JP2002362919A - Production process of silica ultrafine powder - Google Patents

Production process of silica ultrafine powder

Info

Publication number
JP2002362919A
JP2002362919A JP2001170469A JP2001170469A JP2002362919A JP 2002362919 A JP2002362919 A JP 2002362919A JP 2001170469 A JP2001170469 A JP 2001170469A JP 2001170469 A JP2001170469 A JP 2001170469A JP 2002362919 A JP2002362919 A JP 2002362919A
Authority
JP
Japan
Prior art keywords
oxidizing gas
electric furnace
ultrafine powder
containing silicon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170469A
Other languages
Japanese (ja)
Inventor
Koki Ichikawa
恒希 市川
Akio Yoshida
昭夫 吉田
Shojiro Watanabe
祥二郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001170469A priority Critical patent/JP2002362919A/en
Publication of JP2002362919A publication Critical patent/JP2002362919A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily produce a silica ultrafine powder which is used as an additive for a liquid rubber or resin and has controlled properties affecting stability with time of such a liquid rubber or resin, namely, a controlled specific surface area and a controlled silanol group content. SOLUTION: This production process comprises introducing a siliceous raw material into a vessel placed in an electric furnace, heating the siliceous raw material by passing current through the electric furnace to generate a gas containing silicon suboxide, forming a silica ultrafine powder while supplying an oxidizing gas to the gas containing silicon suboxide and cooling it, and collecting the formed silica ultrafine powder with a collection system, wherein the collection system is connected to a space section of the electric furnace, formed above the upper surface of the vessel, the moisture content of the oxidizing gas is <=40 g/m<3> (including 0), and the specific surface area of the silica ultrafine powder is adjusted by changing the ratio of (the supply volume of the oxidizing gas)/(the volume of the generated gas containing silicon suboxide) within the range of >=200/1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気炉を用いるシ
リカ超微粉、特に比表面積30m2/g以上のシリカ超
微粉の製造方法に関する。
The present invention relates to a method for producing ultrafine silica powder using an electric furnace, and more particularly to a method for producing ultrafine silica powder having a specific surface area of 30 m 2 / g or more.

【0002】[0002]

【従来の技術】比表面積30m2/g以上のシリカ超微
粉(以下、単に「シリカ超微粉」という。)は、樹脂や
ゴムの充填剤、増粘剤、補強材等として広く使われてい
る。充填作用は、数十から数百m2/gを有する高い比
表面積、三次元網目構造等のストラクチャー構造、表面
のシラノール基量等に由来しており、特にストラクチャ
ーの影響が大きい。一方、増粘作用や補強作用を発現さ
せるということは、樹脂やゴム組成物としての流動性を
抑制することになり、生産性や簡便性に優れた射出成
形、ポッティング等の成形法では種々の問題を抱えるこ
とになる。たとえば、液状シリコーンゴムにシリカ超微
粉を数10%配合すると、粘度の大幅な上昇、クリープ
硬化等を引き起こすだけでなく、経時的な増粘現象によ
る安定性の問題が発生してくる。この問題に対しては、
古くからシリカの表面改質等で対応されている(たとえ
ば、米国特許第2938009号明細書、米国特許第3
024126号明細書)。
2. Description of the Related Art Ultrafine silica powder having a specific surface area of 30 m 2 / g or more (hereinafter simply referred to as “ultrafine silica powder”) is widely used as a filler for resin or rubber, a thickener, a reinforcing material, and the like. . The filling effect is derived from a high specific surface area having several tens to several hundreds m 2 / g, a structure structure such as a three-dimensional network structure, the amount of silanol groups on the surface, and the like, and the influence of the structure is particularly large. On the other hand, expressing the thickening action and the reinforcing action means that the fluidity of the resin or rubber composition is suppressed, and injection molding excellent in productivity and simplicity, various molding methods such as potting are used. You will have problems. For example, if several tens of percent of silica fine powder is blended with the liquid silicone rubber, not only will the viscosity significantly increase and creep hardening will occur, but also the problem of stability due to the time-dependent thickening phenomenon will occur. For this problem,
It has been used for a long time by modifying the surface of silica (see, for example, US Pat. No. 2,938,099 and US Pat.
024126).

【0003】シリカ超微粉の製造方法としては、四塩化
珪素の火炎熱分解法、珪酸ソーダを原料とする珪酸ソー
ダ法、金属シリコンの爆燃酸化法(特公平1−5520
1号公報)が知られているが、これらには一長一短があ
る。
[0003] As a method for producing ultrafine silica powder, a flame pyrolysis method of silicon tetrachloride, a sodium silicate method using sodium silicate as a raw material, a deflagration oxidation method of metallic silicon (Japanese Patent Publication No. 1-5520)
No. 1) are known, but these have advantages and disadvantages.

【0004】四塩化珪素の火炎熱分解法により製造され
たシリカ超微粉は、三次元網目構造を有するため、シリ
コーンゴム等に充填した場合に優れた補強効果を発揮す
るが、液状シリコーンゴム等に充填した場合には、表面
のシラノール基量が多いため、粘度の経時安定性が良く
ないという問題がある。珪酸ソーダ法により製造された
シリカ超微粉は、比較的安価で多孔質であるのでタイヤ
用ゴム等に多く用いられるが、湿式プロセスであるため
乾燥・解砕工程を必要とし、凝集が非常に起こりやすい
という問題がある。金属シリコンの爆燃酸化法は、化学
炎を熱源として用いるために系内で水が発生し、シリカ
超微粉にはシラノール基量が多くなって凝集が起こりや
すくなる。
Ultrafine silica powder produced by the flame pyrolysis method of silicon tetrachloride has a three-dimensional network structure, and thus exhibits an excellent reinforcing effect when filled with silicone rubber or the like. When filled, the amount of silanol groups on the surface is large, so that there is a problem that the stability over time of the viscosity is not good. Ultrafine silica powder produced by the sodium silicate method is relatively inexpensive and porous, so it is often used for rubber for tires, etc.However, since it is a wet process, it requires a drying and crushing step, and aggregation occurs very much. There is a problem that it is easy. In the deflagration oxidation method of metallic silicon, water is generated in the system because a chemical flame is used as a heat source, and the amount of silanol groups in the ultrafine silica powder increases, so that aggregation tends to occur.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、液状
のゴムや樹脂の充填材として、特殊な表面処理を施すこ
となく、粘度の増加を抑えて高い流動性を維持し、粘度
の経時安定性に優れたシリカ超微粉の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid rubber or resin filler which maintains a high fluidity by suppressing an increase in viscosity without applying a special surface treatment and maintains the viscosity over time. An object of the present invention is to provide a method for producing ultrafine silica powder having excellent stability.

【0006】本発明の目的は、電気炉によってシリカ質
原料を加熱して亜酸化ケイ素を含むガスを発生させ、そ
れを特定含水量の酸化性ガスの特定量で冷却・酸化さ
せ、シリカ超微粉を捕集系で取得することによって達成
することができる。
An object of the present invention is to heat a siliceous raw material by an electric furnace to generate a gas containing silicon suboxide, cool and oxidize the gas with a specific amount of an oxidizing gas having a specific water content, and obtain an ultrafine silica powder. Can be achieved by obtaining in a collection system.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、シ
リカ質原料を電気炉内に設置された容器に入れ、通電加
熱をして亜酸化ケイ素を含むガスを発生させ、その発生
ガスに酸化性ガスを供給・冷却しながら生成したシリカ
超微粉を捕集系で取得する方法であって、上記捕集系は
上記容器上面の空間部に接続されており、上記酸化性ガ
スの含水量は40g/m3以下(0を含む)であり、上
記酸化性ガスの供給量を上記発生ガス量に対し200体
積倍量以上の範囲内で変量してシリカ超微粉の比表面積
を調整することを特徴とするシリカ超微粉の製造方法で
ある。
That is, according to the present invention, a siliceous raw material is placed in a vessel installed in an electric furnace, heated by electricity to generate a gas containing silicon suboxide, and the generated gas is oxidized. A method for obtaining a silica ultrafine powder generated while supplying and cooling an oxidizing gas with a collection system, wherein the collection system is connected to a space on the upper surface of the container, and the water content of the oxidizing gas is 40 g / m 3 or less (including 0), and adjusting the specific surface area of the silica ultrafine powder by varying the supply amount of the oxidizing gas within a range of 200 times or more the amount of the generated gas amount. This is a method for producing ultrafine silica powder.

【0008】[0008]

【発明の実施の形態】以下、図面を参照しながら、更に
詳しく本発明について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0009】図1は、本発明のシリカ超微粉の製造に用
いたシリカ超微粉の製造装置の一例を示す概略図であ
る。1は電気炉、2は電気炉内に設置された容器、3は
シリカ質原料供給ホッパー、4は酸化性ガス供給口、5
は捕集系に設けられた捕集装置である。
FIG. 1 is a schematic view showing an example of an apparatus for producing ultrafine silica powder used for producing the ultrafine silica powder of the present invention. 1 is an electric furnace, 2 is a container installed in the electric furnace, 3 is a siliceous material supply hopper, 4 is an oxidizing gas supply port, 5
Is a collection device provided in the collection system.

【0010】本発明で使用される電気炉1は、シリカ質
原料を2000℃以上、好ましくは2500℃以上に加
熱できるものであれば、アーク炉、抵抗炉、高周波炉等
のいずれであってもよい。アーク炉や抵抗炉では、通電
のため電極が必要となるが、それはカーボン製等の電極
を電気炉上部から容器内に挿入して設置される。図1に
は電極は図示されていない。電気炉内にはシリカ質原料
を収納する容器2が設置され、シリカ質原料は電気炉上
部に取り付けられたシリカ質原料供給ホッパー3から所
定量投入されるようになっている。シリカ質原料の所定
量投入には、二重バルブ方式、二重ダンパー方式等が採
用される。
The electric furnace 1 used in the present invention may be any of an arc furnace, a resistance furnace, a high-frequency furnace, etc., as long as it can heat the siliceous raw material to 2000 ° C. or more, preferably 2500 ° C. or more. Good. In an arc furnace or a resistance furnace, an electrode is required for energization, and the electrode is made by inserting an electrode made of carbon or the like into the vessel from the upper part of the electric furnace. The electrodes are not shown in FIG. Inside the electric furnace, a container 2 for storing the siliceous raw material is provided, and a predetermined amount of the siliceous raw material is supplied from a siliceous raw material supply hopper 3 attached to the upper part of the electric furnace. A double valve system, a double damper system, or the like is employed for charging a predetermined amount of the siliceous raw material.

【0011】シリカ質原料の加熱によって発生した亜酸
化ケイ素を含むガスは、酸化性ガス供給口4から供給さ
れた酸化性ガスに同伴され捕集系に搬送される。その間
に、酸化・冷却を受けてシリカ超微粉となり、逆洗式バ
グフィルター等の捕集装置5から捕集される。捕集系
は、容器2上面の空間部に接続されている。該空間部の
電気炉内壁は例えばジルコニアレンガ、その外壁は例え
ば鉄製、耐熱性レンガ等で構成されている。
The gas containing silicon suboxide generated by heating the siliceous raw material is carried along with the oxidizing gas supplied from the oxidizing gas supply port 4 and is conveyed to the collection system. During that time, it undergoes oxidation and cooling to become ultrafine silica particles, which are collected from a collecting device 5 such as a backwash type bag filter. The collection system is connected to a space on the upper surface of the container 2. The inner wall of the electric furnace in the space is made of, for example, zirconia brick, and its outer wall is made of, for example, iron, heat-resistant brick, or the like.

【0012】本発明の第1の特徴は、亜酸化ケイ素を含
むガスを電気炉を用いシリカ質原料を加熱して発生させ
ることであり、従来の爆燃酸化法と相違している。これ
によって、亜酸化ケイ素を含むガスの発生からシリカ超
微粉の捕集までの系内水分量を著しく少なくすることが
できるので、表面シラノール基含量の少ない流動性の良
好なシリカ超微粉を製造することができる。従来の爆燃
酸化法では、高温場を燃料の燃焼によって形成させるの
でそれに由来する系内水分量が多くなり、シリカ超微粉
のシラノール基含量も多いものとなり、シランカップリ
ング剤で処理するか、熱処理等によってシラノール基量
の軽減措置が必要であった。
A first feature of the present invention is that a gas containing silicon suboxide is generated by heating a siliceous raw material using an electric furnace, which is different from the conventional deflagration oxidation method. As a result, the amount of water in the system from the generation of a gas containing silicon suboxide to the collection of the ultrafine silica powder can be significantly reduced, so that the ultrafine silica powder having a low surface silanol group content and good fluidity is produced. be able to. In the conventional deflagration oxidation method, a high-temperature field is formed by burning the fuel, so the amount of water in the system derived from the combustion increases and the silanol group content of the ultrafine silica powder increases. Therefore, measures to reduce the amount of silanol groups were required.

【0013】本発明に用いる原料は、加熱により亜酸化
ケイ素を含むガスを発生するシリカ質原料であればよ
く、例えば珪石、珪砂等である。シリカ質原料は、ガス
発生効率の点から金属シリコンやカーボン等の還元剤と
混合して用いることが好ましく、シリカ質原料100質
量部に対し還元剤30〜60質量部であることが好まし
い。
The raw material used in the present invention may be a siliceous raw material that generates a gas containing silicon suboxide when heated, and examples thereof include silica stone and silica sand. The siliceous raw material is preferably used in a mixture with a reducing agent such as metallic silicon or carbon from the viewpoint of gas generation efficiency, and the amount of the reducing agent is preferably 30 to 60 parts by mass with respect to 100 parts by mass of the siliceous raw material.

【0014】本発明の第2の特徴は、亜酸化ケイ素を含
むガスを含水量が40g/m3以下(0を含む)の酸化
性ガスで酸化・冷却することである。とくに、容器上面
の空間部(通常、温度は1800℃以上である。)から
捕集系の温度200℃の部分までの間を、このような低
含水の酸化性ガスで酸化・冷却させることが好ましい。
含水量40g/m3以下(0を含む)の酸化性ガスで酸
化・冷却させることによって、生成したシリカ超微粉の
シラノール基量が著しく小さいものとなり、凝集の起こ
りにくいものとなる。
A second feature of the present invention is that a gas containing silicon suboxide is oxidized and cooled with an oxidizing gas having a water content of 40 g / m 3 or less (including 0). In particular, it is possible to oxidize and cool the space between the space on the upper surface of the container (usually the temperature is 1800 ° C. or higher) and the temperature of the collection system at 200 ° C. with such a low water-containing oxidizing gas. preferable.
By oxidizing and cooling with an oxidizing gas having a water content of 40 g / m 3 or less (including 0), the amount of silanol groups in the generated ultrafine silica powder becomes extremely small, so that aggregation does not easily occur.

【0015】酸化性ガスは、亜酸化ケイ素を含むガスの
冷却効率や装置のコンパクト化の点から、亜酸化ケイ素
を含むガスの発生方向に対して概略垂直方向となるよう
に、電気炉の一方の側壁から対向する側壁に向けて供給
することが好ましい。酸化性ガスとしては、酸素を50
体積%以上含むガスが好ましく、具体的には空気をその
湿度を調節して用いられる。
The oxidizing gas is supplied to one side of the electric furnace so as to be substantially perpendicular to the direction in which the gas containing silicon suboxide is generated from the viewpoint of cooling efficiency of the gas containing silicon suboxide and downsizing of the apparatus. Is preferably supplied from the side wall to the opposite side wall. As the oxidizing gas, oxygen is 50
A gas containing at least volume% is preferred. Specifically, air is used after adjusting its humidity.

【0016】本発明の第3の特徴は、酸化性ガスの供給
量を亜酸化ケイ素を含むガス量に対して200体積倍以
上の範囲内で調節して供給することであり、これによっ
てシリカ超微粉の比表面積を30m2/g以上とするこ
とが容易となり、しかも酸化性ガス供給量に比例してシ
リカ超微粉の比表面積を大きくすることができる。比表
面積30m2/g以上のシリカ超微粉は、分級操作によ
っても得ることができるが、この条件を満たさないとそ
の収率が悪くなる。比表面積30m2/g以上の要件
は、ゴム、樹脂への十分な補強効果を発現させるととも
に、経時的な増粘現象による不安定性を軽減させるため
に必要となる。
A third feature of the present invention is that the supply amount of the oxidizing gas is adjusted within a range of 200 times or more the amount of the gas containing silicon suboxide, and thereby the supply amount of the oxidizing gas is increased. It is easy to make the specific surface area of the fine powder 30 m 2 / g or more, and the specific surface area of the ultrafine silica powder can be increased in proportion to the supply amount of the oxidizing gas. Ultrafine silica powder having a specific surface area of 30 m 2 / g or more can be obtained by a classification operation, but if this condition is not satisfied, the yield will be poor. The requirement of a specific surface area of 30 m 2 / g or more is necessary in order to exert a sufficient reinforcing effect on rubber and resin and to reduce instability due to a thickening phenomenon with time.

【0017】[0017]

【実施例】以下、実施例、比較例、参考例をあげて更に
具体的に本発明を説明する。
The present invention will be described more specifically with reference to examples, comparative examples and reference examples.

【0018】図1に示したシリカ超微粉の製造装置を用
いて実験を行った。電気炉1は、400kVAのトラン
ス容量を持つジロー式アーク炉であり、その内部にカー
ボン製容器2が設置されている。カーボン電極(図示な
し)は電気炉上部から炉体中心に位置させ、シリカ質原
料の投入はシリカ質原料供給ホッパー3から行った。シ
リカ質原料は通電加熱され、発生した亜酸化ケイ素を含
むガスは、電気炉側壁に設けられた酸化性ガス供給口4
から供給された酸化性ガスに同伴されて捕集系に搬送さ
れ、その間に酸化・冷却されてシリカ粉末となり、逆洗
式バグフィルターからなる捕集装置5からシリカ超微粉
が捕集される。捕集系は、酸化性ガス供給口4に対向す
る電気炉の側壁であって、容器上面の空間部に接続され
ている。なお、容器上面の空間部は、およそ500mm
×260mm×1000mmの大きさであり、内壁がジ
ルコニアレンガ、外周部が耐熱性レンガで構成されてい
る。また、酸化性ガス供給口4には二流体ノズル(アト
マックス社製「BN−500」)が設置されている。
An experiment was carried out using the apparatus for producing ultrafine silica powder shown in FIG. The electric furnace 1 is a giraud type arc furnace having a transformer capacity of 400 kVA, in which a carbon container 2 is installed. The carbon electrode (not shown) was positioned at the center of the furnace body from the upper part of the electric furnace, and the siliceous material was charged from the siliceous material supply hopper 3. The siliceous raw material is heated by electricity, and the generated gas containing silicon suboxide is supplied to an oxidizing gas supply port 4 provided on the side wall of the electric furnace.
Is conveyed to the collection system while being accompanied by the oxidizing gas supplied from the apparatus, while being oxidized and cooled to form silica powder, and the ultrafine silica powder is collected from the collection device 5 composed of a backwash type bag filter. The collection system is a side wall of the electric furnace facing the oxidizing gas supply port 4 and is connected to a space on the upper surface of the container. The space on the upper surface of the container is approximately 500 mm.
The size is × 260 mm × 1000 mm, the inner wall is made of zirconia brick, and the outer periphery is made of heat-resistant brick. Further, a two-fluid nozzle (“BN-500” manufactured by Atmax Corporation) is installed in the oxidizing gas supply port 4.

【0019】実施例1〜4 比較例1、2 金属シリコン塊状品(30mm下塊状品)と珪石粉砕品
(約5mm)との等モル混合物からなるシリカ質原料を
容器に投入し、アーク放電させて約2000℃に加熱し
た。発生した亜酸化ケイ素を含むガスの酸化・冷却に
は、水分量の異なる空気(酸化性ガス)を用い、その量
を変えて供給した。酸化性ガスは、二流体ノズルを用い
て供給され、その内管から水、外管から絶乾空気を噴射
することによって行った。酸化性ガスの含水量は水の供
給量を変化させて調節した。これらの条件を表1に示
す。
Examples 1 to 4 Comparative Examples 1 and 2 A siliceous raw material comprising an equimolar mixture of a metallic silicon lump (a lump below 30 mm) and a crushed silica (about 5 mm) was charged into a vessel and arc-discharged. To about 2000 ° C. For the oxidation and cooling of the generated gas containing silicon suboxide, air (oxidizing gas) having a different water content was used, and the gas was supplied in different amounts. The oxidizing gas was supplied by using a two-fluid nozzle, and water was injected from the inner tube and absolutely dry air was injected from the outer tube. The water content of the oxidizing gas was adjusted by changing the water supply. Table 1 shows these conditions.

【0020】本例においては、酸化性ガスの供給量によ
ってシリカ超微粉の比表面積が調節され、酸化性ガスの
水分量によってシラノール基量(OH基濃度)を制御し
た。亜酸化ケイ素を含むガスの発生量はシリカ超微粉生
成量から算出した。
In this example, the specific surface area of the ultrafine silica powder was adjusted by the supply amount of the oxidizing gas, and the amount of the silanol group (OH group concentration) was controlled by the water amount of the oxidizing gas. The generation amount of the gas containing silicon suboxide was calculated from the generation amount of ultrafine silica powder.

【0021】得られたシリカ超微粉のBET比表面積を
湯浅アイオニクス社製比表面積測定器「デル4−SOR
B」を用いて測定した。また、シラノール基量は、カー
ルフィッシャー水分測定装置(三菱化学社製微量水分測
定器:モデルCA−05)を用いて水分を測定し、20
0℃〜900℃で脱水された水分量をシラノール基濃度
とした。
The BET specific surface area of the obtained ultrafine silica powder was measured using a specific surface area measuring instrument “Dell 4-SOR” manufactured by Yuasa Ionics.
B ". The amount of the silanol group was determined by measuring the water content using a Karl Fischer water content measuring device (Mitsubishi Chemical Corp. trace moisture measuring device: Model CA-05),
The amount of water dehydrated at 0 ° C to 900 ° C was defined as the silanol group concentration.

【0022】さらに、得られたシリカ超微粉の液状シリ
コーンゴムの充填材としての安定性を評価するため、付
加硬化型液状シリコーンゴム(GE東芝シリコーン社製
「YE5822」A液)80質量部とシリカ超微粉20
質量部を万能混練機で2時間混練し、混練直後の粘度
と、室温で30日間放置後の粘度を測定した。粘度の評
価はJIS K 7117に準じて行った。
Further, in order to evaluate the stability of the obtained ultrafine silica powder as a filler for liquid silicone rubber, 80 parts by mass of an addition-curable liquid silicone rubber (“YE5822” A liquid manufactured by GE Toshiba Silicone Co., Ltd.) and silica were used. Super fine powder 20
The parts by mass were kneaded for 2 hours with a universal kneader, and the viscosity immediately after kneading and the viscosity after standing at room temperature for 30 days were measured. The evaluation of the viscosity was performed according to JIS K7117.

【0023】以上の結果を表2に示す。Table 2 shows the above results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1、2から明らかなように、本発明の実
施例によれば、シリコーンゴムや樹脂等に混練した際
に、その安定性に影響を与える比表面積、表面シラノー
ル基量が制御された、比表面積30m2/g以上のシリ
カ超微粉を容易に製造することができた。
As is clear from Tables 1 and 2, according to the embodiment of the present invention, the specific surface area and the amount of surface silanol groups which affect the stability when kneaded with silicone rubber or resin are controlled. Further, ultrafine silica powder having a specific surface area of 30 m 2 / g or more could be easily produced.

【0027】参考例1 直径300mm、長さ3000mmの円筒形の炉体を用
い、酸素20l/分、水素10l/分をバーナーに供給
し化学炎を形成した。水素により原料シリコン粉末をバ
ーナー搬送し爆燃によりシリカ超微粉を合成した。この
例で得られたシリカ超微粉の表面シラノール基量を減少
させるには、別に熱処理が必要であった。
Reference Example 1 Using a cylindrical furnace having a diameter of 300 mm and a length of 3000 mm, a chemical flame was formed by supplying 20 l / min of oxygen and 10 l / min of hydrogen to a burner. The raw material silicon powder was conveyed to the burner by hydrogen, and silica ultrafine powder was synthesized by deflagration. In order to reduce the amount of surface silanol groups in the ultrafine silica powder obtained in this example, a separate heat treatment was required.

【0028】[0028]

【発明の効果】本発明のシリカ超微粉の製造方法によれ
ば、液状のゴムや樹脂の充填材として、特殊な表面処理
を施すことなく、粘度の増加を抑えて高い流動性を維持
し、粘度の経時安定性に優れたシリカ超微粉を容易に製
造することができる。
According to the method for producing ultrafine silica powder of the present invention, as a filler for liquid rubber or resin, high viscosity can be maintained without increasing the viscosity without performing special surface treatment. Ultrafine silica powder having excellent viscosity stability over time can be easily produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリカ超微粉の製造装置の一例を示す概略図。FIG. 1 is a schematic diagram showing an example of a device for producing ultrafine silica powder.

【符号の説明】[Explanation of symbols]

1電気炉 2容器 3シリカ質原料供給ホッパー 4酸化性ガス供給口 5捕集装置 1 electric furnace 2 container 3 siliceous material supply hopper 4 oxidizing gas supply port 5 collector

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA25 BB05 GG01 GG03 HH13 HH20 JJ03 MM01 RR03 RR11 TT05 UU08 UU09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G072 AA25 BB05 GG01 GG03 HH13 HH20 JJ03 MM01 RR03 RR11 TT05 UU08 UU09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリカ質原料を電気炉内に設置された容
器に入れ、通電加熱をして亜酸化ケイ素を含むガスを発
生させ、その発生ガスに酸化性ガスを供給・冷却しなが
ら生成したシリカ超微粉を捕集系で取得する方法であっ
て、上記捕集系は上記容器上面の空間部に接続されてお
り、上記酸化性ガスの含水量は40g/m3以下(0を
含む)であり、上記酸化性ガスの供給量を上記発生ガス
量に対し200体積倍量以上の範囲内で変量してシリカ
超微粉の比表面積を調整することを特徴とするシリカ超
微粉の製造方法。
1. A method in which a siliceous raw material is placed in a container installed in an electric furnace, heated by electricity to generate a gas containing silicon suboxide, and the generated gas is generated while supplying and cooling an oxidizing gas. A method for obtaining ultrafine silica powder by a collection system, wherein the collection system is connected to a space on the upper surface of the container, and a water content of the oxidizing gas is 40 g / m 3 or less (including 0). Wherein the supply amount of the oxidizing gas is varied within a range of at least 200 times the volume of the generated gas to adjust the specific surface area of the silica ultrafine powder.
JP2001170469A 2001-06-06 2001-06-06 Production process of silica ultrafine powder Pending JP2002362919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170469A JP2002362919A (en) 2001-06-06 2001-06-06 Production process of silica ultrafine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170469A JP2002362919A (en) 2001-06-06 2001-06-06 Production process of silica ultrafine powder

Publications (1)

Publication Number Publication Date
JP2002362919A true JP2002362919A (en) 2002-12-18

Family

ID=19012385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170469A Pending JP2002362919A (en) 2001-06-06 2001-06-06 Production process of silica ultrafine powder

Country Status (1)

Country Link
JP (1) JP2002362919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241025A (en) * 2008-03-31 2009-10-22 Japan Science & Technology Agency Method of preparing microparticle
JP2017506205A (en) * 2014-02-24 2017-03-02 エルケム アクシエセルスカプ Method for producing silicon dioxide particles
CN114655961A (en) * 2022-04-11 2022-06-24 重庆大学 Simple recovery system and process for waste composite insulator silicone rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241025A (en) * 2008-03-31 2009-10-22 Japan Science & Technology Agency Method of preparing microparticle
JP2017506205A (en) * 2014-02-24 2017-03-02 エルケム アクシエセルスカプ Method for producing silicon dioxide particles
CN114655961A (en) * 2022-04-11 2022-06-24 重庆大学 Simple recovery system and process for waste composite insulator silicone rubber
CN114655961B (en) * 2022-04-11 2023-11-07 重庆大学 Simple recovery system and process for waste composite insulator silicon rubber

Similar Documents

Publication Publication Date Title
CN105294140B (en) Preparation method, porous ceramics and its application of porous ceramics
CN104600248B (en) A kind of lithium ion battery silicon based anode material and preparation method thereof
CN103971786B (en) Electric-grade organic coating high-temperature-resistant insulating magnesia powder for electric ovens and production method of electric-grade organic coating high-temperature-resistant insulating magnesia powder
TW201132590A (en) Synthetic amorphous silica powder
CN104070172A (en) Method for preparing spherical chromium powder
JP2015145336A (en) spherical alumina powder
JP2012211070A (en) Synthetic amorphous silica powder and method for producing the same
JPWO2011083710A1 (en) Synthetic amorphous silica powder and method for producing the same
JPS6232227B2 (en)
CN106898494B (en) A kind of preparation method of carbonaceous mesophase spherules-carbon nano tube compound material
JP2002362919A (en) Production process of silica ultrafine powder
GB188451A (en) Improvements in and relating to apparatus for and method of making silica glass
CN109671952B (en) Microcrystalline graphene-based composite conductive slurry for lithium battery and preparation method thereof
CN109037679A (en) Petroleum coke base porous carbon materials and preparation method thereof and silicon-carbon cathode material
JP4240796B2 (en) Spherical silica ultrafine powder, its production method and use
TW201333284A (en) Method and system for alumina nanofibers synthesis from molten aluminum
CN113912393B (en) Stable zirconium ramming mass and preparation method thereof
CN109368680A (en) It is a kind of with lime stone prepare precipitated calcium carbonate method and its precipitated calcium carbonate obtained
JPS62167212A (en) Production of beta-type silicon carbide powder
CN208716852U (en) A kind of device preparing nano-silicon
EP0375245B1 (en) Method and apparatus for making highly oxidized lead powder
KR100346189B1 (en) Fabrication method of dopant doped high pure silica glass
US1427187A (en) Process of reducing tungstic oxide to tungsten metal
CN107572513B (en) Electric heating petroleum coke, graphite and carbon conversion integrated furnace
CN109768277A (en) A kind of graphene oxide modified coal pitch binder and preparation method thereof