JP2002356737A - Ductile cast iron tube by centrifugal casting method and production method therefor - Google Patents

Ductile cast iron tube by centrifugal casting method and production method therefor

Info

Publication number
JP2002356737A
JP2002356737A JP2002085120A JP2002085120A JP2002356737A JP 2002356737 A JP2002356737 A JP 2002356737A JP 2002085120 A JP2002085120 A JP 2002085120A JP 2002085120 A JP2002085120 A JP 2002085120A JP 2002356737 A JP2002356737 A JP 2002356737A
Authority
JP
Japan
Prior art keywords
cast iron
ductile cast
graphite
annealing
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002085120A
Other languages
Japanese (ja)
Other versions
JP3971217B2 (en
Inventor
Keiichi Maekawa
恵一 前川
Yoshisada Michiura
吉貞 道浦
Masayoshi Kitagawa
眞好 喜多川
Koji Nakamoto
光二 中本
Wataru Takahara
渉 高原
Akira Horie
皓 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2002085120A priority Critical patent/JP3971217B2/en
Publication of JP2002356737A publication Critical patent/JP2002356737A/en
Application granted granted Critical
Publication of JP3971217B2 publication Critical patent/JP3971217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the improvement of quality of ductile cast iron tube by a centrifugal casting method and the simplification of the process. SOLUTION: The cast iron tube has components containing 3.0 to 4.0% C, 1.5 to 3.0% Si, 0.1 to 0.4% Mn, <=0.05% P and <=0.01% S, and the balance Fe, and further containing 0.0005 to 0.05% Bi, in particular, and, more preferably, containing 0.0001 to 0.05% Ca. The cast iron tube has a dense and tough structure in which many spheroidal graphite is crystallized into a ferrite based matrix while maintaining a spheroidization rate of >=90%, so that ferritizing annealing after casting can be performed at a lower temperature, and/or can be performed in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はダクタイル鋳鉄管、
およびその製造方法に係り、特に遠心力鋳造法によって
製造されるダクタイル鋳鉄管において焼鈍特性に優れ、
組織が緻密で靭性なども従来に優越する管の製造に関す
る。
The present invention relates to a ductile cast iron pipe,
And related to the manufacturing method, especially in ductile cast iron pipes manufactured by centrifugal casting, excellent in annealing properties,
The present invention relates to the manufacture of pipes having a dense structure and superior toughness in the past.

【0002】[0002]

【従来の技術】ダクタイル鋳鉄管は上下水道、農業用
水、工業用水などさまざまな分野で流体輸送に使用され
るもので、独自に規格した受口、挿口の嵌め合わせによ
って簡単に管を接合して管路を敷設できるから、鋼管の
ように溶接工事を必要とせず、敷設作業が簡単で品質も
信頼できるため、管路形成の主流として最も汎用化され
ている。ダクタイル鋳鉄管には直管や異形管など種々の
形態が含まれるが、主体である直管については遠心力鋳
造法が中心であり、高速回転する円筒形の金型内へ高温
の溶湯を注入するのであるから、通常の鋳造法に比べる
と冷却速度が著しく速く、そのために鋳放し状態ではチ
ル組織が発生し、延性や強度の点でそのまま使用するこ
とは許されず、熱処理によって靭性の高いフェライト相
に調質することが不可欠とされている。
2. Description of the Related Art Ductile cast iron pipes are used for fluid transportation in various fields such as water supply and sewage, agricultural water, industrial water, and the like. Since it is possible to lay pipes without the need for welding work like steel pipes, the laying work is simple and the quality is reliable, so it is most commonly used as the mainstream of pipe formation. Ductile cast iron pipes include various forms such as straight pipes and deformed pipes, but mainly straight pipes are mainly made by centrifugal casting, injecting high-temperature molten metal into a cylindrical mold that rotates at high speed. Therefore, the cooling rate is remarkably faster than that of the normal casting method, and as a result, a chill structure is generated in the as-cast state, and it cannot be used as it is in terms of ductility and strength. It is said that refining to the phase is essential.

【0003】金型へダクタイル鋳鉄を鋳造する際に生じ
るチル組織の解消を課題とする従来技術としては、特開
2000−45011公報などが認められる。この先行
技術は、C:3.10〜3.90%、Si:2.50〜
4.00%、Mn:0.45%以下、P:0.05%以
下、S:0.008%以下、Cu:0.5%以下、M
o:0.3%以下、Mg:0.05%以下、Bi+Sb
+Ti:0.1%以下を含有する金型鋳造法に用いられ
る球状黒鉛鋳鉄である。金型鋳造法は通常の砂型に比べ
ると冷却速度が大きいため、特に球状黒鉛鋳鉄を注湯し
たときは溶湯から晶出する球状黒鉛晶出メカニズムによ
って本質的に過冷しやすく、これによってチル化が促進
されるとしている。この過冷現象は共晶反応開始点から
晶出した丸い小さな黒鉛がオーステナイトに取り囲ま
れ、オーステナイトから吐き出される黒鉛が積み重なっ
て成長していくという特殊な経過によるものと解釈さ
れ、黒鉛の先端が常に溶湯に接している片状黒鉛に比べ
て黒鉛成長のために必然的に周辺から熱を吸収するため
に過冷が起ると説明されている。
[0003] Japanese Patent Application Laid-Open No. 2000-45011 is known as a conventional technique for solving the chill structure which occurs when casting ductile cast iron into a mold. This prior art includes C: 3.10 to 3.90%, Si: 2.50 to
4.00%, Mn: 0.45% or less, P: 0.05% or less, S: 0.008% or less, Cu: 0.5% or less, M
o: 0.3% or less, Mg: 0.05% or less, Bi + Sb
+ Ti: Spheroidal graphite cast iron used in a mold casting method containing 0.1% or less. Since the mold casting method has a higher cooling rate than ordinary sand molds, especially when pouring spheroidal graphite cast iron, it is inherently easily cooled by the spheroidal graphite crystallization mechanism that crystallizes from the molten metal, thereby chilling. Is said to be promoted. This undercooling phenomenon is interpreted as a special process in which round graphite, which is crystallized from the eutectic reaction starting point, is surrounded by austenite, and graphite exhaled from austenite grows in a stacked manner. It is described that supercooling occurs inevitably because heat is absorbed from the periphery for graphite growth as compared with flake graphite in contact with the molten metal.

【0004】この従来技術では溶湯を球状化処理剤で球
状黒鉛処理を行ない、金型へ注湯するまでに1回以上の
加珪を行なうことによって、Siの合計が2.50〜
4.00%となるようにすることが発明の要旨であり、
このように加珪を経て鋳造した後、充分に取り扱いので
きる900℃前後で取り出し、大気放冷することによっ
てチル組織のない超微細な黒鉛組織をもつミクロ組織の
鋳造品が得られるから、従来必要不可欠であった焼鈍が
省略できるようになったとしている。
In this prior art, the molten metal is subjected to spheroidal graphite treatment with a spheroidizing treatment agent, and is subjected to siliconization at least once before pouring into a mold, so that the total amount of Si is 2.50 to 50%.
It is the gist of the invention to make it 4.00%.
After casting through siliconizing in this way, it is taken out at around 900 ° C, where it can be handled sufficiently, and then left to cool in air to obtain a microstructured cast product having an ultrafine graphite structure without a chill structure. It is said that the indispensable annealing can be omitted.

【0005】引用文献の実施例を見ると、加珪後の最終
Siが2.50%未満のときは黒鉛数が多いけれどもチ
ルが発生し、これに対しSiが2.50%以上の場合に
はチルは発生しておらず、黒鉛粒数がほぼ1900個/
mm2あって、この1900個/mm2がチル発生防止の
領域であると見れば、従来調質のために必要であった熱
処理が最早不要となったばかりでなく、機械的性質や物
理的性質の向上も伴うとその成果を謳っている。
According to the examples of the cited documents, when the final Si after siliconization is less than 2.50%, chill is generated although the number of graphite is large, whereas when the Si is more than 2.50%, Has no chill, and the number of graphite particles is almost 1900 /
mm 2 there are, if you look at this 1900 pieces / mm 2 is a region of the chill prevention, not only became no longer necessary heat treatment which was required for the conventional tempering, mechanical properties and physical properties The results are said to be accompanied by improvements.

【0006】特開平1−309939号公報による別の
従来技術では、自動車などのフェライト地の球状黒鉛鋳
鉄において、伸び、特に低温衝撃値を向上し熱処理を省
略、または容易にすることを課題とし、通常の球状黒鉛
鋳鉄の成分の他に、Cr:0.1%未満、Bi:0.0
015〜0.008%含み、C.E値を3.9〜4.6
にすることで黒鉛粒数を300個/mm2以上の組織と
したとしている。
Another prior art disclosed in Japanese Patent Application Laid-Open No. 1-309939 is to improve the elongation, especially the low-temperature impact value, and omit or facilitate the heat treatment in ferritic spheroidal graphite cast irons such as automobiles. In addition to the components of ordinary spheroidal graphite cast iron, Cr: less than 0.1%, Bi: 0.0
015-0.008%, C.I. E value of 3.9 to 4.6
By doing so, the structure is such that the number of graphite particles is 300 / mm 2 or more.

【0007】本来、球状黒鉛鋳鉄では、Sを筆頭にS
b、As、Bi、Pbなどが微量含まれると、球状の黒
鉛が晶出し難いというのが定説である。しかし、この従
来技術では適量のBiを添加して黒鉛粒数を300個/
mm2以上とすることでパーライトを減少させ、低温熱
処理、または熱処理なしで十分な伸びと衝撃値を得たと
謳っている。しかし、Biは溶湯に対する溶込み歩留り
が悪く、歩留り率の変動も大きいから、残留含有量を維
持するためには添加量を0.005〜0.025%の範
囲に設定する必要があるが、残留Bi量が0.008%
を超えてしまうと黒鉛の球状化が阻害され、球状化率が
80%以下となるので注意が必要であるとしている。同
じ出願人による特開平2−70015号の従来技術もほ
ぼ同じ要旨からなっている。
[0007] Originally, in spheroidal graphite cast iron, S
It is a common theory that when a small amount of b, As, Bi, Pb, or the like is contained, spherical graphite is difficult to crystallize. However, in this conventional technique, an appropriate amount of Bi is added to reduce the number of graphite particles to 300 /
By setting it to mm 2 or more, pearlite was reduced, and sufficient elongation and impact value were obtained without low-temperature heat treatment or heat treatment. However, Bi has a poor penetration rate into the molten metal and a large variation in the yield rate, and therefore, in order to maintain the residual content, it is necessary to set the addition amount in the range of 0.005 to 0.025%. 0.008% of residual Bi
It is said that the spheroidization of graphite is hindered if the spheroidization ratio exceeds 80%, and the spheroidization rate becomes 80% or less. The prior art of Japanese Patent Application Laid-Open No. Hei 2-70015 by the same applicant has almost the same gist.

【0008】[0008]

【発明が解決しようとする課題】先に引用した従来技術
は高性能ピストン用の金型鋳造品を主なターゲットとし
て研究、開発された成果であり、その成果に対して異論
を挟む余地はない。ただしその成果は目的とする特定の
用役に対してはきわめて高く評価されようが、別の用
役、製品に適用して必ずしも同じ高い評価を受けるとい
う保証はあり得ない。遠心力鋳造法によるダクタイル鋳
鉄管についてもこの原則は活きており、高速回転中の金
型へ高温の溶湯を注入し、遠心力という高エネルギーを
伴いつつ凝固に至る過酷な過程は、同じ金型とは云え、
その凝固メカニズムが全く別異なものに変るからであ
る。
The prior art cited above is a result of research and development with a main target of a die casting for a high performance piston, and there is no room for controversy with the result. . However, although the results will be highly valued for the specific utility in question, there is no guarantee that the results will apply to other utilities and products and receive the same high rating. This principle also applies to ductile cast iron pipes made by centrifugal casting.The severe process of injecting high-temperature molten metal into a mold rotating at high speed and solidifying with the high energy of centrifugal force uses the same mold. That said,
This is because the coagulation mechanism is completely different.

【0009】金型遠心力鋳造によって製造されたダクタ
イル鋳鉄管の顕微鏡組織を鋳放し状態で観察すると、そ
の組織におけるセメンタイトの分布はほぼ全断面に及
び、顕微鏡視野に占めるセメンタイト相の割合は優に9
0%を越える。鋳造品の肉厚、金型のコーティングにも
よるが、たとえば最小肉厚が2〜10mmとして、通常
の砂型がほぼ10℃/s以上の冷却速度であるとすれ
ば、前記引用例の金型鋳造では15℃/s以上を要件と
して設定しているのに対し、金型遠心力鋳造では少なく
とも30℃/s以上の猛烈なスピードで冷却されること
が測定されている。通常の金型に比べても遥かに冷却速
度が大きく、球状黒鉛周辺の過冷の度合いもこれに応じ
て極端に昂進するから、セメンタイトはほぼ100%に
近い完全白銑化した全面チル状態となり、組織の違いは
余りに大きい。また、レジンコーテッドサンドで被覆し
た金型内周面の方がむしろ冷却速度が小さくなるため、
通常のチル組織の発生傾向とは逆転した現象を起すケー
スもあるという特殊な例外も起り得る。
When the microstructure of a ductile cast iron pipe manufactured by centrifugal force casting is observed in an as-cast state, the distribution of cementite in the structure extends over almost the entire cross section, and the proportion of the cementite phase in the visual field of the microscope is very high. 9
Exceeds 0%. Although it depends on the thickness of the casting and the coating of the mold, for example, if the minimum thickness is 2 to 10 mm and the cooling rate of a normal sand mold is about 10 ° C./s or more, the mold of the cited example is used. It is measured that cooling is performed at a rapid speed of at least 30 ° C./s or more in the centrifugal force casting of a mold, while 15 ° C./s or more is set as a requirement in casting. The cooling rate is much higher than that of a normal mold, and the degree of supercooling around the spheroidal graphite is also drastically increased in response to this. The difference in organization is too great. Also, since the cooling rate of the inner peripheral surface of the mold coated with resin coated sand is rather small,
There may be a special exception that in some cases reverses the tendency of normal chill texture to occur.

【0010】遠心力鋳造品は顕微鏡で観察した組織自体
についての公式の検査基準はないが、機械的性質として
JIS G 5526に規定されるFCD400、45
0などに求められる引張り強さ400〜450N/mm
2や伸び10%以上を満足するためには、結局、フェラ
イト相が30%以上(セメンタイト相が5%以下)とい
う内部の検鏡基準をクリアしなければ到底達成すること
はできない。
For centrifugal castings, there is no official inspection standard for the structure itself observed under a microscope, but FCD400, 45 specified in JIS G 5526 as mechanical properties.
Tensile strength required for 0 etc. 400-450 N / mm
In order to satisfy 2 or elongation of 10% or more, it cannot be achieved at all unless the internal speculum standard of 30% or more of ferrite phase (5% or less of cementite phase) is satisfied.

【0011】また、ダクタイル鋳鉄管を対象とするフェ
ライト化焼鈍は、いうまでもなく鋳放しで晶出したセメ
ンタイトを分解、ひいては基地であるパーライトを分解
してフェライトベースにしてしまうことが目的である
が、第一の引用例では添付した組織写真に関してチル
(白銑組織)の有無だけの説明に終始しているが、対象
が高負荷のピストンである限り基地組織がフェライトベ
ースということは到底考えられず、全面強力なパーライ
トか、ベーナイト組織であると想定するのが妥当ではあ
る。また遠心力鋳造という過酷な鋳造条件に伴い発生す
る内部応力(特に内外面間に発生する引張り−圧縮力)
を完全に開放することも必要な過程の一つであり、焼鈍
の意義を単にチルの分解だけに限定できるわけでもな
い。
[0011] Further, it is needless to say that ferritization annealing for ductile cast iron pipes is intended to decompose cementite crystallized by as-cast and eventually decompose pearlite, which is a base, to form a ferrite base. However, in the first cited example, the description of the attached micrograph only includes the presence or absence of chill (white iron microstructure), but it is unlikely that the base microstructure is ferrite-based as long as the target is a high-load piston. It is reasonable to assume that it is a strong pearlite or bainite structure. In addition, the internal stress generated by the severe casting conditions of centrifugal casting (especially the tension-compression force generated between the inner and outer surfaces)
It is also one of the necessary steps to completely release the steel, and the meaning of annealing cannot be limited to merely decomposition of chill.

