JP2002364351A - Catalyst temperature raising device for internal combustion engine - Google Patents

Catalyst temperature raising device for internal combustion engine

Info

Publication number
JP2002364351A
JP2002364351A JP2001174677A JP2001174677A JP2002364351A JP 2002364351 A JP2002364351 A JP 2002364351A JP 2001174677 A JP2001174677 A JP 2001174677A JP 2001174677 A JP2001174677 A JP 2001174677A JP 2002364351 A JP2002364351 A JP 2002364351A
Authority
JP
Japan
Prior art keywords
exhaust
purification catalyst
upstream end
exhaust purification
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001174677A
Other languages
Japanese (ja)
Other versions
JP3700052B2 (en
Inventor
Kimihisa Tsuji
公寿 辻
Yukio Kinugasa
幸夫 衣笠
Takaaki Ito
隆晟 伊藤
Kazuhiro Sakurai
計宏 桜井
Hiroki Ichinose
宏樹 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001174677A priority Critical patent/JP3700052B2/en
Publication of JP2002364351A publication Critical patent/JP2002364351A/en
Application granted granted Critical
Publication of JP3700052B2 publication Critical patent/JP3700052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To heat a part in the vicinity of an exhaust upstream end face of an exhaust purifying catalyst to prevent the occurrence of a difference in temperature. SOLUTION: The exhaust purifying catalyst 7 having electric conductivity is arranged in an engine exhaust passage 2. A conductive material 9 is arranged by facing the exhaust upstream end face 8 of the catalyst. A part in the vicinity of the upstream end face of the catalyst is induced and heated by supplying an alternating current to the conductive material. Furthermore, a central electrode 11 connected to the conductive material is connected to the center of the upstream end face of the catalyst substantially to connect an external electrode 13 with an outer peripheral face of a part 16 in the vicinity of the upstream end face of the catalyst. The alternating current flowing in the conductive material passes the part in the vicinity of the upstream end face of the catalyst through the central electrode and flows into the external electrode to heat the part in the vicinity of the upstream end face of the catalyst directly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の触媒昇温
装置に関し、特に、導電体に交番電流を供給して誘導加
熱するようにした触媒昇温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst temperature raising device for an internal combustion engine, and more particularly to a catalyst temperature raising device for supplying an alternating current to an electric conductor for induction heating.

【0002】[0002]

【従来の技術】自動車の内燃機関では、排出される排気
ガス中の有害ガス成分、例えば、一酸化炭素(CO)、
窒素酸化物(NOx)、および炭化水素(HC)等の成
分を大気に放出する前に浄化するために、白金(Pt)
やパラジウム(Pd)等の貴金属を触媒として担持した
排気浄化触媒を排気系に備えている。
2. Description of the Related Art In an internal combustion engine of an automobile, harmful gas components in exhaust gas emitted, for example, carbon monoxide (CO),
In order to purify components such as nitrogen oxides (NO x ) and hydrocarbons (HC) before releasing them to the atmosphere, platinum (Pt)
An exhaust gas purification catalyst carrying a noble metal such as palladium (Pd) or a noble metal as a catalyst is provided in the exhaust system.

【0003】排気浄化触媒において触媒が触媒作用を行
うためには、排気浄化触媒をその活性温度以上に昇温さ
せなければならない。しかしながら、特に機関始動時に
は排気浄化触媒の温度は低く、また排気ガスも低温であ
るので排気浄化触媒はその活性温度にまで昇温しづら
い。そのため、排気浄化触媒では触媒作用が活発に行わ
れにくい。そこで、例えば機関始動時等のように排気浄
化触媒の温度が低い時に、排気ガス以外の手段により排
気浄化触媒をその活性温度以上にまで加熱して触媒作用
の活発化を図る必要がある。
[0003] In order for the catalyst to perform a catalytic action in the exhaust purification catalyst, the temperature of the exhaust purification catalyst must be raised to the activation temperature or higher. However, especially when the engine is started, the temperature of the exhaust purification catalyst is low and the exhaust gas is also low temperature, so that it is difficult for the exhaust purification catalyst to rise to its activation temperature. Therefore, it is difficult for the exhaust purification catalyst to actively perform the catalytic action. Therefore, when the temperature of the exhaust purification catalyst is low, for example, when starting the engine, it is necessary to heat the exhaust purification catalyst to a temperature higher than its activation temperature by means other than the exhaust gas to activate the catalytic action.

【0004】排気浄化触媒を昇温させる方法の一つに誘
導加熱を用いた方法がある。このような方法を用いた従
来の触媒昇温装置の構成では、渦巻き状の誘導加熱用コ
イルを排気浄化触媒の排気上流端面に対面するように配
置して、誘導加熱用コイルに交番電流を流すことによっ
て排気浄化触媒の排気上流端面近傍を誘導加熱するよう
にしている。このように排気浄化触媒を誘導加熱するこ
とにより、排気浄化触媒の排気上流端面近傍の部分(以
降、単に上流端部分と称す。)のみを加熱することがで
きる。よって、排気上流端面近傍の部分を少ない電力で
迅速に所望の温度まで昇温させることができる。
One of the methods for raising the temperature of the exhaust purification catalyst is a method using induction heating. In the configuration of the conventional catalyst temperature raising device using such a method, a spiral induction heating coil is disposed so as to face the exhaust upstream end face of the exhaust purification catalyst, and an alternating current flows through the induction heating coil. Thus, the vicinity of the exhaust upstream end surface of the exhaust purification catalyst is induction-heated. By inductively heating the exhaust purification catalyst in this way, it is possible to heat only the portion near the exhaust upstream end surface of the exhaust purification catalyst (hereinafter, simply referred to as the upstream end portion). Therefore, the temperature in the vicinity of the exhaust upstream end surface can be quickly raised to a desired temperature with a small amount of electric power.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の触媒昇温装置の構成では、誘導加熱用コイルの
渦巻きの中央部と対面する排気浄化触媒の上流端部分の
中央領域の部分(以降、単に中央領域部分と称す。)の
誘導加熱による加熱量が、排気浄化触媒の上流端部分の
中央領域部分周りの領域の部分(周囲領域部分)の誘導
加熱による加熱量よりも小さくなってしまう傾向にあ
る。このため、排気浄化触媒の上流端部分の中央領域部
分の昇温速度が上流端部分の周囲領域部分の昇温速度よ
りも遅くなり、よって排気浄化触媒の上流端部分の中央
領域部分の温度が上流端部分の周囲領域部分の温度より
も低くなってしまう。
However, in the structure of the above-described conventional catalyst heating device, the central region of the upstream end portion of the exhaust gas purification catalyst facing the central portion of the spiral of the induction heating coil (hereinafter, referred to as the central region). The amount of heating by induction heating of the central region portion) tends to be smaller than the amount of heating by induction heating of the portion around the central region portion (surrounding region portion) of the upstream end portion of the exhaust purification catalyst. It is in. For this reason, the temperature rise rate in the central region of the upstream end portion of the exhaust gas purification catalyst is lower than the temperature rise speed in the peripheral region portion of the upstream end portion. The temperature will be lower than the temperature of the area around the upstream end.

【0006】このような問題に鑑みて、本発明の目的
は、排気浄化触媒の排気上流端面近傍の部分を温度差が
できないように加熱することにある。
[0006] In view of such a problem, an object of the present invention is to heat a portion of an exhaust purification catalyst in the vicinity of an exhaust upstream end face so that a temperature difference does not occur.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、第1の発明では、機関排気通路に導電性のある排気
浄化触媒を配置すると共に該排気浄化触媒の排気上流端
面に面して導電体を配置し、この導電体に交番電流を供
給することにより排気浄化触媒の排気上流端面近傍の部
分を誘導加熱するようにした内燃機関の触媒昇温装置に
おいて、排気浄化触媒の排気上流端面近傍の部分を誘導
加熱することに加えて、排気浄化触媒の排気上流端面近
傍の部分に電流を流すことによって排気浄化触媒の排気
上流端面近傍の部分を加熱するようにした。この触媒昇
温装置では、排気浄化触媒の排気上流端面近傍の部分は
導電体に交番電流を流すことによる誘導加熱と、排気上
流端面近傍の部分に電流を流すことによる直接的な加熱
との二つの加熱方法によって加熱されるため、一方の加
熱方法では加熱されにくい排気浄化触媒の排気上流端面
近傍の部分の一部を他方の加熱方法によって加熱するこ
とができる。すなわち、排気浄化触媒の排気上流端面近
傍の部分を二つの加熱方法によって相補的に加熱するこ
とができる。
According to a first aspect of the present invention, a conductive exhaust purification catalyst is disposed in an engine exhaust passage, and the exhaust purification catalyst faces an exhaust upstream end face of the exhaust purification catalyst. In a catalyst temperature increasing device for an internal combustion engine in which a conductor is disposed and an electric current is supplied to the conductor to inductively heat a portion near an exhaust upstream end face of the exhaust purification catalyst, an exhaust upstream end face of the exhaust purification catalyst is provided. In addition to the induction heating of the vicinity, the current is supplied to the vicinity of the exhaust upstream end face of the exhaust purification catalyst to heat the vicinity of the exhaust upstream end face of the exhaust purification catalyst. In this catalyst heating device, the portion near the exhaust upstream end face of the exhaust purification catalyst has two parts: induction heating by flowing an alternating current through the conductor, and direct heating by flowing current to the portion near the exhaust upstream end face. Since the heating is performed by the two heating methods, a part of the portion of the exhaust purification catalyst that is difficult to be heated by the one heating method in the vicinity of the exhaust upstream end face can be heated by the other heating method. That is, the portion near the exhaust upstream end face of the exhaust purification catalyst can be complementarily heated by the two heating methods.

【0008】第2の発明では、第1の発明において、排
気浄化触媒の排気上流端面のほぼ中央に導電体に接続さ
れた中央電極を接続すると共に排気浄化触媒の排気上流
端面近傍の外周面に外側電極を接続し、導電体を流れる
交番電流が中央電極を介して排気浄化触媒の排気上流端
面近傍の部分を通って外側電極まで流れるようにした。
この触媒昇温装置では、導電体を流れる交番電流が中央
電極を介して排気浄化触媒の排気上流端面近傍の部分を
通って外側電極まで流れるようにしたため、一つの電流
経路のみで誘導加熱と直接的な加熱との二つの加熱方法
を行うことができる。
According to a second aspect of the present invention, in the first aspect, a central electrode connected to a conductor is connected substantially at the center of the exhaust upstream end face of the exhaust purification catalyst, and the central electrode is connected to the outer peripheral face near the exhaust upstream end face of the exhaust purification catalyst. The outer electrode was connected to allow the alternating current flowing through the conductor to flow to the outer electrode through the central electrode through a portion near the exhaust upstream end face of the exhaust purification catalyst.
In this catalyst warming device, the alternating current flowing through the conductor flows through the central electrode through the portion near the exhaust upstream end face of the exhaust gas purification catalyst to the outer electrode, so that only one current path is used for direct induction heating and direct heating. And two types of heating methods.

【0009】第3の発明では、第2の発明において、中
央電極を剛性のある導電性材料で形成し、この中央電極
が導電体を支持するように排気浄化触媒の排気上流端面
に中央電極を連結するようにした。
According to a third aspect, in the second aspect, the center electrode is formed of a rigid conductive material, and the center electrode is provided on the exhaust upstream end face of the exhaust purification catalyst so that the center electrode supports the conductor. It was connected.

【0010】第4の発明では、第2の発明において、外
側電極が排気浄化触媒の排気上流端面近傍の外周面を包
囲する包囲電極である。
[0010] In a fourth aspect based on the second aspect, the outer electrode is an encircling electrode that surrounds the outer peripheral surface near the exhaust upstream end surface of the exhaust purification catalyst.

【0011】第5の発明では、第4の発明において、排
気浄化触媒を収容する導電性のケーシングを機関排気通
路に形成し、このケーシングを包囲電極とした。
According to a fifth aspect, in the fourth aspect, a conductive casing for accommodating the exhaust gas purifying catalyst is formed in the engine exhaust passage, and this casing is used as the surrounding electrode.

【0012】第6の発明では、第3〜第5の発明におい
て、排気浄化触媒と別個に導電体の上流に導電性のある
排気浄化触媒を追加して配置し、中央電極が該追加の排
気浄化触媒を支持するように該追加の排気浄化触媒を中
央電極に連結するようにした。この触媒昇温装置では、
導電体の排気上流側および排気下流側に導電性のある排
気浄化触媒が配置されるので、導電体に交番電流を流す
ことによって生じる磁力線がほぼ加熱対象領域のみを通
過するようになる。
In a sixth aspect based on the third to fifth aspects, a conductive exhaust purification catalyst is additionally arranged upstream of the conductor separately from the exhaust purification catalyst, and the central electrode is provided with the additional exhaust purification catalyst. The additional exhaust purification catalyst was connected to the center electrode to support the purification catalyst. In this catalyst heating device,
Since the exhaust gas purifying catalyst having conductivity is arranged on the exhaust upstream side and the exhaust downstream side of the conductor, the magnetic field lines generated by flowing the alternating current through the conductor almost pass only through the heating target region.

【0013】[0013]

【発明の実施の形態】以下、添付の図面を参照して本発
明の実施形態を説明する。なお、図中の同じ参照番号は
同様な要素を示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The same reference numerals in the drawings indicate similar elements.

【0014】図1は本発明の第一の実施例の触媒昇温装
置を含む内燃機関の概略構成図である。図1において、
1は触媒コンバータ、2は機関本体、3は機関排気通路
である。機関排気通路3は機関本体2の排気ポートに連
結される。触媒コンバータ1は機関排気通路3に配置さ
れる。触媒コンバータ1は流入口4および流出口5を有
する。上記機関本体2から排出された排気ガスは機関排
気通路3を介して流入口4から触媒コンバータ1に流入
して流出口5において触媒コンバータ1から排出され
る。このように排気ガスが触媒コンバータ1内を流入口
4から流出口5に流れるので以下の説明では流入口4側
を排気上流側、流出口5側を排気下流側と称する。
FIG. 1 is a schematic configuration diagram of an internal combustion engine including a catalyst temperature increasing device according to a first embodiment of the present invention. In FIG.
1 is a catalytic converter, 2 is an engine main body, and 3 is an engine exhaust passage. The engine exhaust passage 3 is connected to an exhaust port of the engine body 2. Catalytic converter 1 is arranged in engine exhaust passage 3. The catalytic converter 1 has an inlet 4 and an outlet 5. The exhaust gas discharged from the engine body 2 flows into the catalytic converter 1 from the inlet 4 through the engine exhaust passage 3 and is discharged from the catalytic converter 1 at the outlet 5. As described above, since the exhaust gas flows through the inside of the catalytic converter 1 from the inlet 4 to the outlet 5, the inlet 4 is referred to as the exhaust upstream side, and the outlet 5 is referred to as the exhaust downstream in the following description.

【0015】触媒コンバータ1はほぼ円筒形のケーシン
グ6と、ほぼ円筒形の排気浄化触媒7とを具備する。ケ
ーシング6の上流側壁面はほぼ円錐形状である。排気浄
化触媒7はその長手軸線がケーシング6の長手軸線と同
軸になるようにケーシング6内に収容される。また、排
気浄化触媒7は該排気浄化触媒7の外周面がケーシング
6の内周面に接触するようにケーシング6内に収容さ
れ、そして排気浄化触媒7の外周面とケーシング6の内
周面とは排気浄化触媒7の外周面の全面に亘って電気的
に接続される。排気浄化触媒7の排気上流端面8は排気
浄化触媒7の軸線方向に対して垂直であって排気浄化触
媒7の排気上流側に位置する平坦な面である。
The catalytic converter 1 includes a substantially cylindrical casing 6 and a substantially cylindrical exhaust purification catalyst 7. The upstream side wall surface of the casing 6 has a substantially conical shape. The exhaust purification catalyst 7 is accommodated in the casing 6 so that its longitudinal axis is coaxial with the longitudinal axis of the casing 6. Further, the exhaust purification catalyst 7 is accommodated in the casing 6 such that the outer peripheral surface of the exhaust purification catalyst 7 contacts the inner peripheral surface of the casing 6, and the outer peripheral surface of the exhaust purification catalyst 7 and the inner peripheral surface of the casing 6 Is electrically connected over the entire outer peripheral surface of the exhaust purification catalyst 7. The exhaust upstream end face 8 of the exhaust purification catalyst 7 is a flat surface perpendicular to the axial direction of the exhaust purification catalyst 7 and located on the exhaust upstream side of the exhaust purification catalyst 7.

【0016】排気浄化触媒7は一定温度(活性温度)以
上で良好な触媒作用を示す触媒である。また排気浄化触
媒7の担体は適度の導電性と透磁率とを有する金属製担
体、または透磁率と導電性とが高い材料を点在させた適
度の導電性と透磁率とを有する担体である。また、排気
浄化触媒7の電気抵抗率はケーシング6の電気抵抗率よ
りも高い。ケーシング6内には排気浄化触媒7の排気上
流端面8に面して導電体9が配置される。
The exhaust gas purifying catalyst 7 is a catalyst which exhibits a good catalytic action at a certain temperature (active temperature) or higher. The carrier of the exhaust purification catalyst 7 is a metal carrier having a suitable conductivity and a magnetic permeability, or a carrier having a suitable conductivity and a magnetic permeability in which a material having a high magnetic permeability and a high conductivity is interspersed. . Further, the electric resistivity of the exhaust purification catalyst 7 is higher than the electric resistivity of the casing 6. A conductor 9 is arranged in the casing 6 so as to face the exhaust upstream end face 8 of the exhaust purification catalyst 7.

【0017】次に図1〜図3を参照して本実施例の導電
体9について詳細に説明する。なお図2は図1に示した
触媒コンバータの上流側の拡大断面図であり、図3は図
2の線III−IIIに沿った触媒コンバータの断面図であ
る。また図2には触媒コンバータの長手軸線に対して図
面に向かって左側のみに後述する磁力線を示している
が、実際には磁力線は長手軸線から触媒コンバータの外
周へ向かう全ての放射状方向に存在する。
Next, the conductor 9 of this embodiment will be described in detail with reference to FIGS. FIG. 2 is an enlarged sectional view of the upstream side of the catalytic converter shown in FIG. 1, and FIG. 3 is a sectional view of the catalytic converter along line III-III in FIG. FIG. 2 shows magnetic lines of force described later only on the left side of the drawing with respect to the longitudinal axis of the catalytic converter, but in actuality the magnetic lines of force are present in all radial directions from the longitudinal axis to the outer periphery of the catalytic converter. .

【0018】図3に示したように本実施例の導電体9は
コイルである。コイル9は電気抵抗率が低い材料から成
る一本の導電材、例えば導線を渦巻き状に巻いて形成さ
れる。そして、図2に示したようにコイル9は触媒コン
バータ1の長手軸線10(ケーシング6の長手軸線およ
び排気浄化触媒7の長手軸線と同軸)を中心として排気
浄化触媒7の排気上流端面8に沿って触媒コンバータ1
の外周近傍まで渦巻き状に延びる。またコイル9は排気
浄化触媒7の排気上流端面8に空間を開けて面するよう
に配置される。またコイル9を構成する導線の横断面の
形状は細長くて矩形である。コイル9を構成する導線と
してはステンレスや銅を用いることができる。そして、
コイル9の径方向内側に位置する一方の端部には中央電
極11が機械的におよび電気的に接続される。このとき
コイル9は、上記コイル9の一方の端部の上流側の面が
中央電極11の上流側の端部14と面一になるように接
続される。あるいは、中央電極11はコイル9の一部と
して一体的に形成されてもよい。中央電極11は剛性の
ある円柱状の導電性材料で形成され、コイル9の渦巻き
のほぼ中心に配置される。中央電極11の下流側の端部
15は排気浄化触媒7の排気上流端面8のほぼ中心に機
械的におよび電気的に接続される。このように構成する
ことにより、中央電極11は、コイル9が排気浄化触媒
7の排気上流端面8に面して配置されるように、すなわ
ちコイル9が排気浄化触媒7の排気上流端面8に平行な
面上に位置するように、排気浄化触媒7の排気上流端面
8に対してコイル9を支持する。
As shown in FIG. 3, the conductor 9 of the present embodiment is a coil. The coil 9 is formed by spirally winding a single conductive material made of a material having a low electric resistivity, for example, a conductive wire. As shown in FIG. 2, the coil 9 extends along the exhaust upstream end face 8 of the exhaust purification catalyst 7 about the longitudinal axis 10 of the catalytic converter 1 (coaxial with the longitudinal axis of the casing 6 and the longitudinal axis of the exhaust purification catalyst 7). Catalytic converter 1
Spirally extend to the vicinity of the outer periphery of the. The coil 9 is disposed so as to face the exhaust upstream end face 8 of the exhaust purification catalyst 7 with a space. The shape of the cross section of the conductor constituting the coil 9 is elongated and rectangular. Stainless steel or copper can be used as the conductor constituting the coil 9. And
A central electrode 11 is mechanically and electrically connected to one end located inside the coil 9 in the radial direction. At this time, the coil 9 is connected such that the upstream surface of one end of the coil 9 is flush with the upstream end 14 of the center electrode 11. Alternatively, the center electrode 11 may be integrally formed as a part of the coil 9. The center electrode 11 is formed of a rigid cylindrical conductive material, and is disposed substantially at the center of the spiral of the coil 9. The downstream end 15 of the central electrode 11 is mechanically and electrically connected to substantially the center of the exhaust upstream end face 8 of the exhaust purification catalyst 7. With such a configuration, the center electrode 11 is arranged such that the coil 9 is disposed so as to face the exhaust upstream end face 8 of the exhaust purification catalyst 7, that is, the coil 9 is parallel to the exhaust upstream end face 8 of the exhaust purification catalyst 7. The coil 9 is supported on the exhaust upstream end face 8 of the exhaust purification catalyst 7 so as to be located on a proper surface.

【0019】コイル9の径方向外側に位置するコイル9
の他方の端部には第一の外側電極12が機械的におよび
電気的に接続される。第一の外側電極12はケーシング
6の内部のコイル9との接続部からケーシング6を横断
してケーシング6の外部まで延び、ケーシング6に対し
て絶縁されてケーシング6に固定される。このように構
成することにより、上述した中央電極11と同様に、第
一の外側電極12は排気浄化触媒7の排気上流端面8に
対してコイル9を支持する。
Coil 9 located radially outside coil 9
A first outer electrode 12 is mechanically and electrically connected to the other end of. The first outer electrode 12 extends from the connection with the coil 9 inside the casing 6 to the outside of the casing 6 across the casing 6, and is insulated from the casing 6 and fixed to the casing 6. With this configuration, the first outer electrode 12 supports the coil 9 with respect to the exhaust upstream end face 8 of the exhaust purification catalyst 7, similarly to the above-described center electrode 11.

【0020】排気浄化触媒7の排気上流端面8近傍の一
部分(以下、単に上流端部分)16の外周面上に配置さ
れたケーシング6の部分には第二の外側電極13が接続
される。上述したように、排気浄化触媒7の外周面とケ
ーシング6の内周面とが電気的に接続されているため、
第二の外側電極13は排気浄化触媒7を包囲するように
排気浄化触媒7に接続される包囲電極として機能する。
第一の外側電極12と第二の外側電極13とは、導線を
介して交番電流発生電源17に接続される。交番電流発
生電源17は、直流電源に共振回路を組み合わせること
によって交番電流を発生するように形成された電源であ
る。しかしながら交番電流発生電源17は交流電源でも
よい。
A second outer electrode 13 is connected to a portion of the casing 6 disposed on the outer peripheral surface of a portion (hereinafter simply referred to as an upstream end portion) 16 near the exhaust upstream end surface 8 of the exhaust purification catalyst 7. As described above, since the outer peripheral surface of the exhaust purification catalyst 7 and the inner peripheral surface of the casing 6 are electrically connected,
The second outer electrode 13 functions as a surrounding electrode connected to the exhaust purification catalyst 7 so as to surround the exhaust purification catalyst 7.
The first outer electrode 12 and the second outer electrode 13 are connected to an alternating current generating power supply 17 via a conductor. The alternating current generating power supply 17 is a power supply formed to generate an alternating current by combining a DC power supply with a resonance circuit. However, the alternating current generating power supply 17 may be an AC power supply.

【0021】次に図2を参照して誘導加熱について説明
する。コイル9に交番電流を流すと、コイル9内で電流
が流れる方向に対して垂直にコイル9の周りに交番磁
界、すなわち磁力線18が形成される。また、排気浄化
触媒7はコイル9周囲の雰囲気(例えば排気ガスや空
気)よりも透磁率が高い。このため、磁力線18はコイ
ル9と排気浄化触媒7との間の雰囲気中を通らずに排気
浄化触媒7内を通過する。上述したように排気浄化触媒
7が適度な透磁率を有するので、排気浄化触媒7内を通
過する磁力線18は排気浄化触媒7の排気上流端面8近
傍の部分である上流端部分16を通過する。この磁力線
18により、排気浄化触媒7の上流端部分16に磁力線
18と垂直に磁力線18周りの誘導電流(渦電流)が発
生する。排気浄化触媒7の上流端部分16には電気抵抗
があるため磁力線18によって発生した渦電流は排気浄
化触媒7の上流端部分16でエネルギを損失し、これに
より排気浄化触媒7の上流端部分16が誘導加熱され
る。
Next, the induction heating will be described with reference to FIG. When an alternating current flows through the coil 9, an alternating magnetic field, that is, a magnetic force line 18 is formed around the coil 9 perpendicular to the direction in which the current flows in the coil 9. Further, the exhaust purification catalyst 7 has a higher magnetic permeability than the atmosphere around the coil 9 (for example, exhaust gas or air). Therefore, the magnetic force lines 18 pass through the exhaust purification catalyst 7 without passing through the atmosphere between the coil 9 and the exhaust purification catalyst 7. As described above, since the exhaust purification catalyst 7 has an appropriate magnetic permeability, the lines of magnetic force 18 passing through the exhaust purification catalyst 7 pass through the upstream end portion 16 of the exhaust purification catalyst 7 near the exhaust upstream end surface 8. Due to the magnetic force lines 18, an induced current (eddy current) around the magnetic force lines 18 is generated in the upstream end portion 16 of the exhaust purification catalyst 7 perpendicular to the magnetic force lines 18. Since the upstream end portion 16 of the exhaust purification catalyst 7 has electric resistance, the eddy current generated by the magnetic field lines 18 loses energy at the upstream end portion 16 of the exhaust purification catalyst 7, thereby causing the upstream end portion 16 of the exhaust purification catalyst 7 to lose its energy. Is induction heated.

【0022】ここで、誘導加熱により排気浄化触媒を加
熱することの利点について説明する。上述したように排
気浄化触媒7を誘導加熱した場合、排気浄化触媒7全体
が加熱されるのではなく、コイル9に面している排気浄
化触媒7の上流端部分16のみが排気浄化触媒7の排気
上流端面8から排気下流方向に向かう深さ(以降、単に
被加熱深さと称す。)dに亘って加熱される。この上流
端部分16の被加熱深さdは、磁力線18によって渦電
流が発生する排気浄化触媒7の排気上流端面8から排気
下流方向に向かう方向の深さ(以降、単に電流浸透深さ
と称す。)δに対応する。すなわち、上述したように交
番磁界によって生じる渦電流が排気浄化触媒7の上流端
部分16の電気抵抗によってエネルギを損失することで
誘導加熱が行われるため、誘導加熱される排気浄化触媒
7の上流端部分16は交番磁界によって渦電流が生じる
領域とほぼ同一であり、このため上流端部分16の加熱
深さdは電流浸透深さδとほぼ同一である。電流浸透深
さδは排気浄化触媒7の抵抗率ρ、排気浄化触媒7の比
透磁率μr、コイル9を流れる交番電流の周波数fの関
数であり、以下の等式に従う。
Here, the advantage of heating the exhaust purification catalyst by induction heating will be described. When the exhaust purification catalyst 7 is induction-heated as described above, the entire exhaust purification catalyst 7 is not heated, but only the upstream end portion 16 of the exhaust purification catalyst 7 facing the coil 9 is heated. The heating is performed over a depth d (hereinafter, simply referred to as a heated depth) from the exhaust upstream end face 8 toward the exhaust downstream direction. The heated depth d of the upstream end portion 16 is a depth in the direction from the exhaust upstream end surface 8 of the exhaust purification catalyst 7 where the eddy current is generated by the magnetic force lines 18 toward the exhaust downstream direction (hereinafter, simply referred to as the current penetration depth). ) Δ. That is, as described above, the eddy current generated by the alternating magnetic field loses energy due to the electric resistance of the upstream end portion 16 of the exhaust purification catalyst 7, so that the induction heating is performed. The portion 16 is substantially the same as the region where the eddy current is generated by the alternating magnetic field, so that the heating depth d of the upstream end portion 16 is substantially the same as the current penetration depth δ. The current penetration depth δ is a function of the resistivity ρ of the exhaust purification catalyst 7, the relative magnetic permeability μ r of the exhaust purification catalyst 7, and the frequency f of the alternating current flowing through the coil 9, and follows the following equation.

【数1】 ここでaは定数である。式(1)から分かるように、電
流浸透深さδは交番電流の周波数fおよび排気浄化触媒
7の比透磁率μrの平方根に反比例し、排気浄化触媒7
の抵抗率ρの平方根に比例する。このため、交番電流の
周波数fを高くするという簡単な操作によって電流浸透
深さδを小さくして被加熱深さdを浅くすることができ
る。さらに排気浄化触媒7を抵抗率ρが小さく且つ比透
磁率μrが大きい担体で形成することで電流浸透深さδ
を小さくし被加熱深さdを浅くすることもできる。これ
に伴って、排気浄化触媒7の上流端部分16の被加熱深
さdも小さくなり、排気浄化触媒7の排気上流端面8近
傍の極めて薄い上流端部分16のみを加熱することがで
きる。よって、誘導加熱により排気浄化触媒7を加熱す
ることの利点の一つは排気浄化触媒7の排気上流端面8
付近の極めて薄い上流端部分16のみを加熱することが
できることにある。
(Equation 1) Here, a is a constant. As can be seen from equation (1), the current penetration depth δ is inversely proportional to the square root of the frequency f and relative permeability mu r of the exhaust gas purifying catalyst 7 of the alternating current, the exhaust gas purifying catalyst 7
Is proportional to the square root of the resistivity ρ. For this reason, the current penetration depth δ can be reduced and the heated depth d can be reduced by a simple operation of increasing the frequency f of the alternating current. Further the exhaust purification catalyst 7 resistivity ρ is small and relative magnetic permeability mu r current penetration depth by forming in a large carrier δ
And the depth d to be heated can be reduced. Along with this, the heated depth d of the upstream end portion 16 of the exhaust purification catalyst 7 also decreases, and only the extremely thin upstream end portion 16 near the exhaust upstream end surface 8 of the exhaust purification catalyst 7 can be heated. Therefore, one of the advantages of heating the exhaust purification catalyst 7 by induction heating is that the exhaust upstream end face 8 of the exhaust purification catalyst 7
Only the very thin upstream end portion 16 in the vicinity can be heated.

【0023】上述したようにコイル9に流す交番電流の
周波数を高くすることによって排気浄化触媒7の排気上
流端面8付近の極めて薄い上流端部分16のみに渦電流
が流れるので、この上流端部分16を流れる渦電流では
単位体積当たりに流れる電流が大きくなる。また、排気
浄化触媒7の抵抗率は一定であるので排気浄化触媒7に
おいては単位体積当たりに流れる電流が大きいほど発熱
量が大きくなる。このためコイル9に高周波交番電流を
流して誘導加熱を行えば、排気浄化触媒7の排気上流端
面8付近の極めて薄い上流端部分16のみをより強力に
加熱して急激に昇温させることができ、排気浄化触媒7
の上流端部分16の加熱効率を上昇させることができ
る。よって、誘導加熱により排気浄化触媒7を加熱する
ことの別の利点は、排気浄化触媒7の上流端部分16の
加熱効率を向上させることができることにある。
As described above, by increasing the frequency of the alternating current flowing through the coil 9, the eddy current flows only in the extremely thin upstream end portion 16 near the exhaust upstream end surface 8 of the exhaust purification catalyst 7, so that the upstream end portion 16 In the eddy current flowing through, the current flowing per unit volume increases. Further, since the resistivity of the exhaust purification catalyst 7 is constant, the calorific value of the exhaust purification catalyst 7 increases as the current flowing per unit volume increases. Therefore, if induction heating is performed by passing a high-frequency alternating current through the coil 9, only the extremely thin upstream end portion 16 near the exhaust upstream end surface 8 of the exhaust purification catalyst 7 can be more strongly heated and rapidly heated. , Exhaust purification catalyst 7
The heating efficiency of the upstream end portion 16 can be increased. Therefore, another advantage of heating the exhaust purification catalyst 7 by induction heating is that the heating efficiency of the upstream end portion 16 of the exhaust purification catalyst 7 can be improved.

