JP2002364418A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP2002364418A
JP2002364418A JP2001170121A JP2001170121A JP2002364418A JP 2002364418 A JP2002364418 A JP 2002364418A JP 2001170121 A JP2001170121 A JP 2001170121A JP 2001170121 A JP2001170121 A JP 2001170121A JP 2002364418 A JP2002364418 A JP 2002364418A
Authority
JP
Japan
Prior art keywords
oxygen
fuel ratio
engine
air
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170121A
Other languages
Japanese (ja)
Inventor
Hajime Hosoya
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP2001170121A priority Critical patent/JP2002364418A/en
Publication of JP2002364418A publication Critical patent/JP2002364418A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain an oxygen adsorption quantity of an exhaust emission control catalyst at the optimal quantity, and to maintain the high exhaust emission control performance. SOLUTION: An initial value setting unit 21 sets the initial oxygen adsorption quantity value V0 when starting (restarting the operation) on the basis of the time passed after stopping the operation of the engine. An oxygen adsorption quantity computing unit 22 computes the oxygen adsorption quantity V on the basis of the initial value V0 and the oxygen adsorption change quantity Vb inside of the catalyst 12. A target air-fuel ratio setting unit 24 compares the oxygen adsorption quantity V with the optimal oxygen quantity set by an optimal oxygen adsorption quantity setting unit 23, and outputs a different thereof as a target air-fuel ratio, and an air-fuel ratio F/B control unit 25 controls the exhaust air-fuel ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、特に、排気浄化触媒の酸素吸着量を最
適量に制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and more particularly to a technique for controlling an amount of oxygen adsorbed on an exhaust purification catalyst to an optimum amount.

【0002】[0002]

【従来の技術】従来から、内燃機関の排気通路に排気浄
化触媒を配設し、該排気浄化触媒における酸化と還元と
のバランスをとって、高い転化率を実現するために燃焼
混合気の空燃比を理論空燃比に保つ空燃比フィードバッ
ク制御を行う内燃機関の排気浄化システムが知られてい
る。
2. Description of the Related Art Conventionally, an exhaust gas purifying catalyst is provided in an exhaust passage of an internal combustion engine, and the air-fuel mixture is evacuated in order to realize a high conversion by balancing oxidation and reduction in the exhaust gas purifying catalyst. 2. Description of the Related Art An exhaust gas purification system for an internal combustion engine that performs an air-fuel ratio feedback control that maintains a fuel ratio at a stoichiometric air-fuel ratio is known.

【0003】この種の排気浄化システムにおいては、触
媒の酸素吸着量が転化率に大きく影響する。すなわち、
触媒の酸素吸着量が最適値よりも多くなると、CO、H
Cの酸化反応が促進される一方、NOxの還元反応が鈍
り、逆に酸素吸着量が最適値よりも少なくなると、NO
xの還元反応が促進される一方、CO、HCの酸化反応
が鈍ることになる。
In this type of exhaust gas purification system, the amount of oxygen adsorbed on the catalyst greatly affects the conversion. That is,
If the amount of oxygen adsorbed by the catalyst exceeds the optimum value, CO, H
When the oxidation reaction of C is promoted, while the reduction reaction of NOx becomes slow, and conversely, when the amount of adsorbed oxygen becomes smaller than the optimum value, NO
While the reduction reaction of x is promoted, the oxidation reaction of CO and HC becomes dull.

【0004】このような点に鑑み、触媒の酸素吸着量を
算出し、該算出した酸素吸着量が最適な値となるように
排気空燃比を制御する空燃比制御装置が知られている
(特開平10−184424号公報等参照)。
[0004] In view of the above, there is known an air-fuel ratio control device that calculates the amount of oxygen adsorbed on a catalyst and controls the exhaust air-fuel ratio so that the calculated amount of oxygen adsorbed becomes an optimal value. See Japanese Unexamined Patent Publication No. Hei 10-184424.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
空燃比制御装置では、機関の運転停止中は触媒が大気に
曝されていることを考慮して、始動時における触媒の酸
素吸着量の初期値を吸着できる最大限の酸素量(最大酸
素吸着量)に設定している。しかし、上記従来のものの
ように最大酸素吸着量を初期値とすると、算出した酸素
吸着量と実際の酸素吸着量にずれが生じる場合があり、
その結果、排気が悪化する領域が存在することになる。
By the way, in the conventional air-fuel ratio control apparatus described above, the initial amount of oxygen adsorbed by the catalyst at the start of the engine is considered in consideration of the fact that the catalyst is exposed to the atmosphere while the operation of the engine is stopped. The maximum amount of oxygen that can absorb the value is set (maximum oxygen adsorption amount). However, when the maximum oxygen adsorption amount is set to the initial value as in the above-described conventional device, a difference may occur between the calculated oxygen adsorption amount and the actual oxygen adsorption amount,
As a result, there is a region where the exhaust is deteriorated.

【0006】すなわち、図6(A)に示すように、運転
停止後十分に時間が経過した場合には、触媒は最大限の
酸素を吸着しているので実際の酸素吸着量(実線)と算
出した酸素吸着量(破線)はほぼ一致するが、運転停止
後の経過時間が短く、触媒に吸着される酸素量が最大酸
素吸着量に達する前に運転が再開された場合には、図6
(B)に示すように、実際の酸素吸着量(実線)と算出
した酸素吸着量(破線)との間にずれが生じるため、実
際には最適酸素量になっていても、更に酸素吸着量を減
少させようと過剰に制御してしまう。
That is, as shown in FIG. 6 (A), when a sufficient time has elapsed after the operation was stopped, the actual oxygen adsorption amount (solid line) was calculated because the catalyst adsorbed the maximum amount of oxygen. Although the measured oxygen adsorption amounts (broken lines) are almost the same, when the operation has been restarted before the amount of oxygen adsorbed on the catalyst reaches the maximum oxygen adsorption amount, the elapsed time after the operation stop is short, FIG.
As shown in (B), a difference occurs between the actual oxygen adsorption amount (solid line) and the calculated oxygen adsorption amount (dashed line). Too much control to reduce.

【0007】この場合、酸素吸着量が最適酸素量にない
ことは、実際の酸素吸着量が最適酸素量を超えて(すな
わち、最適酸素量よりも少なくなって)はじめて触媒の
下流側の酸素センサ等によって検出されるので、検出後
すぐに排気空燃比の制御を修正しても、触媒の酸素吸着
量が最適酸素量からは外れた領域(図中の斜線部)が存
在し、排気が悪化してしまう。
In this case, the fact that the amount of adsorbed oxygen is not at the optimum amount of oxygen means that the actual amount of adsorbed oxygen exceeds the optimum amount of oxygen (ie, becomes smaller than the optimum amount of oxygen) until the oxygen sensor on the downstream side of the catalyst. Therefore, even if the control of the exhaust air-fuel ratio is corrected immediately after the detection, there is a region where the amount of oxygen adsorbed by the catalyst deviates from the optimum amount of oxygen (shaded area in the figure), and the exhaust gas deteriorates. Resulting in.

【0008】本発明は、上記問題に鑑みなされたもので
あって、運転停止後に触媒内に吸着する酸素量を精度よ
く算出し、始動時の触媒内酸素吸着量(初期値)を精度
よく推定することで排気浄化効率を高く維持することを
目的とする。
The present invention has been made in view of the above problems, and accurately calculates the amount of oxygen adsorbed in the catalyst after the operation is stopped, and accurately estimates the amount of oxygen adsorbed in the catalyst at the start (initial value). The purpose is to maintain high exhaust gas purification efficiency.

【0009】[0009]

【課題を解決するための手段】そのため、請求項1に係
る発明は、内燃機関の排気通路に介装された排気浄化触
媒の酸素吸着量を算出し、該酸素吸着量が所定の目標値
となるように排気空燃比を制御する内燃機関の空燃比制
御装置であって、機関の運転停止からの経過時間に基づ
いて、運転停止後に前記排気浄化触媒に吸着される酸素
吸着量を算出し、算出した運転停止後の酸素吸着量に基
づいて、始動時の酸素吸着量の初期値を設定することを
特徴とする。
Therefore, the invention according to claim 1 calculates the amount of oxygen adsorbed on an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and calculates the amount of adsorbed oxygen to a predetermined target value. An air-fuel ratio control device for an internal combustion engine that controls an exhaust air-fuel ratio so that the amount of oxygen adsorbed to the exhaust purification catalyst after the operation is stopped is calculated based on the elapsed time since the operation of the engine was stopped, An initial value of the amount of oxygen adsorbed at the time of starting is set based on the calculated amount of adsorbed oxygen after operation stop.

【0010】請求項2に係る発明は、直前の機関の運転
停止時における前記排気浄化触媒の酸素吸着量を記憶
し、該運転停止時の酸素吸着量に前記運転停止後の酸素
吸着量を加算したものを、運転再開時の酸素吸着量の初
期値として設定することを特徴とする。請求項3に係る
発明は、前記運転停止後の酸素吸着量が、機関の運転停
止からの経過時間に対して一次遅れで表されることを特
徴とする。
According to a second aspect of the present invention, the amount of oxygen adsorbed by the exhaust purification catalyst at the time of immediately preceding engine stop is stored, and the oxygen adsorbed amount after the operation is stopped is added to the oxygen adsorbed amount at the time of stop of the operation. The set value is set as an initial value of the oxygen adsorption amount at the time of restarting the operation. The invention according to claim 3 is characterized in that the oxygen adsorption amount after the stop of the operation is represented by a first-order delay with respect to the elapsed time from the stop of the operation of the engine.

【0011】請求項4に係る発明は、前記運転停止後の
酸素吸着量の時定数が、前記排気浄化触媒の環境温度に
基づいて設定されることを特徴とする。請求項5に係る
発明は、タイマを備え、該タイマにより前記機関の運転
停止からの経過時間を計測することを特徴とする。
The invention according to a fourth aspect is characterized in that a time constant of the oxygen adsorption amount after the operation is stopped is set based on an environmental temperature of the exhaust purification catalyst. The invention according to claim 5 is characterized in that a timer is provided, and the timer measures the elapsed time from the stop of the operation of the engine.

【0012】請求項6に係る発明は、機関の冷却水温度
を検出し、検出した機関の冷却水温度に基づいて前記機
関の運転停止からの経過時間を推定することを特徴とす
る。
The invention according to claim 6 is characterized in that a cooling water temperature of the engine is detected, and an elapsed time from the stop of the operation of the engine is estimated based on the detected cooling water temperature of the engine.

【0013】[0013]

【発明の効果】請求項1に係る発明によれば、機関の運
転停止からの経過時間に基づいて、運転停止後に前記排
気浄化触媒に吸着される酸素吸着量を算出し、算出した
運転停止後の酸素吸着量に基づいて始動時の酸素吸着量
の初期値を設定するので、運転停止後の酸素吸着状態を
考慮して、始動時(触媒内の酸素吸着量を最適に保つ空
燃比制御開始時)の触媒内に吸着している酸素量(初期
値)を精度よく算出できる。
According to the first aspect of the present invention, the amount of oxygen adsorbed on the exhaust gas purification catalyst after the operation is stopped is calculated based on the elapsed time from the stop of the operation of the engine. Since the initial value of the amount of oxygen adsorbed at the time of startup is set based on the amount of oxygen adsorbed at the start, the air-fuel ratio control that keeps the optimal amount of oxygen adsorbed in the catalyst is started at the start of operation ( ), The amount of oxygen (initial value) adsorbed in the catalyst can be accurately calculated.

【0014】この結果、空燃比制御の精度も向上し、排
気エミッションの悪化を確実に防止できる。請求項2に
係る発明によれば、直前の機関の運転停止時における前
記排気浄化触媒の酸素吸着量に、前記運転停止後の酸素
吸着量を加算することで容易、かつ、正確に運転再開時
の酸素吸着量の初期値を設定できる。
As a result, the accuracy of the air-fuel ratio control is improved, and the deterioration of the exhaust emission can be reliably prevented. According to the invention according to claim 2, it is easy and accurate to restart the operation by adding the oxygen adsorption amount after the operation stop to the oxygen adsorption amount of the exhaust purification catalyst immediately before the operation stop of the engine. The initial value of the oxygen adsorption amount can be set.

【0015】請求項3に係る発明によれば、前記排気浄
化触媒が吸着できる酸素量には限界があり、また、吸着
している酸素量が少ないほど吸着できる(吸着しやす
い)と考えられるので、前記運転停止後の酸素吸着量
を、運転停止からの経過時間に対する一次遅れで表すこ
とで、簡易な式を用いて精度よく表現することができ
る。
According to the third aspect of the invention, there is a limit to the amount of oxygen that can be adsorbed by the exhaust purification catalyst, and it is considered that the smaller the amount of adsorbed oxygen is, the easier it is to adsorb (the easier it is to adsorb). By expressing the oxygen adsorption amount after the stoppage of the operation as a first-order lag with respect to the elapsed time from the stoppage of the operation, it is possible to accurately express the amount using a simple equation.

【0016】請求項4に係る発明によれば、前記排気浄
化触媒の酸素吸着状態は(触媒自体の)温度によって変
化するので、前記一次遅れで表した酸素吸着状態の時定
数を触媒の環境温度に応じて設定することで、より精度
よく運転停止後の酸素吸着量を算出できる。なお、触媒
の環境温度としては、運転停止時における触媒部分の環
境温度を代表するものであれば何でもよく、触媒自体の
温度の他、排温、外気温、吸気温等が使用できる。
According to the fourth aspect of the present invention, since the oxygen adsorption state of the exhaust purification catalyst changes depending on the temperature (of the catalyst itself), the time constant of the oxygen adsorption state expressed by the first-order lag is determined by the environmental temperature of the catalyst. , The oxygen adsorption amount after the operation is stopped can be calculated with higher accuracy. As the environmental temperature of the catalyst, any temperature representative of the environmental temperature of the catalyst portion when the operation is stopped may be used. In addition to the temperature of the catalyst itself, exhaust temperature, outside air temperature, intake air temperature and the like can be used.

【0017】請求項5に係る発明によれば、タイマによ
り機関運転停止からの経過時間を直接計測し、運転停止
後の触媒内の酸素吸着量を算出できる。請求項6に係る
発明によれば、機関の冷却水温度を読み込むことによ
り、例えばマップを参照して機関運転停止からの経過時
間を容易に求めることができる。
According to the fifth aspect of the invention, the elapsed time from the stop of the operation of the engine is directly measured by the timer, and the amount of adsorbed oxygen in the catalyst after the stop of the operation can be calculated. According to the sixth aspect of the invention, by reading the temperature of the cooling water of the engine, it is possible to easily obtain the elapsed time from the stop of the operation of the engine with reference to, for example, a map.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図1は、本発明の一実施形態を示す内
燃機関のシステム図である。図1において、機関(エン
ジン)1の吸気通路2には、吸入空気流量Qaを検出す
るエアフローメータ3が設けられ、スロットル弁4によ
り吸入空気量Qaを制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an internal combustion engine showing one embodiment of the present invention. In FIG. 1, an air flow meter 3 for detecting an intake air flow rate Qa is provided in an intake passage 2 of an engine 1, and an intake air amount Qa is controlled by a throttle valve 4.

【0019】エンジン1の各気筒には、燃焼室5内に燃
料を噴射する燃料噴射弁(インジェクタ)6、燃焼室5
内で火花点火を行う点火プラグ7が設けられており、吸
気弁8を介して吸入された空気に対して前記燃料噴射弁
6から燃料を噴射して混合気を形成し、該混合気を前記
燃焼室5内で圧縮し、点火プラグ7による火花点火によ
って着火する。
Each cylinder of the engine 1 has a fuel injection valve (injector) 6 for injecting fuel into the combustion chamber 5, a combustion chamber 5
A spark plug 7 for performing spark ignition is provided therein, and a fuel mixture is formed by injecting fuel from the fuel injection valve 6 with respect to air sucked in through an intake valve 8, and the air-fuel mixture is formed. The fuel is compressed in the combustion chamber 5 and ignited by spark ignition by the spark plug 7.

【0020】排気通路10には排気浄化触媒(以下、単
に触媒という)12が介装され、該触媒12の上流側及
び下流側には、それぞれ空燃比センサ(以下、上流側空
燃比センサ11、下流側空燃比センサ13という)が設
けられている。エンジン1の排気は、排気弁9を介して
燃焼室5から排気通路10に排出され、排気浄化触媒1
2及び図示しないマフラーを介して大気中に放出され
る。
An exhaust purification catalyst (hereinafter, simply referred to as a catalyst) 12 is interposed in the exhaust passage 10, and an air-fuel ratio sensor (hereinafter, an upstream air-fuel ratio sensor 11) is provided upstream and downstream of the catalyst 12, respectively. Downstream air-fuel ratio sensor 13). Exhaust gas of the engine 1 is discharged from the combustion chamber 5 to an exhaust passage 10 via an exhaust valve 9,
2 and are discharged into the atmosphere via a muffler (not shown).

【0021】C/U20には、上流側空燃比センサ1
1、下流側空燃比センサ13、クランク角センサ(図示
せず)、エンジン冷却水温度Twを検出する水温センサ
(図示せず)、エアフローメータ3等の各種センサから
の信号が入力される。なお、エンジン回転速度Neは、
クランク角センサからの信号に基づいて算出される。C
/U20は、入力された各種信号を図中に示された制御
ブロック図に従って処理することにより、(触媒12上
流側の)目標排気空燃比を設定し、該目標排気空燃比と
なるよう噴射燃料量等を制御する。
The C / U 20 includes an upstream air-fuel ratio sensor 1
1. Signals from various sensors such as a downstream air-fuel ratio sensor 13, a crank angle sensor (not shown), a water temperature sensor (not shown) for detecting an engine coolant temperature Tw, and an air flow meter 3 are input. Note that the engine rotation speed Ne is
It is calculated based on a signal from the crank angle sensor. C
/ U20 sets the target exhaust air-fuel ratio (on the upstream side of the catalyst 12) by processing the various input signals in accordance with the control block diagram shown in the figure, and sets the injected fuel to be the target exhaust air-fuel ratio. Control the amount etc.

【0022】以下、本実施形態に係る目標排気空燃比の
設定について、図1中に示した制御ブロック図に従って
説明する。初期値設定部21は、触媒12の酸素吸着量
の初期値V0を設定する。具体的には、エンジン停止後
に触媒12に吸着される酸素量を算出(推定)し、該算
出したエンジン停止後の酸素吸着量Vaと(直前の)エ
ンジン停止時の酸素吸着量V(-1)とを合算した値を始動
時(運転再開時)の触媒12の酸素吸着量の初期値V0
(=Va+V(-1))として設定する。
Hereinafter, the setting of the target exhaust air-fuel ratio according to the present embodiment will be described with reference to the control block diagram shown in FIG. The initial value setting unit 21 sets an initial value V0 of the oxygen adsorption amount of the catalyst 12. Specifically, the amount of oxygen adsorbed on the catalyst 12 after the engine is stopped is calculated (estimated), and the calculated oxygen adsorbed amount Va after the engine is stopped and the oxygen adsorption amount V (-1 immediately before the engine is stopped) are calculated. ) Is added to the initial value V0 of the amount of oxygen adsorbed on the catalyst 12 at the time of startup (when operation is resumed)
(= Va + V (-1)).

【0023】なお、エンジン運転中においては、触媒1
2に吸着される酸素量が最適酸素量Vsとなるように制
御されているので、簡易には、エンジン停止後の酸素吸
着量V(-1)=Vsとして初期値V0を設定してもよい
(V0=Va+Vs)。ここで、エンジン停止後の酸素
吸着量Vaの算出について説明する。本実施形態では、
エンジン停止後の触媒12内におけるガス交換が一定の
割合で進んで酸素濃度が経過時間に対して比例的に変化
し(図2(A)参照)、また、触媒12内の酸素濃度に
対する酸素吸着量がLangmuir型(図2(B)参照)で表
されると仮定して、エンジン停止後の酸素吸着量Vsを
算出する。
During the operation of the engine, the catalyst 1
Since the amount of oxygen adsorbed on the fuel cell 2 is controlled to be the optimum oxygen amount Vs, the initial value V0 may be simply set as the oxygen adsorption amount V (-1) = Vs after the engine is stopped. (V0 = Va + Vs). Here, the calculation of the oxygen adsorption amount Va after the engine is stopped will be described. In this embodiment,
After the engine is stopped, the gas exchange in the catalyst 12 proceeds at a constant rate, and the oxygen concentration changes in proportion to the elapsed time (see FIG. 2 (A)). Assuming that the amount is represented by the Langmuir type (see FIG. 2B), the oxygen adsorption amount Vs after the engine is stopped is calculated.

【0024】なお、Langmuir型とは、よく知られている
吸着形式であり、(a)ガス分子は吸着剤表面の所定の
席に吸着する、(b)一つの吸着席にはガス分子が一つ
しか吸着できない、(c)吸着分子のエネルギー状態は
隣の席に吸着分子がいてもいなくても一定である、との
仮定のもと、式(1)により表される。 v=a・b・P/(1+a・P) …(1) 但し、P:気相の平衡圧、T:温度、b:飽和吸着量、
a:吸着量を一定とした場合にPとTの関係からClausi
us-Clapayron式を適用して求められる等温吸着熱qiso
とa=a0exp(qiso/RT)の関係にある値である
(a0は定数)。
The Langmuir type is a well-known type of adsorption, in which (a) gas molecules are adsorbed on a predetermined surface of the adsorbent surface, and (b) one gas molecule is adsorbed on one adsorption site. (C) The energy state of the adsorbed molecule is constant even if there is no adsorbed molecule in the adjacent seat, and is expressed by equation (1). v = a · b · P / (1 + a · P) (1) where P: equilibrium pressure of gas phase, T: temperature, b: saturated adsorption amount,
a: Clausi from the relationship between P and T when the adsorption amount is constant
Isothermal heat of adsorption q iso obtained by applying the us-Clapayron equation
And a = a 0 exp (q iso / RT) (a 0 is a constant).

【0025】すると、図2(C)に示すように、エンジ
ン停止後の酸素吸着量は、経過時間に対して一次遅れで
表すことができる。そこで、エンジン停止後の酸素吸着
量V式(2)のように表し、エンジン停止後の経過時間
tを計測してエンジン停止後の酸素吸着量Vaを算出す
る。 Va=K・(1−e-t/T) …(2) 但し、Kは定数、Tは時定数であり、実験等によりあら
かじめ求めた値を用いる。また、経過時間tに基づい
て、あらかじめ設定したマップを参照すようにしてもよ
い。
Then, as shown in FIG. 2C, the oxygen adsorption amount after the engine is stopped can be represented by a first-order lag with respect to the elapsed time. Therefore, the oxygen adsorption amount V after the engine is stopped is calculated by expressing the oxygen adsorption amount V after the engine is stopped as the equation (2), and measuring the elapsed time t after the engine is stopped. Va = K · (1−e −t / T ) (2) where K is a constant and T is a time constant, and a value obtained in advance by an experiment or the like is used. Further, a map set in advance may be referred to based on the elapsed time t.

【0026】ここで、時定数Tは触媒12の環境温度に
より変化するので、触媒12の近傍に排温を検出する排
温センサ14等を配設し(図1参照)、検出した排温に
基づいて設定するようにしてもよい(例えば、図3に示
すようなテーブルを参照して時定数Tを設定する)。こ
れによれば、エンジン停止後の酸素吸着量Vaをより精
度よく算出(推定)できる。
Here, since the time constant T changes depending on the environmental temperature of the catalyst 12, an exhaust temperature sensor 14 or the like for detecting the exhaust temperature is disposed near the catalyst 12 (see FIG. 1). The time constant may be set based on the time constant (for example, the time constant T is set with reference to a table as shown in FIG. 3). According to this, the oxygen adsorption amount Va after the engine is stopped can be calculated (estimated) with higher accuracy.

【0027】なお、前記排温は触媒12の環境温度を代
表する一例であり、触媒温度センサによる触媒自体の温
度、外気温、吸気温度等に基づいて時定数Tを設定する
ようにしてもよい。図4は、エンジン停止後の酸素吸着
量Vaの状態と酸素吸着量Vaの算出をタイムチャート
で示したものである。
Note that the exhaust temperature is an example representative of the environmental temperature of the catalyst 12, and the time constant T may be set based on the temperature of the catalyst itself, the outside air temperature, the intake air temperature and the like by the catalyst temperature sensor. . FIG. 4 is a time chart showing the state of the oxygen adsorption amount Va after the engine is stopped and the calculation of the oxygen adsorption amount Va.

【0028】図に示すように、エンジンが停止するとエ
ンストフラグが立てられ、タイマによるカウントを開始
する。エンジンが再始動するとエンストフラグが解除さ
れ、タイマカウントを終了する。このときのタイマカウ
ント値を読み込み、式(2)によりエンジン停止後の酸
素吸着量Vaを算出する。また、上記のようなタイマに
よるカウントに代えて、エンジン冷却水温度Twを検出
し、エンジン冷却水温度Twに基づいてエンジン停止か
らの経過時間tを推定するようにしてもよい。これは、
時間の経過に伴い水温が変化することを利用したもので
あり、例えば、図5に示すようなテーブルを検索して推
定する。
As shown in the figure, when the engine stops, an engine stall flag is set, and counting by a timer is started. When the engine is restarted, the engine stall flag is cleared and the timer count ends. The timer count value at this time is read, and the oxygen adsorption amount Va after the engine is stopped is calculated by equation (2). Further, instead of the counting by the timer as described above, the engine cooling water temperature Tw may be detected, and the elapsed time t from the stop of the engine may be estimated based on the engine cooling water temperature Tw. this is,
This is based on the fact that the water temperature changes with the passage of time. For example, a table as shown in FIG. 5 is searched and estimated.

【0029】なお、エンジンが停止している時間が所定
値Tsを超える場合は、触媒12が十分に大気に曝され
て触媒12には吸着できる最大限の酸素が吸着されてい
ると考えられるので、触媒12の最大酸素吸着量Vma
xを酸素吸着量の初期値V0として設定する。酸素吸着
量算出部22は、触媒12内の酸素吸着量Vを算出し、
記憶する。
If the time during which the engine is stopped exceeds the predetermined value Ts, it is considered that the catalyst 12 is sufficiently exposed to the atmosphere and the maximum amount of oxygen that can be adsorbed on the catalyst 12 is adsorbed. , The maximum oxygen adsorption amount Vma of the catalyst 12
x is set as an initial value V0 of the oxygen adsorption amount. The oxygen adsorption amount calculation unit 22 calculates an oxygen adsorption amount V in the catalyst 12,
Remember.

【0030】具体的には、前記初期値設定手段21によ
り設定された酸素吸着量の初期値V0に、始動後(運転
再開後)の触媒12内に吸着された酸素の変化量(吸着
酸素変化量)Vbを加算することで触媒12内の酸素吸
着量Vを算出する(V=V0+Vb)。ここで、前記吸
着酸素変化量Vbは、例えば、上流側空燃比センサ1
1、下流側空燃比センサ13により検出された触媒前空
燃比λf(酸素濃度)と触媒後空燃比λr(酸素濃度)
とから、式(3)により酸素吸着速度ΔVbを算出し、
これを積分処理して求める。
Specifically, the initial value V0 of the amount of oxygen adsorbed set by the initial value setting means 21 is changed to the amount of change in the amount of oxygen adsorbed in the catalyst 12 after startup (after restart of operation) (change in adsorbed oxygen). The amount Vb is added to calculate the oxygen adsorption amount V in the catalyst 12 (V = V0 + Vb). Here, the adsorbed oxygen change amount Vb is, for example, determined by the upstream air-fuel ratio sensor 1.
1. Air-fuel ratio before catalyst λf (oxygen concentration) and air-fuel ratio after catalyst λr (oxygen concentration) detected by downstream air-fuel ratio sensor 13
From equation (3), the oxygen adsorption velocity ΔVb is calculated by
This is obtained by integration processing.

【0031】ΔVb=k・(λf−λr) …(3) 但し、kは定数であり、エンジン毎に所定の値を設定す
る。始動時は最適酸素量よりも多くの酸素が吸着されて
いるので、前記始動後に触媒1に吸着する酸素量Vb
は、通常、負の値となる。なお、上記の始動後の酸素吸
着量Vbの算出方法は一例であり、他の方法により算出
するようにしてもよい。
ΔVb = k · (λf−λr) (3) where k is a constant, and a predetermined value is set for each engine. At the time of starting, more oxygen than the optimum amount of oxygen is adsorbed.
Is usually a negative value. The above-described method of calculating the oxygen adsorption amount Vb after the start is an example, and may be calculated by another method.

【0032】そして、エンジン停止時における触媒12
内の酸素吸着量Vは、前記初期値設定部21における初
期値算出の際、読み出されて(直前の)エンジン停止時
の酸素吸着量V(-1)として使用される。最適酸素吸着量
設定部23は、エンジンの運転状態(エンジン負荷T
p、エンジン回転速度Ne等)に基づいて触媒12内の
最適酸素吸着量Vsを設定する。ここで、最適酸素吸着
量Vsとは、触媒12の浄化効率が最大となるような酸
素吸着量(の範囲)であり、CO、HCが排出されやす
い運転領域では比較的大きくなり、NOxが排出されや
すい運転領域では比較的小さく設定する。
The catalyst 12 when the engine is stopped
When the initial value is calculated in the initial value setting unit 21, the oxygen adsorption amount V in the inside is read out and used as the oxygen adsorption amount V (-1) when the engine is stopped (immediately before). The optimum oxygen adsorption amount setting unit 23 determines the operating state of the engine (engine load T
The optimum oxygen adsorption amount Vs in the catalyst 12 is set based on (p, engine rotation speed Ne, etc.). Here, the optimum oxygen adsorption amount Vs is (a range of) an oxygen adsorption amount at which the purification efficiency of the catalyst 12 is maximized. It is set to a relatively small value in an operating region where the operation is likely to occur.

【0033】目標空燃比設定部24は、前記酸素吸着量
算出部22が算出した触媒12内の酸素吸着量Vと前記
最適酸素吸着量設定手段23が設定した最適酸素吸着量
Vsとを比較してその差を演算し、その差を目標空燃比
に変換して出力する。なお、目標空燃比とは、上流側空
燃比センサ11で検出される排気空燃比の目標値のこと
である。
The target air-fuel ratio setting unit 24 compares the oxygen adsorption amount V in the catalyst 12 calculated by the oxygen adsorption amount calculating unit 22 with the optimum oxygen adsorption amount Vs set by the optimum oxygen adsorption amount setting means 23. To calculate the difference, convert the difference into a target air-fuel ratio, and output it. The target air-fuel ratio is a target value of the exhaust air-fuel ratio detected by the upstream air-fuel ratio sensor 11.

【0034】空燃比フィードバック(F/B)制御部2
5は、前記目標空燃比設定24により設定された目標空
燃比(目標λ)とA/Fセンサ11により検出された実
際の空燃比(実λ)とに基づいて噴射燃料量等を設定す
る。以上のように、エンジン停止後に触媒12内に吸着
される酸素量をエンジン停止からの経過時間に基づいて
算出し、これを用いて始動時(運転再開時)の酸素吸着
量初期値を設定することにより、エンジン始動時に触媒
12内に吸着されている酸素量を精度よく算出(推定)
できるので、始動直後から触媒12内の酸素吸着量を最
適に制御することができ、排気の悪化を確実に防止でき
る。
Air-fuel ratio feedback (F / B) controller 2
Reference numeral 5 sets the injection fuel amount and the like based on the target air-fuel ratio (target λ) set by the target air-fuel ratio setting 24 and the actual air-fuel ratio (actual λ) detected by the A / F sensor 11. As described above, the amount of oxygen adsorbed in the catalyst 12 after the engine is stopped is calculated based on the elapsed time from the stop of the engine, and the calculated amount is used to set the initial value of the amount of oxygen adsorbed at the time of startup (when the operation is restarted). Thereby, the amount of oxygen adsorbed in the catalyst 12 at the time of starting the engine is accurately calculated (estimated).
Therefore, the amount of oxygen adsorbed in the catalyst 12 can be optimally controlled immediately after the start, and deterioration of exhaust gas can be reliably prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示す図。FIG. 1 is a diagram showing a basic configuration of the present invention.

【図2】エンジン停止後における触媒の酸素吸着量を示
す図。
FIG. 2 is a diagram showing the amount of oxygen adsorbed on a catalyst after the engine is stopped.

【図3】エンジン停止後の酸素吸着量の時定数を設定す
るテーブルの一例を示す図。
FIG. 3 is a diagram showing an example of a table for setting a time constant of an oxygen adsorption amount after the engine is stopped.

【図4】エンジン停止後の酸素吸着量を算出するタイム
チャート。
FIG. 4 is a time chart for calculating an oxygen adsorption amount after the engine is stopped.

【図5】エンジン停止からの経過時間を推定するテーブ
ルの一例を示す図。
FIG. 5 is a diagram showing an example of a table for estimating an elapsed time since the engine was stopped.

【図6】従来の空燃比制御装置における触媒内の酸素吸
着量の算出(推定)値と実際の値の比較を示す図。
FIG. 6 is a diagram showing a comparison between a calculated (estimated) value of an oxygen adsorption amount in a catalyst and an actual value in a conventional air-fuel ratio control device.

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気通路 3 エアフローメータ 4 スロットル弁 6 燃料噴射弁 7 点火プラグ 8 吸気弁 9 排気弁 10 排気通路 11 上流側空燃比センサ 12 排気浄化触媒 13 下流側空燃比センサ 20 コントロールユニット(C/U) 21 初期値設定部 22 酸素吸着量算出部 23 最適酸素吸着量設定部 24 目標空燃比設定部 25 空燃比F/B制御部 Reference Signs List 1 engine 2 intake passage 3 air flow meter 4 throttle valve 6 fuel injection valve 7 spark plug 8 intake valve 9 exhaust valve 10 exhaust passage 11 upstream air-fuel ratio sensor 12 exhaust purification catalyst 13 downstream air-fuel ratio sensor 20 control unit (C / U) 21) Initial value setting unit 22 Oxygen adsorption amount calculation unit 23 Optimum oxygen adsorption amount setting unit 24 Target air-fuel ratio setting unit 25 Air-fuel ratio F / B control unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA17 AB03 BA01 BA14 BA15 CB02 EA00 EA01 EA05 EA14 EA16 EA17 EA18 EA19 FA01 FA06 FB09 HA36 HA37 HA42 3G301 HA01 JA21 KA01 KA28 LA01 LB01 MA01 MA11 NA06 NC02 PA01Z PB03Z PD09Z PE03Z PE08Z  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G091 AA17 AB03 BA01 BA14 BA15 CB02 EA00 EA01 EA05 EA14 EA16 EA17 EA18 EA19 FA01 FA06 FB09 HA36 HA37 HA42 3G301 HA01 JA21 KA01 KA28 LA01 LB01 MA01 MA11 NA03 PE03 PZZZZ

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気通路に介装された排気浄化
触媒の酸素吸着量を算出し、該酸素吸着量が所定の目標
値となるように排気空燃比を制御する内燃機関の空燃比
制御装置であって、 機関の運転停止からの経過時間に基づいて、運転停止後
に前記排気浄化触媒に吸着される酸素吸着量を算出し、 算出した運転停止後の酸素吸着量に基づいて、始動時の
酸素吸着量の初期値を設定することを特徴とする内燃機
関の空燃比制御装置。
An air-fuel ratio of an internal combustion engine that calculates an oxygen adsorption amount of an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine and controls the exhaust air-fuel ratio so that the oxygen adsorption amount becomes a predetermined target value. A control device that calculates an amount of oxygen adsorbed on the exhaust gas purification catalyst after the operation is stopped based on an elapsed time since the operation of the engine is stopped, and starts the engine based on the calculated amount of oxygen adsorption after the operation is stopped. An air-fuel ratio control device for an internal combustion engine, wherein an initial value of an oxygen adsorption amount at the time is set.
【請求項2】直前の機関の運転停止時における前記排気
浄化触媒の酸素吸着量を記憶し、該運転停止時の酸素吸
着量に前記運転停止後の酸素吸着量を加算したものを、
運転再開時の酸素吸着量の初期値として設定することを
特徴とする請求項1記載の内燃機関の空燃比制御装置。
2. An oxygen adsorption amount of the exhaust gas purifying catalyst at the time of immediately preceding engine stoppage is stored, and the sum of the oxygen adsorption amount at the time of the stoppage of the engine and the oxygen adsorption amount after the stoppage of the engine is obtained.
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the initial value of the oxygen adsorption amount at the time of restart of operation is set.
【請求項3】前記運転停止後の酸素吸着量は、機関の運
転停止からの経過時間に対して一次遅れで表されること
を特徴とする請求項1又は請求項2記載の内燃機関の空
燃比制御装置。
3. The internal combustion engine according to claim 1, wherein the amount of oxygen adsorbed after the stop of the operation is represented by a first-order delay with respect to an elapsed time from the stop of the operation of the engine. Fuel ratio control device.
【請求項4】前記運転停止後の酸素吸着量の時定数は、
前記排気浄化触媒の環境温度に基づいて設定されること
を特徴とする請求項3記載の内燃機関の空燃比制御装
置。
4. The time constant of the amount of adsorbed oxygen after the operation is stopped is as follows:
4. The air-fuel ratio control device for an internal combustion engine according to claim 3, wherein the air-fuel ratio is set based on an environmental temperature of the exhaust purification catalyst.
【請求項5】タイマを備え、 該タイマにより前記機関の運転停止からの経過時間を計
測することを特徴とする請求項1から請求項4のいずれ
か1つに記載の内燃機関の空燃比制御装置。
5. The air-fuel ratio control for an internal combustion engine according to claim 1, further comprising a timer, wherein the timer measures an elapsed time from a stop of the operation of the engine. apparatus.
【請求項6】機関の冷却水温度を検出し、 検出した機関の冷却水温度に基づいて前記機関の運転停
止からの経過時間を推定することを特徴とする請求項1
から請求項4のいずれか1つに記載の内燃機関の空燃比
制御装置。
6. The system according to claim 1, wherein a cooling water temperature of the engine is detected, and an elapsed time since the operation of the engine is stopped is estimated based on the detected cooling water temperature of the engine.
An air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 4.
JP2001170121A 2001-06-05 2001-06-05 Air-fuel ratio control device for internal combustion engine Pending JP2002364418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170121A JP2002364418A (en) 2001-06-05 2001-06-05 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170121A JP2002364418A (en) 2001-06-05 2001-06-05 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002364418A true JP2002364418A (en) 2002-12-18

Family

ID=19012095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170121A Pending JP2002364418A (en) 2001-06-05 2001-06-05 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002364418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270562A (en) * 2008-05-07 2009-11-19 Hyundai Motor Co Ltd Fuel vapor control system and control method
JP2021116777A (en) * 2020-01-29 2021-08-10 マツダ株式会社 Diagnostic device of oxidation catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270562A (en) * 2008-05-07 2009-11-19 Hyundai Motor Co Ltd Fuel vapor control system and control method
JP2021116777A (en) * 2020-01-29 2021-08-10 マツダ株式会社 Diagnostic device of oxidation catalyst
JP7294167B2 (en) 2020-01-29 2023-06-20 マツダ株式会社 Oxidation catalyst diagnostic device

Similar Documents

Publication Publication Date Title
JPH0713493B2 (en) Air-fuel ratio controller for internal combustion engine
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001152928A (en) Air-fuel ratio control device for internal combustion engine
JP2006083796A (en) Air fuel ratio controller for internal combustion engine
JP4403156B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP4225126B2 (en) Engine exhaust gas purification device
JP2004324538A (en) Engine control device
JPH07119447A (en) Exhaust emission control method for internal combustion engine, exhaust emission control device suitable for the method, and deterioration degree of catalyst detecting device
JP2005127259A (en) Control device for engine
JP4365671B2 (en) Engine control device
JP2002364418A (en) Air-fuel ratio control device for internal combustion engine
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP4031887B2 (en) Engine air-fuel ratio control apparatus and method
JP2007321590A (en) Catalyst early warming-up control device of internal combustion engine
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2006037924A (en) Control unit of vehicle
JP2006233781A (en) Catalyst diagnostic device for internal combustion engine
JP2570417B2 (en) EGR rate detecting device for internal combustion engine
JP2003336538A (en) Exhaust emission control device for internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP2010185382A (en) Control device of internal combustion engine
JP3951630B2 (en) Diesel engine exhaust purification system
JP2004108187A (en) Deterioration diagnosis device of exhaust emission control catalyst for internal combustion engine