JP2002363850A - Porous sheet and method for producing the same - Google Patents

Porous sheet and method for producing the same

Info

Publication number
JP2002363850A
JP2002363850A JP2001165356A JP2001165356A JP2002363850A JP 2002363850 A JP2002363850 A JP 2002363850A JP 2001165356 A JP2001165356 A JP 2001165356A JP 2001165356 A JP2001165356 A JP 2001165356A JP 2002363850 A JP2002363850 A JP 2002363850A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
sheet
melting point
porous sheet
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001165356A
Other languages
Japanese (ja)
Other versions
JP4792662B2 (en
Inventor
Takashi Niifuku
隆志 新福
Shuji Sakamoto
秀志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2001165356A priority Critical patent/JP4792662B2/en
Publication of JP2002363850A publication Critical patent/JP2002363850A/en
Application granted granted Critical
Publication of JP4792662B2 publication Critical patent/JP4792662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high-elongation porous sheet having high tensile elongation at break, and further to provide a method for producing the porous sheet. SOLUTION: This sheet is obtained by compressing a nonwoven fiber assembly comprising a thermally bondable conjugate fiber consisting of a thermoplastic resin A having X deg.C melting point, and a thermoplastic resin B having Y deg.C melting point (X>Y), and has 0.01-100 μm average pore diameter and >=40% tensile elongation at break.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱接着性複合繊維
からなる不織繊維集合体を延伸することで得られる多孔
性シート及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous sheet obtained by stretching a non-woven fiber aggregate made of a heat-adhesive conjugate fiber and a method for producing the same.

【0002】[0002]

【従来の技術】貫通孔を有する多孔性シートは、医療
用、工業用の分離膜や、電池セパレータ用、電解コンデ
ンサー用のセパレータ等の様々な用途に使用されてい
る。特に熱可塑性繊維からなる多孔性シートは、不織布
を延伸することで貫通孔が容易に得られることからセパ
レータだけでなく、紙おむつ等の衛生材料用途にも好ま
しく利用されている。しかしながら、多孔性シートは孔
のサイズを減少させる必要から高倍率で延伸されている
ので、多孔性シートの引張破壊伸びが非常に小さく、製
品への加工時に破断が生じ易いなどの欠点を有してお
り、改良すべき余地が残されている。
2. Description of the Related Art Porous sheets having through holes are used in various applications such as separators for medical and industrial applications, separators for batteries and separators for electrolytic capacitors. In particular, a porous sheet made of a thermoplastic fiber is preferably used not only for a separator but also for a sanitary material such as a disposable diaper because a through hole can be easily obtained by stretching a nonwoven fabric. However, since the porous sheet is stretched at a high magnification because it is necessary to reduce the size of the pores, the porous sheet has drawbacks such that the tensile elongation at break is very small, and the porous sheet is easily broken when processed into a product. There is still room for improvement.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、引張
破壊伸びが大きく、高伸度の多孔性シート、及び延伸倍
率、溶融温度などの加工条件を変更するだけで複雑な製
造工程を伴わずに多孔性シートの平均孔径を幅広く選択
することができる高伸度の多孔性シートの製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention involves a porous sheet having a large tensile elongation at break and a high elongation, and a complicated manufacturing process simply by changing processing conditions such as a draw ratio and a melting temperature. It is an object of the present invention to provide a method for producing a high elongation porous sheet which allows a wide selection of the average pore size of the porous sheet without requiring the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた。その結果、以下の構成
を採用することにより、所期の目的が達成されることを
見出し、この知見に基づいて本発明を完成した。 (1)融点X℃の熱可塑性樹脂Aと融点Y℃(X>Y)
の熱可塑性樹脂Bとから構成される熱接着性複合繊維か
らなる不織繊維集合体を圧密して得られるシートであっ
て、シートの平均孔径が0.01〜100μmであり、
引張破壊伸びが40%以上である多孔性シート。 (2)熱可塑性樹脂Aがポリプロピレンであり、熱可塑
性樹脂Bがポリエチレンである前記(1)項記載の多孔
性シート。 (3)熱可塑性樹脂Aがポリエチレンテレフタレートで
あり、熱可塑性樹脂Bがポリエチレンである前記(1)
項記載の多孔性シート。 (4)融点X℃の熱可塑性樹脂Aと融点Y℃(X>Y)
の熱可塑性樹脂Bとから構成される熱接着性複合繊維か
らなる不織繊維集合体をY℃以上X℃未満の溶融温度で
加熱し、加圧処理を行い、厚み方向に圧密させてシート
とし、Y℃以下の延伸温度で少なくとも一軸方向に該シ
ートを延伸することを特徴とする前記(1)〜(3)項
のいずれか1項記載の多孔性シートの製造方法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems. As a result, it was found that the intended purpose was achieved by employing the following configuration, and the present invention was completed based on this finding. (1) Thermoplastic resin A having a melting point of X ° C. and melting point of Y ° C. (X> Y)
A sheet obtained by consolidating a nonwoven fiber aggregate made of a heat-adhesive conjugate fiber composed of a thermoplastic resin B, and the sheet has an average pore size of 0.01 to 100 μm,
A porous sheet having a tensile elongation at break of 40% or more. (2) The porous sheet according to the above (1), wherein the thermoplastic resin A is polypropylene and the thermoplastic resin B is polyethylene. (3) The above (1), wherein the thermoplastic resin A is polyethylene terephthalate and the thermoplastic resin B is polyethylene.
Item 8. The porous sheet according to item 1. (4) Thermoplastic resin A having a melting point of X ° C. and a melting point of Y ° C. (X> Y)
A nonwoven fiber aggregate composed of a thermo-adhesive conjugate fiber composed of a thermoplastic resin B is heated at a melting temperature of Y ° C. or more and less than X ° C., subjected to a pressure treatment, and compacted in a thickness direction to form a sheet. The method for producing a porous sheet according to any one of the above (1) to (3), wherein the sheet is stretched at least in a uniaxial direction at a stretching temperature of Y ° C. or lower.

【0005】[0005]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。本発明の多孔性シートは、熱接着性複合繊維からな
る不織繊維集合体を圧密して得られるシートである。ま
た、本発明の多孔性シートは、シートの平均孔径が0.
01〜100μmであり、引張破壊伸びが40%以上で
ある。本発明の多孔性シートは、0.01〜100μm
の平均孔径を選択して製造できるため、種々の分野の用
途に柔軟に対応が可能である。また、40%以上の引張
破壊伸びを有することで、よじれ、捻れ、伸び等の変形
が製品への加工時に生じた場合であっても、破れが生じ
にくい。引張破壊伸びは40〜150%の範囲が好まし
く、60〜100%の範囲であることが加工のし易さか
らより好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The porous sheet of the present invention is a sheet obtained by compacting a nonwoven fiber aggregate made of a heat-adhesive conjugate fiber. Further, the porous sheet of the present invention has an average pore size of 0.1.
01-100 μm, and the tensile elongation at break is 40% or more. The porous sheet of the present invention has a thickness of 0.01 to 100 μm.
Can be manufactured by selecting an average pore size of the above, so that it is possible to flexibly cope with applications in various fields. Further, by having a tensile breaking elongation of 40% or more, even when deformation such as kinking, twisting, and elongation occurs during processing into a product, breakage is unlikely to occur. The tensile elongation at break is preferably in the range of 40 to 150%, and more preferably in the range of 60 to 100% from the viewpoint of ease of processing.

【0006】本発明に用いられる熱接着性複合繊維は、
融点差を有する少なくとも2種類の熱可塑性樹脂である
融点X℃の熱可塑性樹脂Aと融点Y℃(X>Y)の熱可
塑性樹脂Bとから構成される複合繊維である。熱可塑性
樹脂の融点差(X−Y)は、10℃以上であることが好
ましく、より好ましくは15℃以上である。なお、複合
繊維が良好な熱接着性を有するためには、熱可塑性樹脂
Aを繊維形成成分として用い、熱可塑性樹脂Bを接着成
分として用いて、熱可塑性樹脂Bが繊維表面の長さ方向
に連続して露出し、同時に熱可塑性樹脂Aを被覆する構
造の複合繊維とすることが好ましい。熱接着性複合繊維
の複合形態としては、同心鞘芯型、偏心鞘芯型、並列
型、海島型及び中空型などの形態が例示できる。また、
その形状は、円形断面だけでなく異形断面でもよい。熱
接着性の点を考慮すれば、同心鞘芯型、偏心鞘心型及び
並列型の複合形態を有する複合繊維が好ましい。なかで
も同心鞘芯型構造の熱接着性複合繊維は安定した熱接着
性を有していることからより好ましい。なお、本発明に
用いられる熱接着性複合繊維は、前記複合形態が製造で
きる紡糸口金と、複合紡糸装置、延伸装置等を必要に応
じて使用して製造することができる。
The heat-adhesive conjugate fiber used in the present invention is:
This is a composite fiber composed of a thermoplastic resin A having a melting point of X ° C., which is at least two kinds of thermoplastic resins having a melting point difference, and a thermoplastic resin B having a melting point of Y ° C. (X> Y). The difference between the melting points (XY) of the thermoplastic resin is preferably 10 ° C. or more, more preferably 15 ° C. or more. In order for the composite fiber to have good thermal adhesiveness, the thermoplastic resin A is used as a fiber-forming component, the thermoplastic resin B is used as an adhesive component, and the thermoplastic resin B extends in the length direction of the fiber surface. It is preferable to use a composite fiber having a structure that is continuously exposed and simultaneously coated with the thermoplastic resin A. Examples of the composite form of the heat-adhesive composite fiber include concentric sheath-core type, eccentric sheath-core type, side-by-side type, sea-island type, and hollow type. Also,
The shape may be not only a circular cross section but also an irregular cross section. In view of the thermal adhesiveness, a composite fiber having a concentric sheath-core, eccentric sheath-core, and side-by-side composite form is preferable. Above all, a heat-adhesive conjugate fiber having a concentric sheath-core structure is more preferable since it has stable heat-adhesive properties. The thermoadhesive conjugate fiber used in the present invention can be produced by using a spinneret capable of producing the composite form, a conjugate spinning device, a drawing device, and the like, as necessary.

【0007】本発明に用いられる複合繊維が、融点X℃
の熱可塑性樹脂Aを芯成分とし、融点Y℃(X>Y)の
熱可塑性樹脂Bを鞘成分とする同心鞘芯型複合繊維の場
合には、熱可塑性樹脂Aの重量比:熱可塑性樹脂Bの重
量比を、25:85〜85:25の範囲とすることが好
ましく、30:70〜70:30の範囲とすることがよ
り好ましい。熱可塑性樹脂Bの重量比が25を大幅に下
回ると、鞘成分の量が不足して芯成分の繊維長さ方向に
沿った全面を被覆しない場合があり、その場合には不織
繊維集合体を完全に熱圧着させ形成させたシートが得ら
れにくくなる。逆に熱可塑性樹脂Bの重量比が85を大
幅に上回ると、得られるシートの強力を維持する芯成分
の量が不足するために、シートの腰がなくなる傾向にあ
る。
The composite fiber used in the present invention has a melting point of X ° C.
In the case of a concentric sheath-core composite fiber having the thermoplastic resin A as a core component and the thermoplastic resin B having a melting point of Y ° C. (X> Y) as a sheath component, the weight ratio of the thermoplastic resin A: the thermoplastic resin The weight ratio of B is preferably in the range of 25:85 to 85:25, and more preferably in the range of 30:70 to 70:30. If the weight ratio of the thermoplastic resin B is significantly lower than 25, the amount of the sheath component may be insufficient and the core component may not cover the entire surface along the fiber length direction. Is completely difficult to obtain by thermocompression bonding. On the other hand, when the weight ratio of the thermoplastic resin B is much higher than 85, the sheet tends to be stiff because the amount of the core component for maintaining the strength of the obtained sheet is insufficient.

【0008】熱接着性複合繊維に用いられる熱可塑性樹
脂Aと熱可塑性樹脂Bとの組み合わせは、Y℃以上、X
℃未満の範囲の温度で熱処理し、熱可塑性樹脂Aと熱可
塑性樹脂Bとから構成される熱接着性複合繊維からなる
不織繊維集合体を熱圧着等により圧密してシート化でき
る組み合わせであれば問題なく利用できる。例えば、熱
可塑性樹脂B/熱可塑性樹脂Aでその組み合わせを表わ
すと、高密度ポリエチレン/プロピレン共重合体、直鎖
状低密度ポリエチレン/プロピレン共重合体、低密度ポ
リエチレン/プロピレン共重合体、プロピレンと他のα
−オレフィンとの二元共重合体または三元共重合体/プ
ロピレン共重合体、直鎖状低密度ポリエチレン/高密度
ポリエチレン、低密度ポリエチレン/高密度ポリエチレ
ン、プロピレンと他のα−オレフィンとの二元共重合体
または三元共重合体/ポリエチレンテレフタレート、プ
ロピレン単独重合体/ポリエチレンテレフタレート、各
種のポリエチレン/ポリエチレンテレフタレート、低融
点熱可塑性ポリエステル/ポリエチレンテレフタレー
ト、各種のポリエチレン/ナイロン6、各種のポリプロ
ピレン/ナイロン6、ナイロン6/ナイロン66、ナイ
ロン6/熱可塑性ポリエステル等のいずれかから選ばれ
た組み合わせを挙げることができる。
[0008] The combination of the thermoplastic resin A and the thermoplastic resin B used for the heat-adhesive conjugate fiber is Y ° C or higher, X
A combination that can be heat-treated at a temperature of less than about 0 ° C. to form a nonwoven fiber aggregate made of a thermoadhesive conjugate fiber composed of thermoplastic resin A and thermoplastic resin B by thermocompression bonding or the like to form a sheet. It can be used without any problems. For example, when the combination is represented by thermoplastic resin B / thermoplastic resin A, high-density polyethylene / propylene copolymer, linear low-density polyethylene / propylene copolymer, low-density polyethylene / propylene copolymer, propylene Other α
-Binary or terpolymer / propylene copolymer with olefin, linear low-density polyethylene / high-density polyethylene, low-density polyethylene / high-density polyethylene, propylene with other α-olefins Terpolymer or terpolymer / polyethylene terephthalate, propylene homopolymer / polyethylene terephthalate, various polyethylene / polyethylene terephthalates, low melting thermoplastic polyester / polyethylene terephthalate, various polyethylene / nylon 6, various polypropylene / nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester and the like.

【0009】これらの中では、ポリオレフィン同士であ
るポリプロピレンとポリエチレンとからなる組合せが、
熱接着性、耐薬品性、及び軽量性の点から好ましく、ポ
リプロピレンは、ポリオレフィンの中でも耐熱性が高
く、煮沸等の高温環境下でも耐えうることから分離膜や
セパレーターとして好適であり、特に好ましい。その組
み合わせとしては、低密度ポリエチレン/プロピレン単
独重合体、直鎖状低密度ポリエチレン/プロピレン単独
重合体、高密度ポリエチレン/プロピレン単独重合体、
エチレン−プロピレン−ブテン−1三元共重合体/プロ
ピレン単独重合体、エチレン−プロピレン二元共重合体
/プロピレン単独重合体が例示できる。また、ポリオレ
フィンとポリエステルからなる組合せ、特にポリエチレ
ンとポリエステルとからなる組み合わせが熱接着性の点
から好ましい。その組み合わせとしては、低密度ポリエ
チレン/ポリエチレンテレフタレート、直鎖状低密度ポ
リエチレン/ポリエチレンテレフタレート、高密度ポリ
エチレン/ポリエチレンテレフタレートが例示できる。
[0009] Among these, a combination comprising polypropylene and polyethylene, which are polyolefins,
It is preferable from the viewpoint of heat adhesion, chemical resistance, and lightness. Polypropylene is particularly preferable as a separation membrane or a separator because it has high heat resistance among polyolefins and can withstand even a high temperature environment such as boiling. As the combination, low-density polyethylene / propylene homopolymer, linear low-density polyethylene / propylene homopolymer, high-density polyethylene / propylene homopolymer,
Examples thereof include an ethylene-propylene-butene-1 terpolymer / propylene homopolymer and an ethylene-propylene binary copolymer / propylene homopolymer. Further, a combination of a polyolefin and a polyester, particularly a combination of a polyethylene and a polyester, is preferred from the viewpoint of thermal adhesion. Examples of such combinations include low density polyethylene / polyethylene terephthalate, linear low density polyethylene / polyethylene terephthalate, and high density polyethylene / polyethylene terephthalate.

【0010】本発明に用いられるポリプロピレンとして
は、プロピレン単独重合体、プロピレンとプロピレン以
外のα−オレフィンとの二元共重合体または三元共重合
体を挙げることができる。さらにこれら共重合体は2種
類以上の混合物であってもよい。また、これらの共重合
体は、ランダム共重合体やブロック共重合体のいずれで
あってもよい。なお、プロピレン以外のα−オレフィン
としては、エチレン、1−ブテン、1−ペンテン、1−
ヘキセン、1−オクテン等の炭素数2〜12のα−オレ
フィン等が例示でき、さらにこれらを併用して使用して
もよい。また、ポリプロピレンとしてプロピレン単独重
合体を使用した場合には、通常、融点のピークは162
℃付近である。しかし、プロピレンとエチレンとの2元
系ランダム共重合体や、プロピレンとエチレン、ブテン
との3元系ランダム共重合体を使用した場合には、融点
のピークは製造条件により調節できるため、必要に応じ
て120〜162℃の融点範囲を有するポリプロピレン
を任意に選択し使用することができる。また、メルトフ
ローレート(MFR:JIS K7210 表1中の条
件14に準拠して測定した値)が2〜150g/10分
の範囲のポリプロピレンが繊維化に適しており好まし
い。
Examples of the polypropylene used in the present invention include a propylene homopolymer, a binary copolymer of propylene and an α-olefin other than propylene, or a terpolymer. Further, these copolymers may be a mixture of two or more kinds. Further, these copolymers may be any of a random copolymer and a block copolymer. In addition, as an α-olefin other than propylene, ethylene, 1-butene, 1-pentene, 1-
Examples thereof include α-olefins having 2 to 12 carbon atoms such as hexene and 1-octene, and these may be used in combination. When a propylene homopolymer is used as the polypropylene, the peak of the melting point is usually 162.
It is around ° C. However, when a binary random copolymer of propylene and ethylene or a ternary random copolymer of propylene and ethylene or butene is used, the peak of the melting point can be adjusted by the production conditions. Accordingly, polypropylene having a melting point range of 120 to 162 ° C can be arbitrarily selected and used. Further, polypropylene having a melt flow rate (MFR: a value measured in accordance with the condition 14 in JIS K7210 Table 1) of 2 to 150 g / 10 minutes is suitable because it is suitable for fiberization.

【0011】本発明に用いられるポリエチレンとして
は、エチレン単独重合体、エチレンとエチレン以外のモ
ノマーとの二元以上の共重合体を挙げることができる。
さらにこれら共重合体は2種類以上の混合物であっても
よい。また、これらの共重合体は、ランダム共重合体や
ブロック共重合体のいずれであってもよい。エチレン以
外のモノマーとしては、プロピレン、1−ブテン、1−
ペンテン、1−ヘキセン、1−オクテン等の炭素数3〜
12のα−オレフィンだけでなく、酢酸ビニル等のビニ
ルエステル、アクリル酸エチル等のアクリル酸エステ
ル、メタクリル酸メチル等のメタクリル酸エステル、一
酸化炭素等が例示でき、さらにこれらを併用して使用し
てもよい。エチレンとエチレン以外のα−オレフィンと
の具体的な共重合体としては、密度が0.910〜0.
925g/cm3の低密度ポリエチレン、密度が0.9
26〜0.940g/cm3の直鎖状低密度ポリエチレ
ン、密度が0.941〜0.980g/cm3の高密度
ポリエチレンを挙げることができる。特にメルトフロー
レート(MI:JIS K 7210 表1中の条件4
に準拠して測定した値)が2〜100g/10分の範囲
のポリエチレンが繊維化に適しており好ましい。
Examples of the polyethylene used in the present invention include an ethylene homopolymer and a binary copolymer of ethylene and a monomer other than ethylene.
Further, these copolymers may be a mixture of two or more kinds. Further, these copolymers may be any of a random copolymer and a block copolymer. As monomers other than ethylene, propylene, 1-butene, 1-
C3-C3 such as pentene, 1-hexene and 1-octene
12, α-olefins, vinyl esters such as vinyl acetate, acrylates such as ethyl acrylate, methacrylates such as methyl methacrylate, carbon monoxide and the like. You may. A specific copolymer of ethylene and an α-olefin other than ethylene has a density of 0.910 to 0.1.
925 g / cm 3 low density polyethylene, density 0.9
26~0.940g / cm 3 of linear low density polyethylene, the density can be mentioned high density polyethylene 0.941~0.980g / cm 3. In particular, the melt flow rate (MI: JIS K 7210, condition 4 in Table 1)
Polyethylene having a value of 2 to 100 g / 10 min.

【0012】さらに、本発明に用いられるポリプロピレ
ン、ポリエチレンは、改質物であってもよい。例えば、
ポリプロピレンを使用する場合、改質剤として有機シラ
ン系化合物または不飽和カルボン酸もしくはその誘導体
を用いることができる。具体的には、アクリル酸、メタ
クリル酸、マレイン酸、イタコン酸、テトラヒドロフタ
ル酸及びノルボルネンジカルボン酸等の不飽和カルボン
酸、無水マレイン酸、無水イタコン酸、無水テトラヒド
ロフタル酸及び無水ノルボルネンジカルボン酸等の不飽
和カルボン酸無水物が例示できる。なかでも、実用性能
において最も優れているマレイン酸及び無水マレイン酸
が好ましい。なお、本発明において改質物を使用する場
合には、使用される改質物の改質率、例えばポリプロピ
レンを無水マレイン酸改質する際のグラフト率は、通常
は1〜10%であることが望ましい。
Further, the polypropylene and polyethylene used in the present invention may be modified products. For example,
When using polypropylene, an organic silane compound or an unsaturated carboxylic acid or a derivative thereof can be used as a modifier. Specifically, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, tetrahydrophthalic acid and norbornene dicarboxylic acid, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride and norbornene dicarboxylic anhydride, etc. An example is an unsaturated carboxylic anhydride. Among them, maleic acid and maleic anhydride, which are most excellent in practical performance, are preferable. In the case where a modified product is used in the present invention, the modification rate of the used modified product, for example, the grafting ratio when modifying maleic anhydride on polypropylene is usually desirably 1 to 10%. .

【0013】本発明に用いられるポリエチレンテレフタ
レートは、市販または工業的に利用されている通常のポ
リエチレンテレフタレートのうち、特に繊維用として市
販されているポリエチレンテレフタレートが利用でき、
具体的には固有粘度が0.50から1.20の範囲のポ
リエチレンテレフタレートが好ましく利用できる。
As the polyethylene terephthalate used in the present invention, among the ordinary polyethylene terephthalates which are commercially available or industrially used, polyethylene terephthalate which is commercially available especially for fibers can be used.
Specifically, polyethylene terephthalate having an intrinsic viscosity in the range of 0.50 to 1.20 can be preferably used.

【0014】熱可塑性樹脂Aまたは熱可塑性樹脂Bに
は、一般に使用されている酸化防止剤、ヒンダードアミ
ン系耐候剤、紫外線吸収剤、防曇剤や帯電防止剤等の界
面活性剤、アンチブロッキング剤、スリップ剤、抗菌
剤、防黴剤、顔料等を本発明の効果を損なわない範囲で
必要に応じて配合することができる。また、該熱可塑性
樹脂の軟化温度の低下や柔軟性の向上のために、シング
ルサイト触媒や公知のマルチサイト触媒で重合されたエ
チレン−ジエン弾性共重合体、エチレン−プロピレン弾
性共重合体、スチレン−ブタジエン弾性共重合体等の弾
性共重合体を熱可塑性樹脂Aまたは熱可塑性樹脂Bに添
加してもよい。
The thermoplastic resin A or the thermoplastic resin B may contain generally used antioxidants, hindered amine weathering agents, ultraviolet absorbers, surfactants such as antifogging agents and antistatic agents, antiblocking agents, A slip agent, an antibacterial agent, an antifungal agent, a pigment, and the like can be blended as needed within a range not to impair the effects of the present invention. Further, in order to lower the softening temperature and improve the flexibility of the thermoplastic resin, ethylene-diene elastic copolymer, ethylene-propylene elastic copolymer, styrene polymerized with a single-site catalyst or a known multi-site catalyst. -An elastic copolymer such as a butadiene elastic copolymer may be added to the thermoplastic resin A or the thermoplastic resin B.

【0015】本発明では不織繊維集合体として、ウェ
ブ、不織布を用いることができる。本発明に用いられる
ウェブは、目的、用途、熱接着性複合繊維の繊維長、繊
度に応じた製造方法によって得られる。熱接着性複合繊
維の繊維長が20〜125mmの場合には、カード機ま
たはランダムウエバー法によってウェブを製造できる。
このとき、繊維長を25〜75mmとすることで、カー
ド通過性を良好にし、さらに良好な地合いのウェブとす
ることができる。また、該複合繊維の繊維長が3〜20
mmの場合には、エアレイ法、抄紙法によってウエブを
製造できる。なお、これらの製造方法に適する繊度は、
1〜35dtexである。また、熱接着性複合繊維が長
繊維の場合には、メルトブロー法、スパンボンド法、及
びフラッシュスパン法等の方法により、紡糸で直接にウ
ェブを製造できる。これらの製造方法に適する繊度は、
0.8〜11.0dtexであり、より好ましくは、
1.7〜5.5dtexである。また、本発明に用いら
れる不織布は、前記ウェブに熱圧着法、熱風加熱法、高
圧水柱流絡合法、ニードルパンチ法等の加工を施すこと
により製造できる。なお、不織繊維集合体は、熱接着性
複合繊維だけでなく、本発明の効果を阻害しない範囲内
であれば他の繊維が混綿や混紡されていてもよい。ま
た、不織繊維集合体としては、運搬性、易加工性、目付
の均一性の点から、ウェブよりも不織布を使用すること
がより好ましい。
In the present invention, a web or a nonwoven fabric can be used as the nonwoven fiber aggregate. The web used in the present invention is obtained by a production method according to the purpose, application, fiber length and fineness of the heat-adhesive conjugate fiber. When the fiber length of the heat-adhesive conjugate fiber is 20 to 125 mm, a web can be manufactured by a carding machine or a random webber method.
At this time, by setting the fiber length to 25 to 75 mm, the card passing property is improved, and a web with a better texture can be obtained. Further, the fiber length of the composite fiber is 3 to 20.
In the case of mm, a web can be manufactured by an air lay method or a papermaking method. The fineness suitable for these production methods is
1 to 35 dtex. When the heat-adhesive conjugate fiber is a long fiber, a web can be directly produced by spinning by a method such as a melt blow method, a spun bond method, and a flash spun method. The fineness suitable for these production methods is
0.8 to 11.0 dtex, more preferably,
It is 1.7 to 5.5 dtex. The nonwoven fabric used in the present invention can be manufactured by subjecting the web to a process such as a thermocompression bonding method, a hot air heating method, a high pressure water column flow entanglement method, and a needle punching method. The non-woven fiber aggregate may be not only a heat-adhesive conjugate fiber but also other fibers as long as the effects of the present invention are not impaired. Further, as the nonwoven fiber aggregate, it is more preferable to use a nonwoven fabric than a web from the viewpoints of transportability, easy processability, and uniformity of basis weight.

【0016】以下に、本発明の多孔性シートの製造方法
を詳細に説明する。
Hereinafter, the method for producing the porous sheet of the present invention will be described in detail.

【0017】融点X℃の熱可塑性樹脂Aと融点Y℃(X
>Y)の熱可塑性樹脂Bとから構成される熱接着性複合
繊維からなる不織繊維集合体を作製する。なお、市販の
不織布を使用してもよい。不織布繊維集合体を熱圧着し
シートを得る。具体的には、不織布繊維集合体をY℃以
上X℃未満の溶融温度で熱風により加熱し、熱可塑性樹
脂Bを溶融軟化させ、その後に、一対のロール間で冷却
と同時に加圧し厚み方向に圧密させてシートとする方法
が例示できる。また、別の製造方法としては、不織繊維
集合体を熱板により加熱し、熱可塑性樹脂Bを溶融軟化
させ一対の冷却板で押圧し冷却する方法が例示できる。
なお、不織繊維集合体を溶融軟化させる温度は、熱接着
性複合繊維を構成する熱可塑性樹脂Bの融点Y℃以上、
熱可塑性樹脂Aの融点温度X℃未満で行うとよい。熱接
着性複合繊維を構成する熱可塑性樹脂Aの融点以上で熱
圧着させた場合には、シート中の該複合繊維が繊維形状
を留めずに、その特性を失う恐れがある。また、熱接着
性複合繊維を構成する熱可塑性樹脂Bの融点Y℃未満で
熱圧着させた場合には、シートに穴あきが発生する恐れ
がある。
A thermoplastic resin A having a melting point of X ° C. and a melting point of Y ° C. (X
A non-woven fiber aggregate made of a thermo-adhesive conjugate fiber composed of the thermoplastic resin B of> Y) is produced. In addition, you may use a commercially available nonwoven fabric. The sheet is obtained by thermocompression bonding of the nonwoven fabric fiber aggregate. Specifically, the nonwoven fabric fiber assembly is heated by hot air at a melting temperature of Y ° C. or higher and lower than X ° C. to melt and soften the thermoplastic resin B, and then pressurized simultaneously with cooling between a pair of rolls in the thickness direction. An example is a method in which the sheet is compacted into a sheet. Further, as another manufacturing method, a method in which the nonwoven fiber aggregate is heated by a hot plate to melt and soften the thermoplastic resin B, and then pressed and cooled by a pair of cooling plates can be exemplified.
The temperature at which the nonwoven fiber aggregate is melt-softened is equal to or higher than the melting point Y ° C. of the thermoplastic resin B constituting the heat-adhesive conjugate fiber.
It is preferable to carry out at a temperature lower than the melting point temperature X ° C. of the thermoplastic resin A. When thermocompression bonding is performed at a temperature equal to or higher than the melting point of the thermoplastic resin A constituting the thermoadhesive conjugate fiber, the conjugate fiber in the sheet may lose its properties without retaining its fiber shape. Further, when thermocompression bonding is performed at a melting point of less than Y ° C. of the thermoplastic resin B constituting the heat-adhesive conjugate fiber, there is a possibility that a hole is formed in the sheet.

【0018】次に得られたシートをY℃以下の温度で予
熱した後またはY℃以下の延伸温度で一軸方向または二
軸方向に該シートを延伸し、多孔性シートとする。この
多孔化のための延伸法は、シート及びフィルムなどを延
伸する際に採用されている一般的な延伸法により行うこ
とができる。シートの延伸においては、一軸延伸のみな
らず、同時及び逐次二次延伸も適用できる。上記一軸延
伸を適用する場合には、上記シートを、熱可塑性樹脂B
の融点Y℃以下、速度0.01〜100m/minで1
倍〜5倍に延伸すればよい。上記同時二軸延伸を適用す
る場合には、熱可塑性樹脂Bの融点Y℃以下で、上記シ
ートを、一方向に速度0.01〜100m/minで1
倍〜5倍、この方向の90°の方向に速度0.01〜1
00m/minで1倍〜5倍に、同時に延伸すればよ
い。また、上記逐次二軸延伸を適用する場合には、上記
シートを、熱可塑性樹脂Bの融点Y℃以下、速度0.0
1〜100m/minで1倍〜5倍に延伸し、さらに上
記延伸方向に対して90°の方向に、熱可塑性樹脂Bの
融点Y℃以下、速度0.01〜100m/minで1倍
〜5倍に延伸すればよい。なお、延伸温度は、熱可塑性
樹脂Bの融点Y℃以下が好ましい。熱可塑性樹脂Bの融
点Y℃を超えた温度で延伸を行うと、延伸物の表面上体
が毛羽立つことから平滑性に乏しくなる傾向がある。ま
た、延伸倍率は1倍〜5倍が好ましく、5倍を大幅に超
えると、延伸物の表面上体が毛羽立ち、同様に平滑性に
乏しくなる傾向がある。
Next, after the obtained sheet is preheated at a temperature of Y ° C. or lower, or at a stretching temperature of Y ° C. or lower, the sheet is stretched uniaxially or biaxially to obtain a porous sheet. The stretching method for making this porous can be performed by a general stretching method employed when stretching a sheet or a film. In stretching the sheet, not only uniaxial stretching but also simultaneous and sequential secondary stretching can be applied. When the above-mentioned uniaxial stretching is applied, the above-mentioned sheet is made of thermoplastic resin B
At a melting point of Y ° C. or lower and a speed of 0.01 to 100 m / min.
It may be stretched by a factor of 5 to 5. When the simultaneous biaxial stretching is applied, the sheet is moved in one direction at a speed of 0.01 to 100 m / min at a melting point Y ° C. or lower of the thermoplastic resin B.
Times to 5 times, the speed is 0.01 to 1 in the direction of 90 ° in this direction.
What is necessary is just to stretch simultaneously 1 to 5 times at 00 m / min. When the above-mentioned sequential biaxial stretching is applied, the above-mentioned sheet is melted at a melting point of the thermoplastic resin B of not higher than Y ° C. and at a speed of 0.0 ° C.
The film is stretched 1 to 5 times at a rate of 1 to 100 m / min, and is further stretched in a direction at 90 ° to the stretching direction at a melting point of Y ° C. or less of the thermoplastic resin B at a speed of 0.01 to 100 m / min. What is necessary is just to stretch 5 times. Note that the stretching temperature is preferably equal to or lower than the melting point of the thermoplastic resin B, Y ° C. If the stretching is performed at a temperature exceeding the melting point Y ° C. of the thermoplastic resin B, the surface of the stretched product tends to be fuzzy, resulting in poor smoothness. Further, the stretching ratio is preferably 1 to 5 times, and if it greatly exceeds 5 times, the upper surface of the stretched product tends to be fluffy, and similarly, the smoothness tends to be poor.

【0019】本発明の多孔性シートには、複雑な製造工
程を伴わずにシートへの加工条件、延伸加工条件を変更
するだけで、0.01〜100μmの範囲の平均孔径を
幅広く選択することができる。例えば、平均孔径が小さ
い多孔性シートを得るためには、シートへの加工条件の
一つである加工温度を熱可塑性樹脂Aの融点X℃近傍と
し、他の加工条件として、延伸温度、延伸倍率条件を低
くするとよい。逆に、平均孔径が大きい多孔性シートを
得るには、シートへの加工条件の一つである加工温度を
熱可塑性樹脂Bの融点Y℃近傍とし、延伸温度を熱可塑
性樹脂Bの融点Y℃近傍にし、延伸倍率条件を高くする
とよい。
In the porous sheet of the present invention, the average pore diameter in the range of 0.01 to 100 μm can be selected from a wide range by simply changing the sheet processing conditions and the stretching processing conditions without complicated manufacturing steps. Can be. For example, in order to obtain a porous sheet having a small average pore size, the processing temperature, which is one of the processing conditions for the sheet, is set to around the melting point X ° C. of the thermoplastic resin A, and the other processing conditions include the stretching temperature and the stretching ratio. You may want to lower the conditions. Conversely, in order to obtain a porous sheet having a large average pore size, the processing temperature, which is one of the processing conditions for the sheet, is set at around the melting point Y ° C. of the thermoplastic resin B, and the stretching temperature is set at the melting point Y ° C. of the thermoplastic resin B. It is advisable to increase the stretching magnification condition to the vicinity.

【0020】本発明の多孔性シートは、必要に応じてそ
の表面に界面活性剤等の表面処理剤を塗布してもよい。
また、多孔性シートは単層で用いるだけでなく、2層以
上の積層体、他の不織布、半透膜と重層した積層体とし
て使用できる。さらに多孔性シートはフラットシートと
して利用するだけでなく、筒状に巻き付けて利用しても
よく、スリットを行いテープとして利用してもよい。用
途としては、バッテリーセパレータなどのセパレータ用
途だけでなく、筒状フィルター、ワインドフィルターな
どの用途にも利用できる。
The surface of the porous sheet of the present invention may be coated with a surface treating agent such as a surfactant, if necessary.
In addition, the porous sheet can be used not only as a single layer but also as a laminate of two or more layers, another nonwoven fabric, and a layer laminated with a semipermeable membrane. Further, the porous sheet may be used not only as a flat sheet but also wound around a cylinder and used as a tape after slitting. It can be used not only for separators such as battery separators, but also for applications such as cylindrical filters and wind filters.

【0021】[0021]

【実施例】以下、実施例及び比較例によって本発明を具
体的に説明するが、本発明はこれらにより限定されるも
のではない。なお、実施例及び比較例における測定方法
及び評価法は、下記方法により実施した。
EXAMPLES The present invention will be described below in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the measuring method and evaluation method in an Example and a comparative example were implemented by the following method.

【0022】(1)空隙率:次式により算出した。 空隙率=空隙容積/シート全容積×100 =(含水重量−絶乾重量)×水の比重/シート全容積×100 (2)平均孔径および最大孔径(μm):ASTM F
316−86およびASTM E128に基づいて、P
erm−Porometer(PORUS MATER
IALs INC.製)バブルポイント法にて測定し、
測定から得られた平均流量細孔径を平均孔径値とし、最
大細孔径を最大孔径値とした。 (3)表面性:延伸後のシートの表面状態を目視にて判
断した。 (4)融点(℃):DSC測定装置(セイコー電子製S
SC−5000)を用い、温度範囲40℃〜300℃、
昇温速度20℃/分の条件にて測定し、吸熱ピークのト
ップを求め、融点とした。 (5)引張破壊強さ(MPa)及び引張破壊伸び
(%):JIS K7127「プラスチックフィルム及
びシートの引張試験方法」、1号試験片に従って引張破
壊強さ及び引張破壊伸びを測定した。
(1) Porosity: Calculated by the following equation. Porosity = void volume / total sheet volume × 100 = (water-containing weight−absolute dry weight) × specific gravity of water / total sheet volume × 100 (2) Average pore diameter and maximum pore diameter (μm): ASTM F
316-86 and ASTM E128, P
erm-porometer (PORUS MATER
IALs INC. Made by bubble point method)
The average flow pore diameter obtained from the measurement was taken as the average pore diameter value, and the maximum pore diameter was taken as the maximum pore diameter value. (3) Surface properties: The surface state of the stretched sheet was visually determined. (4) Melting point (° C.): DSC measuring device (Seiko Electronics S
SC-5000) using a temperature range of 40 ° C to 300 ° C,
The temperature was measured at a heating rate of 20 ° C./min, and the top of the endothermic peak was determined and defined as the melting point. (5) Tensile breaking strength (MPa) and tensile breaking elongation (%): Tensile breaking strength and tensile breaking elongation were measured in accordance with JIS K7127 "Method for tensile testing plastic films and sheets", No. 1 test piece.

【0023】実施例1 多孔性シートの材料の不織繊維集合体として、融点が1
62℃のポリプロピレンを芯成分、融点が121℃の直
鎖状低密度ポリエチレンを鞘成分とし、鞘芯の重量比が
50%/50%、単糸繊度が2.4dtexの複合長繊
維からなる目付80g/m2の複合スパンボンド不織布
を用い、これを溶融温度140℃で加熱し、溶融軟化さ
せ、続いて、表面温度50℃に設定した一対の冷却ロー
ル間を加圧下で、速度5m/minで通過させること
で、0.1mmのシートとした。さらに得られたシート
を100℃で120秒間予熱した後に、パンタグラフ式
二軸延伸機を用いて、延伸温度100℃、速度3m/m
inで2.5倍に一軸延伸し、シートとした。得られた
多孔性シートを用いて、所定の試験方法に準処して平均
孔径、最大孔径、引張破壊伸び等を測定し、また、目視
により表面状態を観察した。これらの評価結果を表1に
示す。
Example 1 As a nonwoven fiber aggregate made of a porous sheet material, the melting point was 1
The basis weight is composed of a composite component fiber having a core component of 62 ° C. polypropylene and a linear low-density polyethylene having a melting point of 121 ° C. as a sheath component. The weight ratio of the sheath core is 50% / 50%, and the single-fiber fineness is 2.4 dtex. An 80 g / m 2 composite spunbonded nonwoven fabric is heated at a melting temperature of 140 ° C. to be melt-softened, and then a pressure of 5 m / min is applied between a pair of cooling rolls set at a surface temperature of 50 ° C. To make a 0.1 mm sheet. Further, after the obtained sheet was preheated at 100 ° C. for 120 seconds, using a pantograph-type biaxial stretching machine, the stretching temperature was 100 ° C., and the speed was 3 m / m.
The sheet was uniaxially stretched by a factor of 2.5 to obtain a sheet. Using the obtained porous sheet, the average pore diameter, the maximum pore diameter, the tensile elongation at break, and the like were measured according to a predetermined test method, and the surface state was visually observed. Table 1 shows the results of these evaluations.

【0024】実施例2 溶融温度160℃で加熱し、1.2倍に一軸延伸する以
外は実施例1と同様の加工条件でシートを製造した。同
様に評価結果を表1に示す。
Example 2 A sheet was produced under the same processing conditions as in Example 1 except that the sheet was heated at a melting temperature of 160 ° C. and uniaxially stretched 1.2 times. Table 1 also shows the evaluation results.

【0025】実施例3 溶融温度160℃で加熱し、2.5倍に一軸延伸する以
外は実施例1と同様の加工条件でシートを製造した。同
様に評価結果を表1に示す。
Example 3 A sheet was produced under the same processing conditions as in Example 1 except that the film was heated at a melting temperature of 160 ° C. and uniaxially stretched 2.5 times. Table 1 also shows the evaluation results.

【0026】実施例4 溶融温度160℃で加熱し、3.5倍に一軸延伸する以
外は実施例1と同様の加工条件でシートを製造した。同
様に評価結果を表1に示す。
Example 4 A sheet was manufactured under the same processing conditions as in Example 1 except that the film was heated at a melting temperature of 160 ° C. and uniaxially stretched 3.5 times. Table 1 also shows the evaluation results.

【0027】実施例5 多孔性シートの材料の不織繊維集合体として、融点が2
60℃のポリエチレンテレフタレートを芯成分、融点が
121℃の直鎖状低密度ポリエチレンを鞘成分とし、鞘
芯の重量比が50%/50%、単糸繊度が2.6dte
xの複合長繊維からなる目付80g/m2の複合スパン
ボンド不織布を用い、これを溶融温度160℃で加熱す
ること以外は、実施例1に準拠してシートを製造した。
これらの評価結果を表1に示す。
Example 5 As a nonwoven fiber aggregate made of a porous sheet material, the melting point was 2
A core component is polyethylene terephthalate at 60 ° C., and a linear low-density polyethylene having a melting point of 121 ° C. is a sheath component. The weight ratio of the sheath core is 50% / 50%, and the single-fiber fineness is 2.6 dte.
A sheet was manufactured according to Example 1, except that a composite spunbond nonwoven fabric having a basis weight of 80 g / m 2 and composed of composite long fibers x was used and heated at a melting temperature of 160 ° C.
Table 1 shows the results of these evaluations.

【0028】比較例1 溶融温度100℃で加熱し(鞘成分に用いた直鎖状低密
度ポリエチレンの融点121℃)する以外は実施例1と
同様の加工条件でシートを製造した。同様に評価結果を
表1に示す。
Comparative Example 1 A sheet was produced under the same processing conditions as in Example 1 except that heating was performed at a melting temperature of 100 ° C. (the melting point of the linear low-density polyethylene used for the sheath component was 121 ° C.). Table 1 also shows the evaluation results.

【0029】比較例2 溶融温度180℃で加熱し(芯成分に用いたポリプロピ
レンの融点162℃)する以外は実施例1と同様の加工
条件でシートを製造した。同様に評価結果を表1に示
す。
Comparative Example 2 A sheet was produced under the same processing conditions as in Example 1 except that heating was performed at a melting temperature of 180 ° C. (the melting point of the polypropylene used as the core component was 162 ° C.). Table 1 also shows the evaluation results.

【0030】比較例3 多孔性シートの材料の不織繊維集合体として、融点が1
62℃のポリプロピレン100%で構成されている目付
80g/m2のレギュラースパンボンド不織布を用い、
溶融温度162℃で加熱する以外は実施例1と同様の加
工条件でシートを製造した。同様に評価結果を表1に示
す。
Comparative Example 3 As a nonwoven fiber aggregate of the material of the porous sheet, the melting point was 1
Using a regular spunbond nonwoven fabric with a basis weight of 80 g / m 2 composed of 100% polypropylene at 62 ° C,
A sheet was produced under the same processing conditions as in Example 1 except that the sheet was heated at a melting temperature of 162 ° C. Table 1 also shows the evaluation results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の多孔性シートは、従来品と比べ
て引張破断伸びが大きく、高伸度であることから、2次
加工を行う際の応力により破れにくいため、バッテリー
セパレータ等の用途に好ましく利用できる。また、本発
明の多孔性シートの製造方法を用いることで、延伸倍
率、溶融温度などの加工条件を変更するだけで複雑な製
造工程を伴わずに、平均孔径を0.01〜100μmと
幅広く選択することができ、種々の分野に簡便に対応で
きる多孔性シートを提供することが可能である。
The porous sheet of the present invention has a large tensile elongation at break and a high elongation as compared with the conventional product, so that it is difficult to be torn by the stress during the secondary processing. It can be used preferably. Further, by using the method for producing a porous sheet of the present invention, the average pore diameter can be selected from a wide range of 0.01 to 100 μm without complicated production steps simply by changing the processing conditions such as the draw ratio and the melting temperature. It is possible to provide a porous sheet that can easily cope with various fields.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L047 AA14 AA21 AB10 BA08 BB02 CB10 CC12 EA10 5H021 BB01 BB02 BB05 CC02 EE04 HH03 HH06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L047 AA14 AA21 AB10 BA08 BB02 CB10 CC12 EA10 5H021 BB01 BB02 BB05 CC02 EE04 HH03 HH06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 融点X℃の熱可塑性樹脂Aと融点Y℃
(X>Y)の熱可塑性樹脂Bとから構成される熱接着性
複合繊維からなる不織繊維集合体を圧密して得られるシ
ートであって、シートの平均孔径が0.01〜100μ
mであり、引張破壊伸びが40%以上である多孔性シー
ト。
1. A thermoplastic resin A having a melting point of X ° C. and a melting point of Y ° C.
A sheet obtained by consolidating a nonwoven fiber aggregate made of a heat-adhesive conjugate fiber composed of a thermoplastic resin B (X> Y), wherein the sheet has an average pore size of 0.01 to 100 μm.
m, and a porous sheet having a tensile elongation at break of 40% or more.
【請求項2】 熱可塑性樹脂Aがポリプロピレンであ
り、熱可塑性樹脂Bがポリエチレンである請求項1記載
の多孔性シート。
2. The porous sheet according to claim 1, wherein the thermoplastic resin A is polypropylene and the thermoplastic resin B is polyethylene.
【請求項3】 熱可塑性樹脂Aがポリエチレンテレフタ
レートであり、熱可塑性樹脂Bがポリエチレンである請
求項1記載の多孔性シート。
3. The porous sheet according to claim 1, wherein the thermoplastic resin A is polyethylene terephthalate and the thermoplastic resin B is polyethylene.
【請求項4】 融点X℃の熱可塑性樹脂Aと融点Y℃
(X>Y)の熱可塑性樹脂Bとから構成される熱接着性
複合繊維からなる不織繊維集合体をY℃以上X℃未満の
溶融温度で加熱し、加圧処理を行い、厚み方向に圧密さ
せてシートとし、Y℃以下の延伸温度で少なくとも一軸
方向に該シートを延伸することを特徴とする請求項1〜
3のいずれか1項記載の多孔性シートの製造方法。
4. A thermoplastic resin A having a melting point of X ° C. and a melting point of Y ° C.
(X> Y) Non-woven fiber aggregate composed of a thermo-adhesive conjugate fiber composed of thermoplastic resin B is heated at a melting temperature of Y ° C. or more and less than X ° C., subjected to a pressure treatment, The sheet is compacted, and the sheet is stretched at least in a uniaxial direction at a stretching temperature of Y ° C. or less.
4. The method for producing a porous sheet according to any one of 3.
JP2001165356A 2001-05-31 2001-05-31 Production method of porous sheet Expired - Fee Related JP4792662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165356A JP4792662B2 (en) 2001-05-31 2001-05-31 Production method of porous sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165356A JP4792662B2 (en) 2001-05-31 2001-05-31 Production method of porous sheet