【0024】さらに、排気浄化触媒7の排気上流端面8
付近の極めて薄い上流端部分16のみをより強力に加熱
して急激に昇温させることができるのでこの上流端部分
16を通過する排気ガスに露出する上流端部分16の面
積も非常に小さい。このため機関始動時等の温度の低い
排気ガスに奪われてしまう上流端部分16の熱量が少な
く、したがって上流端部分16の温度を少ない電力で急
激に上昇させることができる。すなわち、誘導加熱によ
り排気浄化触媒7を加熱することの更なる別の利点は、
排気浄化触媒7の上流端部分16を少ない電力で急激に
上昇させることができることにある。
Further, the exhaust upstream end face 8 of the exhaust purification catalyst 7
Since only the extremely thin upstream end portion 16 in the vicinity can be heated more strongly to rapidly raise the temperature, the area of the upstream end portion 16 exposed to the exhaust gas passing through the upstream end portion 16 is also very small. Therefore, the amount of heat in the upstream end portion 16 that is taken away by the low-temperature exhaust gas at the time of starting the engine or the like is small, and therefore, the temperature of the upstream end portion 16 can be rapidly increased with small electric power. That is, another advantage of heating the exhaust purification catalyst 7 by induction heating is as follows.
The point is that the upstream end portion 16 of the exhaust purification catalyst 7 can be rapidly raised with a small amount of electric power.

【0025】コイル9に交番電流を流すと、図4に示し
たように交番電流によって発生する磁力線19はコイル
9の中央部20と対面する排気浄化触媒7の上流端部分
16の中央領域の部分(以降、単に中央領域部分と称
す。)21を通りにくくなる。すなわち、ほとんどの磁
力線19が排気浄化触媒7の上流端部分16の中央領域
部分21を通らずに、排気浄化触媒7の排気上流端面8
の上流に位置する雰囲気中を通る。このため、排気浄化
触媒7の上流端部分16の中央領域部分21には渦電流
が発生しにくくなり、この中央領域部分21が誘導加熱
されにくくなる。よって、コイル9の中央部と対面する
中央領域部分21の誘導加熱による加熱量が、この上流
端部分16の中央領域部分周りの領域の部分(以降、単
に周辺領域部分と称す。)22の誘導加熱による加熱量
よりも小さくなってしまう。
When an alternating current is applied to the coil 9, as shown in FIG. 4, the lines of magnetic force 19 generated by the alternating current cause a portion of the central region of the upstream end portion 16 of the exhaust purification catalyst 7 facing the central portion 20 of the coil 9. (Hereinafter, it is simply referred to as a central region portion.) That is, most of the lines of magnetic force 19 do not pass through the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7 and the exhaust upstream end face 8 of the exhaust purification catalyst 7
Pass through the atmosphere located upstream of. Therefore, an eddy current is less likely to be generated in the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7, and the central region 21 is less likely to be induction-heated. Therefore, the amount of heating of the central region 21 facing the central portion of the coil 9 by induction heating is induced in the region around the central region of the upstream end portion 16 (hereinafter, simply referred to as a peripheral region) 22. It becomes smaller than the amount of heating by heating.

【0026】ところで上述したように構成されたコイル
9に交番電流を流すと交番電流はコイル9内を均一に流
れずに或る特定の領域に集中して流れる傾向がある。そ
してこのことに起因して誘導加熱による上流端部分16
の中央領域部分21の加熱量は周辺領域部分22の加熱
量よりも小さくなる傾向がある。以下、このことについ
て説明する。上述したようにコイル9内に交番電流を流
すと磁力線19が発生する。この磁力線19にはコイル
9内を流れる電子、すなわち交番電流を引き付ける力
(以降、吸引力と称す。)がある。この吸引力はコイル
9周りにおける磁力線19の強度の大小やコイル9と磁
力線19との間の距離に応じて異なり、磁力線19の強
度が強いほど吸引力は強く、コイル9と磁力線19との
間の距離が短いほど吸引力は強い。
When an alternating current is applied to the coil 9 configured as described above, the alternating current tends not to flow uniformly in the coil 9 but to flow in a specific area. And, due to this, the upstream end portion 16 by induction heating
The heating amount of the central region 21 tends to be smaller than the heating amount of the peripheral region 22. Hereinafter, this will be described. As described above, when an alternating current flows in the coil 9, the magnetic force lines 19 are generated. The magnetic force lines 19 have a force for attracting electrons flowing in the coil 9, that is, an alternating current (hereinafter, referred to as an attractive force). The attraction force differs depending on the magnitude of the intensity of the magnetic force line 19 around the coil 9 and the distance between the coil 9 and the magnetic force line 19. As the intensity of the magnetic force line 19 increases, the attraction force increases. The shorter the distance, the stronger the suction power.

【0027】ここで図4を参照すると隣り合う磁力線1
9間の距離はコイル9の排気下流側において排気浄化触
媒7の上流端部分16の周辺領域部分22を通過すると
ころで短くなっている。一方、隣り合う磁力線19間の
距離はコイル9の排気上流側において長くなっている。
したがってコイル9の断面において排気下流側からの吸
引力のほうが排気上流側からの吸引力よりも大きいので
交番電流はコイル9の断面の排気下流側に集中して流れ
る傾向にある。さらにコイル9の中心部付近において隣
り合う磁力線19間の距離はコイル9の排気下流側にお
いて隣り合う磁力線19間の距離よりも長いが、コイル
9の中心部付近の磁力線19とコイル9との間の距離が
コイル9の排気下流側における磁力線19とコイル9と
の間の距離よりも短い。このため最も内側のコイル9に
おいては中心側からの吸引力も比較的大きいので交番電
流はコイル9の断面のコイル中央部分側、すなわち図4
に示したようにコイル9の断面の特定の部分23に集中
して流れる傾向にある。
Referring now to FIG. 4, adjacent magnetic field lines 1
The distance between the coils 9 is reduced at a position downstream of the coil 9 when passing through the peripheral region 22 of the upstream end portion 16 of the exhaust purification catalyst 7. On the other hand, the distance between the adjacent magnetic force lines 19 is long on the exhaust upstream side of the coil 9.
Therefore, in the cross section of the coil 9, the attraction force from the exhaust downstream side is larger than the attraction force from the exhaust upstream side, so that the alternating current tends to concentrate on the exhaust downstream side of the cross section of the coil 9. Further, the distance between the adjacent magnetic lines of force 19 near the center of the coil 9 is longer than the distance between the adjacent magnetic lines of force 19 downstream of the coil 9 on the exhaust downstream side, but the distance between the magnetic lines 19 near the center of the coil 9 and the coil 9 is large. Is shorter than the distance between the magnetic field line 19 and the coil 9 on the exhaust downstream side of the coil 9. For this reason, in the innermost coil 9, the attraction force from the center side is relatively large, so that the alternating current is applied to the central portion of the cross section of the coil 9, that is, FIG.
As shown in (1), the coil 9 tends to flow intensively at a specific portion 23 of the cross section.

【0028】ところで、コイル9中を流れる交番電流と
排気浄化触媒7の排気上流端面8との距離が短いほど、
排気浄化触媒7の上流端部分16に渦電流が発生しやす
く、したがって上流端部分16が誘導加熱されやすくな
る。中心部付近のコイル9以外のコイル9内を流れる交
番電流は、図4に示したようにコイル9の排気下流側を
流れる。これに対して中心部付近のコイル9内を流れる
交番電流は、図4に示したようにコイル9の中心側を流
れる。交番電流がコイル9の中心側を流れる場合、交番
電流がコイル9の排気下流側を流れる場合よりもコイル
6と排気上流端面8との間の距離が長いので上流端部分
16が誘導加熱されにくい。よってコイル9の中央部付
近と対面する排気浄化触媒7の上流端部分16の中央領
域部分21は誘導加熱されにくくなる。こうした理由か
ら上流端部分16の中央領域部分21の誘導加熱による
加熱量が周辺領域部分22の誘導加熱による加熱量より
も小さくなってしまう。このため、上流端部分16の中
央領域部分21の温度は周辺領域部分22の温度よりも
低くなる傾向にある。
By the way, the shorter the distance between the alternating current flowing through the coil 9 and the exhaust upstream end face 8 of the exhaust purification catalyst 7, the shorter the distance.
An eddy current is likely to be generated in the upstream end portion 16 of the exhaust purification catalyst 7, so that the upstream end portion 16 is easily heated by induction. The alternating current flowing in the coils 9 other than the coil 9 near the center flows on the exhaust downstream side of the coil 9 as shown in FIG. On the other hand, the alternating current flowing in the coil 9 near the center flows through the center of the coil 9 as shown in FIG. When the alternating current flows on the center side of the coil 9, the upstream end portion 16 is less likely to be induction-heated because the distance between the coil 6 and the exhaust upstream end face 8 is longer than when the alternating current flows on the exhaust downstream side of the coil 9. . Therefore, the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7 facing the vicinity of the center of the coil 9 is less likely to be induction-heated. For this reason, the amount of heating of the central region 21 of the upstream end portion 16 by induction heating is smaller than the amount of heating of the peripheral region 22 by induction heating. For this reason, the temperature of the central region 21 of the upstream end portion 16 tends to be lower than the temperature of the peripheral region 22.

【0029】ここで本発明の実施例では、第一の外側電
極12と第二の外側電極13との間で流れる交番電流が
コイル9から中央電極11を介して排気浄化触媒7に流
れるようになっている。すなわち、交番電流発生電源1
7によって発生せしめられた電流は、第一の外側電極1
2、コイル9、中央電極11、排気浄化触媒7、第二の
外側電極13の順に流れるか、またはその逆に流れる。
この場合、上述したようにコイル9に交番電流が流れる
ことによって排気浄化触媒7の上流端部分16が誘導加
熱される。さらに、排気浄化触媒7の上流端部分16に
交番電流が流れることによって排気浄化触媒7の上流端
部分16において電気抵抗による交番電流のエネルギ損
失が起こり、損失したエネルギによって排気浄化触媒7
の上流端部分16が加熱される(以降、このような加熱
を直接加熱と称す。)。排気浄化触媒7の上流端部分1
6の直接加熱では、後述する原理により上流端部分16
の周辺領域部分22よりも中央領域部分21での加熱量
が大きい。したがって、コイル9に交番電流を流すこと
によって排気浄化触媒7の上流端部分16を誘導加熱す
ることに加えて排気浄化触媒7の上流端部分16に交番
電流を流して当該上流端部分16を直接加熱することに
よって、上記誘導加熱において上流端部分16の周辺領
域部分22よりも加熱量が小さくなってしまう上流端部
分16の中央領域部分21の加熱量を増やすことができ
る。
Here, in the embodiment of the present invention, the alternating current flowing between the first outer electrode 12 and the second outer electrode 13 flows from the coil 9 to the exhaust purification catalyst 7 via the center electrode 11. Has become. That is, the alternating current generating power supply 1
The current generated by the first outer electrode 1
2. Flow in the order of coil 9, central electrode 11, exhaust purification catalyst 7, and second outer electrode 13, or vice versa.
In this case, the upstream end portion 16 of the exhaust purification catalyst 7 is induction-heated by the alternating current flowing through the coil 9 as described above. Further, the alternating current flows through the upstream end portion 16 of the exhaust purification catalyst 7, causing an energy loss of the alternating current due to electric resistance in the upstream end portion 16 of the exhaust purification catalyst 7.
Is heated (hereinafter, such heating is referred to as direct heating). Upstream end portion 1 of exhaust purification catalyst 7
6, the upstream end portion 16 is heated according to the principle described later.
Is larger in the central region 21 than in the peripheral region 22. Therefore, in addition to inductively heating the upstream end portion 16 of the exhaust purification catalyst 7 by passing an alternating current through the coil 9, an alternating current is passed through the upstream end portion 16 of the exhaust purification catalyst 7 to directly connect the upstream end portion 16. By heating, it is possible to increase the amount of heating of the central region 21 of the upstream end portion 16 in which the amount of heating is smaller than that of the peripheral region 22 of the upstream end portion 16 in the induction heating.

【0030】また、コイル9によって発生した磁束が中
央電極11をも貫通するため、中央電極11にも渦電流
が流れ、これにより中央電極11も誘導加熱される。中
央電極11が誘導加熱されると、その熱は排気浄化触媒
7の上流端部分16の中央領域部分21へと移動する。
よって、中央電極11をコイル9の渦巻きの中心付近に
配置することによっても排気浄化触媒7の上流端部分1
6の中央領域部分21が加熱される。こうして、上述し
た排気浄化触媒7の上流端部分16の直接加熱と中央電
極11の誘導加熱とによって上流端部分16の中央領域
部分21を周辺領域部分22と均一に、または周辺領域
部分22よりも加熱することができる。これに伴って、
上流端部分16の中央領域部分21の温度を周辺領域部
分22の温度と同一か、またはそれ以上にすることがで
きる。
Further, since the magnetic flux generated by the coil 9 also passes through the center electrode 11, an eddy current also flows through the center electrode 11, whereby the center electrode 11 is also induction-heated. When the central electrode 11 is induction-heated, the heat moves to the central region portion 21 of the upstream end portion 16 of the exhaust purification catalyst 7.
Therefore, by arranging the center electrode 11 near the center of the spiral of the coil 9, the upstream end portion 1 of the exhaust purification catalyst 7 can also be formed.
The central region 21 of 6 is heated. In this way, the central region 21 of the upstream end portion 16 is made uniform with the peripheral region portion 22 by the direct heating of the upstream end portion 16 and the induction heating of the central electrode 11 of the exhaust purification catalyst 7, or the peripheral region portion 22 is made larger than the above. Can be heated. Along with this,
The temperature of the central region portion 21 of the upstream end portion 16 can be equal to or higher than the temperature of the peripheral region portion 22.

【0031】次に、排気浄化触媒7の上流端部分16の
直接加熱において、上流端部分16の中央領域部分21
の加熱量が周辺領域部分22の加熱量よりも大きくなる
原理について説明する。上述したように、排気浄化触媒
7の上流端部分16の直接加熱は中央電極11と第二の
外側電極13との間で流れる交番電流によって行われ
る。また、中央電極11は排気浄化触媒7の排気上流端
面8のほぼ中央に接続され、第二の外側電極13はケー
シング6に接続されて、上述したように排気浄化触媒7
を包囲するように排気浄化触媒7に接続される電極とし
て機能する。そしてケーシング6の電気抵抗率が排気浄
化触媒7の電気抵抗率よりも低いため、交番電流は排気
浄化触媒7のよりもケーシング6を通りやすく、中央電
極11と排気浄化触媒7を包囲するケーシング6の周り
の全ての地点との間で流れる。すなわち、排気浄化触媒
7の上流端部分16に流れる交番電流は中央電極11か
ら放射状に第二の外側電極13へ流れるか、またはその
逆に流れる。
Next, in the direct heating of the upstream end portion 16 of the exhaust purification catalyst 7, the central region 21
The principle by which the amount of heating is larger than the amount of heating of the peripheral region portion 22 will be described. As described above, the direct heating of the upstream end portion 16 of the exhaust purification catalyst 7 is performed by the alternating current flowing between the center electrode 11 and the second outer electrode 13. Further, the center electrode 11 is connected to substantially the center of the exhaust upstream end face 8 of the exhaust purification catalyst 7, and the second outer electrode 13 is connected to the casing 6, as described above.
Functions as an electrode connected to the exhaust purification catalyst 7 so as to surround the exhaust gas purification catalyst 7. Since the electric resistivity of the casing 6 is lower than the electric resistivity of the exhaust purification catalyst 7, the alternating current passes through the casing 6 more easily than the exhaust purification catalyst 7, and the casing 6 surrounding the central electrode 11 and the exhaust purification catalyst 7. It flows between all points around. That is, the alternating current flowing in the upstream end portion 16 of the exhaust purification catalyst 7 flows radially from the central electrode 11 to the second outer electrode 13 or vice versa.

【0032】このように交番電流が放射状に流れると、
排気浄化触媒7の上流端部分16の中央領域部分21と
周辺領域部分22とで流れる電流が同じであるため、上
流端部分16の中央領域部分21の単位体積当たりに流
れる電流は周辺領域部分22の単位体積当たりに流れる
電流よりも大きい。そして、排気浄化触媒7の抵抗率は
一定であるので、排気浄化触媒7においては単位体積当
たりに流れる電流が大きいほど発熱量が大きくなる。し
たがって、直接加熱による上流端部分16の中央領域部
分21の加熱量は周辺領域部分22の加熱量よりも大き
くなる。
As described above, when the alternating current flows radially,
Since the current flowing in the central region 21 and the peripheral region 22 of the upstream end portion 16 of the exhaust purification catalyst 7 is the same, the current flowing per unit volume of the central region 21 of the upstream end portion 16 is reduced to the peripheral region 22. Is larger than the current flowing per unit volume. Since the resistivity of the exhaust purification catalyst 7 is constant, the calorific value of the exhaust purification catalyst 7 increases as the current flowing per unit volume increases. Therefore, the heating amount of the central region portion 21 of the upstream end portion 16 by the direct heating is larger than the heating amount of the peripheral region portion 22.

【0033】また、一般に導電体に交番電流を流すと、
その交番電流によって生じた磁界により交番電流が導電
体の表面付近を流れる性質があり(表皮効果)、さら
に、その交番電流の周波数が高ければ高いほど交番電流
がより導電体の表面付近を流れる性質ある。このため、
本実施例では排気浄化触媒7の上流端部分16に流れる
周波数の高い交番電流は、排気浄化触媒7の排気上流端
面8近傍の極めて薄い上流端部分16を流れる。また、
交番電流が排気浄化触媒7の極めて薄い上流端部分16
のみを流れるため、この上流端部分16を流れる交番電
流では単位体積当たりに流れる電流が大きくなる。上述
したように排気浄化触媒7においては単位体積当たりに
流れる電流が大きいほど発熱量が大きくなるので、例え
ば排気浄化触媒7の排気上流端面8近傍に直流電流を流
した場合に比べて排気浄化触媒7の排気上流端面8近傍
の極めて薄い上流端部分16のみをより強力に加熱して
急激に昇温させることができる。こうして排気浄化触媒
7の上流端部分16に交番電流を流して上流端部分16
を直接加熱すると排気浄化触媒7の排気上流端面8近傍
の極めて薄い上流端部分16が重点的に加熱され、しか
も上述したように直接加熱による上流端部分16の中央
領域部分21の加熱量は周辺領域部分22の加熱量より
も大きい。こうしたことから本実施例によれば直接加熱
により上流端部分16の中央領域部分21が重点的に加
熱されることとなる。
Generally, when an alternating current is applied to a conductor,
The alternating current flows near the surface of the conductor due to the magnetic field generated by the alternating current (skin effect). The higher the frequency of the alternating current, the more the alternating current flows near the surface of the conductor. is there. For this reason,
In this embodiment, the alternating current having a high frequency flowing through the upstream end portion 16 of the exhaust purification catalyst 7 flows through the extremely thin upstream end portion 16 near the exhaust upstream end face 8 of the exhaust purification catalyst 7. Also,
The alternating current is an extremely thin upstream end portion 16 of the exhaust purification catalyst 7.
Therefore, the alternating current flowing through the upstream end portion 16 increases the current flowing per unit volume. As described above, in the exhaust purification catalyst 7, since the calorific value increases as the current flowing per unit volume increases, the exhaust purification catalyst is compared with a case where a DC current is flown in the vicinity of the exhaust upstream end face 8 of the exhaust purification catalyst 7, for example. Only the extremely thin upstream end portion 16 in the vicinity of the exhaust upstream end face 8 can be heated more strongly and rapidly heated. In this way, an alternating current flows through the upstream end portion 16 of the exhaust purification catalyst 7 to
When the is heated directly, the extremely thin upstream end portion 16 in the vicinity of the exhaust upstream end surface 8 of the exhaust purification catalyst 7 is mainly heated, and as described above, the heating amount of the central region portion 21 of the upstream end portion 16 due to the direct heating is It is larger than the heating amount of the region portion 22. For this reason, according to the present embodiment, the central region 21 of the upstream end portion 16 is primarily heated by direct heating.

【0034】ところで、排気浄化触媒の排気上流端面に
面してコイルを配置せずに中央電極とケーシングとの間
で排気浄化触媒の上流端部分に交番電流を流すと、例え
ば排気浄化触媒の上流端部分の抵抗が僅かに低い部分等
に局所的に電流が集中してしまう。このように排気浄化
触媒の上流端部分の或る部分に電流が集中してしまう
と、排気浄化触媒の上流端部分の中央領域部分全体を加
熱できないのみならず、電流が集中した部分が焼損して
しまう。ここで本発明の実施例では、排気浄化触媒7に
流れる交番電流がコイル9によって発生する排気浄化触
媒7を通過する磁束によって力を受ける。特に、排気浄
化触媒7の中央領域部分21を通過する磁束は排気浄化
触媒7の排気上流端面8に対してほぼ垂直である。この
ため、排気浄化触媒7の上流端部分16の中央領域部分
21を中央電極11から排気浄化触媒7の上流端部分1
6の外周に向かって放射状にまたはその逆に流れる交番
電流は、フレミング左手の法則により排気浄化触媒7の
周方向へ向かう力を受ける。よって排気浄化触媒7の上
流端部分16の中央領域部分21において電流が集中す
ると上述した理由から電流には大きな力がかかり、電流
が排気浄化触媒7の上流端部分16の中央領域部分21
全体に分散される。このように排気浄化触媒7の排気上
流端面8に面してコイル9を配置することによって、排
気浄化触媒7の上流端部分16の誘導加熱を行うことが
できるようになるだけではなく、排気浄化触媒7の上流
端部分16の直接加熱における電流の集中を防止するこ
とができるようになる。
By the way, if an alternating current is applied to the upstream end portion of the exhaust purification catalyst between the center electrode and the casing without arranging the coil facing the exhaust upstream end surface of the exhaust purification catalyst, for example, The current locally concentrates on a portion where the resistance of the end portion is slightly lower or the like. If the current concentrates on a certain portion of the upstream end portion of the exhaust purification catalyst, not only the entire central region of the upstream end portion of the exhaust purification catalyst cannot be heated, but also the portion where the current is concentrated burns out. Would. Here, in the embodiment of the present invention, the alternating current flowing through the exhaust purification catalyst 7 receives a force by the magnetic flux generated by the coil 9 and passing through the exhaust purification catalyst 7. In particular, the magnetic flux passing through the central region 21 of the exhaust purification catalyst 7 is substantially perpendicular to the exhaust upstream end face 8 of the exhaust purification catalyst 7. For this reason, the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7 is separated from the central electrode 11 by the upstream end portion 1 of the exhaust purification catalyst 7.
The alternating current flowing radially toward the outer periphery of the exhaust gas 6 or vice versa is subjected to a force in the circumferential direction of the exhaust gas purifying catalyst 7 according to Fleming's left-hand rule. Therefore, when the current concentrates in the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7, a large force is applied to the current for the reason described above, and the current is applied to the central region 21 of the upstream end portion 16 of the exhaust purification catalyst 7.
Distributed throughout. By arranging the coil 9 so as to face the exhaust upstream end face 8 of the exhaust purification catalyst 7 in this way, not only the induction heating of the upstream end portion 16 of the exhaust purification catalyst 7 can be performed but also the exhaust purification. It is possible to prevent current concentration in direct heating of the upstream end portion 16 of the catalyst 7.

【0035】なお、上述した実施例では、コイル9を構
成する導線の横断面の形状は細長くて矩形であるが、円
形や楕円形等の他の断面形状であってもよい。また、上
述した実施例では、排気浄化触媒7の排気上流端面8の
形状は平坦な面であるが、排気上流方向に凸である円錐
形等の他の形状であってもよい。この場合にも、コイル
9は触媒コンバータ1の長手軸線10を中心として排気
浄化触媒7の排気上流端面8に沿って触媒コンバータ1
の外周近傍まで渦巻き状に延びるので、例えば排気浄化
触媒7の排気上流端面8が排気上流方向に凸である円錐
形であるとコイル9は排気上流端面8に沿って排気上流
方向に凸である円錐状であって渦巻き状に、すなわち螺
旋状に延びる。また、上述した実施例では、中央電極1
1は剛性のある円柱状の導電性材料で形成されている
が、この中心電極11を単なる導線として、コイル9の
一方の端部と排気浄化触媒11の排気上流端面8の中心
との間を接続するようにしてもよい。この場合、上述し
た実施例で中央電極11が行っていたコイル9の支持
を、排気浄化触媒7の排気上流端面8とコイル9との間
に絶縁体を配置することによって行う。このように中央
電極を導線で形成することにより、触媒コンバータ1を
容易に製造することができるようになる。
In the above-described embodiment, the cross section of the conductor constituting the coil 9 is elongated and rectangular, but may be another cross section such as a circle or an ellipse. Further, in the above-described embodiment, the shape of the exhaust upstream end face 8 of the exhaust purification catalyst 7 is a flat surface, but may be another shape such as a conical shape which is convex in the exhaust upstream direction. In this case as well, the coil 9 extends along the exhaust upstream end face 8 of the exhaust purification catalyst 7 about the longitudinal axis 10 of the catalytic converter 1.
The coil 9 is convex along the exhaust upstream end face 8 along the exhaust upstream end face 8 if the exhaust upstream end face 8 of the exhaust purification catalyst 7 has a conical shape that is convex in the exhaust upstream direction, for example. It is conical and extends spirally, ie spirally. In the embodiment described above, the central electrode 1
Reference numeral 1 denotes a rigid columnar conductive material. The center electrode 11 is simply a conductor, and is connected between one end of the coil 9 and the center of the exhaust upstream end face 8 of the exhaust purification catalyst 11. You may make it connect. In this case, the support of the coil 9 performed by the center electrode 11 in the above-described embodiment is performed by disposing an insulator between the exhaust upstream end face 8 of the exhaust purification catalyst 7 and the coil 9. By forming the center electrode with a conducting wire in this manner, the catalytic converter 1 can be easily manufactured.

【0036】本発明の第一の実施例の変更例では、図5
に示したように排気浄化触媒7の上流端部分16の外周
面とケーシング6の内周面との間に環状導電体26が配
置される。環状導電体26は排気浄化触媒7およびケー
シング6よりも導電性の高い薄い環状の導電体である。
環状導電体26の排気上流側の端部は排気浄化触媒7の
排気上流端面8と面一となるように配置され、環状導電
体26の排気下流側の端部は排気上流側の端部から僅か
に下流へと延びる。環状導電体26には第二の電極13
が接続される。触媒コンバータ1をこのように構成する
ことにより、ケーシング6を介して中央電極11と第二
の外側電極13との間で電流を流す必要がなくなるの
で、ケーシング6を導電性の高い材料で形成する必要が
なくなる。すなわち、ケーシング6の材質の制限がなく
なり、ケーシング6を如何なる材料から形成してもよく
なる。また、第二の電極13をケーシング6に接続した
場合、第二の電極13に供給された交番電流がケーシン
グ6の排気後流側から排気浄化触媒7の排気後流側を通
って中央電極11まで流れてしまい、排気浄化触媒7の
排気後流側を加熱するのに電力が消費されてしまう可能
性がある。しかしながら本変更例のように触媒コンバー
タを構成すれば、上記交番電流が排気浄化触媒7の排気
後流側へ流れることがほとんどなくなり、よって排気浄
化触媒7の排気後流側が加熱されることがほとんどなく
なる。
In a modification of the first embodiment of the present invention, FIG.
As shown in (2), the annular conductor 26 is disposed between the outer peripheral surface of the upstream end portion 16 of the exhaust purification catalyst 7 and the inner peripheral surface of the casing 6. The annular conductor 26 is a thin annular conductor having higher conductivity than the exhaust purification catalyst 7 and the casing 6.
The upstream end of the annular conductor 26 on the exhaust side is arranged so as to be flush with the upstream end face 8 of the exhaust purification catalyst 7, and the downstream end of the annular conductor 26 is located on the upstream side of the exhaust. Extends slightly downstream. The second electrode 13 is provided on the annular conductor 26.
Is connected. By configuring the catalytic converter 1 in this manner, there is no need to flow an electric current between the central electrode 11 and the second outer electrode 13 via the casing 6, so that the casing 6 is formed of a highly conductive material. Eliminates the need. That is, the material of the casing 6 is not limited, and the casing 6 may be formed of any material. When the second electrode 13 is connected to the casing 6, the alternating current supplied to the second electrode 13 passes from the exhaust downstream side of the casing 6 to the central electrode 11 through the exhaust downstream side of the exhaust purification catalyst 7. And the exhaust gas may be consumed to heat the downstream side of the exhaust purification catalyst 7. However, if the catalytic converter is configured as in this modified example, the alternating current hardly flows to the exhaust downstream side of the exhaust purification catalyst 7, and therefore, the exhaust downstream side of the exhaust purification catalyst 7 is almost always heated. Disappears.

【0037】次に図6および図7を参照して本発明の第
二の実施例について説明する。本発明の第二の実施例で
は、図6に示したように第一の実施例の触媒コンバータ
1に追加の排気浄化触媒31が加えられる。追加の排気
浄化触媒31は排気浄化触媒7の排気上流側に排気浄化
触媒7と同軸に、且つ排気浄化触媒7の排気上流端面8
と追加の排気浄化触媒31の排気下流端面32とが平行
であって互いに面するように配置される。排気浄化触媒
7の排気上流端面8と追加の排気浄化触媒31の排気下
流端面32とは所定の距離だけ離間され、これら排気上
流端面8と排気下流端面32との間にはコイル9が配置
される。排気浄化触媒7の軸線方向の長さは追加の排気
浄化触媒31の軸線方向の長さよりも長い。このことに
よりコイル9がより排気上流側に配置され、排気ガスの
流れによって排気上流側の熱が排気下流側に伝達せしめ
られるので効果的に排気浄化触媒を昇温させることがで
きるようになる。
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment of the present invention, as shown in FIG. 6, an additional exhaust purification catalyst 31 is added to the catalytic converter 1 of the first embodiment. The additional exhaust purification catalyst 31 is provided on the exhaust upstream side of the exhaust purification catalyst 7 coaxially with the exhaust purification catalyst 7 and on the exhaust upstream end face 8 of the exhaust purification catalyst 7.
And the exhaust downstream end face 32 of the additional exhaust purification catalyst 31 are arranged so as to be parallel and face each other. The exhaust upstream end face 8 of the exhaust purification catalyst 7 is separated from the exhaust downstream end face 32 of the additional exhaust purification catalyst 31 by a predetermined distance, and a coil 9 is disposed between the exhaust upstream end face 8 and the exhaust downstream end face 32. You. The axial length of the exhaust purification catalyst 7 is longer than the axial length of the additional exhaust purification catalyst 31. As a result, the coil 9 is disposed further upstream of the exhaust gas, and the heat of the exhaust gas is transmitted to the downstream of the exhaust gas by the flow of the exhaust gas, so that the temperature of the exhaust purification catalyst can be effectively raised.

【0038】コイル9は触媒コンバータ1の長手軸線1
0を中心として排気浄化触媒7の排気上流端面8および
追加の排気浄化触媒31の排気下流端面32に沿って触
媒コンバータ1の外周近傍まで渦巻き状に延びる。コイ
ル9は排気浄化触媒7の排気上流端面8と追加の排気浄
化触媒31の排気下流端面32との中心に、すなわちコ
イル9と排気浄化触媒7の排気上流端面8との間の距離
がコイル9と追加の排気浄化触媒31の排気下流端面3
2との間の距離と等しくなるように配置される。径方向
内側に位置するコイル9の一方の端部は中央電極11の
長手方向の中心部に機械的および電気的に接続される。
これにより、コイル9は中央電極11により支持され
る。中央電極11の一方の端部14は追加の排気浄化触
媒31の排気下流端面32に機械的および電気的に接続
され、他方の端部15は排気浄化触媒7の排気上流端面
8に機械的および電気的に接続される。このように構成
することにより、中央電極11は排気浄化触媒7と追加
の排気浄化触媒31とを所定の距離に維持する。すなわ
ち、中央電極11は排気浄化触媒7に対して追加の排気
浄化触媒31を支持する。
The coil 9 is provided on the longitudinal axis 1 of the catalytic converter 1.
It extends spirally around the outer periphery of the catalytic converter 1 along the exhaust upstream end face 8 of the exhaust purification catalyst 7 and the exhaust downstream end face 32 of the additional exhaust purification catalyst 31 around 0. The coil 9 is located at the center of the exhaust upstream end face 8 of the exhaust purification catalyst 7 and the exhaust downstream end face 32 of the additional exhaust purification catalyst 31, that is, the distance between the coil 9 and the exhaust upstream end face 8 of the exhaust purification catalyst 7 And the exhaust downstream end face 3 of the additional exhaust purification catalyst 31
2 are arranged so as to be equal to the distance between them. One end of the coil 9 located inside in the radial direction is mechanically and electrically connected to the center of the center electrode 11 in the longitudinal direction.
Thereby, the coil 9 is supported by the center electrode 11. One end 14 of the center electrode 11 is mechanically and electrically connected to the exhaust downstream end face 32 of the additional exhaust purification catalyst 31, and the other end 15 is mechanically and electrically connected to the exhaust upstream end face 8 of the exhaust purification catalyst 7. Electrically connected. With this configuration, the center electrode 11 maintains the exhaust gas purifying catalyst 7 and the additional exhaust gas purifying catalyst 31 at a predetermined distance. That is, the center electrode 11 supports the additional exhaust purification catalyst 31 with respect to the exhaust purification catalyst 7.

【0039】第二の実施例の触媒コンバータ1では、コ
イル9の一方の端部に第一の外側電極33が接続され、
この第一の外側電極33は排気浄化触媒7の排気上流端
面8と追加の排気浄化触媒31の排気下流端面32との
中間において絶縁されてケーシング6に直接取付けられ
る。さらに、図7に示したように、排気浄化触媒7の排
気上流端面8と追加の排気浄化触媒31の排気下流端面
32との中間においてケーシング6に第二の外側電極3
6が接続され、第一の外側電極12と周方向に離間され
て配置される。第一の実施例と同様に、ケーシング6の
内周面は排気浄化触媒7の外周面と電気的に接触してお
り、ケーシング6に供給された電流が排気浄化触媒7に
流れるようになっている。
In the catalytic converter 1 of the second embodiment, a first outer electrode 33 is connected to one end of the coil 9,
The first outer electrode 33 is insulated and mounted directly on the casing 6 between the exhaust upstream end face 8 of the exhaust purification catalyst 7 and the exhaust downstream end face 32 of the additional exhaust purification catalyst 31. Further, as shown in FIG. 7, the second outer electrode 3 is provided on the casing 6 in the middle between the exhaust upstream end face 8 of the exhaust purification catalyst 7 and the exhaust downstream end face 32 of the additional exhaust purification catalyst 31.
6 are connected and arranged to be spaced apart from the first outer electrode 12 in the circumferential direction. As in the first embodiment, the inner peripheral surface of the casing 6 is in electrical contact with the outer peripheral surface of the exhaust purification catalyst 7, and the current supplied to the casing 6 flows through the exhaust purification catalyst 7. I have.

【0040】次に図6を参照して第二の実施例の誘導加
熱について説明する。コイル9に交番電流を流すと、コ
イル9内で電流が流れる方向に対して垂直にコイル9の
周りに交番磁界、すなわち磁力線35が形成される。ま
た、排気浄化触媒7および追加の排気浄化触媒31はコ
イル9周囲の雰囲気(例えば排気ガスや空気)よりも透
磁率が高いので、磁力線35は排気浄化触媒7および追
加の排気浄化触媒31内を通過する。また、排気浄化触
媒7および追加の排気浄化触媒31が適度な透磁率を有
するので、磁力線35は排気浄化触媒7の排気上流端面
8近傍の部分である上流端部分16と追加の排気浄化触
媒31の排気下流端面32近傍の一部分(以降、単に下
流端部分と称す。)34とを通過する。この磁力線35
により、排気浄化触媒7の上流端部分16および追加の
排気浄化触媒31の下流端部分34に、磁力線35と垂
直に磁力線35周りの誘導電流(渦電流)が発生する。
そして上述したように、この渦電流によって排気浄化触
媒7の上流端部分16および追加の排気浄化触媒31の
下流端部分34が加熱される。こうして、コイル9に交
番電流を流すことによって排気浄化触媒7の上流端部分
16および追加の排気浄化触媒31の下流端部分34が
誘導加熱される。
Next, the induction heating of the second embodiment will be described with reference to FIG. When an alternating current is applied to the coil 9, an alternating magnetic field, that is, a magnetic field line 35 is formed around the coil 9 perpendicular to the direction in which the current flows in the coil 9. Further, since the exhaust gas purifying catalyst 7 and the additional exhaust gas purifying catalyst 31 have higher magnetic permeability than the atmosphere around the coil 9 (for example, exhaust gas or air), the magnetic force lines 35 pass through the inside of the exhaust gas purifying catalyst 7 and the additional exhaust gas purifying catalyst 31. pass. Further, since the exhaust gas purification catalyst 7 and the additional exhaust gas purification catalyst 31 have appropriate magnetic permeability, the magnetic field lines 35 are formed on the upstream end portion 16 near the exhaust upstream end face 8 of the exhaust gas purification catalyst 7 and the additional exhaust gas purification catalyst 31. (Hereinafter, simply referred to as a downstream end portion) 34 in the vicinity of the exhaust downstream end surface 32. This magnetic force line 35
As a result, an induced current (eddy current) around the magnetic force line 35 is generated in the upstream end portion 16 of the exhaust purification catalyst 7 and the downstream end portion 34 of the additional exhaust purification catalyst 31 perpendicularly to the magnetic force line 35.
As described above, the eddy current heats the upstream end portion 16 of the exhaust purification catalyst 7 and the downstream end portion 34 of the additional exhaust purification catalyst 31. In this way, by passing the alternating current through the coil 9, the upstream end portion 16 of the exhaust purification catalyst 7 and the downstream end portion 34 of the additional exhaust purification catalyst 31 are induction-heated.

【0041】次に、図6および図7を参照して第二の実
施例の直接加熱について説明する。第二の実施例では、
第一の外側電極33と第二の外側電極36との間で流れ
る交番電流は、コイル9から中央電極11を介して排気
浄化触媒7と追加の排気浄化触媒31とに流れる。すな
わち、交番電流発生電源17によって発生せしめられた
電流は、第一の外側電極33、コイル9、中央電極11
の順に流れて、そこから排気浄化触媒7と追加の排気浄
化触媒31との二つに流れ、そしてケーシング6で再び
統合されて第二の外側電極36に流れるか、またはその
逆に流れる。この場合、上述したようにコイル9に交番
電流が流れることによって排気浄化触媒7の上流端部分
16および追加の排気浄化触媒31の下流端部分34が
誘導加熱される。さらに、排気浄化触媒7の上流端部分
16および追加の排気浄化触媒31の下流端部分34に
交番電流が流れ、これら部分16、34に電気抵抗があ
ることによって、排気浄化触媒7の上流端部分16およ
び追加の排気浄化触媒31の下流端部分34が直接加熱
される。
Next, the direct heating of the second embodiment will be described with reference to FIGS. In the second embodiment,
The alternating current flowing between the first outer electrode 33 and the second outer electrode 36 flows from the coil 9 via the center electrode 11 to the exhaust purification catalyst 7 and the additional exhaust purification catalyst 31. That is, the current generated by the alternating current generation power supply 17 is supplied to the first outer electrode 33, the coil 9, the center electrode 11
, From there to the exhaust purification catalyst 7 and the additional exhaust purification catalyst 31, and then integrated again in the casing 6 to the second outer electrode 36 or vice versa. In this case, the alternating current flows through the coil 9 as described above, so that the upstream end portion 16 of the exhaust purification catalyst 7 and the downstream end portion 34 of the additional exhaust purification catalyst 31 are induction-heated. Further, an alternating current flows through the upstream end portion 16 of the exhaust purification catalyst 7 and the downstream end portion 34 of the additional exhaust purification catalyst 31, and the electric resistance of these portions 16 and 34 causes the upstream end portion of the exhaust purification catalyst 7 to have an electric resistance. 16 and the downstream end portion 34 of the additional exhaust purification catalyst 31 are directly heated.

【0042】ところで、第一の実施例のように排気浄化
触媒をコイルの片側のみに配置した場合、コイルによっ
て発生する磁束は加熱対象領域(排気浄化触媒)と加熱
対象領域以外の領域(例えばコイルの周囲雰囲気:以
降、単に加熱対象外領域と称す。)とを通過する。上述
したように加熱対象領域は磁束がそこを通過することに
よって誘導加熱せしめられて電力を消費するが、加熱対
称外領域でも同様に電力は消費されてしまう。しかも加
熱対象外領域で消費される電力は有効に熱エネルギに変
換されない。したがって、この加熱対象外領域が増加す
ると電力の損失が大きくなってしまう。ところが第二の
実施例では、コイル9の上流および下流にコイル9の周
囲雰囲気の透磁率よりも透磁率が高い排気浄化触媒7お
よび追加の排気浄化触媒31を配置している。そのため
コイル9によって発生する磁束はコイル9と排気浄化触
媒7、31との間の空間領域をほとんど通過することな
く、排気浄化触媒7、31を通過する。これにより、コ
イル9によって形成される磁束はほぼ加熱対象領域のみ
を通過することになる。このため消費される電力のほと
んどは熱エネルギに変換され、電気的エネルギから熱エ
ネルギへの変換効率が増大し、少ない電力の損失で発熱
量を増加させることができる。よって誘導加熱の効率が
向上する。
When the exhaust gas purifying catalyst is disposed on only one side of the coil as in the first embodiment, the magnetic flux generated by the coil is generated in a region to be heated (the exhaust gas purifying catalyst) and a region other than the region to be heated (for example, the coil). Ambient atmosphere: hereinafter, simply referred to as a non-target area). As described above, the magnetic flux passes through the heating target area to be induction-heated and consumes electric power, but the electric power is also consumed in the area outside the heating symmetry. Moreover, the electric power consumed in the non-heating target area is not effectively converted into heat energy. Therefore, when the non-target area increases, the power loss increases. However, in the second embodiment, the exhaust purification catalyst 7 and the additional exhaust purification catalyst 31 whose magnetic permeability is higher than the magnetic permeability of the atmosphere around the coil 9 are arranged upstream and downstream of the coil 9. Therefore, the magnetic flux generated by the coil 9 passes through the exhaust gas purifying catalysts 7 and 31 almost without passing through the space region between the coil 9 and the exhaust gas purifying catalysts 7 and 31. Thereby, the magnetic flux formed by the coil 9 almost passes only through the region to be heated. For this reason, most of the consumed power is converted into heat energy, the conversion efficiency from electrical energy to heat energy is increased, and the amount of heat generated can be increased with a small loss of power. Therefore, the efficiency of induction heating is improved.

