JP2002364746A - Hydraulic servo mechanism - Google Patents

Hydraulic servo mechanism

Info

Publication number
JP2002364746A
JP2002364746A JP2001176154A JP2001176154A JP2002364746A JP 2002364746 A JP2002364746 A JP 2002364746A JP 2001176154 A JP2001176154 A JP 2001176154A JP 2001176154 A JP2001176154 A JP 2001176154A JP 2002364746 A JP2002364746 A JP 2002364746A
Authority
JP
Japan
Prior art keywords
servo mechanism
hydraulic
hydraulic servo
differential pressure
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001176154A
Other languages
Japanese (ja)
Inventor
Katsuomi Ugi
克臣 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2001176154A priority Critical patent/JP2002364746A/en
Publication of JP2002364746A publication Critical patent/JP2002364746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems on a conventional hydraulic servo mechanism provided in a hydraulic continuously variable transmission, in which a restrictor is provided at the inlet or outlet of a control circuit, although the smaller restriction bore of the restrictor having the greater effect of reducing shock, the too small restriction bore causes no flow of a control oil into the servo mechanism at a low temperature to give inconveniences including no stop of a working machine mounted on the hydraulic continuously variable transmission, which prohibits so much reduction in restriction bore and results in a limited reduction in shock of the restrictor. SOLUTION: A constant differential pressure reducer 57 for controlling the flow rate of a control oil is provided at the inlet of a servo control passage 55 as a control circuit for controlling the operation of the hydraulic servo mechanism 61.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油圧式無段変速装
置における可動斜板の斜板角の制御等を行う油圧サーボ
機構に関し、特に、急激な操作を行った際のショックを
低減するための構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic servo mechanism for controlling a swash plate angle of a movable swash plate in a hydraulic continuously variable transmission, and more particularly, to reducing a shock when a sudden operation is performed. Related to the configuration.

【0002】[0002]

【従来の技術】従来から、油圧ポンプと油圧モータとに
より構成され、例えば油圧ポンプを可変容量型ポンプと
した油圧式無段変速装置においては、該油圧ポンプの可
動斜板の斜板角を、油圧式無段変速装置に設けたサーボ
機構を介して制御するようにしたものがある。このよう
な油圧式無段変速装置を作業機に搭載するときには、油
圧式無段変速装置における油圧サーボ機構の動作を制御
する制御回路の、入口部又は出口部に絞り弁を設けて、
作業機を急減速させた場合に発生するショックを低減す
るようにしている。
2. Description of the Related Art Conventionally, in a hydraulic continuously variable transmission which is constituted by a hydraulic pump and a hydraulic motor, for example, in which the hydraulic pump is a variable displacement pump, the swash plate angle of a movable swash plate of the hydraulic pump is set as follows. There is a type in which the control is performed via a servo mechanism provided in a hydraulic continuously variable transmission. When such a hydraulic continuously variable transmission is mounted on a working machine, a throttle valve is provided at an inlet or an outlet of a control circuit that controls the operation of a hydraulic servo mechanism in the hydraulic continuously variable transmission,
The shock generated when the working machine is suddenly decelerated is reduced.

【0003】例えば、図7に示す油圧式無段変速装置油
圧回路においては、油圧ポンプ121と油圧モータ12
2とがメイン回路132R・132Lにより接続され、
該メイン回路132R・132Lと、チャージポンプ1
51からのチャージ圧がかかるチャージ回路153との
間には、チェックバルブ144・144が介装されてい
る。また、チャージ回路53には、チェックバルブ14
4・144へと至る回路中にリリーフバルブ154が設
けられている。そして、チャージポンプ151からは、
油圧ポンプ121の可動斜板121cの斜板角を制御す
る油圧サーボ機構161へ、サーボ制御用通路155を
通じてサーボ制御圧が供給されており、該サーボ制御用
通路155の途中部、即ち油圧サーボ機構161の制御
回路の入口部に、絞り弁157を設けている。
[0003] For example, in a hydraulic circuit of a hydraulic type continuously variable transmission shown in FIG.
2 are connected by main circuits 132R and 132L,
The main circuits 132R and 132L and the charge pump 1
Check valves 144 and 144 are interposed between the charge circuit 153 and the charge circuit 153 to which the charge pressure is applied. The charge circuit 53 includes a check valve 14.
A relief valve 154 is provided in the circuit leading to 4.144. Then, from the charge pump 151,
The servo control pressure is supplied to the hydraulic servo mechanism 161 for controlling the swash plate angle of the movable swash plate 121c of the hydraulic pump 121 through the servo control passage 155. A throttle valve 157 is provided at the entrance of the control circuit 161.

【0004】[0004]

【発明が解決しようとする課題】前述の如く、油圧サー
ボ機構の制御回路の入口部又は出口部に絞り弁を設けた
場合、絞り弁の絞り径を小さくする程、ショック低減の
効果が大きく得られるが、絞り径を小さくしすぎると、
低温時にはサーボ機構へ制御油が流入しなくなって、作
業機が停止しない等の不具合が生じるため、あまり絞り
径を小さくすることはできず、絞り弁でのショック低減
には限界があった。そこで、本発明においては、低温時
における前述の不具合を生じさせることなく、ショック
低減効果を発揮することができる、ショック低減用の弁
を設けた油圧サーボ機構を提供するものである。
As described above, when a throttle valve is provided at the inlet or the outlet of the control circuit of the hydraulic servo mechanism, the effect of reducing the shock is greater as the throttle diameter of the throttle valve is reduced. However, if the aperture diameter is made too small,
At low temperatures, control oil does not flow into the servo mechanism, causing problems such as the work machine not stopping. Therefore, the diameter of the throttle cannot be reduced so much, and there has been a limit to the reduction of shock at the throttle valve. In view of the above, the present invention provides a hydraulic servo mechanism provided with a shock reducing valve capable of exhibiting a shock reducing effect without causing the above-mentioned problems at low temperatures.

【0005】[0005]

【課題を解決するための手段】本発明の解決しようとす
る課題は以上の如くであり、次に該課題を解決するため
の手段を説明する。即ち、請求項1においては、油圧サ
ーボ機構の動作を制御する制御回路の入口部に、制御油
流量を制御するための定差圧形減圧弁を設けた。
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described. That is, in claim 1, a constant differential pressure reducing valve for controlling the control oil flow rate is provided at the inlet of the control circuit for controlling the operation of the hydraulic servo mechanism.

【0006】また、請求項2においては、前記油圧サー
ボ機構の制御回路を構成しているハウジング内に、前記
定差圧形減圧弁を内臓した。
According to a second aspect of the present invention, the constant differential pressure reducing valve is incorporated in a housing constituting a control circuit of the hydraulic servo mechanism.

【0007】また、請求項3においては、前記定差圧形
減圧弁のカバー部材を、油圧サーボ機構のピストンが収
納されるピストン室のカバー部材と兼用した。
According to a third aspect of the present invention, the cover member of the constant differential pressure reducing valve is also used as a cover member of the piston chamber in which the piston of the hydraulic servo mechanism is housed.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態を説明
する。図1は本発明の定差圧形減圧弁が設けられる油圧
サーボ機構を具備する油圧式無段変速装置を示す側面
図、図2は同じく平面図、図3は油圧サーボ機構を示す
正面断面図、図4は定差圧形減圧弁が設けられる油圧サ
ーボ機構を具備する油圧式無段変速装置の油圧回路を示
す図、図5は定差圧形減圧弁を示す側面断面図、図6は
定差圧形減圧弁の流量制御特性を示す図、図7は従来の
油圧サーボ機構を具備する油圧式無段変速装置の油圧回
路を示す図である。
Next, an embodiment of the present invention will be described. FIG. 1 is a side view showing a hydraulic stepless transmission having a hydraulic servo mechanism provided with a constant differential pressure reducing valve of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a front sectional view showing a hydraulic servo mechanism. FIG. 4 is a diagram showing a hydraulic circuit of a hydraulic continuously variable transmission equipped with a hydraulic servo mechanism provided with a constant differential pressure reducing valve, FIG. 5 is a side sectional view showing the constant differential pressure reducing valve, and FIG. FIG. 7 is a diagram showing a flow control characteristic of a constant differential pressure reducing valve, and FIG. 7 is a diagram showing a hydraulic circuit of a hydraulic continuously variable transmission equipped with a conventional hydraulic servo mechanism.

【0009】まず、本発明の油圧式無段変速装置につい
て説明する。図1乃至図3に示すように、油圧式無段変
速装置(以降HSTと記載する)10は、可変容量式油
圧ポンプ21及び油圧モータ22により構成され、可変
容量式油圧ポンプ21の可動斜板の斜板角を、ハウジン
グ31に収納される油圧サーボ機構61を介して制御す
るように構成している。
First, the hydraulic continuously variable transmission according to the present invention will be described. As shown in FIGS. 1 to 3, the hydraulic continuously variable transmission (hereinafter, referred to as HST) 10 includes a variable displacement hydraulic pump 21 and a hydraulic motor 22, and a movable swash plate of the variable displacement hydraulic pump 21. Is controlled through a hydraulic servo mechanism 61 housed in the housing 31.

【0010】油圧サーボ機構61は、ハウジング31内
における油圧ポンプ21のピストン室70を形成し、該
ピストン室70内にピストン71を収納して構成されて
いる。該ピストン71側面には、油圧ポンプの可動斜板
から突出したピン軸23が嵌合され、該ピストン71の
軸心位置には上下に貫通孔を開口して、この貫通孔内に
スプール72を摺動自在に嵌装している。
The hydraulic servo mechanism 61 includes a piston chamber 70 of the hydraulic pump 21 in the housing 31 and a piston 71 housed in the piston chamber 70. A pin shaft 23 protruding from the movable swash plate of the hydraulic pump is fitted to the side surface of the piston 71, and a through hole is vertically opened at the axial center position of the piston 71, and a spool 72 is provided in the through hole. It is slidably fitted.

【0011】そして、前記ピストン71にはピストン室
70の上部と下部を連通する油路が形成され、該油路は
スプール72の摺動により連通又は遮断されてピストン
71の上下に形成される上部圧力室70a又は下部圧力
室70bに圧油を送油し、該ピストン71を上下方向に
摺動できるようにしている。また、前記スプール72の
下部外周には嵌合溝75が設けられ、該嵌合溝75に、
スプール72の駆動ピンとしてのピン41の一端部41
aが嵌合されている。さらに、油圧サーボ機構61の操
作レバー20を回動操作することによりピン41が上下
回動し、これに伴ってスプール72が上下移動するよう
に構成されている。
The piston 71 is provided with an oil passage communicating between the upper and lower portions of the piston chamber 70. The oil passage is communicated or blocked by sliding of the spool 72, and is formed above and below the piston 71. Pressure oil is supplied to the pressure chamber 70a or the lower pressure chamber 70b so that the piston 71 can slide up and down. A fitting groove 75 is provided on the outer periphery of the lower portion of the spool 72, and the fitting groove 75
One end 41 of the pin 41 as a drive pin of the spool 72
a is fitted. Further, the pin 41 is turned up and down by turning the operation lever 20 of the hydraulic servo mechanism 61 and the spool 72 is moved up and down accordingly.

【0012】このように、操作レバー20の回動操作に
よりピストン71及びスプール72を上下摺動操作する
ことで、油圧ポンプ21の可動斜板を回動し、走行用の
HST10を変速するようにしている。
As described above, the movable swash plate of the hydraulic pump 21 is rotated by vertically operating the piston 71 and the spool 72 by rotating the operation lever 20, thereby shifting the speed of the traveling HST 10. ing.

【0013】前述の如く油圧サーボ機構61を設けて構
成されるHST10の油圧回路について説明する。図4
に示すように、油圧ポンプ21と油圧モータ22とはメ
イン回路32R・32Lにより接続されており、該メイ
ン回路32R・32Lとチャージ回路53との間にはチ
ェックバルブ44・44が介装されている。チャージ回
路53にはチャージポンプ51からのチャージ圧がかか
っており、メイン回路32R・32Lの作動油が不足し
た場合には、チャージ回路53からチェックバルブ44
を介してメイン回路32R・32Lに作動油が供給され
るように構成している。また、チャージ回路53には、
チェックバルブ44・44へと至る回路中にリリーフバ
ルブ54が設けられ、メイン回路32R・32L内の油
圧を調整している。
The hydraulic circuit of the HST 10 provided with the hydraulic servo mechanism 61 as described above will be described. FIG.
As shown in the figure, the hydraulic pump 21 and the hydraulic motor 22 are connected by main circuits 32R and 32L, and check valves 44 and 44 are interposed between the main circuits 32R and 32L and the charge circuit 53. I have. The charge pressure from the charge pump 51 is applied to the charge circuit 53, and when the operating oil in the main circuits 32 </ b> R and 32 </ b> L becomes insufficient, the charge circuit 53 outputs the check valve 44.
The hydraulic fluid is supplied to the main circuits 32R and 32L via the. In addition, the charge circuit 53 includes
A relief valve 54 is provided in a circuit leading to the check valves 44 to adjust the hydraulic pressure in the main circuits 32R and 32L.

【0014】また、前記チャージポンプ51からは、油
圧ポンプ21の可動斜板21cの斜板角を制御する油圧
サーボ機構61へ、サーボ制御用通路55を通じてサー
ボ制御圧が供給されている。操作レバー20の回動操作
によりスプール72を摺動操作することにより、このサ
ーボ制御圧をピストン室70の上部圧力室70a又は下
部圧力室70bに供給し、ピストン71を摺動して可動
斜板21cの斜板角を制御するようにしている。そし
て、前記サーボ制御用通路55の途中部、即ち油圧サー
ボ機構61の制御回路の入口部には、定差圧形減圧弁5
7が設けられている。
A servo control pressure is supplied from the charge pump 51 to a hydraulic servo mechanism 61 for controlling the swash plate angle of the movable swash plate 21c of the hydraulic pump 21 through a servo control passage 55. The servo control pressure is supplied to the upper pressure chamber 70a or the lower pressure chamber 70b of the piston chamber 70 by sliding the spool 72 by rotating the operation lever 20, and the piston 71 is slid to move the movable swash plate. The swash plate angle of 21c is controlled. A constant differential pressure reducing valve 5 is provided at an intermediate portion of the servo control passage 55, that is, at an inlet of a control circuit of the hydraulic servo mechanism 61.
7 are provided.

【0015】次に、定差圧形減圧弁57について説明す
る。図1、図2、図5に示すように、定差圧形減圧弁5
7は、HST10のハウジング31における、油圧サー
ボ機構61の近傍に収納して構成されている。定差圧形
減圧弁57は、ハウジング31に形成される圧力室58
内に、ピストン59を摺動自在に嵌装して構成されてお
り、該ピストン59は、圧力室58内に設けられるバネ
部材56により上方付勢されている。尚、サーボ制御用
通路55は、定差圧形減圧弁57よりもチャージポンプ
51側を上流側制御通路55aとし、定差圧形減圧弁5
7よりも油圧サーボ機構61側を下流側制御通路55b
とされている。
Next, the constant differential pressure reducing valve 57 will be described. As shown in FIGS. 1, 2, and 5, a constant differential pressure reducing valve 5
7 is housed in the housing 31 of the HST 10 near the hydraulic servo mechanism 61. The constant differential pressure reducing valve 57 is provided with a pressure chamber 58 formed in the housing 31.
The piston 59 is slidably fitted therein, and the piston 59 is urged upward by a spring member 56 provided in the pressure chamber 58. The servo control passage 55 is set such that the charge pump 51 side of the constant differential pressure reducing valve 57 is located on the upstream side of the control passage 55a.
7, the hydraulic servo mechanism 61 is connected to the downstream control passage 55b.
It has been.

【0016】圧力室58は、ピストン59により上流側
圧力室58aと下流側圧力室58bとに分断されてお
り、該上流側圧力室58aと下流側圧力室58bとは、
ピストン59に形成されるオリフィス59aにより連通
している。上流側圧力室58aは連通口59bにより、
上流側制御通路55aと連通可能とされており、下流側
圧力室58bは下流側制御通路55bと連通している。
The pressure chamber 58 is divided into an upstream pressure chamber 58a and a downstream pressure chamber 58b by a piston 59. The upstream pressure chamber 58a and the downstream pressure chamber 58b are
The orifices 59a formed in the piston 59 communicate with each other. The upstream pressure chamber 58a is formed by the communication port 59b.
The communication with the upstream control passage 55a is possible, and the downstream pressure chamber 58b is in communication with the downstream control passage 55b.

【0017】このように構成される定差圧形減圧弁57
においては、チャージポンプ51からの制御油が上流側
制御通路55aを通じて上流側圧力室58aへ流入する
と、上流側圧力室58a内の制御油は、オリフィス59
aを通じて下流側圧力室58bへ案内され、下流側制御
通路55bから油圧サーボ機構61へ供給される。
The constant differential pressure reducing valve 57 thus configured
When the control oil from the charge pump 51 flows into the upstream pressure chamber 58a through the upstream control passage 55a, the control oil in the upstream pressure chamber 58a
The pressure is guided to the downstream side pressure chamber 58b through a, and supplied to the hydraulic servo mechanism 61 from the downstream side control passage 55b.

【0018】この場合、上流側圧力室58aと下流側制
御通路55bとの間は、オリフィス59aによって絞ら
れているため、該上流側圧力室58a内と下流側制御通
路55b内との間には差圧が生じる。即ち、上流側圧力
室58a内に流入した制御油は、オリフィス59aによ
り絞られて下流側圧力室58bへ流出するため、下流側
圧力室58b内の圧力に比べて上流側圧力室58a内の
圧力が大きくなる。
In this case, since the space between the upstream pressure chamber 58a and the downstream control passage 55b is narrowed by the orifice 59a, there is no space between the upstream pressure chamber 58a and the downstream control passage 55b. A differential pressure occurs. That is, since the control oil that has flowed into the upstream pressure chamber 58a is throttled by the orifice 59a and flows out to the downstream pressure chamber 58b, the pressure in the upstream pressure chamber 58a is lower than the pressure in the downstream pressure chamber 58b. Becomes larger.

【0019】この、上流側圧力室58a内と下流側圧力
室58b内との差圧が一定値より小さい間、例えば図6
に示す差圧範囲Pa内にあるときは、上流側圧力室58
a内に流入する制御油の流量の増加に比例して、オリフ
ィス59aを通じて下流側圧力室58bへ流入する制御
油の流量が増加する。
While the pressure difference between the upstream pressure chamber 58a and the downstream pressure chamber 58b is smaller than a predetermined value, for example, as shown in FIG.
Is within the differential pressure range Pa shown in FIG.
The flow rate of the control oil flowing into the downstream pressure chamber 58b through the orifice 59a increases in proportion to the increase in the flow rate of the control oil flowing into the inside a.

【0020】しかし、上流側圧力室58a内と下流側圧
力室58b内との差圧が、一定値よりも大きくなると、
例えば図6に示す差圧範囲Pb内となったときには、ピ
ストン59がバネ部材56の付勢力に抗して下方へ移動
する。ピストン59が下方移動すると、上流側制御通路
55aと連通口59bとの連通面積が小さくなって、上
流側圧力室58a内へ流入する制御油が減少し、上流側
圧力室58a内と下流側圧力室58b内との間の差圧が
小さくなるため、この差圧とバネ部材56の付勢力とが
釣り合う位置で、ピストン59の移動が停止する。これ
により、差圧範囲Pb内においては、制御油の上流側制
御通路55a内の流量にかかわらず、下流側圧力室58
bへ流出する制御油の流量が一定となり、油圧サーボ機
構61へ供給される制御油の流量を一定にすることがで
きる。
However, when the pressure difference between the upstream pressure chamber 58a and the downstream pressure chamber 58b becomes larger than a certain value,
For example, when the pressure falls within the differential pressure range Pb shown in FIG. 6, the piston 59 moves downward against the urging force of the spring member 56. When the piston 59 moves downward, the communication area between the upstream control passage 55a and the communication port 59b is reduced, the amount of control oil flowing into the upstream pressure chamber 58a is reduced, and the pressure in the upstream pressure chamber 58a and the downstream pressure are reduced. Since the pressure difference between the inside of the chamber 58b is reduced, the movement of the piston 59 is stopped at a position where the pressure difference and the urging force of the spring member 56 are balanced. Thus, in the differential pressure range Pb, regardless of the flow rate of the control oil in the upstream control passage 55a, the downstream pressure chamber 58
The flow rate of the control oil flowing out to b becomes constant, and the flow rate of the control oil supplied to the hydraulic servo mechanism 61 can be made constant.

【0021】この場合、上流側圧力室58a内と下流側
圧力室58b内との差圧の、差圧範囲Paは、バネ部材
56のバネ力の大きさにより決定され、上流側圧力室5
8a内と下流側圧力室58b内との差圧が差圧範囲Pb
内にあるときの下流側圧力室58bへの流量Fは、ピス
トン59に形成されるオリフィス59aの径dにより決
定される。従って、差圧範囲Pa及びFは、それぞれバ
ネ部材56のバネ力及びオリフィス59aの径dを変更
することにより調節することができる。
In this case, the differential pressure range Pa of the differential pressure between the upstream pressure chamber 58a and the downstream pressure chamber 58b is determined by the magnitude of the spring force of the spring member 56.
8a and the downstream pressure chamber 58b are in a differential pressure range Pb.
The flow rate F to the downstream pressure chamber 58b when the pressure is inside is determined by the diameter d of the orifice 59a formed in the piston 59. Therefore, the differential pressure ranges Pa and F can be adjusted by changing the spring force of the spring member 56 and the diameter d of the orifice 59a, respectively.

【0022】ここで、従来の油圧サーボ機構付きHST
の場合は、HSTの操作レバー20を急操作して、例え
ば急減速させると、上部圧力室70aの圧力が下がると
ともに、上部圧力室70aと連通するスプール72の油
路の、該上部圧力室70aとの連通面積が大きくなる。
これにより、上部圧力室70aへの制御油の流入速度が
速くなって、ピストン71や可動斜板21cの移動速度
も速くなって、作業機にショックが生じる原因となって
いた。
Here, a conventional HST with a hydraulic servo mechanism is used.
In this case, when the operation lever 20 of the HST is suddenly operated, for example, when the speed is rapidly decelerated, the pressure in the upper pressure chamber 70a decreases, and the upper pressure chamber 70a in the oil passage of the spool 72 communicating with the upper pressure chamber 70a. And the area of communication with
As a result, the flow speed of the control oil into the upper pressure chamber 70a increases, and the moving speed of the piston 71 and the movable swash plate 21c also increases, causing a shock to the working machine.

【0023】しかし、本例のように、油圧サーボ機構6
1の制御回路の入口部に定差圧形減圧弁57を設けるこ
とで、上流側圧力室58a内と下流側圧力室58b内と
の間の差圧、即ち、該制御回路である上流側制御通路5
5aと上部圧力室70aとの間の差圧が所定の値以上に
なると、定差圧形減圧弁57により上部圧力室70aへ
流入する制御油の流量が一定となる。これにより、HS
T10の操作レバー20を急激に操作した場合でも、該
操作レバー20の動きに対するピストン71や可動斜板
21cの動きを緩慢にすることができて、作業機のショ
ックを低減することが可能となっている。そして、定差
圧形減圧弁57のピストン59に形成されるオリフィス
59aの径dの寸法を、従来設けられていた絞り弁の絞
り径と同等にすれば、低温時にサーボ機構61へ制御油
が流入しなくなって作業機が停止しない等の不具合が発
生することもなく、大きなショック低減効果を得ること
ができる。
However, as in this example, the hydraulic servo mechanism 6
By providing a constant pressure reducing valve 57 at the inlet of the first control circuit, the differential pressure between the upstream pressure chamber 58a and the downstream pressure chamber 58b, that is, the upstream control which is the control circuit Passage 5
When the differential pressure between the pressure chamber 5a and the upper pressure chamber 70a becomes equal to or more than a predetermined value, the flow rate of the control oil flowing into the upper pressure chamber 70a by the constant differential pressure reducing valve 57 becomes constant. With this, HS
Even when the operation lever 20 of T10 is suddenly operated, the movement of the piston 71 and the movable swash plate 21c with respect to the movement of the operation lever 20 can be made slow, and the shock of the working machine can be reduced. ing. If the size of the diameter d of the orifice 59a formed in the piston 59 of the constant differential pressure reducing valve 57 is made equal to the throttle diameter of the conventionally provided throttle valve, the control oil is supplied to the servo mechanism 61 at a low temperature. A large shock reduction effect can be obtained without causing any trouble such as the work machine not stopping due to the inflow.

【0024】また、定差圧形減圧弁57は、HST10
のハウジング31内に収納されているので、該定差圧形
減圧弁57専用のハウジングを設ける必要がなく、ま
た、サーボ制御用通路55をハウジング30に直接形成
することができて配管部材を省略することもできるの
で、ショック低減機構を簡単かつ安価な構成とすること
ができる。さらに、定差圧形減圧弁57上方のカバー部
材は、油圧サーボ機構61におけるピストン室70の上
方を閉塞するピストン室カバー70cと兼用しているの
で、定差圧形減圧弁57専用のカバー部材を設ける必要
がなく、さらに安価な構成とすることができる。
The constant differential pressure reducing valve 57 is a HST10
Is housed in the housing 31, there is no need to provide a dedicated housing for the constant differential pressure reducing valve 57, and the servo control passage 55 can be formed directly in the housing 30, eliminating piping members. Therefore, the shock reduction mechanism can have a simple and inexpensive configuration. Further, since the cover member above the constant pressure reducing valve 57 is also used as the piston chamber cover 70c for closing the upper part of the piston chamber 70 in the hydraulic servo mechanism 61, the cover member dedicated to the constant pressure reducing valve 57 is used. Need not be provided, and a more inexpensive configuration can be achieved.

【0025】[0025]

【発明の効果】本発明は以上の如く構成したので、次の
ような効果を奏するのである。即ち、請求項1記載の如
く、油圧サーボ機構の動作を制御する制御回路の入口部
に、制御油流量を制御するための定差圧形減圧弁を設け
たので、油圧サーボ機構の制御回路と、油圧サーボ機構
を動作させるピストンの圧力室との間の差圧が所定の値
以上になった場合に、該圧力室へ流入する制御油の流量
を一定とすることができる。これにより、例えば、油圧
サーボ機構を操作するHSTの操作レバー等を急激に操
作した場合でも、該操作レバーの動きに対するピストン
の動きを緩慢にすることができて、このHSTが搭載さ
れる作業機のショックを低減することが可能となる。そ
して、定差圧形減圧弁のピストンに形成されるオリフィ
ス径の寸法を、従来設けられていた絞り弁の絞り径と同
等にすれば、低温時にサーボ機構へ制御油が流入しなく
なって作業機が停止しない等の不具合が発生することも
なく、大きなショック低減効果を得ることができる。
As described above, the present invention has the following advantages. That is, a constant differential pressure reducing valve for controlling the control oil flow rate is provided at the inlet of the control circuit for controlling the operation of the hydraulic servo mechanism. When the pressure difference between the piston and the pressure chamber for operating the hydraulic servo mechanism becomes equal to or more than a predetermined value, the flow rate of the control oil flowing into the pressure chamber can be made constant. As a result, for example, even when the operation lever of the HST for operating the hydraulic servo mechanism is suddenly operated, the movement of the piston with respect to the movement of the operation lever can be made slow, and the working machine on which the HST is mounted Can be reduced. If the size of the orifice diameter formed in the piston of the constant pressure differential pressure reducing valve is made equal to the throttle diameter of the conventional throttle valve, the control oil will not flow into the servo mechanism at low temperatures and the working machine will not work. A large shock reduction effect can be obtained without causing any troubles such as the stop of the motor.

【0026】さらに、請求項2記載の如く、前記油圧サ
ーボ機構の制御回路を構成しているハウジング内に、前
記定差圧形減圧弁を内臓したので、該定差圧形減圧弁専
用のハウジングを設ける必要がなく、また、サーボ制御
用通路をハウジングに直接形成することができて配管部
材を省略することもできるので、ショック低減機構を簡
単かつ安価な構成とすることができる。
Furthermore, the constant pressure differential pressure reducing valve is built in the housing constituting the control circuit of the hydraulic servo mechanism, so that the housing dedicated to the constant pressure differential pressure reducing valve is provided. Need not be provided, and since the servo control passage can be formed directly in the housing and the piping member can be omitted, the shock reduction mechanism can be made simple and inexpensive.

【0027】さらに、請求項3記載の如く、前記定差圧
形減圧弁のカバー部材を、油圧サーボ機構のピストンが
収納されるピストン室のカバー部材と兼用したので、定
差圧形減圧弁専用のカバー部材を設ける必要がなく、さ
らに安価な構成とすることができる。
Further, the cover member of the constant pressure differential pressure reducing valve is also used as the cover member of the piston chamber in which the piston of the hydraulic servo mechanism is housed, so that it is exclusively used for the constant pressure differential pressure reducing valve. There is no need to provide a cover member, and a more inexpensive configuration can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の定差圧形減圧弁が設けられる油圧サー
ボ機構を具備する油圧式無段変速装置を示す側面図であ
る。
FIG. 1 is a side view showing a hydraulic continuously variable transmission provided with a hydraulic servo mechanism provided with a constant differential pressure reducing valve of the present invention.

【図2】同じく平面図である。FIG. 2 is a plan view of the same.

【図3】油圧サーボ機構を示す正面断面図である。FIG. 3 is a front sectional view showing a hydraulic servo mechanism.

【図4】定差圧形減圧弁が設けられる油圧サーボ機構を
具備する油圧式無段変速装置の油圧回路を示す図であ
る。
FIG. 4 is a diagram showing a hydraulic circuit of a hydraulic continuously variable transmission equipped with a hydraulic servo mechanism provided with a constant differential pressure reducing valve.

【図5】定差圧形減圧弁を示す側面断面図である。FIG. 5 is a side sectional view showing a constant differential pressure reducing valve.

【図6】定差圧形減圧弁の流量制御特性を示す図であ
る。
FIG. 6 is a diagram showing a flow rate control characteristic of a constant differential pressure reducing valve.

【図7】従来の油圧サーボ機構を具備する油圧式無段変
速装置の油圧回路を示す図である。
FIG. 7 is a diagram showing a hydraulic circuit of a hydraulic stepless transmission having a conventional hydraulic servo mechanism.

【符号の説明】[Explanation of symbols]

10 油圧式無段変速装置(HST) 20 操作レバー 21 油圧ポンプ 21c 可動斜板 22 油圧モータ 31 ハウジング 55 サーボ制御用通路 56 バネ部材 57 定差圧形減圧弁 58 圧力室 58a 上流側圧力室 58b 下流側圧力室 59 ピストン 61 油圧サーボ機構 70 ピストン室 71 ピストン 72 スプール Reference Signs List 10 hydraulic continuously variable transmission (HST) 20 operation lever 21 hydraulic pump 21c movable swash plate 22 hydraulic motor 31 housing 55 servo control passage 56 spring member 57 constant differential pressure reducing valve 58 pressure chamber 58a upstream pressure chamber 58b downstream Side pressure chamber 59 Piston 61 Hydraulic servo mechanism 70 Piston chamber 71 Piston 72 Spool

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 油圧サーボ機構の動作を制御する制御回
路の入口部に、制御油流量を制御するための定差圧形減
圧弁を設けたことを特徴とする油圧サーボ機構。
1. A hydraulic servo mechanism, wherein a constant differential pressure reducing valve for controlling a control oil flow rate is provided at an inlet of a control circuit for controlling the operation of the hydraulic servo mechanism.
【請求項2】 前記油圧サーボ機構の制御回路を構成し
ているハウジング内に、前記定差圧形減圧弁を内臓した
ことを特徴とする請求項1に記載の油圧サーボ機構。
2. The hydraulic servo mechanism according to claim 1, wherein the constant differential pressure reducing valve is incorporated in a housing constituting a control circuit of the hydraulic servo mechanism.
【請求項3】 前記定差圧形減圧弁のカバー部材を、油
圧サーボ機構のピストンが収納されるピストン室のカバ
ー部材と兼用したことを特徴とする請求項2に記載の油
圧サーボ機構。
3. The hydraulic servo mechanism according to claim 2, wherein a cover member of the constant differential pressure reducing valve is also used as a cover member of a piston chamber in which a piston of the hydraulic servo mechanism is housed.
JP2001176154A 2001-06-11 2001-06-11 Hydraulic servo mechanism Pending JP2002364746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176154A JP2002364746A (en) 2001-06-11 2001-06-11 Hydraulic servo mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176154A JP2002364746A (en) 2001-06-11 2001-06-11 Hydraulic servo mechanism

Publications (1)

Publication Number Publication Date
JP2002364746A true JP2002364746A (en) 2002-12-18

Family

ID=19017186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176154A Pending JP2002364746A (en) 2001-06-11 2001-06-11 Hydraulic servo mechanism

Country Status (1)

Country Link
JP (1) JP2002364746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092806A (en) * 2005-09-27 2007-04-12 Yanmar Co Ltd Hydrostatic continuously variable transmission
JP2010025165A (en) * 2008-07-16 2010-02-04 Ihi Corp Hydraulic drive system of sluice gate, and sluice gate
WO2020057072A1 (en) * 2018-09-18 2020-03-26 江苏钧微动力科技有限公司 Threaded insertion type rotary direct-drive electro-hydraulic servo valve with harmonic speed reducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092806A (en) * 2005-09-27 2007-04-12 Yanmar Co Ltd Hydrostatic continuously variable transmission
JP4610454B2 (en) * 2005-09-27 2011-01-12 ヤンマー株式会社 Hydraulic continuously variable transmission
JP2010025165A (en) * 2008-07-16 2010-02-04 Ihi Corp Hydraulic drive system of sluice gate, and sluice gate
WO2020057072A1 (en) * 2018-09-18 2020-03-26 江苏钧微动力科技有限公司 Threaded insertion type rotary direct-drive electro-hydraulic servo valve with harmonic speed reducer

Similar Documents

Publication Publication Date Title
US4860788A (en) Metering valve
JP2000266169A (en) Continuously variable transmission
JP5571350B2 (en) Hydraulic motor drive device
US5361584A (en) Hydrostatic drive system
JP2002364746A (en) Hydraulic servo mechanism
JP4994051B2 (en) Hydraulic control device
JP4088606B2 (en) Flow control device for heavy construction equipment
CN109154290B (en) Pump device
JP2006526745A (en) Fluid pressure control device
JP2002357276A (en) Counter balance valve
JPH01203702A (en) Oil pressure direction control valve device
JPH0723667Y2 (en) Flow control valve device with check valve for pilot pressure oil
JP4155811B2 (en) Differential pressure adjustment valve
JP2001271803A (en) Selector valve
JP2002188603A (en) Switching valve
JP3024032B2 (en) Control valve device
JP3938894B2 (en) Valve structure of hydraulic equipment
JPH0419204Y2 (en)
JPH0942208A (en) Oil hydraulic drive control device
JPS647241B2 (en)
JP2011106606A (en) Hydraulic motor driving device
JPH0744771Y2 (en) Variable displacement hydraulic / mechanical power converter constant flow rate horsepower controller
JP4009396B2 (en) Load sensing control circuit
JP2005519243A (en) Valve assembly
JP3298899B2 (en) Load-sensitive control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216