Publications (2)

Publication Number Publication Date
JP2002363850A true JP2002363850A (en) 2002-12-18
JP4792662B2 JP4792662B2 (en) 2011-10-12

Family

ID=19008033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165356A Expired - Fee Related JP4792662B2 (en) 2001-05-31 2001-05-31 Production method of porous sheet

Country Status (1)

Country Link
JP (1) JP4792662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107903A (en) * 2004-10-05 2006-04-20 Teijin Techno Products Ltd Separator for battery
JP2010236174A (en) * 2004-04-19 2010-10-21 Procter & Gamble Co Fiber, nonwoven, and article containing nanofiber produced from broad molecular weight distribution polymer
JP2014128769A (en) * 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138866A (en) * 1993-11-15 1995-05-30 Chisso Corp Ultrafine conjugate fiber sheet and its production
JPH09302563A (en) * 1996-05-09 1997-11-25 Japan Vilene Co Ltd Nonwoven fabric, its production, battery separator and filter using the same
JPH10137557A (en) * 1996-03-28 1998-05-26 Terumo Corp Filter device and method for separating and recovering biotic microtissue
JPH11268118A (en) * 1998-01-26 1999-10-05 Mitsui Chem Inc Polyolefin porous film, production thereof, and separator film for battery
JPH11276137A (en) * 1998-03-31 1999-10-12 Japan Gore Tex Inc Storage of food, storing apparatus and sheet material used therefor
JPH11300128A (en) * 1998-04-17 1999-11-02 Mitsubishi Rayon Co Ltd Filter sheet
JP2000100410A (en) * 1998-09-25 2000-04-07 Oji Paper Co Ltd Separator for alkaline battery
JP2001123372A (en) * 1999-10-22 2001-05-08 Chisso Corp Readly formable nonwoven fabric and laminated sheet using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138866A (en) * 1993-11-15 1995-05-30 Chisso Corp Ultrafine conjugate fiber sheet and its production
JPH10137557A (en) * 1996-03-28 1998-05-26 Terumo Corp Filter device and method for separating and recovering biotic microtissue
JPH09302563A (en) * 1996-05-09 1997-11-25 Japan Vilene Co Ltd Nonwoven fabric, its production, battery separator and filter using the same
JPH11268118A (en) * 1998-01-26 1999-10-05 Mitsui Chem Inc Polyolefin porous film, production thereof, and separator film for battery
JPH11276137A (en) * 1998-03-31 1999-10-12 Japan Gore Tex Inc Storage of food, storing apparatus and sheet material used therefor
JPH11300128A (en) * 1998-04-17 1999-11-02 Mitsubishi Rayon Co Ltd Filter sheet
JP2000100410A (en) * 1998-09-25 2000-04-07 Oji Paper Co Ltd Separator for alkaline battery
JP2001123372A (en) * 1999-10-22 2001-05-08 Chisso Corp Readly formable nonwoven fabric and laminated sheet using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236174A (en) * 2004-04-19 2010-10-21 Procter & Gamble Co Fiber, nonwoven, and article containing nanofiber produced from broad molecular weight distribution polymer
JP2006107903A (en) * 2004-10-05 2006-04-20 Teijin Techno Products Ltd Separator for battery
JP2014128769A (en) * 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane

Also Published As

Publication number Publication date
JP4792662B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5670475B2 (en) Spunbond nonwoven fabric laminate
KR101187219B1 (en) Fiber for wetlaid non-woven fabric
JP2001226865A (en) Nonwoven fabric, method for producing the same and sanitary material
JP6884750B2 (en) Elastic laminate, its manufacturing method and articles using it
EP0959165A1 (en) Flexible laminate of nonwoven fabrics
WO2000036200A1 (en) Composite-fiber nonwoven fabric
WO2020196663A1 (en) Nonwoven laminated body and sanitary product
JP2002242069A (en) Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric
JP7308223B2 (en) Nonwoven fabric laminates, elastic nonwoven fabric laminates, textile products, absorbent articles and sanitary masks
JP4792662B2 (en) Production method of porous sheet
JPH11158766A (en) Non-woven fabric laminate
WO2019167853A1 (en) Laminated non-woven fabric
JP2007009403A (en) Nonwoven fabric comprising mixed fiber and method for producing the same
JP2872543B2 (en) Thermally bonded nonwoven fabric and method for producing the same
KR102500062B1 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
JP4748560B2 (en) Thermally adhesive composite fiber and fiber product using the same
JP4399968B2 (en) Long-fiber non-woven fabric
JP2849929B2 (en) Moisture permeable laminate
JP4694204B2 (en) Spunbond nonwoven fabric, laminate using the same, and production method thereof
JP2835457B2 (en) Thermal adhesive composite fiber
JPH09512064A (en) Non-woven fabric
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
WO2019167852A1 (en) Laminated non-woven fabric
JP7148434B2 (en) METHOD FOR PRODUCING MELT BLOW NONWOVEN FABRIC
WO2003097353A1 (en) Improved abrasion resistance of nonwovens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees