetermined condition is satisfied.
【請求項7】 請求項6に記載された2相流体測定装置
において、前記所定の条件が前記2相流体における固体
粒子の容積含有率の第2近似値と第1近似値との差がほ
ゞ等しくなったときとされていることを特徴とする2相
流体測定装置。
7. The two-phase fluid measurement device according to claim 6, wherein the predetermined condition is that a difference between a second approximate value and a first approximate value of the volume content of solid particles in the two-phase fluid is approximately equal. 2 A two-phase fluid measurement device characterized in that it is assumed to be equal.
【請求項8】 請求項6に記載された2相流体測定装置
において、前記所定の条件が前記近似計算の繰り返し回
数が所定値に達したときとされていることを特徴とする
2相流体測定装置。
8. The two-phase fluid measurement apparatus according to claim 6, wherein the predetermined condition is that the number of repetitions of the approximate calculation reaches a predetermined value. apparatus.
JP2001175398A 2001-06-11 2001-06-11 Two-phase fluid measuring method and measuring device Expired - Fee Related JP3887184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175398A JP3887184B2 (en) 2001-06-11 2001-06-11 Two-phase fluid measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175398A JP3887184B2 (en) 2001-06-11 2001-06-11 Two-phase fluid measuring method and measuring device

Publications (2)

Publication Number Publication Date
JP2002365105A true JP2002365105A (en) 2002-12-18
JP3887184B2 JP3887184B2 (en) 2007-02-28

Family

ID=19016544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175398A Expired - Fee Related JP3887184B2 (en) 2001-06-11 2001-06-11 Two-phase fluid measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP3887184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444364B1 (en) * 2013-02-28 2014-09-26 두산중공업 주식회사 Apparatus for measuring flow rate of transported particulate coal and method for flow rate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444364B1 (en) * 2013-02-28 2014-09-26 두산중공업 주식회사 Apparatus for measuring flow rate of transported particulate coal and method for flow rate using the same

Also Published As

Publication number Publication date
JP3887184B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
CN101978245B (en) High accuracy mass flow verifier with multiple inlets
US7204158B2 (en) Flow control apparatus and method with internally isothermal control volume for flow verification
US8104323B2 (en) Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
US10031005B2 (en) Method and apparatus for self verification of pressure-based mass flow controllers
JP5090448B2 (en) Mass flow verifier based on critical flow
KR102303943B1 (en) System for and method of monitoring flow through mass flow controllers in real time
JP2018010696A (en) Mass flow rate controller
US10704937B2 (en) Critical flow nozzle flowmeter for measuring respective flowrates of gas phase and liquid phase in multiphase fluid and measuring method thereof
US20060123921A1 (en) System and method for measuring flow
US20060005882A1 (en) Method and system for flow measurement and validation of a mass flow controller
US20070193373A1 (en) Isokinetic sampling
US20110259119A1 (en) Two-phase flow meter
US4574643A (en) Two phase flowmeter
KR20080015389A (en) Wide range continuous diluter
CN110726444B (en) Wet gas flow metering method and device based on Coriolis mass flowmeter
CN101019007A (en) Attitude insensitive flow device system and method
WO2001022041A9 (en) Improved method and system for measuring multiphase flow using multiple pressure differentials
CN115048775A (en) Thermochemical unbalanced flow component limiting method
CN106104402A (en) The system and method for the mass flow controller of the insensitive self-authentication of pressure are provided
JP2008506116A (en) Method and system for flow measurement and mass flow regulator validation
US11326921B2 (en) Flow rate measuring method and flow rate measuring device
JP3887184B2 (en) Two-phase fluid measuring method and measuring device
Funaki et al. Generator of variable gas flows using an isothermal chamber
JP2000039347A (en) Flowrate inspection device
US11982556B2 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R150 Certificate of patent or registration of utility model

Ref document number: 3887184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees