JP2002363622A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JP2002363622A
JP2002363622A JP2001170755A JP2001170755A JP2002363622A JP 2002363622 A JP2002363622 A JP 2002363622A JP 2001170755 A JP2001170755 A JP 2001170755A JP 2001170755 A JP2001170755 A JP 2001170755A JP 2002363622 A JP2002363622 A JP 2002363622A
Authority
JP
Japan
Prior art keywords
pulverized coal
temperature
synthetic resin
resin material
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170755A
Other languages
Japanese (ja)
Inventor
Shinji Kamishiro
親司 上城
Yoshitoku Matsukura
良徳 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001170755A priority Critical patent/JP2002363622A/en
Publication of JP2002363622A publication Critical patent/JP2002363622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operating method for a blast furnace in which raising of the temperature in the side wall on a furnace bottom can easily be restrained. SOLUTION: The side wall temperatures at the furnace bottom are measured with a plurality of thermometers set in the side wall on the furnace bottom of the blast furnace, and a synthetic resin material having the calorie less than that of pulverized fine coal and the decomposition heat larger than that of the pulverized fine coal, is injected from a nozzle positioned at the upper part of the side wall on the furnace bottom in the direction where the measured temperature exceeds a preset control value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉炉底側壁部に
おける温度の上昇を効率よく抑制し得る高炉操業方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method capable of efficiently suppressing a rise in temperature at the bottom wall of a blast furnace.

【0002】[0002]

【従来の技術】近年、高炉炉体の補修技術が進歩し、羽
口から上の部分については、稼働中の高炉であっても定
期的に補修を行い、炉体を維持することが可能となって
いる。しかし、羽口から下のいわゆる高炉炉下部(以
下、単に「炉下部」という)については、高温の溶銑、
スラグが存在するため、稼働中に炉下部の補修を行うこ
とは不可能である。
2. Description of the Related Art In recent years, the technology for repairing a blast furnace furnace body has been advanced, and the portion above the tuyere can be repaired regularly even in a working blast furnace to maintain the furnace body. Has become. However, the lower part of the blast furnace below the tuyere (hereinafter simply referred to as the “furnace lower part”) is
Due to the presence of slag, it is not possible to repair the lower part of the furnace during operation.

【0003】そのため、高炉の寿命は炉下部の耐火レン
ガの損耗の程度によって決定されることになる。したが
って、炉下部のレンガの損耗を抑制することは高炉炉命
延長の観点から極めて重要であり、従来から様々な対策
が採られてきた。
Therefore, the life of a blast furnace is determined by the degree of wear of the refractory bricks in the lower part of the furnace. Therefore, it is extremely important to suppress the wear of the bricks in the lower part of the furnace from the viewpoint of extending the life of the blast furnace, and various measures have been taken conventionally.

【0004】例えば、高炉炉底側壁の複数箇所に温度計
を設置して炉底側壁温度を連続的に測定し、この測定温
度が管理値を超えた場合、その測定箇所の上方に位置す
る羽口から含チタン鉱石を吹き込んで溶銑の粘度を上昇
させ、溶銑の流速を低下させてレンガの損耗を抑制する
方法や、休風時に、炉底側壁温度が上昇した方位にある
羽口の内径(羽口径)を小さくしてその方位における炉
底への溶銑滴下量を減少させる方法があげられる。
[0004] For example, thermometers are installed at a plurality of locations on the bottom wall of a blast furnace to continuously measure the temperature of the bottom wall of the furnace, and when the measured temperature exceeds a control value, a blade located above the measurement location is located. Titanium-containing ore is blown from the mouth to increase the viscosity of the hot metal and reduce the flow velocity of the hot metal to suppress brick wear. The diameter of the tuyere can be reduced to reduce the amount of hot metal dripped onto the furnace bottom in that direction.

【0005】また、特公昭59−10968号公報で
は、炉底の複数箇所で熱流束を測定することによって耐
火物内面に形成される溶銑凝固層の厚さの変化を推定
し、凝固層厚が所定の厚さ以下になった場合、その凝固
層位置に対応する羽口について、窒素ガスなどを混入さ
せることにより送風空気量を減少させ、凝固層を成長さ
せて耐火物の浸食を防止する高炉操業方法が開示されて
いる。
In Japanese Patent Publication No. 59-10968, a change in the thickness of the solidified layer of hot metal formed on the inner surface of the refractory is estimated by measuring the heat flux at a plurality of locations on the furnace bottom. When the thickness becomes less than a predetermined thickness, a blast furnace that reduces the amount of air blown by mixing nitrogen gas and the like at the tuyere corresponding to the position of the solidified layer, grows the solidified layer, and prevents erosion of refractories. A method of operation is disclosed.

【0006】さらに、高炉の円周の複数箇所で炉底温度
ならびに炉底側壁温度を測定し、それらのいずれかの箇
所の温度が上昇した場合、その箇所の上方にある羽口の
送風量を送風支管に設けた熱風制御弁により制御して炉
底レンガの浸食を部所別に制御する操業方法(特開昭6
0−243207号公報)や、羽口送風量を減少させる
とともに、羽口から水または水蒸気を吹き込むことによ
り、炉底への溶銑滴下量および滴下溶銑温度を低下させ
る操業方法(特開平10−72607号公報)も従来か
ら行われており、その効果も確認されている。
[0006] Further, the furnace bottom temperature and the furnace bottom side wall temperature are measured at a plurality of locations on the circumference of the blast furnace, and when the temperature of any one of them rises, the amount of air blown from the tuyere above that location is measured. An operation method for controlling erosion of a hearth brick by controlling a hot air control valve provided in a blower branch pipe (see Japanese Patent Laid-Open No.
No. 0-243207), and an operation method for reducing the amount of hot metal dropped into the furnace bottom and the temperature of the hot metal dropped by blowing water or steam from the tuyere while reducing the amount of air blown from the tuyere (Japanese Patent Laid-Open No. Hei 10-72607). Has been performed conventionally, and the effect has been confirmed.

【0007】しかし、これらの方法には以下に述べる欠
点が存在する。
However, these methods have the following disadvantages.

【0008】まず、羽口から含チタン鉱石を吹き込む方
法では、コストが増加するほか高炉操業を阻害する要因
となる危険性をはらんでいる。
First, the method of injecting titanium-containing ore from the tuyeres has a risk of increasing the cost and hindering the operation of the blast furnace.

【0009】また、羽口径を小さくしたり、羽口から窒
素ガスなどを吹き込むことによって送風空気量を減少さ
せる方法や、熱風制御弁を使用する方法では、昨今の高
微粉炭吹き込み操業下においては、その送風空気量を減
少させた方位で微粉炭の燃焼性が低下することとなり、
高炉円周方向でのバランスの崩れが引き起こされる懸念
がある。送風空気量を減少させた方位での微粉炭の吹き
込みを停止して前記のバランスの崩れを回避しようとす
ると、同方位で羽口前温度が上昇するので、やはり円周
方向でのバランスが崩れるおそれがある。
In the method of reducing the amount of air blown by reducing the tuyere diameter or by blowing nitrogen gas or the like from the tuyere, or by using a hot air control valve, in the recent high pulverized coal blowing operation, , The flammability of the pulverized coal will be reduced in the direction in which the air volume is reduced,
There is a concern that the balance may be lost in the circumferential direction of the blast furnace. If the blowing of pulverized coal is stopped in the direction in which the amount of blown air is reduced to avoid the above-mentioned imbalance, the temperature in front of the tuyere rises in the same direction, so that the balance in the circumferential direction is also impaired. There is a risk.

【0010】さらに、熱風制御弁を使用したり窒素ガス
などを吹き込む場合は、そのための設備の取り付けが必
要で、設備コストが増大する。羽口から水または水蒸気
を吹き込む方法においても、熱風制御弁との併用が前提
であるので、設備コストの増大は避けられない。
[0010] Further, when a hot air control valve is used or nitrogen gas is blown, it is necessary to install equipment for that purpose, which increases equipment costs. Also in the method of blowing water or steam from the tuyere, it is premised that the method is used in combination with the hot air control valve, so that an increase in equipment cost cannot be avoided.

【0011】[0011]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みなされたもので、その課題は、炉底側壁部にお
いて、温度が上昇してレンガの損耗が予測される部位に
対し、効率よく、つまり容易にかつ比較的短時間で温度
の上昇を抑制し得る高炉の操業方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object of the present invention is to reduce the efficiency of a portion of the furnace bottom side wall where bricks are expected to be worn due to a rise in temperature. It is an object of the present invention to provide a method for operating a blast furnace which can suppress the rise of temperature easily and in a relatively short time.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明者らは、羽口から微粉炭を吹き込む代わりに
発熱量が微粉炭より小さく分解熱が微粉炭より大きい合
成樹脂材を吹き込めば、羽口前温度を低下させることが
でき、それによって炉底への溶銑滴下量を減少させ、ま
た滴下溶銑温度を低下させ、炉底側壁部の温度の上昇を
抑制し得るという着想のもとに種々検討を重ねた。その
結果、廃プラスチックと産業系古紙類を原料として押出
成形して作られるRPF(Refuse Paper and Plastic F
uel)が、表1に示すように、前記の条件を満たし、代
替吹き込み用の合成樹脂材として使用し得ることを見い
だした。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have invented a synthetic resin material having a smaller calorific value than pulverized coal but having a larger heat of decomposition than pulverized coal instead of blowing pulverized coal from tuyeres. Injection can lower the temperature in front of the tuyere, thereby reducing the amount of hot metal dripped onto the furnace bottom, lowering the dropping hot metal temperature and suppressing the rise in the temperature of the furnace bottom side wall. Various studies were repeated based on this. As a result, RPF (Refuse Paper and Plastic FRP) made by extruding waste plastic and industrial waste paper as raw materials
uel) found that, as shown in Table 1, it satisfies the above conditions and can be used as a synthetic resin material for alternative blowing.

【0013】[0013]

【表1】 本発明はこのような知見に基づきなされたもので、その
要旨は、下記の高炉の操業方法にある。
[Table 1] The present invention has been made based on such findings, and the gist of the invention lies in the following blast furnace operating method.

【0014】高炉炉底側壁に設置された複数の温度計に
よって炉底側壁温度を測定し、この測定温度があらかじ
め定めた管理値を超えた方位の炉底側壁上方に位置する
羽口に取り付けられたノズルから、発熱量が微粉炭より
小さく、分解熱が微粉炭より大きい合成樹脂材を吹き込
む高炉の操業方法。
The temperature of the furnace bottom wall is measured by a plurality of thermometers installed on the furnace bottom wall of the blast furnace, and the temperature is measured at a temperature higher than a predetermined control value. A method of operating a blast furnace in which a synthetic resin material having a smaller calorific value than pulverized coal and a decomposition heat larger than pulverized coal is blown from a nozzle.

【0015】[0015]

【発明の実施の形態】以下、本発明の高炉の操業方法に
ついて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for operating a blast furnace according to the present invention will be described in detail.

【0016】上記のように、本発明の方法の特徴は、炉
底側壁温度が上昇した箇所の上方に位置する羽口から、
発熱量が微粉炭より小さく、分解熱が微粉炭より大きい
合成樹脂材をノズルを介して吹き込む点にある。このよ
うな合成樹脂材を羽口から吹き込むと、羽口前温度が低
下し、その羽口から上部に向かって流れるガスの温度が
低下するため、その方位における滴下溶銑温度は他の方
位のそれに比べて低下する。したがって、炉底側壁部に
おいても、合成樹脂材を吹き込んだ方位では他の方位に
比べて温度が低下し、炉底側壁部の温度の上昇を抑制す
ることが可能であると考えられる。
As described above, a feature of the method of the present invention is that the tuyere located above the place where the furnace bottom side wall temperature has increased is
The point is that a synthetic resin material having a calorific value smaller than pulverized coal and a decomposition heat larger than pulverized coal is blown through a nozzle. When such a synthetic resin material is blown from the tuyere, the temperature in front of the tuyere decreases, and the temperature of the gas flowing upward from the tuyere decreases. It is lower than that. Therefore, it is considered that the temperature of the furnace bottom side wall is lower in the direction in which the synthetic resin material is blown than in the other directions, and it is possible to suppress an increase in the temperature of the furnace bottom side wall.

【0017】このことを検証するために、本発明者ら
は、特許第033466号に示された高炉3次元数学モ
デルによりシミュレーションを試みた。このモデルは、
装入物分布のデータと羽口から吹き込む熱風および補助
燃料量を入力データとして与え、数式化された様々な高
炉内反応を差分法を用いて解き、高炉内で起こっている
現象を解析するモデルである。表2にシミュレーション
における前提条件を示す。
To verify this, the present inventors tried a simulation using a blast furnace three-dimensional mathematical model disclosed in Japanese Patent No. 0333466. This model is
A model that analyzes the phenomena occurring in the blast furnace by solving the various reactions in the blast furnace using the difference method, using the input distribution data and the amount of hot air and auxiliary fuel injected from the tuyere as input data. It is. Table 2 shows the preconditions for the simulation.

【0018】[0018]

【表2】 図1はシミュレーションにおける計算メッシュの一部を
示す図で、高さ方向で24分割した時の、羽口レベルを
示す図である。円周方向には6分割した。図1におい
て、TY1〜TY6はそれぞれ羽口を表す。計算では、
羽口TY3とTY4の間で炉底側壁温度が上昇したと仮
定し、TY3とTY4から吹き込まれている微粉炭を合
成樹脂材に切り替えるシミュレーションを実施した。
[Table 2] FIG. 1 is a diagram showing a part of a calculation mesh in a simulation, and is a diagram showing tuyere levels when divided into 24 in the height direction. It was divided into six in the circumferential direction. In FIG. 1, TY1 to TY6 each represent a tuyere. In the calculation,
Assuming that the furnace bottom side wall temperature increased between the tuyere TY3 and TY4, a simulation of switching the pulverized coal blown from TY3 and TY4 to a synthetic resin material was performed.

【0019】表3にシミュレーションの結果を示す。表
3において、ケース1は微粉炭のみの吹き込みを行う基
準(ベース)となるケースである。このケース1での微
粉炭吹き込み量(質量)を100%とした。ケース2〜
7では、羽口TY3とTY4において微粉炭吹き込みを
停止し、その代わりに表1に示したRPFを合成樹脂材
としてケース1での微粉炭吹き込み量に対して90〜1
30%の範囲で吹き込んだ場合である。ケース2〜7に
おいて、羽口前温度、滴下溶銑温度、炉底側壁温度は、
微粉炭吹き込み時の温度をベースとしてそれに対する比
較値(差)で示した。溶銑滴下量比率は、羽口TY3と
TY4の上部における変化比率である。
Table 3 shows the results of the simulation. In Table 3, Case 1 is a reference (base) for injecting only pulverized coal. The pulverized coal injection amount (mass) in Case 1 was set to 100%. Case 2
7, the pulverized coal injection was stopped at the tuyeres TY3 and TY4, and the RPF shown in Table 1 was used as a synthetic resin instead of the pulverized coal injected in the case 1 by 90 to 1
This is the case where the air is blown in the range of 30%. In cases 2 to 7, the tuyere front temperature, the dropping hot metal temperature, and the furnace bottom side wall temperature are:
Based on the temperature at the time of pulverized coal injection, it was shown as a comparative value (difference). The hot metal dropping amount ratio is a change ratio in the upper portions of the tuyeres TY3 and TY4.

【0020】[0020]

【表3】 表3に示した結果から、微粉炭吹き込みを合成樹脂材の
吹き込みに切り替えるに際し、以下に説明するように、
滴下溶銑温度と溶銑滴下量を低下させ、炉底側壁温度を
低下させるに必要な条件を確認することができる。
[Table 3] From the results shown in Table 3, when switching the pulverized coal injection to the injection of synthetic resin material, as described below,
The conditions necessary for lowering the dropping hot metal temperature and the hot metal dropping amount and lowering the furnace bottom side wall temperature can be confirmed.

【0021】表3に示すように、合成樹脂材の吹き込み
量を微粉炭吹き込み量に対して100%(ケース3)、
または110%(ケース4)とすると、滴下溶銑温度は
微粉炭吹き込みの場合(ケース1)より低くなり、炉底
側壁温度が低下する。吹き込み量を増やして114%と
すると(ケース5)、滴下溶銑温度は微粉炭吹き込みの
場合(ケース1)と同じになるが、炉底側壁温度はまだ
低下傾向を示す。しかし、さらに合成樹脂材の吹き込み
量を増大させて120%(ケース6)以上にすると溶銑
滴下量は減少するが滴下溶銑温度は微粉炭吹き込み時よ
りも上昇し、炉底側壁温度の低下がみられなくなる。
As shown in Table 3, the amount of synthetic resin injected was 100% of the amount of pulverized coal injected (Case 3).
Or, when it is set to 110% (case 4), the dropping hot metal temperature becomes lower than in the case of pulverized coal injection (case 1), and the furnace bottom side wall temperature decreases. When the injection amount is increased to 114% (Case 5), the dropping hot metal temperature becomes the same as in the case of pulverized coal injection (Case 1), but the furnace bottom side wall temperature still shows a tendency to decrease. However, if the injection amount of the synthetic resin material is further increased to 120% or more (case 6) or more, the dropping amount of hot metal drops, but the dropping hot metal temperature rises more than when pulverized coal is blown, and the furnace bottom wall temperature decreases. Can not be.

【0022】一方、合成樹脂材の吹き込み量を少なく
し、微粉炭吹き込み量に対して例えば90%にすると、
合成樹脂材の分解に必要な熱量の低下による影響よりも
吹き込み燃料の減少による溶銑温度の過度の低下が顕著
になり、融着帯が過度に低下するようになる。シミュレ
ーションの結果では、合成樹脂材の吹き込み量が微粉炭
吹き込み量に対して90%を超える量でないと羽口レベ
ルにFeOが存在するようになり、炉熱低下につながる
ため好ましくないことがわかった。
On the other hand, if the blowing amount of the synthetic resin material is reduced to, for example, 90% with respect to the blowing amount of pulverized coal,
Excessive decrease in the hot metal temperature due to the decrease in the injected fuel becomes more remarkable than the effect due to the decrease in the amount of heat required for the decomposition of the synthetic resin material, and the cohesive zone is excessively decreased. The simulation results show that unless the amount of synthetic resin injected is more than 90% of the amount of pulverized coal injected, FeO will be present at the tuyere level, leading to a decrease in furnace heat, which is not preferable. .

【0023】次に、合成樹脂材の吹き込みを行う場合、
その合成樹脂材の発熱量と分解熱が滴下溶銑温度に与え
る影響について、上記と同じ数学モデルを用い、表2に
示した条件の下でシミュレーションを行った。その際、
合成樹脂材の吹き込み量は微粉炭の吹き込み量と同量と
し、合成樹脂材の分解熱は微粉炭と同じで発熱量のみを
変化させた場合と、合成樹脂材の発熱量は微粉炭と同じ
で分解熱のみを変化させた場合について検討した。
Next, when blowing synthetic resin material,
The effect of the calorific value and the heat of decomposition of the synthetic resin material on the dropping hot metal temperature was simulated under the conditions shown in Table 2 using the same mathematical model as described above. that time,
The amount of synthetic resin injected is the same as that of pulverized coal, and the heat of decomposition of synthetic resin is the same as that of pulverized coal and only the amount of heat generated is changed. The case where only the decomposition heat was changed was examined.

【0024】その結果を図2および図3に示す。図2は
合成樹脂材の分解熱が微粉炭と同じ場合であるが、この
図から合成樹脂材の発熱量が微粉炭の発熱量(この場合
は、33600×10J/kg)と同じであれば滴下
溶銑温度の比較値は微粉炭吹き込みの場合と変わらず、
0℃であるが、微粉炭の発熱量より小さくなるに伴い滴
下溶銑温度は低下し、8000×10J/kgの減少
により、滴下溶銑温度が約20℃低下することがわか
る。
The results are shown in FIG. 2 and FIG. FIG. 2 shows a case where the heat of decomposition of the synthetic resin material is the same as that of the pulverized coal. From this figure, the heat value of the synthetic resin material is the same as the heat value of the pulverized coal (in this case, 33600 × 10 3 J / kg). If there is, the comparison value of the dropping hot metal temperature is the same as the case of pulverized coal injection,
Although it is 0 ° C., the dropping hot metal temperature decreases as the calorific value of the pulverized coal becomes smaller, and it can be seen that the dropping hot metal temperature decreases by about 20 ° C. due to a decrease of 8000 × 10 3 J / kg.

【0025】また、図3は合成樹脂材の発熱量が微粉炭
と同じ場合で、この図からは合成樹脂材の分解熱が微粉
炭の分解熱(この場合は、420×10J/kg)に
比べて大きくなるに伴い滴下溶銑温度が低下し、分解熱
が微粉炭より400×10J/kg大きい820×1
J/kgのときは滴下溶銑温度が10数℃低下する
ことが読みとれる。合成樹脂材の分解熱がさらに大き
く、1600×10J/kgになると、滴下溶銑温度
は40℃程度低下する。
Further, FIG. 3 in the case same as the calorific value is pulverized coal synthetic resin material, the decomposition heat decomposition heat of the pulverized coal of the synthetic resin material from FIG. (In this case, 420 × 10 3 J / kg ), The dropping hot metal temperature decreases, and the heat of decomposition is 820 × 1 which is 400 × 10 3 J / kg larger than pulverized coal.
It can be seen that the dropping hot metal temperature drops by more than 10 ° C. at 0 3 J / kg. When the heat of decomposition of the synthetic resin material is further increased to 1600 × 10 3 J / kg, the temperature of the dropped hot metal drops by about 40 ° C.

【0026】図2に示した破線は、合成樹脂材の分解熱
が微粉炭のそれよりも600×10 J/kg程度大き
い(滴下溶銑温度が約30℃低下)場合のシミュレーシ
ョンの結果である。また、図3に示した破線は、合成樹
脂材の発熱量が微粉炭よりも8600×10J/kg
程度大きい(滴下溶銑温度が約20℃上昇)場合のシミ
ュレーションの結果である。これらの結果から、合成樹
脂材の発熱量が微粉炭の発熱量より大きくても、分解熱
が微粉炭に対して十分大きければ(例えば、図3の場合
では、およそ1100×10J/kg以上であれ
ば)、滴下溶銑温度は低下するといえる。
The broken line shown in FIG. 2 indicates the heat of decomposition of the synthetic resin material.
Is 600 × 10 more than that of pulverized coal 3J / kg size
Simulation (when the dropping hot metal temperature drops by about 30 ° C)
This is the result of the action. The broken line shown in FIG.
The calorific value of the fat material is 8600 × 10 compared to pulverized coal3J / kg
Spots when the temperature is large (dropping hot metal temperature rises about 20 ° C)
This is the result of the simulation. From these results, the synthetic tree
Even if the calorific value of the fat material is larger than that of pulverized coal,
Is large enough for pulverized coal (for example, in the case of FIG. 3
Then, about 1100 × 103J / kg or more
B), it can be said that the dropping hot metal temperature decreases.

【0027】本発明の操業方法では、前記のように、
発熱量が微粉炭より小さく、分解熱が微粉炭より大き
い合成樹脂材を吹き込むこととしているが、上記の図2
および図3に示した結果からすれば、との条件を同
時には満たさず、いずれか一方の条件を満たす合成樹脂
材を使用しても、計算上は、滴下溶銑温度を低下させる
ことができる。しかし、合成樹脂材の分解熱、発熱量が
微粉炭に比べてどの程度大きければ、または小さければ
滴下溶銑温度を低下させ得るかを的確に判断することは
難しく、また、シミュレーションでは考慮し得ない荷下
がり不良等の高炉内における外乱によって所期の効果が
あがらない場合もあると考えられる。
In the operation method of the present invention, as described above,
Although a synthetic resin material having a calorific value smaller than that of pulverized coal and having a heat of decomposition larger than that of pulverized coal is blown, the above-mentioned FIG.
According to the results shown in FIG. 3 and FIG. 3, even if a synthetic resin material that does not simultaneously satisfy the above condition and uses one of the conditions is used, the dropping hot metal temperature can be reduced in calculation. However, it is difficult to accurately judge how large or small the heat of decomposition of the synthetic resin material or the calorific value is compared to pulverized coal, or if it is small, the dropping hot metal temperature can be lowered, and it cannot be considered in the simulation. It is considered that the intended effect may not be improved due to disturbances in the blast furnace such as unloading failure.

【0028】したがって、本発明の操業方法で微粉炭の
代わりに吹き込む合成樹脂材は、発熱量が微粉炭より小
さく、分解熱が微粉炭より大きい合成樹脂材を用いるこ
ととした。微粉炭に比べて発熱量がどの程度小さいか、
また分解熱がどの程度大きいかについて特に限定はしな
いが、発熱量については微粉炭に対して3600〜86
00×10J/kg小さく、分解熱については微粉炭
に対して400〜1300×10J/kg大きいこと
が好ましい。
Therefore, the synthetic resin material to be blown in place of the pulverized coal in the operation method of the present invention uses a synthetic resin material having a smaller calorific value and a larger heat of decomposition than the pulverized coal. How small the calorific value is compared to pulverized coal,
There is no particular limitation as to how large the heat of decomposition is, but the calorific value is 3600 to 86
It is preferably 00 × 10 3 J / kg smaller and the heat of decomposition is preferably 400 to 1300 × 10 3 J / kg larger than pulverized coal.

【0029】このような合成樹脂材としては、例えば前
記表1に示したRPFがあげられる。なお、表1に示し
た脱塩素処理した廃プラスチックは、分解熱は微粉炭と
比較して大きいが、発熱量も大きいので、使えないこと
になる。
Examples of such a synthetic resin material include the RPFs shown in Table 1 above. In addition, the deplasticized waste plastic shown in Table 1 has a higher decomposition heat than pulverized coal, but has a large calorific value, and thus cannot be used.

【0030】合成樹脂材の吹き込み量には、前記の表3
に示した結果に基づいて説明したように、適正な範囲が
ある。したがって、用いる合成樹脂材について、使用時
の操業条件に応じてあらかじめ適正な吹き込み量を把握
しておくのがよい。合成樹脂材としてRPFを用い、表
2に示した前提の下では、微粉炭の吹き込み量を100
(質量部)とした場合、90を超え120未満(いずれ
も質量部)とするのがよい。
Table 3 shows the amount of synthetic resin material blown.
As described based on the results shown in (1), there is an appropriate range. Therefore, it is preferable to know in advance the appropriate blowing amount of the synthetic resin material to be used according to the operating conditions at the time of use. RPF was used as the synthetic resin material, and under the premise shown in Table 2, the blowing amount of pulverized coal was 100
In the case of (parts by mass), the amount is preferably more than 90 and less than 120 (all parts by mass).

【0031】合成樹脂材の吹き込み方法としては、各羽
口毎に吹き込み用のノズルを設け、そのノズルから、微
粉炭吹き込みの場合と同様にキャリアガスとともに吹き
込む方法を採ればよい。専用のノズルを用いてもよい
し、合成樹脂材を吹き込むときは微粉炭の吹き込みを行
わずに、微粉炭吹き込み用のノズルから吹き込んでもよ
い。
As a method of blowing the synthetic resin material, a method may be adopted in which a nozzle for blowing is provided for each tuyere, and the nozzle is blown from the nozzle together with the carrier gas as in the case of blowing pulverized coal. A dedicated nozzle may be used, or when pulverizing the synthetic resin material, the pulverized coal may be blown from the pulverized coal blowing nozzle without being blown.

【0032】本発明の操業方法を実施するに際しては、
高炉炉底側壁の複数箇所に温度計を設置しておき、これ
らの温度計によって炉底側壁温度を測定し、この測定温
度があらかじめ定めた管理値を超えた場合、温度上昇箇
所の上方に位置する羽口に取り付けられたノズルから、
上記のように合成樹脂材を吹き込む。
In carrying out the operation method of the present invention,
Thermometers are installed at several points on the bottom wall of the blast furnace, and the temperature of the bottom wall is measured with these thermometers. If the measured temperature exceeds a predetermined control value, the From the nozzle attached to the tuyere
The synthetic resin material is blown as described above.

【0033】「あらかじめ定めた管理値」とは、例え
ば、高炉操業において、その値を超えると操業上、ある
いは炉体管理上好ましくないと経験的に把握されている
炉底側壁温度を採用すればよい。また、その他の、合理
的な根拠に基づいて定めた温度があれば、それを用いて
もよい。なお、「管理値」は、炉底側壁温度の測定値そ
のものでもよいし、前記測定値の変化幅または変化速度
を管理値として使用している場合は、それを用いてもよ
い。
The "predetermined control value" means, for example, a furnace bottom side wall temperature which is empirically recognized as being unfavorable in operation or furnace body management when the value exceeds the value in blast furnace operation. Good. Further, if there is another temperature determined based on a rational basis, it may be used. The “control value” may be the measured value of the furnace bottom side wall temperature itself, or may be used when the change width or the change speed of the measured value is used as the control value.

【0034】「温度上昇箇所の上方に位置する羽口」と
は、炉底側壁温度が管理値を超えて上昇した箇所が一箇
所(つまり、一箇所の温度計が上昇)の場合、その箇所
の直上(この場合の「直上」とは、高炉の中心から見た
方位で、±3°の範囲をいう)に羽口があるときはその
羽口をいい、直上に羽口がないときはその温度上昇箇所
の両側にあってその箇所にそれぞれ隣接する2本の羽口
をいう。また、温度上昇箇所が複数箇所(複数箇所の温
度計が上昇)の場合、すなわち、温度上昇箇所が円弧状
に広がっている場合は、その円弧部分を挟む両側にあっ
てその円弧部分の両端にそれぞれ隣接する2本の羽口お
よびそれらの間に位置する羽口をいう。
"Tuyere located above the temperature rising point" means that if the temperature of the furnace bottom side wall rises above the control value in one place (that is, one thermometer rises), (In this case, “directly above” refers to the azimuth from the center of the blast furnace and refers to the range of ± 3 °) when there is a tuyere. When there is no tuyere directly above, These are two tuyeres located on both sides of the temperature rise location and adjacent to the location. In addition, when there are a plurality of places where the temperature rises (the thermometers at a plurality of places rise), that is, when the places where the temperature rises are spread in an arc shape, both ends of the arc portion are sandwiched between the both ends of the arc portion. The term refers to two adjacent tuyeres and a tuyere located between them.

【0035】[0035]

【実施例】図4に示す内容積が3mの試験高炉を用い
て操業実験を行い、微粉炭吹き込みから合成樹脂材吹き
込みに切り替えた後の炉底側壁温度の変化を測定した。
EXAMPLE An operation experiment was carried out using a test blast furnace having an inner volume of 3 m 3 shown in FIG. 4, and the change in the furnace bottom side wall temperature after switching from pulverized coal injection to synthetic resin injection was measured.

【0036】実験の方法としては、図4に示した鉱石ホ
ッパー1とコークスホッパー2から交互に原料鉱石とコ
ークスを切り出して炉内に交互に層状に装入し、3本あ
る羽口3から熱風を吹き込むとともに、このうちの2本
の羽口3からそれらに取り付けられた合成樹脂材吹き込
みノズル4を介して合成樹脂材(RPFを使用)のみを
吹き込み、残りの1本の羽口3から同じくそれに取り付
けられている微粉炭吹き込みノズル5を介して微粉炭の
みを吹き込み、定常状態にした。このとき、微粉炭の吹
き込み量は、微粉炭を吹き込んだ羽口3の下方の炉底側
壁温度が上昇するように、合成樹脂材の吹き込み量(羽
口1本当たりの吹き込み量)の1.2倍とした。なお、
排ガスはガス排出口6から排出し、生成した溶銑とスラ
グは定期的に出銑口7から抜き出した。
As a method of the experiment, raw ore and coke were cut out alternately from the ore hopper 1 and the coke hopper 2 shown in FIG. 4 and charged alternately in layers in the furnace. And only synthetic resin (using RPF) is blown from two of the tuyeres 3 through a synthetic resin blowing nozzle 4 attached to them, and the remaining tuyeres 3 Only the pulverized coal was blown through the pulverized coal blowing nozzle 5 attached thereto, thereby bringing the apparatus into a steady state. At this time, the blown amount of the pulverized coal is set at 1 of the blown amount of the synthetic resin material (the blown amount per tuyere) so that the furnace bottom side wall temperature below the tuyere 3 into which the pulverized coal is blown increases. Doubled. In addition,
The exhaust gas was discharged from the gas outlet 6, and the generated hot metal and slag were periodically extracted from the tap hole 7.

【0037】その後、微粉炭の吹き込みを合成樹脂材の
吹き込みに切り替えて、炉底側壁に取り付けた温度計で
炉底側壁温度を測定し、最初から合成樹脂材を吹き込ん
でいる羽口(これを「合成樹脂材吹き込み羽口」とい
う)の下方の炉底側壁温度まで低下するに要する時間を
測った。
After that, the blowing of the pulverized coal was switched to the blowing of the synthetic resin material, the temperature of the furnace bottom side wall was measured with a thermometer attached to the furnace bottom side wall, and the tuyere (from which the synthetic resin material was blown in from the beginning) The time required to lower the temperature to the furnace bottom side wall below the “synthetic resin material injection tuyere” was measured.

【0038】また、比較のために、微粉炭の吹き込みを
実施していた羽口について、熱風制御弁を閉止して送風
量を0とした場合(比較例1)、同じく熱風制御弁の開
度を1/2にするとともに、その羽口から水蒸気を40
g/min吹き込んだ場合(比較例2)についても、同
様に炉底側壁温度を測定し、合成樹脂材吹き込み羽口の
下方の炉底側壁温度まで低下するに要する時間を測定し
た。
For comparison, when the hot air control valve is closed and the air flow rate is set to 0 (Comparative Example 1) for the tuyere in which pulverized coal is blown, the opening degree of the hot air control valve is also reduced. And the steam from the tuyere
In the case where g / min was blown (Comparative Example 2), the furnace bottom side wall temperature was measured in the same manner, and the time required for lowering the furnace bottom side wall temperature below the synthetic resin material blowing tuyere was measured.

【0039】結果を表4に示す。Table 4 shows the results.

【0040】[0040]

【表4】 表4に示したように、本発明の操業方法では、微粉炭吹
き込みから合成樹脂材の吹き込みに切り替えた後、4時
間で合成樹脂材吹き込み羽口の下方の炉底側壁温度まで
低下した。これに対して、比較例1では8時間を要し、
比較例2では4時間であった。比較例2の方法は、炉底
側壁温度を低下させるという効果の上では本発明の方法
と同等であったが、設備コストの面からは本発明の方法
が有利であるといえる。
[Table 4] As shown in Table 4, in the operation method of the present invention, after switching from pulverized coal blowing to synthetic resin material blowing, the temperature of the furnace bottom side wall below the synthetic resin material blowing tuyere dropped in 4 hours. In contrast, Comparative Example 1 requires 8 hours,
In Comparative Example 2, the time was 4 hours. The method of Comparative Example 2 was equivalent to the method of the present invention in terms of the effect of lowering the furnace bottom side wall temperature, but it can be said that the method of the present invention is advantageous from the viewpoint of equipment cost.

【0041】[0041]

【発明の効果】本発明の高炉操業方法によれば、炉底側
壁部における温度の上昇を容易に抑制し、レンガの損耗
を抑えることができる。設備および操業面でのコスト負
担も少ない。
According to the blast furnace operating method of the present invention, it is possible to easily suppress a rise in temperature at the bottom wall of the furnace and to suppress the wear of bricks. Cost burden on equipment and operation is also small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の操業方法の高炉3次元数学モデルによ
るシミュレーションにおける計算メッシュの一部を示す
図である。
FIG. 1 is a diagram showing a part of a calculation mesh in a simulation of a blast furnace three-dimensional mathematical model in the operation method of the present invention.

【図2】本発明の操業方法のシミュレーションの結果
で、分解熱が微粉炭と同じである合成樹脂材を用いた場
合の発熱量と滴下溶銑温度の関係を示す図である。
FIG. 2 is a diagram showing a result of a simulation of the operation method of the present invention, showing a relationship between a calorific value and a dropping hot metal temperature when a synthetic resin material having the same decomposition heat as pulverized coal is used.

【図3】本発明の操業方法のシミュレーションの結果
で、発熱量が微粉炭と同じである合成樹脂材を用いた場
合の分解熱と滴下溶銑温度の関係を示す図である。
FIG. 3 is a diagram showing a result of a simulation of the operation method of the present invention, showing a relationship between the decomposition heat and the dropping hot metal temperature when a synthetic resin material having the same calorific value as pulverized coal is used.

【図4】実施例で用いた試験高炉の構成を示す縦断面図
である。
FIG. 4 is a longitudinal sectional view showing a configuration of a test blast furnace used in the example.

【符号の説明】[Explanation of symbols]

1:鉱石ホッパー 2:コークスホッパー 3:羽口 4:合成樹脂材吹き込みノズル 5:微粉炭吹き込みノズル 6:ガス排出口 7:出銑口 1: Ore hopper 2: Coke hopper 3: Tuyere 4: Synthetic resin material injection nozzle 5: Pulverized coal injection nozzle 6: Gas outlet 7: Tap hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高炉炉底側壁に設置された複数の温度計に
よって炉底側壁温度を測定し、この測定温度があらかじ
め定めた管理値を超えた方位の炉底側壁上方に位置する
羽口に取り付けられたノズルから、発熱量が微粉炭より
小さく、分解熱が微粉炭より大きい合成樹脂材を吹き込
むことを特徴とする高炉の操業方法。
1. A furnace bottom side wall temperature is measured by a plurality of thermometers installed on a blast furnace bottom side wall, and the measured temperature exceeds a predetermined control value. A method for operating a blast furnace, wherein a synthetic resin material having a calorific value smaller than that of pulverized coal and a decomposition heat larger than pulverized coal is blown from an attached nozzle.
JP2001170755A 2001-06-06 2001-06-06 Method for operating blast furnace Pending JP2002363622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170755A JP2002363622A (en) 2001-06-06 2001-06-06 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170755A JP2002363622A (en) 2001-06-06 2001-06-06 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2002363622A true JP2002363622A (en) 2002-12-18

Family

ID=19012624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170755A Pending JP2002363622A (en) 2001-06-06 2001-06-06 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2002363622A (en)

Similar Documents

Publication Publication Date Title
JP4745731B2 (en) Method of melting hot metal with cupola
KR20120023057A (en) Blast furnace operation method
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
BR112019010696A2 (en) electric oven
CN115516113A (en) Blast furnace operation method
JP6369910B2 (en) Starting the smelting process
CN106524761B (en) Ferroalloy heating furnace and ferroalloy feeding mechanism
JP2002363622A (en) Method for operating blast furnace
JP6160838B2 (en) Oxygen enrichment method and oxygen enrichment apparatus for a thermal insulation furnace of a sintering machine
CN111328349B (en) Injection of process fluids into a shaft furnace with injector condition testing
US2465463A (en) Remelting furnace and method for remelting scrap
BR9704633B1 (en) vertical furnace operation method with a piping provided on a wall surface of said vertical furnace.
JP5012596B2 (en) Reduced blast furnace operation method
Liu et al. The Operation of Blowing Out, Blanking and Furnace Blowing Off
JP2019019347A (en) Method of operating blast furnace
JP2853281B2 (en) Pig iron production method
JP3879539B2 (en) Blast furnace operation method
JP2921374B2 (en) Blast furnace operation method
US3345053A (en) Apparatus for stopping air flow into blast furnaces
JP6160839B2 (en) Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace
TW202300661A (en) Oxygen blast furnace and oxygen blast furnace operation method
KR20030053777A (en) A Material Input Method to Stave Furnace for Burning Poisonous Gas
JP2024013311A (en) Blast furnace operation method
JP2023027519A (en) Method for estimating depositional shape of blast furnace filling and method for substituting blast furnace coke
JP4941122B2 (en) Blast furnace operation method