【0043】[0043]

【発明の効果】第1の発明によれば、排気浄化触媒の排
気上流端面近傍の部分を二つの加熱方法によって相補的
に加熱することにより、排気浄化触媒の排気上流端面近
傍の部分を温度差ができないように加熱することができ
るようになる。第2の発明によれば、一つの電流経路の
みで誘導加熱と直接的な加熱との二つの加熱方法を行う
ことができるので、構成が簡素にされる。第6の発明に
よれば、導電体に交番電流を流すことによって生じる磁
力線がほぼ加熱対象領域のみを通過するようになるの
で、消費される電力のほとんどが熱エネルギへ変換さ
れ、よって誘導加熱の効率が向上する。
According to the first aspect of the present invention, the portion of the exhaust purification catalyst near the exhaust upstream end face is complementarily heated by two heating methods, so that the portion of the exhaust purification catalyst near the exhaust upstream end face has a temperature difference. It can be heated so that it cannot be done. According to the second aspect, since two heating methods of induction heating and direct heating can be performed with only one current path, the configuration is simplified. According to the sixth aspect, the magnetic lines of force generated by passing the alternating current through the conductor almost pass only through the region to be heated, so that most of the consumed electric power is converted into heat energy, and thus the induction heating is performed. Efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施例の触媒昇温装置を示す図である。FIG. 1 is a diagram showing a catalyst temperature raising device of a first embodiment.

【図2】図1に示した触媒コンバータの上流側の拡大断
面図である。
FIG. 2 is an enlarged sectional view on the upstream side of the catalytic converter shown in FIG.

【図3】図2の線III−IIIに沿った触媒コンバータの断
面図である。
FIG. 3 is a cross-sectional view of the catalytic converter taken along a line III-III in FIG. 2;

【図4】コイル内で電流が流れる部分を示した図であ
る。
FIG. 4 is a diagram showing a portion where a current flows in a coil.

【図5】第一の実施例の変更例の触媒コンバータの図2
と同様な図である。
FIG. 5 shows a catalytic converter according to a modification of the first embodiment.
FIG.

【図6】第二の実施例の触媒コンバータの上流側の拡大
断面図である。
FIG. 6 is an enlarged sectional view of the upstream side of a catalytic converter according to a second embodiment.

【図7】図6の線VII−VIIに沿った触媒コンバータの断
面図である。
FIG. 7 is a sectional view of the catalytic converter taken along the line VII-VII in FIG. 6;

【符号の説明】[Explanation of symbols]

1…触媒コンバータ 2…機関本体 3…機関排気通路 4…流入口 5…流出口 6…ケーシング 7…排気浄化触媒 8…排気上流端面 9…コイル(導電体) 10…長手軸線 11…中央電極 12…第一の電極 13…第二の電極 DESCRIPTION OF SYMBOLS 1 ... Catalytic converter 2 ... Engine main body 3 ... Engine exhaust passage 4 ... Inlet 5 ... Outlet 6 ... Casing 7 ... Exhaust purification catalyst 8 ... Exhaust upstream end face 9 ... Coil (conductor) 10 ... Longitudinal axis 11 ... Central electrode 12 ... first electrode 13 ... second electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 隆晟 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 桜井 計宏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 一瀬 宏樹 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA02 AB01 BA03 CA04 GA08 GA10 HA45 4D048 CC32 CC43 CC53 EA03 4G069 AA20 CA03 DA06 EE03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takaaki Ito 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Toshihiro Sakurai 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Hiroki Ichinose 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 3G091 AA02 AB01 BA03 CA04 GA08 GA10 HA45 4D048 CC32 CC43 CC53 EA03 4G069 AA20 CA03 DA06 EE03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 機関排気通路に導電性のある排気浄化触
媒を配置すると共に該排気浄化触媒の排気上流端面に面
して導電体を配置し、該導電体に交番電流を供給するこ
とにより排気浄化触媒の排気上流端面近傍の部分を誘導
加熱するようにした内燃機関の触媒昇温装置において、 排気浄化触媒の排気上流端面近傍の部分を誘導加熱する
ことに加えて、排気浄化触媒の排気上流端面近傍の部分
に電流を流すことによって排気浄化触媒の排気上流端面
近傍の部分を加熱するようにした内燃機関の触媒昇温装
置。
An exhaust purification catalyst is disposed in an engine exhaust passage, a conductor is disposed facing an exhaust upstream end face of the exhaust purification catalyst, and an alternating current is supplied to the conductor to produce an exhaust gas. In the internal combustion engine catalyst temperature increasing device in which a portion near the exhaust upstream end face of the purification catalyst is induction-heated, in addition to induction heating the portion near the exhaust upstream end face of the exhaust purification catalyst, the exhaust upstream of the exhaust purification catalyst is increased. A catalyst temperature raising device for an internal combustion engine configured to heat a portion near an exhaust upstream end surface of an exhaust purification catalyst by flowing a current to a portion near an end surface.
【請求項2】 排気浄化触媒の排気上流端面のほぼ中央
に前記導電体に接続された中央電極を接続すると共に排
気浄化触媒の排気上流端面近傍の外周面に外側電極を接
続し、前記導電体を流れる交番電流が中央電極を介して
排気浄化触媒の排気上流端面近傍の部分を通って外側電
極まで流れるようにした請求項1に記載の内燃機関の触
媒昇温装置。
2. A method according to claim 1, wherein a central electrode connected to said conductor is connected to a substantially center of an exhaust upstream end face of said exhaust purification catalyst, and an outer electrode is connected to an outer peripheral face near an exhaust upstream end face of said exhaust purification catalyst. 2. The catalyst heating device for an internal combustion engine according to claim 1, wherein the alternating current flowing through the exhaust gas passes through a portion near the exhaust upstream end face of the exhaust purification catalyst to the outer electrode via the central electrode.
【請求項3】 前記中央電極を剛性のある導電性材料で
形成し、該中央電極が前記導電体を支持するように排気
浄化触媒の排気上流端面に中央電極を連結するようにし
た請求項2に記載の内燃機関の触媒昇温装置。
3. The central electrode is formed of a rigid conductive material, and the central electrode is connected to an exhaust upstream end face of an exhaust purification catalyst so that the central electrode supports the conductor. 3. The catalyst temperature raising device for an internal combustion engine according to claim 1.
【請求項4】 前記外側電極が排気浄化触媒の排気上流
端面近傍の外周面を包囲する包囲電極である請求項2に
記載の内燃機関の触媒昇温装置。
4. The catalyst heating device for an internal combustion engine according to claim 2, wherein the outer electrode is a surrounding electrode surrounding an outer peripheral surface near an exhaust upstream end surface of the exhaust purification catalyst.
【請求項5】 排気浄化触媒を収容する導電性のケーシ
ングを機関排気通路に形成し、該ケーシングを包囲電極
とした請求項4に記載の内燃機関の触媒昇温装置。
5. The catalyst temperature raising device for an internal combustion engine according to claim 4, wherein a conductive casing accommodating the exhaust gas purification catalyst is formed in the engine exhaust passage, and the casing is used as the surrounding electrode.
【請求項6】 排気浄化触媒と別個に前記導電体の上流
に導電性のある排気浄化触媒を追加して配置し、中央電
極が該追加の排気浄化触媒を支持するように該追加の排
気浄化触媒を中央電極に連結するようにした請求項3〜
5のいずれか一つに記載の内燃機関の触媒浄化装置。
6. An additional exhaust gas purification catalyst which is disposed upstream of said conductor separately from said exhaust gas purification catalyst, said additional exhaust gas purification catalyst being supported by a central electrode to support said additional exhaust gas purification catalyst. The catalyst is connected to the center electrode.
6. The catalyst purifying apparatus for an internal combustion engine according to any one of 5.
JP2001174677A 2001-06-08 2001-06-08 Catalyst temperature raising device for internal combustion engine Expired - Fee Related JP3700052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174677A JP3700052B2 (en) 2001-06-08 2001-06-08 Catalyst temperature raising device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174677A JP3700052B2 (en) 2001-06-08 2001-06-08 Catalyst temperature raising device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002364351A true JP2002364351A (en) 2002-12-18
JP3700052B2 JP3700052B2 (en) 2005-09-28

Family

ID=19015928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174677A Expired - Fee Related JP3700052B2 (en) 2001-06-08 2001-06-08 Catalyst temperature raising device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3700052B2 (en)

Also Published As

Publication number Publication date
JP3700052B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP5316707B2 (en) Exhaust gas purification device for internal combustion engine
JP2010024910A (en) Exhaust emission control device
KR20090118824A (en) Plasma processing device
JP2013199394A (en) Reforming device
JPH0828250A (en) Induction heat generation type catalyst converter for automobile
JP2019173600A (en) Exhaust emission control device for internal combustion engine
JP5664670B2 (en) Electric heating catalyst
JP5626371B2 (en) Electric heating catalyst
JP5353674B2 (en) Catalytic converter device
JP3700052B2 (en) Catalyst temperature raising device for internal combustion engine
EP3087260B1 (en) Catalytic converter
JP3719148B2 (en) Catalyst temperature raising device for internal combustion engine
JP2002364350A (en) Catalyst temperature raising device for internal combustion engine
JP2018178768A (en) Catalyst device of internal combustion engine
CN110307065B (en) Heating purification component for purifying exhaust gas and purification device with same
JP2011247162A (en) Electrically heated catalyst apparatus
JP2012193726A (en) Catalyst converter device
JP3237364B2 (en) Induction heating catalytic converter for automobiles
JP2018202278A (en) Catalyst device
JP3719149B2 (en) Catalyst temperature raising device for internal combustion engine
JP2015148204A (en) Exhaust emission control catalyst converter device
JP5601240B2 (en) Catalytic converter device
JP5633450B2 (en) Catalytic converter device
JP2002213235A (en) Catalyst temperature increasing device for internal combustion engine
JP2015135059A (en) Electric heating type exhaust emission control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees