JP2002357465A - Air flow rate measurement device - Google Patents

Air flow rate measurement device

Info

Publication number
JP2002357465A
JP2002357465A JP2002092332A JP2002092332A JP2002357465A JP 2002357465 A JP2002357465 A JP 2002357465A JP 2002092332 A JP2002092332 A JP 2002092332A JP 2002092332 A JP2002092332 A JP 2002092332A JP 2002357465 A JP2002357465 A JP 2002357465A
Authority
JP
Japan
Prior art keywords
throttle
air flow
air
cross
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002092332A
Other languages
Japanese (ja)
Other versions
JP3829930B2 (en
Inventor
Koichi Goto
晃一 後藤
Yukihiro Takeuchi
竹内  幸裕
Takao Iwaki
隆雄 岩城
Yasushi Goko
康士 五箇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002092332A priority Critical patent/JP3829930B2/en
Priority to US10/253,502 priority patent/US6786089B2/en
Priority to DE10245134.6A priority patent/DE10245134B4/en
Priority to DE10262426.7A priority patent/DE10262426B3/en
Publication of JP2002357465A publication Critical patent/JP2002357465A/en
Application granted granted Critical
Publication of JP3829930B2 publication Critical patent/JP3829930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air flow rate measurement device capable of reducing the occurrence of output fluctuation and a measurement error due to turbulence of intake air flow and improving measurement precision. SOLUTION: In this air flow rate measurement device, a flow rate detection element measuring an air flow rate is arranged inside a bypass flow passage into which a part of air flowing through an intake passage is let flow. The cross section area of the bypass flow passage is shaped so that it is the widest in an inflow port part and gradually reduced three-dimensionally from the inflow port part to the detection element arrangement site arranged on the downstream side inside the air flow passage. The bypass flow passage is provided with an air restriction part in which the cross sectional shape of the bypass flow passage is gradually and gently increased around the arrangement center of the flow rate detection element in the upstream and downstream directions, and the restriction part is arranged only in the parallel direction to the left and right sides of the flow detection element. When height of the restriction part, a restriction length in the upstream part, and that in the downstream part are represented by h, L1, and L2 respectively, they satisfy the following relationship: 1<=L1/h, 1<=L2/h, and 2.5<a/h<=20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸気通路内の吸入空
気量を測定する空気流量測定装置に関し、特に自動車用
エンジンの吸気通路を流れる空気の一部を流入させるバ
イパス流路を吸気通路内に有する空気流量測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device for measuring the amount of intake air in an intake passage, and more particularly, to a bypass passage in the intake passage for introducing a part of air flowing through the intake passage of an automobile engine. The present invention relates to an air flow measuring device having the same.

【0002】[0002]

【従来の技術】空気流量測定装置の検出精度向上を図る
従来技術としては、例えば特開平10−142020号
公報及び特表平11−511262号公報に開示のもの
が知られている。これらの公報に開示のものは、測定流
路の側面を流れ方向から見て軸方向に先細となるように
断面を二次元的に絞る形状とし、測定流路の最も狭い箇
所の上流、または測定流路内の出口の上流に検出素子を
配置している。流れ方向の測定流路を先細に構成するこ
とにより、検出素子の存在する区域に、できるだけ妨害
のない一様な吸入空気の平行な流れを作り出すようにし
ている。
2. Description of the Related Art As a conventional technique for improving the detection accuracy of an air flow measuring device, for example, those disclosed in Japanese Patent Application Laid-Open No. H10-14020 and Japanese Patent Application Laid-Open No. H11-511262 are known. Those disclosed in these publications have a shape in which the cross section is narrowed two-dimensionally so that the side surface of the measurement flow path is tapered in the axial direction when viewed from the flow direction, and the upstream side of the narrowest part of the measurement flow path or the measurement is performed. The detection element is arranged upstream of the outlet in the flow path. The taper of the flow path in the direction of flow ensures that a uniform parallel flow of intake air is created in the area where the detection element is present, with as little disturbance as possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報に開示の技術では、測定流路は吸入空気の流れ方向と
直角方向のみを二次元的に絞る形状であるので、絞られ
ている側の吸入空気のゆらぎは小さくできるが、絞られ
ていない側の吸入空気のゆらぎは抑えられない。このた
め、検出精度に対する効果は十分ではないという課題が
ある。
However, according to the technique disclosed in the above publication, the measurement flow path has a shape in which only the direction perpendicular to the flow direction of the intake air is narrowed two-dimensionally. The fluctuation of the air can be reduced, but the fluctuation of the intake air on the non-throttled side cannot be suppressed. Therefore, there is a problem that the effect on the detection accuracy is not sufficient.

【0004】さらに、上記従来技術では、検出素子が吸
入空気の入口から見通せる位置に配置されているので、
吸入空気中にゴミ等の異物が混入していると、異物が絞
りの側面(斜面)で反射して検出素子にあたるおそれが
あり、最悪の場合には、反射した異物で検出素子が割れ
るおそれがあるという課題がある。本発明の目的は、上
記従来技術における課題に鑑み、バイパス流路の少なく
とも一部を三次元的に絞ることにより、測定装置に流入
する吸入空気の流れの乱れによる出力変動、計測誤差の
発生を抑止し、計測精度を向上することができる空気流
量測定装置を提供することにある。
Further, in the above-mentioned prior art, since the detecting element is disposed at a position that can be seen from the inlet of the intake air,
If foreign matter such as dust is mixed in the intake air, the foreign matter may be reflected on the side surface (slope) of the diaphragm and hit the detection element. In the worst case, the detection element may be broken by the reflected foreign matter. There is a problem that there is. SUMMARY OF THE INVENTION In view of the above-described problems in the related art, an object of the present invention is to reduce at least a part of a bypass flow path three-dimensionally to reduce output fluctuation due to turbulence of a flow of intake air flowing into a measuring device and occurrence of a measurement error. An object of the present invention is to provide an air flow measuring device capable of suppressing the measurement and improving the measurement accuracy.

【0005】本発明の他の目的は、検出素子が吸入空気
の入口からは見通せないように流入口部を形成すること
により、検出素子に異物が衝突して損傷されることを防
止することにある。
Another object of the present invention is to prevent the detection element from being damaged due to collision of foreign matter with the detection element by forming the inflow port so that the detection element cannot be seen from the inlet of the intake air. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の手段を採用することができる。この手
段によると、バイパス流路の断面積が空気の流入口部で
最大で、バイパス流路への空気の流入口部から下流側の
空気通路内に配置されている検出素子配置部位までの断
面が三次元的に徐々に絞った形状を有するので、二次元
的にのみ絞った従来のバイパス流路に比べて、空気流量
測定装置に流入する吸入空気の流れの乱れによる流量検
出素子の出力変動及び計測誤差の発生が抑圧され、その
結果計測精度を向上することができる。
Means for Solving the Problems To solve the above problems, the means described in claim 1 can be adopted. According to this means, the cross-sectional area of the bypass flow passage is the largest at the air inlet, and the cross-section from the air inlet to the bypass flow passage to the detection element arrangement site disposed in the downstream air passage is Has a shape gradually narrowed three-dimensionally, so that the output fluctuation of the flow detection element due to the turbulence of the flow of the intake air flowing into the air flow measuring device is smaller than the conventional bypass flow path narrowed only two-dimensionally. In addition, the occurrence of measurement errors is suppressed, and as a result, measurement accuracy can be improved.

【0007】なお、請求項2の手段を採用することで、
検出素子配置位置の下流側までの空気の乱れによる流量
検出素子の出力変動及び計測誤差の発生は抑止される。
また、請求項3に規定したバイパス流路の断面形状とす
ることで、検出素子配置位置の周辺部の空気の乱れによ
る流量検出素子の出力変動及び計測誤差の発生は抑止さ
れる。
[0007] By adopting the means of claim 2,
Fluctuation of the output of the flow rate detection element and occurrence of measurement error due to turbulence of the air to the downstream side of the detection element arrangement position are suppressed.
In addition, the cross-sectional shape of the bypass passage defined in claim 3 suppresses the output fluctuation and the measurement error of the flow rate detecting element due to the turbulence of the air around the detecting element arrangement position.

【0008】また、請求項4の手段によると、逆流が入
り難い絞り形状を採用することで、逆流検出不能センサ
の使用が可能になる。さらに、請求項5の手段による
と、順流と逆流の両方を整流可能な絞り形状とすること
で、逆流検出可能センサの使用が可能になる。さらに、
請求項6の手段によると、検出素子配置部位の近傍で絞
り度合いが急激に変化する形状を採用することで、上流
の空気流の乱れが大きい場合に使用できる。
According to the fourth aspect of the present invention, by adopting the throttle shape in which the backflow is difficult to enter, it is possible to use the sensor which cannot detect the backflow. Further, according to the means of claim 5, by forming a throttle shape capable of rectifying both the forward flow and the backward flow, it is possible to use a sensor capable of detecting the backward flow. further,
According to the sixth aspect of the present invention, by adopting a shape in which the degree of restriction rapidly changes in the vicinity of the position where the detection element is disposed, it can be used when the turbulence of the upstream air flow is large.

【0009】さらに、請求項7の手段によると、絞り高
さを検出素子配置部位の上下等、場所により異ならしめ
たことにより、脈動特性のチューニングが必要なシステ
ムの制御に使用できる。さらに、請求項8の手段による
と、検出素子配置部位の下流側の所定範囲のバイパス流
路の断面積が一定又は減少するようにしたことで、高応
答センサが要求されるシステムの制御に使用できる。
Further, according to the means of the present invention, the diaphragm height is made different depending on the location, such as above and below the position where the detecting element is disposed, so that it can be used for controlling a system which requires tuning of pulsation characteristics. Further, according to the means of claim 8, the cross-sectional area of the bypass flow path in a predetermined range on the downstream side of the detection element arrangement site is fixed or reduced, so that it is used for controlling a system requiring a high response sensor. it can.

【0010】さらに、請求項9の手段によると、流入口
部からは流量検出素子を見通すことができないので、空
気中の異物により流量検出素子が損傷される確率は低く
なる。さらに、請求項9〜14の手段によると、センサ
の左右に平行な方向のみに絞り部を設け、絞り部の高さ
をh、上流部の絞りの長さをL1、下流部の絞りの長さ
をL2、バイパス流路の流路幅をaとすると、1≦L1
/h、1≦L2/h、及び2.5<a/h≦20を満た
すようにしたので、センサに異物が当たりにくくなり、
大流速に対してもセンサが破損されにく、且つ逆流に対
しても空気流量を精度よく検出可能になる。
According to the ninth aspect of the present invention, since the flow rate detecting element cannot be seen through the inlet, the probability that the flow rate detecting element is damaged by foreign matter in the air is reduced. Further, according to the ninth to fourteenth aspects, the throttle portion is provided only in a direction parallel to the left and right sides of the sensor, the height of the throttle portion is h, the length of the upstream throttle is L1, and the length of the downstream throttle is L1. Where L2 and the width of the bypass channel are a, 1 ≦ L1
/ H, 1 ≦ L2 / h, and 2.5 <a / h ≦ 20, so that foreign matter hardly hits the sensor,
The sensor is hardly damaged even at a large flow rate, and the air flow rate can be detected with high accuracy even at a backflow.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
によって説明する。全図を通じて、同一参照番号は同一
のものを表し、同一参照番号にアルファベットのa、
b、c、等を付したものは類似のものを表している。図
1は本発明の実施の形態による自動車エンジンの吸気通
路の一部の概略断面図である。図において、1は吸入空
気が通過するダクト、2は吸入空気量を測定するために
ダクト1内に設けられて吸入空気の一部を通過させるバ
イパス流路、3はバイパス流路を流れる空気量を検出す
るセンサ、4はセンサ3のセンシング部、5はセンサ支
持部材、6はセンサ3の出力を処理する回路、7はバイ
パス流路2への空気の流入口部である。本発明の実施の
形態により、流入口部7からはセンサ3を見通すことが
できないような位置に流入口部7が設けられている。こ
れにより、流入口部7から流入した空気中に異物が混在
していても、それらの異物がバイパス流路の壁に反射し
てセンサ3に衝突する確率を低くすることができる。セ
ンサ3は発熱抵抗体の抵抗温度特性を利用したものであ
る。センサ3はセンサ支持部材5のセンサ配置部位に取
り付けられている。センサ3により測定された吸入空気
流量は、燃料噴射制御手段により最適な空燃費や点火タ
イミングを制御するシステムに使用される。
Embodiments of the present invention will be described below with reference to the drawings. Throughout the drawings, the same reference numeral indicates the same thing, and the same reference numeral indicates the letter a,
Those marked with b, c, etc. represent similar ones. FIG. 1 is a schematic sectional view of a part of an intake passage of an automobile engine according to an embodiment of the present invention. In the figure, 1 is a duct through which intake air passes, 2 is a bypass passage provided in the duct 1 for measuring the amount of intake air and passes a part of the intake air, and 3 is an amount of air flowing through the bypass passage , A sensing part of the sensor 3, a sensor support member 5, a circuit for processing the output of the sensor 3, and an air inlet part 7 to the bypass passage 2. According to the embodiment of the present invention, the inlet 7 is provided at a position where the sensor 3 cannot be seen from the inlet 7. Thus, even if foreign matter is mixed in the air flowing from the inflow port 7, the probability that the foreign matter is reflected on the wall of the bypass flow path and collides with the sensor 3 can be reduced. The sensor 3 utilizes the resistance temperature characteristics of the heating resistor. The sensor 3 is mounted on the sensor support member 5 at the sensor placement site. The intake air flow rate measured by the sensor 3 is used in a system for controlling optimal air-fuel efficiency and ignition timing by a fuel injection control means.

【0012】センシング部4の近傍の空気流はできる限
り妨害のない一様な平行流であることが望ましい。これ
を実現するために、本発明の実施の形態においては、以
下に述べるようにバイパス流路の少なくとも一部の断面
を三次元的に絞った形状とした。図2は従来のバイパス
流路2xの空気流入口から見た透視図である。図示のよ
うに、従来はバイパス流路2x内のセンサ支持部材5に
関して上下の位置にあたる側壁にのみ絞り部21及び2
2を設けていた。
It is desirable that the air flow in the vicinity of the sensing unit 4 be a uniform parallel flow as little as possible. In order to realize this, in the embodiment of the present invention, at least a part of the cross section of the bypass flow passage is formed in a three-dimensionally narrowed shape as described below. FIG. 2 is a perspective view of the conventional bypass flow passage 2x viewed from the air inlet. As shown in the drawing, conventionally, the throttle portions 21 and 2 are formed only on the side walls that are vertically located with respect to the sensor support member 5 in the bypass flow path 2x.
2 was provided.

【0013】図3は本発明の実施の形態によるバイパス
流路の上流側口から見た透視図である。図示のように、
本実施の形態においては、センサ支持部材5の上下の位
置にあるバイパス流路の側壁の絞り部21’及び22’
に加えて、センサ支持部材4の左右の位置にあるバイパ
ス流路の側壁にも絞り部31及び32を設けた。なお、
図2及び図3に示した例では、バイパス流路の断面の形
状は矩形となっている。以下ではこの矩形の図示左右の
方向を、センサの上下方向又はセンサの上下に平行な方
向と称し、図示上下の方向をセンサの左右の方向又はセ
ンサの左右に平行な方向と称する。また、バイパス流路
の流入口側が空気の流れの上流となり、その反対側が空
気の流れの下流となる。絞り部の絞り形状は、センサの
仕様に応じて様々な例が考えられる。
FIG. 3 is a perspective view of the bypass passage according to the embodiment of the present invention, as viewed from the upstream port. As shown,
In the present embodiment, the throttle portions 21 ′ and 22 ′ of the side walls of the bypass flow passage located above and below the sensor support member 5.
In addition to the above, throttle portions 31 and 32 are also provided on the side walls of the bypass flow passage at the left and right positions of the sensor support member 4. In addition,
In the examples shown in FIGS. 2 and 3, the cross-sectional shape of the bypass passage is rectangular. Hereinafter, the left and right directions of the rectangle in the drawing are referred to as a vertical direction of the sensor or a direction parallel to the top and bottom of the sensor, and the vertical direction in the drawing is referred to as a left and right direction of the sensor or a direction parallel to the left and right of the sensor. Further, the inflow side of the bypass flow path is upstream of the air flow, and the opposite side is downstream of the air flow. Various examples of the aperture shape of the aperture section can be considered according to the specifications of the sensor.

【0014】図4以降により、本発明の実施の形態にお
ける各種の例を説明する。ただし、図4以降の例では、
流入口部7は、センサ3を見通せる位置に配置されてい
るように図示されているが、実際には図1に示したよう
にセンサ1を見通すことができない位置に配置すること
が望ましい。図4及び図5により本発明の第1の例を説
明する。
Various examples in the embodiment of the present invention will be described with reference to FIG. However, in the example after FIG. 4,
Although the inflow port 7 is illustrated as being located at a position where the sensor 3 can be seen, it is preferable that the inflow port 7 is located at a position where the sensor 1 cannot be actually seen as shown in FIG. A first example of the present invention will be described with reference to FIGS.

【0015】図4の(A)は図3のバイパス流路をA−
A線で切った断面を図示矢印の方向からみた図である。
図から分かるように、バイパス流路2aの内側の壁のう
ち、センサ3の上下方向の壁に、流入口部7の側(図4
(A)の下側)では薄くしセンサ支持部材の流入口部7
と反対側である下流方向に向かって次第に厚くした空気
流量の絞り部21a及び22aが設けられている。
FIG. 4A shows the bypass passage of FIG.
It is the figure which looked at the section cut in the A line from the direction of the illustrated arrow.
As can be seen from the figure, of the inner wall of the bypass flow passage 2a, the wall in the vertical direction of the sensor 3 is located on the side of the inlet 7 (FIG. 4).
In (A), the inlet 7 of the sensor supporting member is made thinner.
There are provided throttle portions 21a and 22a having an air flow rate gradually increasing in the downstream direction, which is the opposite side.

【0016】図4の(B)は図3のバイパス流路をB−
B線で切った端末面を図示矢印の方向から見た図であ
る。図5から分かるように、バイパス流路2aの内側の
壁のうち、センサ3の左右の方向の壁に、流入口部7の
側(図4(B)の左側)では薄くしセンサ支持部材の流
入口部7と反対側に向かって次第に厚くした空気流量の
絞り部31a及び32aが設けられている。
FIG. 4B shows the bypass passage of FIG.
It is the figure which looked at the terminal surface cut by the B line from the direction of the arrow shown. As can be seen from FIG. 5, among the inner walls of the bypass flow passage 2a, the wall in the left and right direction of the sensor 3 is thinned on the side of the inflow port 7 (left side in FIG. Throttling portions 31a and 32a of an air flow rate gradually increasing toward the side opposite to the inflow portion 7 are provided.

【0017】より詳細には、図4の例においては、絞り
部21a、22a、31a、及び32aは、流入口部7
の位置から断面積を絞るのではなくて、絞り開始位置は
センサ支持部材5の上流側の端部の位置と一致してお
り、絞り終端位置はセンサ支持部材5の下流側の端部の
位置と一致している。また、絞り終端部における絞り部
の形状は、空気の逆流が上流側に入り難いようにな形状
(絞り量が突然ゼロになる形状)となっている。これに
より、センサ3が逆流検出不能センサである場合にこの
実施の形態による空気流量測定装置を使用できる。
More specifically, in the example of FIG. 4, the throttle portions 21a, 22a, 31a, and 32a are
The aperture start position coincides with the position of the upstream end of the sensor support member 5, and the aperture end position is the position of the downstream end of the sensor support member 5. Matches. Further, the shape of the throttle portion at the throttle end portion is such that it is difficult for the backflow of air to enter the upstream side (shape in which the throttle amount suddenly becomes zero). Thus, when the sensor 3 is a sensor that cannot detect backflow, the air flow measuring device according to this embodiment can be used.

【0018】図5は図4に示したバイパス流路を理解し
やすいように示した分解斜視図である。図において、斜
線部が張り合わされてバイパス流路が形成される。図か
ら分かるように、バイパス流路の断面は三次元的に絞ら
れている。以下の例においては、簡単化のために分解斜
視図の図示は省略するが、図5と同様の分解斜視図が考
えられる。
FIG. 5 is an exploded perspective view showing the bypass passage shown in FIG. 4 for easy understanding. In the figure, hatched portions are stuck together to form a bypass flow path. As can be seen from the figure, the cross section of the bypass flow path is narrowed three-dimensionally. In the following example, an exploded perspective view is omitted for simplification, but an exploded perspective view similar to FIG. 5 can be considered.

【0019】図6は本発明の実施の形態の第2の例を説
明する図であって(A)は図3のバイパス流路をA−A
線で切った断面を図示矢印の方向からみた,本発明の実
施の形態の第2の例によるバイパス流路の断面図、
(B)は図3のバイパス流路をB−B線で切った断面を
図示矢印の方向からみた、本発明の実施の形態の第2の
例によるバイパス流路の断面図である。図4の例との相
違点は、図6の例では絞り部21b、22b、31b、
32bが流入口部7の位置から絞りを開始していること
である。その他の構成は図4と同じでなので、説明を省
略する。この例のように、センサの仕様によっては、絞
り開始位置を流入口部7の位置からとする方が検出精度
が上がる場合もある。
FIG. 6 is a view for explaining a second example of the embodiment of the present invention. FIG. 6 (A) shows the bypass passage of FIG.
Sectional view of a bypass flow path according to a second example of the embodiment of the present invention, in which a cross section taken along a line is viewed from a direction of an illustrated arrow;
FIG. 4B is a cross-sectional view of the bypass flow path according to a second example of the embodiment of the present invention, in which a cross-section of the bypass flow path of FIG. The difference from the example of FIG. 4 is that the diaphragms 21b, 22b, 31b,
Reference numeral 32b indicates that the restriction is started from the position of the inlet port 7. The other configuration is the same as that of FIG. As in this example, depending on the specifications of the sensor, the detection accuracy may be improved by setting the throttle start position from the position of the inflow port 7.

【0020】図7は本発明の実施の形態の第3の例を説
明する図であって(A)は図3のバイパス流路をA−A
線で切った断面を図示矢印の方向からみた,本発明の実
施の形態の第3の例によるバイパス流路の断面図、
(B)は図3のバイパス流路をB−B線で切った断面を
図示矢印の方向からみた、本発明の実施の形態の第3の
例によるバイパス流路の断面図である。図6の例との相
違点は、図7の例ではセンサ3の左右方向の絞り部31
c及び32cによる絞りがセンサ3の配置部位から開始
されていることである。その他の構成は図6の構成と同
じである。これにより、バイパス流路の流入口部7から
センサ3の配置部位直前までの断面が、流入空気の流れ
る方向に平行な方向に二次元的に徐々に絞った形状を有
し、センサの配置部位周辺部のみの断面が、三次元的に
徐々に絞った形状を有することになる。センサの仕様に
応じてこの構成を採用することにより、空気流量測定装
置に流入する吸入空気の流れの乱れによる出力変動、計
測及び誤差の発生を抑制し、計測精度を向上することが
できる場合がある。
FIG. 7 is a view for explaining a third example of the embodiment of the present invention. FIG.
Sectional view of a bypass flow path according to a third example of the embodiment of the present invention, in which a cross section taken along a line is viewed from a direction of an arrow shown in the drawing;
FIG. 4B is a cross-sectional view of the bypass flow path according to a third example of the embodiment of the present invention, in which a cross-section of the bypass flow path of FIG. 3 taken along line BB is viewed from the direction of the illustrated arrow. The difference from the example of FIG. 6 is that in the example of FIG.
The stop by c and 32c is started from the position where the sensor 3 is arranged. Other configurations are the same as those in FIG. Thereby, the cross section from the inlet 7 of the bypass flow passage to the position immediately before the position where the sensor 3 is disposed has a shape that is gradually narrowed two-dimensionally in a direction parallel to the flow direction of the inflow air, and the position where the sensor is disposed. The cross section of only the peripheral portion has a shape gradually narrowed three-dimensionally. By adopting this configuration according to the specifications of the sensor, it is possible to suppress the output fluctuation, measurement, and occurrence of errors due to turbulence of the flow of the intake air flowing into the air flow measurement device, and improve the measurement accuracy in some cases. is there.

【0021】図8は本発明の実施の形態の第4の例を説
明する図であって(A)は図3のバイパス流路をA−A
線で切った断面を図示矢印の方向からみた,本発明の実
施の形態の第4の例によるバイパス流路の断面図、
(B)は図3のバイパス流路をB−B線で切った断面を
図示矢印の方向からみた、本発明の実施の形態の第4の
例によるバイパス流路の断面図である。図4の例との相
違点は、図8においては絞り部21d、22d、31
d、32dの空気の流れの方向に沿う輪郭が曲線状に変
化していることである。その他の構成は図4の構成と同
じである。センサの仕様に応じてこの構成を採用するこ
とにより、空気流量測定装置に流入する吸入空気の流れ
の乱れによる出力変動、計測及び誤差の発生を抑制し、
計測精度を向上することができる場合がある。
FIG. 8 is a view for explaining a fourth example of the embodiment of the present invention. FIG. 8 (A) shows the bypass passage of FIG.
Sectional view of a bypass passage according to a fourth example of the embodiment of the present invention, the sectional view taken along the line viewed from the direction of the illustrated arrow;
FIG. 4B is a cross-sectional view of the bypass flow path according to a fourth example of the embodiment of the present invention, in which a cross-section of the bypass flow path of FIG. The difference from the example of FIG. 4 is that the aperture portions 21d, 22d, and 31 in FIG.
d and 32d are that the contour along the direction of the air flow changes in a curved shape. Other configurations are the same as those in FIG. By adopting this configuration according to the specifications of the sensor, output fluctuations due to turbulence of the flow of intake air flowing into the air flow measuring device, measurement and generation of errors are suppressed,
In some cases, measurement accuracy can be improved.

【0022】図9は図3のバイパス流路をA−A線で切
った断面を図示矢印の方向からみた、本発明の実施の形
態の第5の例によるバイパス流路の断面図である。B−
B線で切った断面図は前述の例から類推できるので、図
示を省略する。この例においては、絞り部21e及び2
2eの空気の流れ方向に沿う輪郭が図8の例と同様に曲
線になっているとともに、センサ支持部材5の下流方向
端部に対応する位置よりさらに下流側では曲線状に徐々
に絞り量を少なくしている。その他の構成は図8と同様
である。この構成により、順流と逆流の両方を整流可能
になり、その結果、逆流検出タイプのセンサを使用する
ことが可能になる。
FIG. 9 is a cross-sectional view of a bypass flow path according to a fifth example of the embodiment of the present invention, in which a cross section of the bypass flow path of FIG. B-
The cross-sectional view taken along the line B can be inferred from the above-described example, and is not shown. In this example, the throttle units 21e and 2e
The contour of 2e along the air flow direction is a curve as in the example of FIG. 8, and the throttle amount is gradually reduced in a curve further downstream from a position corresponding to the downstream end of the sensor support member 5. I have less. Other configurations are the same as those in FIG. With this configuration, it is possible to rectify both the forward flow and the backward flow, and as a result, it is possible to use a sensor of the backflow detection type.

【0023】図10は図3のバイパス流路をA−A線で
切った断面を図示矢印の方向からみた、本発明の実施の
形態の第6の例によるバイパス流路の断面図である。B
−B線で切った断面図は前述の例から類推できるので、
図示を省略する。この例においては、絞り部21f及び
22fの空気の流れ方向に沿う輪郭がセンサ支持部材5
の近傍で急激に変化する曲線となっている。即ち、セン
サ支持部材5の上流側端部に対応する位置の近くで絞り
部21f及び22fによる絞りが開始され、センサ3の
近くで絞り量が最大となり、次いで下流に向かって絞り
量が少なくなり、センサ支持部材5の下流側端部に対応
する位置の近くで絞り量がゼロになっている。このよう
な構成にすることにより、上流における空気の流れの乱
れが大きい場合でも、その乱れによる出力変動、計測及
び誤差の発生を抑制し、計測精度を向上することができ
る。
FIG. 10 is a cross-sectional view of a bypass flow path according to a sixth example of the embodiment of the present invention, in which a cross-section of the bypass flow path of FIG. B
Since the cross-sectional view taken along line -B can be inferred from the above example,
Illustration is omitted. In this example, the contour of the throttle portions 21f and 22f along the air flow direction is the sensor support member 5
Is a curve that changes rapidly in the vicinity of. That is, the diaphragms 21f and 22f start the diaphragm in the vicinity of the position corresponding to the upstream end of the sensor support member 5, the diaphragm amount becomes maximum near the sensor 3, and then the diaphragm amount decreases toward the downstream. The throttle amount is zero near the position corresponding to the downstream end of the sensor support member 5. With such a configuration, even when the turbulence of the air flow in the upstream is large, it is possible to suppress the output fluctuation, the measurement, and the generation of the error due to the turbulence, and to improve the measurement accuracy.

【0024】図11は図3のバイパス流路をA−A線で
切った断面を図示矢印の方向からみた、本発明の実施の
形態の第7の例によるバイパス流路の断面図である。B
−B線で切った断面図は前述の例から類推できるので、
図示を省略する。この例においては、絞り部21gの絞
り高さh1と絞り部22gの絞り高さh2とを異ならし
めている。図示しない、絞り部31g及び32gについ
ても、絞り高さを異ならしめてもよい。このように絞り
高さを異ならしめることにより、脈動特性をチューニン
グすることが可能になる。
FIG. 11 is a cross-sectional view of a bypass flow path according to a seventh example of the embodiment of the present invention, in which a cross-section of the bypass flow path of FIG. B
Since the cross-sectional view taken along line -B can be inferred from the above example,
Illustration is omitted. In this example, the aperture height h1 of the aperture section 21g and the aperture height h2 of the aperture section 22g are different. The aperture heights of the aperture portions 31g and 32g (not shown) may be different. By varying the aperture height in this way, it is possible to tune the pulsation characteristics.

【0025】図12は図3のバイパス流路をA−A線で
切った断面を図示矢印の方向からみた、本発明の実施の
形態の第8の例によるバイパス流路の断面図である。B
−B線で切った断面図は前述の例から類推できるので、
図示を省略する。この例においては、上流側における絞
り部21h及び22hの輪郭は図4から図10に示した
もののいずれかと同じであるが、センサ3に対応する位
置から下流側では、センサ支持部材5の下流側端部に対
応する位置までは絞り高さが一定である。そして、セン
サ支持部材5の下流側端部に対応する位置からさらに下
流側で徐々に絞り量を減らすようにしている。図示しな
い絞り部31h及び32hについても、絞り部21h及
び22hと同様の輪郭を持つようにしている。この構成
により、センサ3の近傍ではバイパス流路の空気流通部
の断面積が一定で、センサの直下流での断面積の拡大が
ないので、応答感度が高いセンサを使用しても出力変
動、計測誤差の発生を抑止して計測精度を向上すること
ができる。図13は本発明の第2の実施の形態の一例に
よるバイパス流路の断面を示す図である。この実施の形
態においては、パイパス流路2i内の絞り部22iは図
9〜図12と同様に上下流方向になだらかな形状となっ
ている。図9〜図12に示した実施の形態と異なるとこ
ろは、図13においては、センサ3に対して垂直な方向
には絞り部を設けず、センサ3の左右に平行な方向にの
み絞り部22iが設けられていることである。図13に
おいて、バイパス流路2iの絞り開始位置Sから絞りの
最高の高さの位置Pまでのバイパス流路2iの径方向の
絞りの標高をhとし、バイパス流路2iの絞り開始位置
Sから絞りの最高の高さの位置Pまでのバイパス流路2
iの長さ(上流部の絞りの長さ)をL1とし、絞りの最
高の高さの位置Pから絞りの終了位置Eまでのバイパス
流路2iの長さ(下流部の絞りの長さ)をL2とする。
また、バイパス流路2iの流路幅をaとする。図14は
上記h、L2、及び脈動時ノイズ量の実験により得られ
た関係を示すグラフである。図において斜線で示した脈
動時ノイズ量以上では、空気流量測定装置として実用化
に供することが出来ない。図示のように、L2/hが1
以上で脈動時ノイズは実用化に供し得る値以下に低く抑
えられている。したがって、下流側では1≦L2/hを
満たす必要がある。同様にして、上流側でも1≦L1/
hを満たす必要がある。図15は上記a及びhと検出精
度の実験により得られた関係を示すグラフである。図に
おいて、斜線で示した検出精度以下では、空気流量測定
装置として実用化に供することが出来ない。図示のよう
に、a/hが2.5より大きく20以下の時に実用に供
し得る値以上に検出精度が高いことが判明した。したが
って、2.5<a/h≦20という関係が必要である。
図13では、上流側の長さL1は下流側の長さL2より
短いバイパス流路の長手方向について非対称の例が示さ
れているが、対称形(L1=L2)であることが望まし
い。図16は本発明の第2の実施の形態の第2の例によ
るバイパス流路の断面を示す図である。この例では絞り
部22jはバイパス流路の長手方向について対称形をし
ており、且つ、断面が球の一部を切り取った形になって
いる。図17は本発明の第2の実施の形態の第3の例に
よるバイパス流路の断面を示す図である。この例では絞
り部22kは対称形をしており、且つ、断面が台形にな
っている。図18は本発明の第2の実施の形態の第4の
例によるバイパス流路の断面を示す図である。この例で
は絞り部22lは対称形をしており、且つ、断面が三角
形状になっている。図19は本発明の第2の実施の形態
の第5の例によるバイパス流路の断面を示す図である。
この例では絞り部22mは対称形をしており、且つ、断
面が図17の例よりも上辺が長く両辺が曲線の略台形に
なっている。図16〜図19に示した絞り形状のいずれ
においてもL1=L2=Lであるので、下記の関係 1≦L/h 2.5<a/h≦20 を満たすことが望ましい。図20は、図16〜図19に
示したバイパス流路のA−A’線断面図である。以上、
図13から図20に示した実施の形態によれば、センサ
3に異物が当たりにくくなり、大流速に対してもセンサ
3が破損される確率が低くなる。また、センサ3の存在
する区域に吸入空気の平行な流れを作ることができ、さ
らに、逆流もよく整流できるので、空気流量を精度よく
検出することが可能になる。図21は上記第2の実施に
おける形態空気流速と破損の有無の関係の実験結果を示
すグラフである。図示のように、本発明の第2の実施の
形態によれば、従来よりも流速が大きくても破損しない
ことが分かった。図において、×印はセンサが破損した
場合を示し、○印はセンサが破損しなかった場合を示
す。斜線で示した流速以下では空気流量測定装置として
実用化できない。図22は上記第2の実施の形態におけ
る出力流量換算値と時間との関係を、実空気量と、本発
明の第2の実施の形態と、従来例とで比較した実験結果
のグラフである。図示のように、逆流時の出力流換算量
は、本発明の第2の実施の形態による値の方が従来より
も実空気流量に近いことが分かった。
FIG. 12 is a sectional view of the bypass flow path according to an eighth embodiment of the present invention, in which a cross section of the bypass flow path of FIG. B
Since the cross-sectional view taken along line -B can be inferred from the above example,
Illustration is omitted. In this example, the contours of the throttle portions 21h and 22h on the upstream side are the same as those shown in FIGS. 4 to 10, but the downstream side of the sensor support member 5 from the position corresponding to the sensor 3 on the downstream side. The diaphragm height is constant up to the position corresponding to the end. Then, the throttle amount is gradually reduced further downstream from a position corresponding to the downstream end of the sensor support member 5. The notches 31h and 32h (not shown) also have the same outline as the notches 21h and 22h. With this configuration, the cross-sectional area of the air flow portion of the bypass flow path is constant near the sensor 3 and there is no increase in the cross-sectional area immediately downstream of the sensor. The occurrence of measurement errors can be suppressed, and the measurement accuracy can be improved. FIG. 13 is a diagram showing a cross section of a bypass flow channel according to an example of the second embodiment of the present invention. In this embodiment, the narrowed portion 22i in the bypass channel 2i has a gentle shape in the upstream and downstream directions as in FIGS. The difference from the embodiment shown in FIGS. 9 to 12 is that, in FIG. 13, a diaphragm is not provided in a direction perpendicular to the sensor 3 and a diaphragm 22i is provided only in a direction parallel to the left and right of the sensor 3. Is provided. In FIG. 13, the height of the radial stop of the bypass flow path 2i from the throttle start position S of the bypass flow path 2i to the position P of the maximum height of the throttle is defined as h, and the elevation from the throttle start position S of the bypass flow path 2i. Bypass flow path 2 to the highest height position P of the throttle
The length of i (the length of the throttle in the upstream portion) is L1, and the length of the bypass channel 2i from the position P at the highest height of the throttle to the end position E of the throttle (the length of the throttle in the downstream portion). Is L2.
The width of the bypass channel 2i is a. FIG. 14 is a graph showing a relationship obtained by an experiment of the above h, L2, and the amount of noise at the time of pulsation. If the amount of noise at the time of pulsation is indicated by hatching in the figure, it cannot be put to practical use as an air flow measuring device. As shown, L2 / h is 1
As described above, the pulsation noise is suppressed to a value lower than a value that can be put to practical use. Therefore, it is necessary to satisfy 1 ≦ L2 / h on the downstream side. Similarly, on the upstream side, 1 ≦ L1 /
h must be satisfied. FIG. 15 is a graph showing the relationship obtained from the above experiments a and h and the detection accuracy. In the figure, if the detection accuracy is lower than the hatched portion, the device cannot be put to practical use as an air flow measuring device. As shown in the figure, it was found that the detection accuracy was higher than a practically usable value when a / h was greater than 2.5 and 20 or less. Therefore, a relationship of 2.5 <a / h ≦ 20 is required.
FIG. 13 shows an example in which the length L1 on the upstream side is asymmetric with respect to the longitudinal direction of the bypass flow path which is shorter than the length L2 on the downstream side, but it is desirable that the length L1 be symmetric (L1 = L2). FIG. 16 is a diagram showing a cross section of a bypass flow channel according to a second example of the second embodiment of the present invention. In this example, the throttle portion 22j has a symmetrical shape in the longitudinal direction of the bypass flow path, and has a cross section obtained by cutting off a part of a sphere. FIG. 17 is a diagram showing a cross section of a bypass flow channel according to a third example of the second embodiment of the present invention. In this example, the aperture portion 22k is symmetrical, and has a trapezoidal cross section. FIG. 18 is a diagram showing a cross section of a bypass flow channel according to a fourth example of the second embodiment of the present invention. In this example, the throttle section 221 has a symmetrical shape, and has a triangular cross section. FIG. 19 is a diagram showing a cross section of a bypass flow channel according to a fifth example of the second embodiment of the present invention.
In this example, the aperture portion 22m has a symmetrical shape, and has a substantially trapezoidal cross section with a longer upper side than that of the example in FIG. Since L1 = L2 = L in any of the aperture shapes shown in FIGS. 16 to 19, it is desirable to satisfy the following relationship: 1 ≦ L / h2.5 <a / h ≦ 20. FIG. 20 is a sectional view taken along line AA ′ of the bypass passage shown in FIGS. 16 to 19. that's all,
According to the embodiment shown in FIGS. 13 to 20, it is difficult for foreign matter to hit the sensor 3, and the probability of the sensor 3 being damaged even at a high flow velocity is reduced. Further, a parallel flow of the intake air can be created in the area where the sensor 3 exists, and the backflow can be rectified well, so that the air flow rate can be accurately detected. FIG. 21 is a graph showing an experimental result of the relationship between the air flow velocity and the presence or absence of breakage in the second embodiment. As shown in the figure, according to the second embodiment of the present invention, it was found that there was no breakage even if the flow velocity was higher than in the past. In the figure, the mark x indicates the case where the sensor was damaged, and the mark ○ indicates the case where the sensor was not damaged. If the flow velocity is lower than the shaded area, it cannot be used as an air flow measuring device. FIG. 22 is a graph of an experimental result in which the relationship between the output flow rate conversion value and time in the second embodiment is compared with the actual air amount, the second embodiment of the present invention, and the conventional example. . As shown in the figure, it has been found that the output flow conversion amount at the time of backflow is closer to the actual air flow rate in the second embodiment of the present invention than in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による自動車エンジンの吸
気通路の一部の概略断面図である。
FIG. 1 is a schematic sectional view of a part of an intake passage of an automobile engine according to an embodiment of the present invention.

【図2】従来のバイパス流路2の空気流入口から見た透
視図である。
FIG. 2 is a perspective view of a conventional bypass passage 2 viewed from an air inlet.

【図3】本発明の実施の形態によるバイパス流路の空気
流入口から見た透視図である。
FIG. 3 is a perspective view seen from an air inlet of a bypass flow channel according to the embodiment of the present invention.

【図4】(A)は図3のバイパス流路をA−A線で切っ
た断面を図示矢印の方向からみた図、(B)は図3のバ
イパス流路をB−B線で切った端末面を図示矢印の方向
から見た図である。
4A is a view of a cross section of the bypass flow path of FIG. 3 taken along the line AA viewed from the direction of the arrow shown in FIG. 3, and FIG. 4B is a view of the bypass flow path of FIG. It is the figure which looked at the terminal surface from the direction of the illustration arrow.

【図5】図4に示したバイパス流路を理解しやすいよう
に示した分解斜視図である。
FIG. 5 is an exploded perspective view showing the bypass flow path shown in FIG. 4 for easy understanding.

【図6】本発明の実施の形態の第2の例を説明する図で
ある。
FIG. 6 is a diagram illustrating a second example of the embodiment of the present invention.

【図7】本発明の実施の形態の第3の例を説明する図で
ある。
FIG. 7 is a diagram illustrating a third example of an embodiment of the present invention.

【図8】本発明の実施の形態の第4の例を説明する図で
ある。
FIG. 8 is a diagram illustrating a fourth example of an embodiment of the present invention.

【図9】本発明の実施の形態の第5の例を説明する図で
ある。
FIG. 9 is a diagram illustrating a fifth example of an embodiment of the present invention.

【図10】本発明の実施の形態の第6の例を説明する図
である。
FIG. 10 is a diagram illustrating a sixth example of an embodiment of the present invention.

【図11】本発明の実施の形態の第7の例を説明する図
である。
FIG. 11 is a diagram illustrating a seventh example of the embodiment of the present invention.

【図12】本発明の実施の形態の第8の例を説明する図
である。
FIG. 12 is a diagram illustrating an eighth example of the embodiment of the present invention.

【図13】本発明の第2の実施の形態の一例によるバイ
パス流路の断面を示す図である。
FIG. 13 is a diagram showing a cross section of a bypass flow channel according to an example of the second embodiment of the present invention.

【図14】h、L2、及び脈動時ノイズ量の実験により
得られた関係を示すグラフである。
FIG. 14 is a graph showing a relationship obtained by an experiment of h, L2, and a noise amount during pulsation.

【図15】a及びhと検出精度の実験により得られた関
係を示すグラフである。
FIG. 15 is a graph showing a relationship obtained by experiments of a and h and detection accuracy.

【図16】本発明の第2の実施の形態の第2の例による
バイパス流路の断面を示す図である。
FIG. 16 is a diagram showing a cross section of a bypass flow channel according to a second example of the second embodiment of the present invention.

【図17】本発明の第2の実施の形態の第3の例による
バイパス流路の断面を示す図である。
FIG. 17 is a diagram showing a cross section of a bypass flow channel according to a third example of the second embodiment of the present invention.

【図18】本発明の第2の実施の形態の第4の例による
バイパス流路の断面を示す図である。
FIG. 18 is a diagram showing a cross section of a bypass flow channel according to a fourth example of the second embodiment of the present invention.

【図19】本発明の第2の実施の形態の第5の例による
バイパス流路の断面を示す図である。
FIG. 19 is a diagram showing a cross section of a bypass flow channel according to a fifth example of the second embodiment of the present invention.

【図20】図16〜図19に示したバイパス流路のA−
A’線断面図である。
FIG. 20 is a diagram illustrating the bypass flow path A- shown in FIGS. 16 to 19;
FIG. 3 is a sectional view taken along line A ′.

【図21】第2の実施の形態における空気流速と破損の
有無の関係の実験結果を示すグラフである。
FIG. 21 is a graph showing an experimental result of a relationship between an air flow velocity and the presence or absence of breakage in the second embodiment.

【図22】第2の実施の形態における出力流量換算値と
時間との関係を、実空気量と、本発明の第2の実施の形
態と、従来例とで比較した実験結果のグラフである。
FIG. 22 is a graph of experimental results comparing the relationship between the output flow rate conversion value and time in the second embodiment with the actual air amount, the second embodiment of the present invention, and a conventional example. .

【符号の説明】[Explanation of symbols]

2a〜2j…バイパス流路 3…センサ(検出素子) 4…センシング部 5…センサ支持部材 7…流入口部 21a〜21h、22a〜22m…絞り部 31a〜31d、32a〜32d…絞り部 h1、h2…絞り高さ h…第2の実施形態における絞りの高さ L1…絞り開始位置から絞り部の頂点位置までのバイパ
ス流路の長さ L2…絞り部の頂点位置から絞り終了位置までのバイパ
ス流路の長さ a…バイパス流路の流路幅
2a to 2j: bypass flow path 3: sensor (detection element) 4: sensing part 5: sensor support member 7: inflow part 21a to 21h, 22a to 22m: throttle part 31a to 31d, 32a to 32d: throttle part h1, h2: height of the diaphragm h: height of the diaphragm in the second embodiment L1: length of the bypass flow path from the start position of the diaphragm to the top position of the diaphragm L2: bypass from the top position of the diaphragm to the end position of the diaphragm Length of flow path a ... Width of bypass flow path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 隆雄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 五箇 康士 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2F030 CC14 CE11 CF01 CF02 2F035 AA02 EA03  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takao Iwaki 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Yasushi Goka 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Denso Corporation F term (for reference) 2F030 CC14 CE11 CF01 CF02 2F035 AA02 EA03

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 吸気通路を流れる空気の一部を流入させ
るバイパス流路の内部に、空気流量を測定する流量検出
素子を配置した空気流量測定装置において、 前記バイパス流路の断面積が該バイパス流路への空気の
流入口部で最大で、該流入口部から下流側の空気通路内
に配置されている検出素子配置部位までの断面が三次元
的に徐々に絞った形状を有することを特徴とする空気流
量測定装置。
1. An air flow measuring device in which a flow detecting element for measuring an air flow is disposed inside a bypass flow passage through which a part of air flowing through an intake passage flows, wherein a cross-sectional area of the bypass flow passage is smaller than that of the bypass flow passage. The cross section from the inflow port to the detection element disposed in the air passage on the downstream side is maximum at the inflow port of the air into the flow path, and has a shape gradually narrowed three-dimensionally. Characteristic air flow measurement device.
【請求項2】 前記バイパス流路の断面が前記検出素子
配置部位に関して空気の下流側の所定位置まで徐々に絞
った形状を有することを特徴とする請求項1記載の空気
流量測定装置。
2. The air flow measuring device according to claim 1, wherein the cross section of the bypass flow path has a shape gradually narrowed to a predetermined position on the downstream side of the air with respect to the detection element arrangement site.
【請求項3】 前記バイパス流路の流入口部から検出素
子配置部位直前までの断面が、流入空気の流れる方向に
平行な方向に二次元的に徐々に絞った形状を有し、検出
素子配置部位周辺部のみの断面が、三次元的に徐々に絞
った形状を有することを特徴とする請求項1又は2記載
の空気流量測定装置。
3. A cross section from the inlet of the bypass flow passage to a position immediately before the detection element disposition portion has a shape gradually narrowed two-dimensionally in a direction parallel to a flowing direction of the inflowing air. 3. The air flow measuring device according to claim 1, wherein a cross section of only a peripheral portion of the part has a shape gradually narrowed three-dimensionally.
【請求項4】 前記検出素子配置部位周辺部の前記バイ
パス流路の断面の絞り形状は、逆流が入り難い絞り形状
であることを特徴とする請求項1又は2記載の空気流量
測定装置。
4. The air flow measurement device according to claim 1, wherein a throttle shape of a cross section of the bypass flow path around the detection element disposition portion has a throttle shape in which a backflow is difficult to enter.
【請求項5】 前記検出素子配置部位周辺部の前記バイ
パス流路の断面の絞り形状は、順流と逆流の両方を整流
可能な絞り形状であることを特徴とする請求項1又は2
記載の空気流量測定装置。
5. The throttle shape of a cross section of the bypass flow path around the detection element arrangement site is a throttle shape capable of rectifying both forward flow and reverse flow.
An air flow measurement device as described.
【請求項6】 前記検出素子配置部位周辺部の前記バイ
パス流路の断面の絞り形状は、前記検出素子配置部位の
近傍で絞りの度合いが急激に変化する形状であることを
特徴とする請求項1又は2記載の空気流量測定装置。
6. The throttle shape of a cross section of the bypass flow path in the vicinity of the detection element disposition portion is a shape in which the degree of restriction changes rapidly near the detection element disposition portion. 3. The air flow measuring device according to 1 or 2.
【請求項7】 前記検出素子配置部位周辺部の前記バイ
パス流路の断面の絞り形状は、前記バイパス流路の一方
の側壁における絞り高さと他方の側壁における絞り高さ
とが異なる形状であることを特徴とする請求項1又は2
記載の空気流量測定装置。
7. The throttle shape of the cross section of the bypass flow path in the vicinity of the detection element disposition portion is such that the throttle height on one side wall of the bypass flow path is different from the throttle height on the other side wall. 3. The method according to claim 1, wherein
An air flow measurement device as described.
【請求項8】 前記検出素子配置部位周辺部の前記バイ
パス流路の断面の絞り形状は、前記検出素子配置部位の
下流側の所定位置までの断面積が一定又は減少する形状
であることを特徴とする請求項1又は2記載の空気流量
測定装置。
8. The throttle shape of the cross section of the bypass flow path around the detection element arrangement site is a shape in which the cross-sectional area up to a predetermined position on the downstream side of the detection element installation region is constant or reduced. The air flow measuring device according to claim 1 or 2, wherein
【請求項9】 前記流入口部は、前記流入口部から前記
流量検出素子を見通すことができない位置に配置されて
いることを特徴とする請求項1記載の空気流量測定装
置。
9. The air flow measuring device according to claim 1, wherein the inlet is located at a position where the flow detecting element cannot be seen from the inlet.
【請求項10】 吸気通路を流れる空気の一部を流入さ
せるバイパス流路の内部に、空気流量を測定する流量検
出素子を配置した空気流量測定装置において、 前記バイパス流路は、その断面形状が、前記流量検出素
子の配置位置を中心として上下流方向になだらかに大き
くなるような空気の絞り部を備え、該絞り部は前記流量
検出素子の左右に平行な方向にのみ設けられており、 前記絞り部の高さをh、絞り開始位置から絞り部の頂点
位置までの前記バイパス流路の長さをL1、絞り部の頂
点位置から絞り終了位置までの前記バイパス流路の長さ
をL2、前記バイパス流路の流路幅をaとすると、 1≦L1/h 1≦L2/h 2.5<a/h≦20 を満たすことを特徴とする空気流量測定装置。
10. An air flow measuring device in which a flow rate detecting element for measuring an air flow rate is arranged inside a bypass flow path through which a part of air flowing through an intake passage flows, wherein the bypass flow path has a cross-sectional shape. A throttle portion for air that gradually increases in the upstream and downstream directions around the arrangement position of the flow rate detection element, and the throttle section is provided only in a direction parallel to the left and right sides of the flow rate detection element, The height of the throttle unit is h, the length of the bypass channel from the throttle start position to the vertex position of the throttle unit is L1, the length of the bypass channel from the vertex position of the throttle unit to the throttle end position is L2, An air flow measuring device characterized by satisfying 1 ≦ L1 / h1 ≦ L2 / h2.5 <a / h ≦ 20, where a width of the bypass channel is a.
【請求項11】 前記絞り部は、前記頂点位置を中心と
して前記バイパス流路の長手方向について非対称な形状
を有していることを特徴とする請求項10記載の空気流
量測定装置。
11. The air flow measuring device according to claim 10, wherein the throttle portion has an asymmetric shape with respect to a longitudinal direction of the bypass flow path with respect to the vertex position.
【請求項12】 前記絞り部は、前記頂点位置を中心と
して前記バイパス流路の長手方向について対称な形状を
有していることを特徴とする請求項10記載の空気流量
測定装置。
12. The air flow measuring device according to claim 10, wherein the throttle portion has a shape symmetrical with respect to a longitudinal direction of the bypass flow path with respect to the vertex position.
【請求項13】 前記絞り部は、球の一部の形状を有す
ることを特徴とする請求項12記載の空気流量測定装
置。
13. The air flow measuring device according to claim 12, wherein the throttle portion has a shape of a part of a sphere.
【請求項14】 前記絞り部は、台形の形状を有するこ
とを特徴とする請求項12記載の空気流量測定装置。
14. The air flow measuring device according to claim 12, wherein the throttle section has a trapezoidal shape.
JP2002092332A 2001-03-28 2002-03-28 Air flow measurement device Expired - Lifetime JP3829930B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002092332A JP3829930B2 (en) 2001-03-28 2002-03-28 Air flow measurement device
US10/253,502 US6786089B2 (en) 2002-03-28 2002-09-25 Airflow meter
DE10245134.6A DE10245134B4 (en) 2002-03-28 2002-09-27 Air flow meter
DE10262426.7A DE10262426B3 (en) 2002-03-28 2002-09-27 Air flow meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001093519 2001-03-28
JP2001-93519 2001-03-28
JP2002092332A JP3829930B2 (en) 2001-03-28 2002-03-28 Air flow measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006119863A Division JP4026660B2 (en) 2001-03-28 2006-04-24 Air flow measurement device

Publications (2)

Publication Number Publication Date
JP2002357465A true JP2002357465A (en) 2002-12-13
JP3829930B2 JP3829930B2 (en) 2006-10-04

Family

ID=26612408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092332A Expired - Lifetime JP3829930B2 (en) 2001-03-28 2002-03-28 Air flow measurement device

Country Status (1)

Country Link
JP (1) JP3829930B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357711C (en) * 2004-04-28 2007-12-26 株式会社电装 Air flow rate measuring device having bypass passage
US7685874B2 (en) 2006-07-21 2010-03-30 Hitachi, Ltd. Thermal type flow sensor with a constricted measuring passage
JP2014102219A (en) * 2012-11-22 2014-06-05 Denso Corp Flow rate sensor
JP2017053787A (en) * 2015-09-11 2017-03-16 株式会社デンソー Air flow measurement device
JP2018025549A (en) * 2016-08-03 2018-02-15 株式会社デンソー Flow rate measurement device
WO2018190069A1 (en) * 2017-04-13 2018-10-18 株式会社デンソー Physical quantity measurement device
JP2019196935A (en) * 2018-05-08 2019-11-14 愛知時計電機株式会社 Hot wire flowmeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650783A (en) * 1992-06-13 1994-02-25 Robert Bosch Gmbh Mass flow rate sensor
JP2000241222A (en) * 1998-12-21 2000-09-08 Mitsubishi Electric Corp Flow rate measuring apparatus
JP2000304585A (en) * 1999-04-23 2000-11-02 Hitachi Ltd Flow measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650783A (en) * 1992-06-13 1994-02-25 Robert Bosch Gmbh Mass flow rate sensor
JP2000241222A (en) * 1998-12-21 2000-09-08 Mitsubishi Electric Corp Flow rate measuring apparatus
JP2000304585A (en) * 1999-04-23 2000-11-02 Hitachi Ltd Flow measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357711C (en) * 2004-04-28 2007-12-26 株式会社电装 Air flow rate measuring device having bypass passage
US7685874B2 (en) 2006-07-21 2010-03-30 Hitachi, Ltd. Thermal type flow sensor with a constricted measuring passage
JP2014102219A (en) * 2012-11-22 2014-06-05 Denso Corp Flow rate sensor
JP2017053787A (en) * 2015-09-11 2017-03-16 株式会社デンソー Air flow measurement device
JP2018025549A (en) * 2016-08-03 2018-02-15 株式会社デンソー Flow rate measurement device
WO2018190069A1 (en) * 2017-04-13 2018-10-18 株式会社デンソー Physical quantity measurement device
JP2018179766A (en) * 2017-04-13 2018-11-15 株式会社デンソー Physical quantity measuring device
JP2019196935A (en) * 2018-05-08 2019-11-14 愛知時計電機株式会社 Hot wire flowmeter
JP7022646B2 (en) 2018-05-08 2022-02-18 愛知時計電機株式会社 Heat ray type flow meter

Also Published As

Publication number Publication date
JP3829930B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
KR100321323B1 (en) Air flow measuring device
JP3385307B2 (en) Flow sensor
US8205493B2 (en) Plug-in sensor having improved fluid mechanics
US7059183B2 (en) Air flow measuring device
US6018994A (en) Temperature sensitive flow sensor having plate-like straightening members on the metering pipe
US6234015B1 (en) Flow rate measuring device
JP2002333347A (en) Distributary flow meter
JP4934198B2 (en) Plug-in sensor with optimized outflow
US8950248B2 (en) Air flow measuring device having a sensor accommodated in a bypass flow passage
KR100705305B1 (en) Measuring device for measuring the mass of a flowing medium
JP2002357465A (en) Air flow rate measurement device
JP3245362B2 (en) Rectifier grid for air flow measurement device
JP4026660B2 (en) Air flow measurement device
JP2003524173A (en) Apparatus for measuring at least one parameter of a flowing medium
US6868722B2 (en) Air flow rate measuring apparatus
JP2003270015A (en) Flow rate measuring apparatus
US7980125B2 (en) Sensor system for determining a parameter of a fluid medium
JP2001289132A (en) Air intake device
JP2000110676A (en) Fluid pipeline and air cleaner equipped with flow meter
JP3425759B2 (en) Gas flow measurement device
JPH01206223A (en) Hot-wire type air flowmeter
JPH09287991A (en) Airflow measuring device
WO2020003808A1 (en) Physical quantity detector
JPH07128107A (en) Intake device for engine
CN220505486U (en) Grille, steady flow pipe and internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

R150 Certificate of patent or registration of utility model

Ref document number: 3829930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term