【0012】後に引用した第二の従来技術も自動車部品
などの金型静置鋳造品であり、遠心力鋳造とは冷却速度
が全く異なる上、静置であるから黒鉛核が発生し周辺の
オーステナイト中から吐き出されるCを集合して成長す
る固相〜液相線から凝固初期の領域で静的な初晶組織の
成長が進むのに対し、遠心力鋳造では液相も固相も常に
重力の30〜50倍の重圧(流動的な外力が)直撃して
静的な組織の成長を圧潰(攪拌、分断)する要因が重な
るから、条件が明白に異なる。したがって微量Biの黒
鉛球状化阻害要素を重視して厳重なBi残留量を制限す
る従来技術の要件は、本願のような遠心力鋳造とは完全
にマッチングしないと解釈すべきである。逆に言えば遠
心力鋳造独自の凝固過程を100%活用して静置鋳造で
は及びもつかない飛躍的な品質改造に結びつけることも
可能となる。
The second prior art cited later is also a mold stationary casting such as an automobile part. The cooling rate is completely different from that of centrifugal casting, and since it is stationary, graphite nuclei are generated and the surrounding austenite is formed. In the early solidification region, the growth of the static primary crystal structure progresses from the solid phase to the liquidus line, which collects and grows the C exhaled from the inside. The conditions are obviously different because factors that directly hit 30 to 50 times the pressure (fluid external force) and crush (stir, break) the static tissue growth overlap. Therefore, it should be understood that the requirement of the prior art for restricting the strict Bi residual amount with emphasis on the graphite Bi spheroidizing element of a trace amount of Bi does not perfectly match the centrifugal casting as in the present application. Conversely, it is possible to utilize 100% of the solidification process unique to centrifugal casting to lead to a dramatic quality improvement that cannot be achieved by static casting.

【0013】本発明は以上の課題を解決するために、鋳
放し状態で黒鉛核を従来よりも多数発生させるが、この
時点におけるチル発生の防止を第一義的に目指すのでは
なく、従来に比べると遥かに簡略化されたフェライト化
焼鈍によって最終的には多数晶出した細粒の球状黒鉛
が、球状化率90%以上を維持したまま、フェライトベ
ースの基地に分散して成長した組織のダクタイル鋳鉄管
を提供することが目的である。
In order to solve the above-mentioned problems, the present invention generates a larger number of graphite nuclei in an as-cast state than in the past. By comparison, fine-grained spheroidal graphite, which is finally crystallized by the much simplified ferritizing annealing, is dispersed in a ferrite-based matrix while maintaining a spheroidizing ratio of 90% or more. It is an object to provide a ductile cast iron tube.

【0014】[0014]

【課題を解決するための手段】本発明に係る遠心力鋳造
によるダクタイル鋳鉄管は、C:3.0〜4.0%,S
i:1.5〜3.0%、Mn:0.1〜0.4%、P:
0.05%以下、S:0.01%以下、残りFeの成分
よりなる基本成分に対し、Bi:0.0005〜0.0
5%を含み、多数の球状黒鉛が球状化率90%以上を維
持したままフェライトベースの基地に晶出していること
を構成上の特徴とすることによって前記の課題を解決し
た。
According to the present invention, there is provided a ductile cast iron pipe formed by centrifugal casting according to the present invention.
i: 1.5 to 3.0%, Mn: 0.1 to 0.4%, P:
Bi: 0.0005 to 0.0 with respect to the basic component consisting of 0.05% or less, S: 0.01% or less, and the remaining Fe component
The above-mentioned problem has been solved by providing a structural feature that a large number of spheroidal graphites, including 5%, are crystallized on a ferrite-based matrix while maintaining a spheroidization ratio of 90% or more.

【0015】さらに望ましくは、前記基本構成のBiの
他に、Ca:0.0001〜0.05%を含み、より多
数の球状黒鉛が高い球状化率を維持したままフェライト
ベースの基地に晶出させることができる。
[0015] More preferably, in addition to Bi of the above-mentioned basic constitution, Ca contains 0.0001 to 0.05%, and a larger number of spheroidal graphites crystallize on a ferrite-based matrix while maintaining a high spheroidization rate. Can be done.

【0016】また、該ダクタイル鋳鉄管を製造する方法
としては、溶湯成分がC:3.0〜4.0%,Si:
1.5〜3.0%、Mn:0.1〜0.4%、P:0.
05%以下、S:0.01%以下、残りFeとなるよう
に溶解、精練した後、該溶湯にMgを主体とした球状化
処理剤を加えて黒鉛の球状化処理を行ない、接種剤を溶
湯へ接種して最終的にBiが0.0005〜0.05%
の範囲で明確に検出できるように添加し、さらに望まし
くはCaをBiと共に添加し、より望ましくはBiが
0.0005〜0.05%、Ca:0.0001〜0.
05%の範囲で明確に検出できるように歩留まりを計算
に入れて添加して遠心力鋳造し、凝固後、簡略化された
フェライト化焼鈍を行なう手順を要件とする。
Further, as a method for producing the ductile cast iron pipe, the molten metal component is C: 3.0 to 4.0%, and Si:
1.5-3.0%, Mn: 0.1-0.4%, P: 0.
After dissolving and scouring so as to be 0.05% or less, S: 0.01% or less, and the remaining Fe, a spheroidizing agent mainly composed of Mg is added to the molten metal to perform a spheroidizing treatment of graphite, and an inoculant is prepared. Inoculate into molten metal and finally Bi is 0.0005-0.05%
, More preferably Ca is added together with Bi, more preferably 0.0005 to 0.05% of Bi, and Ca: 0.0001 to 0.
A requirement is to perform a procedure of adding the yield in the calculation so that the yield can be clearly detected in the range of 05%, centrifugal casting, solidifying, and then performing a simplified ferrite annealing.

【0017】この場合、具体的には、Bi添加の場合は
化学成分がSi:20〜80%、Bi:0.1〜25.
0%、残りFeよりなり、Bi、Caの添加の場合は化
学成分がSi:20〜80%、Bi:0.1〜25.0
%、Ca:1〜40.0%、残りFeよりなる合金粉末
または混合粉末を接種剤として使用することが望まし
い。
In this case, specifically, when Bi is added, the chemical components are Si: 20-80%, Bi: 0.1-25.
0%, the remaining Fe, and when Bi and Ca are added, the chemical components are Si: 20 to 80% and Bi: 0.1 to 25.0.
%, Ca: 1 to 40.0%, and an alloy powder or a mixed powder consisting of the remaining Fe is desirably used as an inoculant.

【0018】接種材の粒径は細かいほど接種の歩留まり
は向上し効果が上がるが、細かすぎると接種時に粉末が
飛散し逆に効果が低減する。よって下限を0.05mm
とする。また、上限は3mmを超えると接種剤が均一に
溶湯中に拡散できず効果が出ない。よって、粒径範囲を
0.05mm〜3mmとする。最適範囲は、下限が粉末
管理面からまた経済性から0.1mm以上とする。
The finer the particle size of the inoculant, the higher the yield and the effect of inoculation, but if the particle size is too small, the powder is scattered during the inoculation and the effect is reduced. Therefore, the lower limit is 0.05 mm
And On the other hand, if the upper limit is more than 3 mm, the inoculant cannot be diffused uniformly in the molten metal, and the effect is not obtained. Therefore, the particle size range is 0.05 mm to 3 mm. The optimum range has a lower limit of 0.1 mm or more from the viewpoint of powder management and economy.

【0019】なお、フェライト化焼鈍については、通常
のダクタイル鋳鉄管の製造工程で適用する焼鈍パターン
(図7参照)より低い温度で、および/又はより短い保
持時間で処理するという簡略化されたフェライト化焼鈍
によることが製法上の最大の特徴であり、利点でもあ
る。
As for the ferrite annealing, a simplified ferrite which is treated at a lower temperature and / or with a shorter holding time than the annealing pattern (see FIG. 7) applied in the production process of a normal ductile cast iron pipe. The biggest feature of the manufacturing method is that the annealing is performed, which is also an advantage.

【0020】このダクタイル鋳鉄管の成分限定は通常の
JIS G 5526、または日本水道協会の規定(J
WWA G 113)をほぼ踏襲し、ただ、遠心力鋳造
直前にBiを最終的に0.0005〜0.05%を明確
に検出できるように含有する他、より望ましくはCaを
0.0001〜0.05%検出できるように歩留まりを
考慮した添加量を接種して、黒鉛を微細に晶出して球状
黒鉛数を大量に増発させ、一次晶出のオーステナイト粒
度を微細化した上で、例えば、従来の半分程度に短縮し
たフェライト化焼鈍を通じて緻密で強靱な組織に調質す
ることを特徴とする。
The components of the ductile cast iron pipe are limited by the usual JIS G 5526 or the provisions of the Japan Water Works Association (J
WWA G 113) is almost followed, but Bi is contained immediately before centrifugal casting so that 0.0005 to 0.05% can be finally detected clearly. More preferably, Ca is contained in 0.0001 to 0%. After inoculating an addition amount in consideration of the yield so that 0.05% can be detected, graphite is finely crystallized, the number of spheroidal graphite is increased, and the austenite grain size of the primary crystallization is reduced. It is characterized in that it is refined to a dense and tough structure through ferrite annealing reduced to about half of the above.

【0021】この成分のうち、前記第一の従来技術では
Si:2.50〜4.00%を最重要の要件とするのに
対し、本発明ではSi:1.5〜3.0%と限定するも
ので、Siが2.5%を越え3.0%に接近するほどダ
クタイル鋳鉄管の外表面にピンホールなどの荒れが発生
しやすくなることや、さらに4.0%に近づくと黒鉛が
凝集して浮上し、これにFeやMgの酸化物が付着して
ドロスと化して巻き込みやすいという遠心力鋳造独自の
条件を加味すると、望ましくはSi:1.50〜2.5
0%を原則としつつも、とくに耐久性や耐食性など特別
な仕様を要求される場合に限り、Si:2.50〜3.
00%の範囲も許容することを要旨とし、このことがS
i:2.50%以上を絶対的な要件とする従来技術との
基本的な相違点である。
Among the above components, the most important requirement is Si: 2.50 to 4.00% in the first prior art, whereas Si: 1.5 to 3.0% in the present invention. The limitation is that as the Si content exceeds 2.5% and approaches 3.0%, roughening such as pinholes tends to occur on the outer surface of the ductile cast iron pipe. Considering the unique conditions of centrifugal casting, in which oxides of Fe and Mg adhere to the surface to form dross and are easily entrained, Si: 1.50 to 2.5
0% in principle, but only when special specifications such as durability and corrosion resistance are required, Si: 2.50-3.
The idea is to allow a range of 00%,
i: This is a fundamental difference from the prior art which has an absolute requirement of 2.50% or more.

【0022】球状黒鉛鋳鉄の溶湯へBiを添加して黒鉛
を微細化し均一に基地中へ分配する作用自体は公知であ
り、同じような働きをする元素としてSb、Te、Sn
なども知られている。しかし、本発明で特定するよう
に、遠心力鋳造法による急冷作用と溶湯を押圧(機械的
に強制流動)する外力という特殊条件が複合することに
よって、静置鋳造法では定説とされる黒鉛の球状化阻害
要因に大きな違いが現れるのではないか。このことは後
述する実施例における顕微鏡組織の観察からも示唆され
るように、Biの比較的高い残留量であっても黒鉛の球
状化率は依然として90%以上を維持したまま格段に微
細化した組織が得られることからも推定される。Biは
0.0005%を超えてから優れた黒鉛晶出能を示し、
0.05%以上では黒鉛晶出能が低下したり、球状化阻
害などの悪影響が出てくる。
The action itself of adding Bi to the molten spheroidal graphite cast iron to make graphite finer and to distribute it uniformly into the matrix is well known, and Sb, Te, and Sn are elements having the same function.
Etc. are also known. However, as specified in the present invention, the special condition of quenching by centrifugal casting and the external force of pressing (mechanically forcibly flowing) the molten metal are combined, so that the static casting is considered to be a common theory in the static casting. Is there a big difference in the factors that inhibit spheroidization? As suggested by the observation of the microstructure in Examples described later, even if the Bi content is relatively high, the spheroidization ratio of the graphite is remarkably reduced while still maintaining 90% or more. It is also estimated from the fact that tissue is obtained. Bi shows excellent graphite crystallization ability after exceeding 0.0005%,
If it is 0.05% or more, adverse effects such as reduction of graphite crystallization ability and inhibition of spheroidization appear.

【0023】Biの添加について、前記第二の従来技術
では円錐形の塊状Biを添加し、または粒状として紙な
どに包んで添加してBi歩留まりを向上させたとあり、
同時にFe−Siの接種剤を使用した実施例を報告して
いる。しかし本発明ではBiの添加は粉粒体状による接
種で、Fe−Si−Biの混合粉末または合金粉末を使
用し、かつ、望ましくはBiの添加と共にCaを添加を
Fe−Si−Bi−Caの混合粉末または合金粉末を使
用することで一段と発明の目的を効果的に達成できるこ
とを特に挙げておきたい。Caは鋳造後の残留成分とし
て検知できない程度の添加量であっても、接種すること
によってBiの歩留まりを向上する安定化作用が顕れ
る。すなわち黒鉛核発生の凝固初期の段階でCaが液化
し、液相CaとBiが接触するとBi−Caの金属間化
合物を形成して、蒸気圧が低いBiの気化損耗を抑止す
る作用があるのではないかと推定される。いうまでもな
くCaには溶湯に対する脱酸、脱硫の作用があって黒鉛
球状化の大敵であるSを取り除く(を促進させる)作用
が具わっているから、Biと共存することによってBi
の球状化阻害要因を補って正常な球状化の進行に貢献す
る相乗作用があると考えられる。Caが残留成分として
検知できる程度まで含まれれば、この相乗作用は一段と
強力に発現することは後の実施例でも明確に立証されて
いる。Caは0.0001%を超えてから明確にBiと
の相乗効果が確認され、0.05%を超えると不経済な
上、相乗効果は減少し、外観不良等も増加する。なお、
このような働きはCa以外の元素としてMg、Sr、B
aなど周期律表IIA族の金属や、希土類元素をブレン
ドした接種剤でも期待される。
Regarding the addition of Bi, in the second prior art, conical lump Bi was added, or added as wrapped paper or the like to improve the Bi yield.
At the same time, an example using an Fe-Si inoculant is reported. However, in the present invention, Bi is added by inoculation in the form of a granular material, using a mixed powder or alloy powder of Fe-Si-Bi, and desirably adding Ca together with the addition of Bi to Fe-Si-Bi-Ca. It should be particularly mentioned that the object of the present invention can be more effectively achieved by using a mixed powder or an alloy powder. Even if Ca is added in such an amount that it cannot be detected as a residual component after casting, a stabilizing effect of improving the yield of Bi by inoculation appears. That is, Ca is liquefied in the early stage of solidification of graphite nucleation, and when liquid phase Ca and Bi come into contact, an intermetallic compound of Bi-Ca is formed, which has the effect of suppressing the vaporization loss of Bi having a low vapor pressure. It is estimated that Needless to say, Ca has an action of deoxidizing and desulfurizing the molten metal, and has an action of removing (promoting) S, which is a great enemy of graphite spheroidization.
It is thought that there is a synergistic effect that contributes to normal progress of spheroidization by compensating for the spheroidization inhibitory factor. It has been clearly proved in the following Examples that this synergistic effect is even stronger when Ca is contained to the extent that it can be detected as a residual component. When Ca exceeds 0.0001%, a synergistic effect with Bi is clearly confirmed. When it exceeds 0.05%, the synergistic effect is reduced, the synergistic effect is reduced, and poor appearance is increased. In addition,
Such a function is performed by using Mg, Sr, B as elements other than Ca.
It is also expected to be an inoculant blended with a group IIA metal such as a, or a rare earth element.

【0024】以上述べたように、鋳放しではほぼ90%
以上の基地をセメンタイトで占める遠心力鋳造法で製造
したダクタイル鋳鉄管を、Bi若しくはBi、Caの接
種処理という一動作を加えるだけで、従来に比較して簡
略化されたフェライト化焼鈍を施すことにより、従来以
上に微細、緻密、強靱な組織に調質することが本発明の
要旨である。
As mentioned above, almost 90%
A ductile cast iron pipe manufactured by centrifugal casting that occupies the above base with cementite is subjected to ferrite annealing that is simplified as compared with the conventional method by adding only one operation of inoculating Bi or Bi, Ca. Therefore, it is the gist of the present invention to refine the structure to a finer, denser, and tougher structure than before.

【0025】[0025]

【発明の実施の形態】表1は本発明の実施例および比較
例の成分一覧表であり、各成分ともに通常のダクタイル
鋳鉄管として適用される標準成分であるが、Biの添
加、若しくはBi、Ca添加の有無だけが両者を分ける
相違点である。比較例1はいうまでもなくBi、Ca共
に0%である。また、比較例2はBiが請求項の0.0
5%を超えて添加された場合である。実施例1は接種剤
にはBiのみが含有されたものを用いた場合で、実施例
2は検出されるCaこそ0%ではあるが、Biと共にC
aを接種し検出不可能なまで消耗し尽くされた例であ
り、実施例3、4は実施例2を上回るCa添加によって
Caが検出された例である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 1 is a list of components of Examples and Comparative Examples of the present invention. Each component is a standard component applied as a normal ductile cast iron pipe. The only difference between the two is the presence or absence of Ca. Needless to say, in Comparative Example 1, both Bi and Ca are 0%. In Comparative Example 2, Bi was 0.0% in the claims.
This is the case where more than 5% is added. Example 1 uses the inoculant containing only Bi, and Example 2 shows that the detected Ca is 0%,
a is inoculated and exhausted until it cannot be detected. Examples 3 and 4 are examples in which Ca was detected by adding Ca more than Example 2.

【0026】[0026]

【表1】 [Table 1]

【0027】溶解はキュポラ炉1によって行ない、成分
調整、脱酸、脱硫など基準通りの溶製を行なった後、1
450℃にてMgの圧力添加、取鍋2に出湯後、870
rpmの高速回転中の呼び径100mm×4000mm
Lの遠心力鋳造用金型3に注湯する(図6参照)。この
注湯に際して取鍋2から溶湯をトラフ4末端部へ落とし
込む際、化学成分がSi:20〜80%、Bi:0.1
〜25.0%、残りFe若しくはSi:20〜80%、
Bi:0.1〜25.0%、Ca:1〜40.0%、残
りFeよりなる合金粉末または混合粉末を流下しつつあ
る溶湯へ散布して万遍なくBi若しくはBi、Caの添
加を行なう。なお、Bi若しくはBi、Caの添加につ
いては、該注湯流接種のみではなく、取鍋2中添加して
もよく、また、両者を併用してもよい。さらには先端接
種で行ってもよい。金型への注湯温度は約1300℃
で、凝固後、金型から製品を引き抜いて放冷する。この
実施例1に使用した接種剤は、Bi:16%、Si:5
8%、残りFeよりなり、実施例2に使用した接種剤
は、Bi:16%、Ca:17%、Si:51%、残り
Feからなり、実施例3、4に使用した接種剤はBi:
15%、Ca:23%、Si:47%、残りFeからな
り、すべて粒径は0.1〜0.5mmの粒体を選んだ。
接種量については経験的に目標残留%に対する歩留まり
を勘案しつつ溶湯量、製品サイズなどの要素に基づいて
区分けして決定している。
The melting is carried out in a cupola furnace 1, the components are adjusted, deoxidation, desulfurization and the like are carried out according to the standard.
After adding pressure of Mg at 450 ° C. and pouring hot water into ladle 2, 870
Nominal diameter 100mm x 4000mm during high speed rotation at rpm
The molten metal is poured into the L centrifugal casting mold 3 (see FIG. 6). When the molten metal is dropped from the ladle 2 to the end of the trough 4 during this pouring, the chemical components are Si: 20 to 80% and Bi: 0.1.
2525.0%, remaining Fe or Si: 20-80%,
Bi: 0.1 to 25.0%, Ca: 1 to 40.0%, alloy powder or mixed powder consisting of the remaining Fe is sprayed on the flowing molten metal to uniformly add Bi or Bi, Ca. Do. In addition, about addition of Bi or Bi and Ca, not only this pouring flow inoculation but also addition in the ladle 2 may be used, or both may be used together. Furthermore, it may be performed by tip inoculation. Pouring temperature to mold is about 1300 ℃
After solidification, the product is pulled out of the mold and allowed to cool. The inoculant used in Example 1 was Bi: 16%, Si: 5
The inoculant used in Example 2 was 8%, the remaining Fe was used, and the inoculant used in Example 2 was 16% Bi, 17% Ca, 51% Si, and the remaining Fe. The inoculant used in Examples 3 and 4 was Bi. :
15%, 23% of Ca, 47% of Si, and the balance of Fe were selected.
The amount of inoculation is empirically determined based on factors such as the amount of molten metal and product size while taking into account the yield relative to the target residual%.

【0028】図1(A)(B)(C)(D)は表1の比
較例1、実施例1、2、3における各試験片の顕微鏡組
織写真(倍率100倍)であり、図1(A)は従来の鋳
放し状態のもので、図1(B)は、接種剤にBiのみが
含有される本発明の実施例1、図1(C)(D)はB
i、Caの添加をするが、図1(C)はBiのみ検出さ
れる本発明の実施例2、図1(D)はBiとCaが検出
される本発明の実施例3の鋳放し状態のものを示したも
のである。比較例1である図1(A)に対して実施例
1、実施例2、実施例3はそれぞれ図1(B)(C)
(D)に見るごとく、何れも球状黒鉛数が圧倒的に多
く、特にBi、Ca添加したものについては粒数にして
3倍以上の黒鉛が基地上に晶出していることを示す。な
お、この写真は腐食なしの組織であるが、ほとんど全部
がセメンタイト相の白銑組織であり、鋳放しの遠心力鋳
造法では、ほぼ全面チル化していることを裏付けてい
る。しかも特筆すべきは、Biが微量含まれても黒鉛の
球状化を阻害するという従来の定説に反して、本発明の
実施例では有効に微細化しつつも形状は90%以上の高
率で球状を維持しており、これは遠心力鋳造による独特
の急冷作用と初晶の成長圧潰(を攪拌、分断)する逆方
向の外圧(機械的な外力)が大きく働き、さらにCaに
よる黒鉛の球状化助長作用とBiの安定化作用という相
乗作用が支援して得られる特有の効果と解される。
FIGS. 1 (A), 1 (B), 1 (C), and 1 (D) are microstructure photographs (magnification: 100 ×) of each test piece in Comparative Example 1 and Examples 1, 2 and 3 in Table 1. (A) is a conventional as-cast condition, FIG. 1 (B) is Example 1 of the present invention in which only Bi is contained in the inoculant, and FIGS.
FIG. 1 (C) shows an as-cast state of Example 2 of the present invention in which only Bi is added, and FIG. 1 (D) shows an as-cast state of Example 3 of the present invention in which Bi and Ca are detected. It is a thing which showed. Examples 1, 2, and 3 correspond to FIGS. 1B and 1C, respectively, with respect to FIG.
As can be seen from (D), the number of spheroidal graphites is overwhelmingly large in all cases, and particularly when Bi and Ca are added, three times or more of the graphite is crystallized on the matrix. In addition, this photograph shows the structure without corrosion, but almost all of it is a white iron structure of a cementite phase, which confirms that almost all surfaces are chilled by the as-cast centrifugal casting method. Furthermore, it should be noted that contrary to the conventional theory that even if a small amount of Bi is contained, the spheroidization of graphite is inhibited, in the embodiment of the present invention, the shape is spherical at a high rate of 90% or more while effectively miniaturizing. This is due to the unique quenching effect of centrifugal casting and the external pressure (mechanical external force) in the opposite direction that causes primary crystal growth to crush (stir and break), and further spheroidization of graphite by Ca It is understood that the synergistic effect of the promoting action and the stabilizing action of Bi is a unique effect obtained by supporting.

【0029】図2は本発明の実施例および比較例に適用
したフェライト化焼鈍のパターン図であり、横型焼鈍炉
において1,000℃まで昇温し、第一段焼鈍(1,0
00℃)における保持時間を通常のほぼ半分に短縮した
10分とし、さらに第二段焼鈍(680〜730℃)に
おいても通常のほぼ半分の15分に短縮した二段焼鈍を
施し、その後、二段に分けた緩冷操作によってフェライ
ト化焼鈍を行った。
FIG. 2 is a pattern diagram of ferritizing annealing applied to the examples and comparative examples of the present invention. The temperature was raised to 1,000 ° C. in a horizontal annealing furnace, and the first-stage annealing (1,0
The holding time at (00 ° C.) was reduced to almost half of the normal value of 10 minutes, and the second-stage annealing (680 to 730 ° C.) was also subjected to the two-stage annealing process of shortening to approximately half of the normal value of 15 minutes. Ferritizing annealing was performed by slow cooling operation divided into stages.

【0030】図3は本発明の実施例と比較例のフェライ
ト化焼鈍(図2)後における顕微鏡組織の写真(倍率1
00倍)であり、図3(A)が比較例1でセメンタイト
の面積率が約20%、球状黒鉛数が613個/mm2
数値が計測され、通常のダクタイル鋳鉄管用の成分から
なる標準品では、保持時間を半分に短縮した簡略焼鈍で
は、なお、セメンタイトが分解し切れず、完全なフェラ
イト化に達していないことを立証している。これに対し
実施例1(図3(B))、実施例2(図3(C))、実
施例3(図3(D))では、何れもセメンタイト面積率
0%で完全にフェライト化し、球状黒鉛数もそれぞれ1
121、2129、3435個/mm2と非常に多く、
その鋳放し状態に比べても約1.31〜1.60倍増加
して比較例の1.17倍増加を越え、セメンタイトの分
解による黒鉛の増加率においても実施例が比較例より優
越し、実施例と比較例の球状黒鉛数の差は、熱処理によ
って一層拡大していることを如実に物語っている。な
お、本発明の実施例における球状黒鉛数とは、倍率10
0倍の視野で測定し粒径1μm以下の粒数を除いた値で
ある。
FIG. 3 is a photograph (magnification: 1) of the microstructures after ferrite annealing (FIG. 2) of the example of the present invention and the comparative example.
FIG. 3 (A) shows a comparative example 1 in which the area ratio of cementite was about 20% and the number of spheroidal graphite was 613 / mm 2 , which was a standard value consisting of components for ordinary ductile cast iron pipes. In the case of the product, it was proved that the cementite could not be completely decomposed by the simple annealing in which the holding time was shortened by half, and the ferrite was not completely converted. On the other hand, in Example 1 (FIG. 3 (B)), Example 2 (FIG. 3 (C)), and Example 3 (FIG. 3 (D)), the ferrite was completely ferrite at a cementite area ratio of 0%. The number of spheroidal graphite is also 1
121, 2129, 3435 pieces / mm 2, which is very large,
In comparison with the as-cast condition, the increase is about 1.31 to 1.60 times and exceeds the increase of 1.17 times of the comparative example, and the example is superior to the comparative example in the increase rate of graphite due to decomposition of cementite, The difference between the number of spheroidal graphites in the example and the comparative example clearly shows that the number is further increased by the heat treatment. The number of spheroidal graphite in the examples of the present invention is 10 magnifications.
It is a value measured in a field of view of 0 times and excluding the number of particles having a particle size of 1 μm or less.

【0031】これでも例証されるように、Bi単独の添
加によっても鋳放し状態における黒鉛粒数が増加する
が、Biと共にCaを添加した場合には黒鉛粒数が格段
に増加し、Caが検知できる程度まで共存すれば、相乗
作用によって黒鉛粒数の増加は一層昂進し、組織緻密化
という改善効果はさらに高まることが判る。この効果は
簡略化した焼鈍によってさらに助長され、セメンタイト
分解による黒鉛粒数増加の差が一段と拡大した結果が顕
著に示される。
As can be seen from the above, the addition of Bi alone increases the number of graphite particles in the as-cast state. However, when Ca is added together with Bi, the number of graphite particles increases remarkably, and Ca is detected. It can be seen that if they coexist to the extent possible, the increase in the number of graphite particles further increases due to the synergistic action, and the improvement effect of densification of the structure further increases. This effect is further promoted by simplified annealing, and the result that the difference in the increase in the number of graphite particles due to the decomposition of cementite is further increased is remarkably shown.

【0032】図4は本発明の実施例および比較例のフェ
ライト化焼鈍のパターン図であり、図2に対して第一段
焼鈍温度を950℃に低温化し、焼鈍保持時間について
は通常の時間と同等の20分、第二段焼鈍についても3
0分とし、二段焼鈍によるフェライト化焼鈍を行った。
FIG. 4 is a pattern diagram of the ferrite annealing in Examples and Comparative Examples of the present invention. In FIG. 2, the first-stage annealing temperature is lowered to 950 ° C. Equivalent 20 minutes, 2nd stage annealing 3
The time was set to 0 minutes, and ferrite annealing by two-step annealing was performed.

【0033】図5は本発明の実施例と比較例のフェライ
ト化焼鈍(図4)後における顕微鏡組織の写真(倍率:
100倍)であり、比較例(図5(A))では低温化に
伴いセメンタイトの分解が不完全に留まったのに対し、
実施例1(図5(B))および実施例2(図5
(C))、実施例3(図5(D))のセメンタイトは、
すべて分解して完全なフェライト組織を呈している。ま
た球状黒鉛粒数も非常に多く、Bi、Ca添加したもの
では標準品に比べて3倍以上の値を示しており、優れた
機械的性質が期待できる。
FIG. 5 is a photograph (magnification: magnification) of the microstructures after ferritizing annealing (FIG. 4) of the example of the present invention and the comparative example.
100 times). In the comparative example (FIG. 5 (A)), the decomposition of cementite remained incompletely with the lowering of the temperature.
Example 1 (FIG. 5B) and Example 2 (FIG.
(C)), the cementite of Example 3 (FIG. 5 (D))
All are decomposed to show a complete ferrite structure. In addition, the number of spheroidal graphite particles is very large, and when Bi and Ca are added, the value is three times or more that of a standard product, and excellent mechanical properties can be expected.

【0034】基地であるフェライト相の結晶粒度を見て
も図3、5における(A)と(B)(C)(D)とでは
明確な差があり、球状黒鉛自体のサイズも明らかに実施
例が小さく、緻密な基地の結晶組織上へ微細な球状黒鉛
が大量、かつ均等に分布しており、強度、靭性、耐食
性、耐摩耗性、金属疲労など、金属材料として好ましい
すべての特性において凌ぐことを予見させている。すな
わちBi、若しくはBi、Ca添加によって黒鉛の微細
化が顕著に顕れたにも拘わらず、何れの実施例において
も黒鉛が比較例に劣らない高度の球状化率を維持し、球
状黒鉛鋳鉄として求められる90%以上の球状化率を堅
持していることは、きわめて優秀な機械的性質のあるこ
とを示唆している(表2参照)。
Looking at the crystal grain size of the base ferrite phase, there is a clear difference between (A) and (B), (C) and (D) in FIGS. Small examples, large and evenly distributed fine spherical graphite on the crystal structure of the dense matrix, surpassing all properties desirable for metal materials such as strength, toughness, corrosion resistance, wear resistance, metal fatigue, etc. I foresee that. That is, despite the remarkable miniaturization of graphite due to the addition of Bi, or Bi or Ca, graphite was maintained as a spheroidal graphite cast iron in any of the examples, while maintaining a high degree of spheroidization comparable to that of the comparative example. The retention of the spheroidization rate of 90% or more suggests that it has extremely excellent mechanical properties (see Table 2).

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明は以上述べたように、ダクタイル
鋳鉄管の製造において遠心力鋳造後の鋳放しのままでチ
ル化を防止するという点を指向するのではなくて、鋳放
しにおいては微細な球状黒鉛の晶出と細かい一次オース
テナイト粒度の維持を組成上の基盤とし、該基盤に基づ
いて従来、汎用化されている焼鈍の半分程度にまで短縮
した焼鈍によってセメンタイトを分解し、この分解によ
ってさらに増加した球状黒鉛数と細かい二次晶出のフェ
ライト結晶の基地によって強度、靭性、耐食性、耐摩耗
性、疲労強度など、すべての面で従来技術を凌駕する組
織を構築する効果がある。これは製造したダクタイル鋳
鉄管自体の品質を理想的な状態に向上させると共に、熱
処理を中心とする工程の短縮、簡略化と費用の大幅な削
減を可能にするなど、画期的な影響を産業界にもたらす
効果は図り知れない。
As described above, the present invention does not aim to prevent chilling in the as-cast state after the centrifugal casting in the production of ductile cast iron pipes. Based on the compositional basis, the crystallization of fine spheroidal graphite and the maintenance of fine primary austenite grain size, cementite is decomposed by annealing that has been shortened to about half that of conventional and widely used annealing based on this base. In addition, the increased number of spheroidal graphite and the base of fine secondary crystallized ferrite crystals have the effect of constructing a structure that surpasses the conventional technology in all aspects such as strength, toughness, corrosion resistance, wear resistance, and fatigue strength. This not only improves the quality of the manufactured ductile cast iron pipe itself to an ideal state, but also enables the shortening, simplification, and significant cost reduction of heat treatment-related processes. The effect on the world is immeasurable.

【図面の簡単な説明】[Brief description of the drawings]

【図1(A)】本発明の比較例1での鋳放し状態におけ
る顕微鏡組織の写真である。
FIG. 1 (A) is a photograph of a microstructure in an as-cast state in Comparative Example 1 of the present invention.

【図1(B)】本発明の実施例1での鋳放し状態におけ
る顕微鏡組織の写真である。
FIG. 1 (B) is a photograph of a microstructure in an as-cast state in Example 1 of the present invention.

【図1(C)】本発明の実施例2での鋳放し状態におけ
る顕微鏡組織の写真である。
FIG. 1 (C) is a photograph of a microstructure in an as-cast state in Example 2 of the present invention.

【図1(D)】本発明の実施例3での鋳放し状態におけ
る顕微鏡組織の写真である。
FIG. 1 (D) is a photograph of a microstructure in an as-cast state in Example 3 of the present invention.

【図2】本発明の実施例、比較例に適用した通常の焼鈍
時間を半分に短縮した場合の熱処理チャートである。
FIG. 2 is a heat treatment chart when the normal annealing time applied to the examples and the comparative examples of the present invention is reduced by half.

【図3(A)】本発明の比較例1でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 3 (A) is a photograph of a microstructure after ferritizing annealing in Comparative Example 1 of the present invention.

【図3(B)】本発明の実施例1でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 3 (B) is a photograph of a microstructure after ferritizing annealing in Example 1 of the present invention.

【図3(C)】本発明の実施例2でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 3 (C) is a photograph of a microscope structure after ferritizing annealing in Example 2 of the present invention.

【図3(D)】本発明の実施例3でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 3 (D) is a photograph of a microstructure after ferritizing annealing in Example 3 of the present invention.

【図4】本発明の実施例、比較例に適用した第一段焼鈍
温度を950℃に低温化した場合の熱処理チャートであ
る。
FIG. 4 is a heat treatment chart when the first-stage annealing temperature applied to Examples and Comparative Examples of the present invention is lowered to 950 ° C.

【図5(A)】本発明の比較例1でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 5 (A) is a photograph of a microstructure after ferritizing annealing in Comparative Example 1 of the present invention.

【図5(B)】本発明の実施例1でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 5 (B) is a photograph of a microscope structure after ferritizing annealing in Example 1 of the present invention.

【図5(C)】本発明の実施例2でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 5 (C) is a photograph of a microstructure after ferritizing annealing in Example 2 of the present invention.

【図5(D)】本発明の実施例3でのフェライト化焼鈍
後における顕微鏡組織の写真である。
FIG. 5 (D) is a photograph of a microstructure after ferritizing annealing in Example 3 of the present invention.

【図6】本発明実施例に使用する遠心力鋳造法を説明す
る一部断面正面図である。
FIG. 6 is a partial cross-sectional front view illustrating a centrifugal casting method used in Examples of the present invention.

【図7】通常のダクタイル鋳鉄管の製造工程で適用する
焼鈍パターンの熱処理チャートである。
FIG. 7 is a heat treatment chart of an annealing pattern applied in a process of manufacturing a normal ductile cast iron pipe.

【符号の説明】[Explanation of symbols]

1 キュポラ炉 2 取鍋 3 金型 4 トラフ 1 cupola furnace 2 ladle 3 mold 4 trough

───────────────────────────────────────────────────── フロントページの続き (72)発明者 道浦 吉貞 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (72)発明者 喜多川 眞好 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (72)発明者 中本 光二 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (72)発明者 高原 渉 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (72)発明者 堀江 皓 岩手県盛岡市北夕顔瀬町10番67号 Fターム(参考) 4K014 BA03 BA13 BA16 BB06 BC12 BC13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshisada Michiura 1-12-19 Kitahorie, Nishi-ku, Osaka-shi, Osaka Inside Kurimoto Iron Works Co., Ltd. (72) Inventor Mayoshi Kitagawa 1 Kitahorie, Nishi-ku, Osaka-shi, Osaka No. 12-19, Kurimoto Iron Works Co., Ltd. No. 1-12-19 Kitahorie Inside Kurimoto Iron Works Co., Ltd. (72) Inventor Akira Horie 10-67 Kitayuganasecho, Morioka-shi, Iwate F-term (reference) 4K014 BA03 BA13 BA16 BB06 BC12 BC13

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 C:3.0〜4.0%,Si:1.5〜
3.0%、Mn:0.1〜0.4%、P:0.05%以
下、S:0.01%以下、残りFeの成分よりなるダク
タイル鋳鉄管において、Bi:0.0005〜0.05
%を含み、多数の球状黒鉛が球状化率90%以上維持し
たままフェライトベースの基地に晶出していることを特
徴とする遠心力鋳造法によるダクタイル鋳鉄管。
1. C: 3.0-4.0%, Si: 1.5-
3.0%, Mn: 0.1 to 0.4%, P: 0.05% or less, S: 0.01% or less, Bi: 0.0005 to 0 .05
%, And a large number of spheroidal graphites are crystallized on a ferrite-based matrix while maintaining a spheroidization ratio of 90% or more.
【請求項2】 請求項1において、Biの他にCa:
0.0001〜0.05%を含み、より多数の球状黒鉛
が球状化率90%以上を維持したままフェライトベース
の基地に晶出していることを特徴とする遠心力鋳造法に
よるダクタイル鋳鉄管。
2. The method according to claim 1, wherein Ca:
A ductile cast iron tube formed by a centrifugal casting method, comprising 0.0001 to 0.05%, wherein a larger number of spheroidal graphites are crystallized on a ferrite-based matrix while maintaining a spheroidization ratio of 90% or more.
【請求項3】 請求項1において、フェライトベースの
基地に晶出している球状黒鉛が少なくとも1,000個
/mm2以上測定され、かつ、球状化率が90%以上維
持していることを特徴とする遠心力鋳造によるダクタイ
ル鋳鉄管。
3. The method according to claim 1, wherein at least 1,000 spherical graphite / mm 2 or more are crystallized on the ferrite-based matrix, and the spheroidization ratio is maintained at 90% or more. Ductile cast iron tube by centrifugal casting.
【請求項4】 請求項2において、フェライトベースの
基地に晶出している球状黒鉛が少なくとも2,000個
/mm2以上、望ましくは3,000個/mm2以上測定
され、かつ、球状化率が90%以上維持していることを
特徴とする遠心力鋳造によるダクタイル鋳鉄管。
4. The spheroidal graphite according to claim 2, wherein the spheroidal graphite crystallized on the ferrite-based matrix is at least 2,000 / mm 2 or more, preferably 3,000 / mm 2 or more. Is maintained by 90% or more.
【請求項5】 溶湯成分がC:3.0〜4.0%,S
i:1.5〜3.0%、Mn:0.1〜0.4%、P:
0.05%以下、S:0.01%以下、残りFeとなる
ように溶解、精練した後、該溶湯にMgを主体とした球
状化処理剤を加えて黒鉛の球状化処理を行ない、接種剤
を溶湯へ接種して最終的にBiが0.0005〜0.0
5%の範囲で明確に検出できるように添加して遠心力鋳
造し凝固後、簡略化したフェライト化焼鈍することを特
徴とするダクタイル鋳鉄管の製造方法。
5. The molten metal component is C: 3.0-4.0%, S
i: 1.5 to 3.0%, Mn: 0.1 to 0.4%, P:
After melting and refining so that 0.05% or less, S: 0.01% or less, and the remaining Fe, graphite is spheroidized by adding a sphering agent mainly composed of Mg to the molten metal, and inoculation is performed. Inoculant is inoculated into molten metal and finally Bi is 0.0005-0.0
A method for producing a ductile cast iron pipe, characterized by adding a component in a range of 5% so that it can be clearly detected, centrifugally casting, solidifying, and then performing simplified ferritization annealing.
【請求項6】 溶湯成分がC:3.0〜4.0%,S
i:1.5〜3.0%、Mn:0.1〜0.4%、P:
0.05%以下、S:0.01%以下、残りFeとなる
ように溶解、精練した後、該溶湯にMgを主体とした球
状化処理剤を加えて黒鉛の球状化処理を行ない、接種剤
を溶湯へ接種して最終的にBiが0.0005〜0.0
5%、Ca:0.0001〜0.05%の範囲で明確に
検出できるように添加して遠心力鋳造し凝固後、簡略化
したフェライト化焼鈍することを特徴とするダクタイル
鋳鉄管の製造方法。
6. The molten metal component is C: 3.0-4.0%, S
i: 1.5 to 3.0%, Mn: 0.1 to 0.4%, P:
After melting and refining so that 0.05% or less, S: 0.01% or less, and the remaining Fe, graphite is spheroidized by adding a sphering agent mainly composed of Mg to the molten metal, and inoculation is performed. Inoculant is inoculated into molten metal and finally Bi is 0.0005-0.0
5%, Ca: A method for producing a ductile cast iron tube, characterized in that it is added so as to be clearly detected in the range of 0.0001 to 0.05%, centrifugally cast, solidified, and then subjected to simplified ferrite annealing. .
【請求項7】 請求項5において、Biの添加は化学成
分がSi:20〜80%、Bi:0.1〜25.0%、
残りFeよりなる合金粉末または混合粉末を接種剤とし
て使用することを特徴とするダクタイル鋳鉄管の製造方
法。
7. The method according to claim 5, wherein the addition of Bi includes chemical components of Si: 20 to 80%, Bi: 0.1 to 25.0%,
A method for producing a ductile cast iron pipe, comprising using an alloy powder or a mixed powder of the remaining Fe as an inoculant.
【請求項8】 請求項5または6において、Bi、Ca
の添加は化学成分がSi:20〜80%、Bi:0.1
〜25.0%、Ca:1〜40%、残りFeよりなる合
金粉末または混合粉末を接種剤として使用することを特
徴とするダクタイル鋳鉄管の製造方法。
8. The method according to claim 5, wherein Bi, Ca
Is added when the chemical components are Si: 20-80%, Bi: 0.1
A method for producing a ductile cast iron pipe, comprising using an alloy powder or a mixed powder consisting of 〜25.0%, Ca: 1-40% and the balance of Fe as an inoculant.
【請求項9】 請求項5〜8の何れかにおいて、フェラ
イト化焼鈍が通常のダクタイル鋳鉄管の製造工程で適用
するより低い温度で、および/又はより短い保持時間で
処理することを特徴とするダクタイル鋳鉄管の製造方
法。
9. The method according to claim 5, wherein the ferritizing annealing is performed at a lower temperature and / or with a shorter holding time than is applied in a normal ductile iron pipe manufacturing process. Manufacturing method of ductile cast iron tube.
【請求項10】 Bi、Caを添加する際の接種剤の粒
径が0.05mm〜3mmであることを特徴とするにつ
いて請求項5〜9記載のダクタイル鋳鉄管の製造方法
10. The method for producing a ductile cast iron pipe according to claim 5, wherein the particle size of the inoculant when adding Bi and Ca is 0.05 mm to 3 mm.
JP2002085120A 2001-03-28 2002-03-26 Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof Expired - Lifetime JP3971217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085120A JP3971217B2 (en) 2001-03-28 2002-03-26 Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001094227 2001-03-28
JP2001-94227 2001-03-28
JP2002085120A JP3971217B2 (en) 2001-03-28 2002-03-26 Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002356737A true JP2002356737A (en) 2002-12-13
JP3971217B2 JP3971217B2 (en) 2007-09-05

Family

ID=26612451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085120A Expired - Lifetime JP3971217B2 (en) 2001-03-28 2002-03-26 Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3971217B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036423A (en) * 2010-08-04 2012-02-23 Jfe Steel Corp Bi INOCULANT FOR SPHEROIDAL GRAPHITE CAST IRON AND METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON USING THE SAME
CN103952622A (en) * 2014-05-26 2014-07-30 四川省富邦钒钛制动鼓有限公司 Vanadium-titanium ferrite ductile iron automobile hub and production process thereof
CN103952620A (en) * 2014-05-26 2014-07-30 四川省富邦钒钛制动鼓有限公司 Vanadium-titanium ferritic nodular cast iron and preparation method thereof
JP2019528414A (en) * 2016-08-31 2019-10-10 西安理工大学 Self-lubricating rolling bearing and manufacturing method thereof
CN112921230A (en) * 2021-01-15 2021-06-08 西安合力汽车配件有限公司 Improved method of screw carburized part
CN113005355A (en) * 2021-02-25 2021-06-22 安阳钢铁股份有限公司 Production process of nodular cast iron pipe pile
CN115537644A (en) * 2022-09-30 2022-12-30 新兴铸管股份有限公司 Corrosion-resistant nodular cast iron pipeline and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036423A (en) * 2010-08-04 2012-02-23 Jfe Steel Corp Bi INOCULANT FOR SPHEROIDAL GRAPHITE CAST IRON AND METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON USING THE SAME
CN103952622A (en) * 2014-05-26 2014-07-30 四川省富邦钒钛制动鼓有限公司 Vanadium-titanium ferrite ductile iron automobile hub and production process thereof
CN103952620A (en) * 2014-05-26 2014-07-30 四川省富邦钒钛制动鼓有限公司 Vanadium-titanium ferritic nodular cast iron and preparation method thereof
CN103952620B (en) * 2014-05-26 2016-05-18 陈国� A kind of vanadium titanium ferrite ductile cast iron and preparation method thereof
CN103952622B (en) * 2014-05-26 2016-08-24 陈国� A kind of vanadium titanium ferrite ductile cast iron automotive hub and production technology thereof
JP2019528414A (en) * 2016-08-31 2019-10-10 西安理工大学 Self-lubricating rolling bearing and manufacturing method thereof
US11085097B2 (en) 2016-08-31 2021-08-10 Xi'an University Of Technology Self-lubricating rolling bearing and preparation method therefor
CN112921230A (en) * 2021-01-15 2021-06-08 西安合力汽车配件有限公司 Improved method of screw carburized part
CN113005355A (en) * 2021-02-25 2021-06-22 安阳钢铁股份有限公司 Production process of nodular cast iron pipe pile
CN115537644A (en) * 2022-09-30 2022-12-30 新兴铸管股份有限公司 Corrosion-resistant nodular cast iron pipeline and preparation method thereof

Also Published As

Publication number Publication date
JP3971217B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US5139579A (en) Method for preparing high silicon, low carbon austempered cast iron
Glavas et al. The properties of silicon alloyed ferritic ductile irons
CN109957631B (en) Treatment method of high-nickel austenite nodular cast iron melt
CN111945053A (en) Method for preparing high-speed steel roller by composite modification treatment
US5043028A (en) High silicon, low carbon austemperable cast iron
JP2002356737A (en) Ductile cast iron tube by centrifugal casting method and production method therefor
CN108203786B (en) Silicon solid solution high-strength plastic ferrite nodular cast iron, manufacturing method and railway locomotive part
Colin-García et al. Influence of nickel addition and casting modulus on the properties of hypo-eutectic ductile cast iron
CN110760738B (en) Method for manufacturing low-temperature impact-resistant ductile cast iron
JP3964675B2 (en) Non-austempered spheroidal graphite cast iron
Kaymak et al. Effects of Ti addition and wall thickness on microstructure, hardness, and wear properties of spheroidal graphite cast irons
JP3946071B2 (en) Tough ductile cast iron material and method for producing the same
US10844450B2 (en) Black heart malleable cast iron and manufacturing method thereof
US8302667B2 (en) Cast iron semi-finished product excellent in workability and method of production of the same
JP4565301B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JPS6029420A (en) Manufacture of composite cylinder liner having high strength and toughness
CN113795604B (en) Nodular cast iron, method for producing nodular cast iron, and vehicle chassis component
Aguado et al. Effect of carbon equivalent and alloying elements on the tensile properties of superfine interdendritic graphite irons
Boutorabi et al. Ductile aluminium cast irons
Reyes-castellanos et al. INFLUENCE OF NICKEL ADDITION AND CASTING MODULUS ON THE PROPERTIES OF HYPO-EUTECTIC DUCTILE CAST IRON.
Ramírez The effect of casting modulus in hypo-eutectic ductile iron unalloyed and alloyed with nickel on microstructure and mechanical properties
Seidu et al. CHILLING TENDENCY OF IRON POWDER TREATED GREY CAST IRON
JPH04259349A (en) Manufacture of hot forged non-heat treated steel free from coarsening of structure at the time of hot forging
JPS60169505A (en) Production of compact vermicular graphite cast iron
JPS5910989B2 (en) Free-cutting chromium-containing cast iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term