JP2002354656A - Method of detecting leak circuit and apparatus therefor - Google Patents

Method of detecting leak circuit and apparatus therefor

Info

Publication number
JP2002354656A
JP2002354656A JP2001159593A JP2001159593A JP2002354656A JP 2002354656 A JP2002354656 A JP 2002354656A JP 2001159593 A JP2001159593 A JP 2001159593A JP 2001159593 A JP2001159593 A JP 2001159593A JP 2002354656 A JP2002354656 A JP 2002354656A
Authority
JP
Japan
Prior art keywords
current
zero
circuit
branch
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001159593A
Other languages
Japanese (ja)
Other versions
JP3636308B2 (en
Inventor
Yoshihiro Kajiwara
義廣 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togami Electric Mfg Co Ltd
Original Assignee
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togami Electric Mfg Co Ltd filed Critical Togami Electric Mfg Co Ltd
Priority to JP2001159593A priority Critical patent/JP3636308B2/en
Publication of JP2002354656A publication Critical patent/JP2002354656A/en
Application granted granted Critical
Publication of JP3636308B2 publication Critical patent/JP3636308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Distribution Board (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus that can reliably and quickly detect a leak when intermittent leaks occur in multiple branch circuits provided with a branch breaker only on a single pole. SOLUTION: Zero-phase current Io flowing in a trunk wiring 100 and load current IL1 (or IL2, IL3, etc.), flowing through a wire on one pole of the branch wiring 200 are severally detected by a zero-phase current detecting means and a load current detecting means. The vector quantities of change in current of the zero-phase current and the load current are compared by a vector comparing means 11. The leak circuit in multiple branch circuits are screened based on the results of the comparison so that an intermittent leak condition, where leaks occur and are recovered repeatedly, can be detected as a change in the vector quantity and the leak circuit of an intermittent leak can be specified reliably and quickly out of the multiple branch circuits.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、幹線から複数に分
岐された分岐回路中の漏電回路を検出する漏電回路検出
装置に関し、特に分岐回路の一極側にのみ分岐ブレーカ
が配設される場合の漏電回路を検出する漏電回路検出装
置に関する。近年、集合住宅や多くの負荷回路を必要と
するビル等の分電盤においては、分岐回路に省スペース
の単極形の遮断器を使用し、分電盤内の収容能力を増や
す傾向にある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth leakage circuit detection device for detecting an earth leakage circuit in a branch circuit branched into a plurality of branches from a trunk line, and particularly to a case where a branch breaker is provided only on one pole side of a branch circuit. The present invention relates to an earth leakage circuit detection device that detects an earth leakage circuit. In recent years, in distribution boards such as apartment houses and buildings requiring many load circuits, there is a tendency to use a space-saving single-pole circuit breaker in a branch circuit to increase the capacity of the distribution board. .

【0002】[0002]

【従来の技術】従来、この種の漏電回路検出装置として
実開平5−45578号及び特公平2−16097号に
開示されるものがあった。これを図8及び図9に示す。
この図8は従来の漏電回路検出装置を単線結線図によっ
て表現した全体回路図、図9は他の漏電回路検出装置の
全体回路図を示す。
2. Description of the Related Art Hitherto, as this kind of leakage circuit detecting device, there has been one disclosed in Japanese Utility Model Laid-Open No. 5-45578 and Japanese Patent Publication No. 2-16097. This is shown in FIGS.
FIG. 8 is an overall circuit diagram of a conventional leakage circuit detection device represented by a single-line diagram, and FIG. 9 is an overall circuit diagram of another leakage circuit detection device.

【0003】前記図8において従来の漏電回路検出装置
は、電気回路の幹線配線100及びその幹線配線100
から分岐された各分岐配線200に設けられ、前記幹線
配線100及びそれぞれの分岐配線200の漏洩電流を
検出する零相変流器2及び分岐用零相変流器30と、前
記それぞれの零相変流器2及び30から出力された漏洩
電流検出信号を入力したとき警報信号を出力する受信回
路400と、前記それぞれの零相変流器2と前記受信回
路400との間に接続されて前記それぞれの零相変流器
2及び30を前記受信回路400に切り換え接続するス
イッチ401と、前記幹線配線100の零相変流器2及
び30から漏洩電流検出信号が出力され、前記受信回路
400から警報信号が出力されたとき、その警報信号を
一時記憶回路402に記憶した後、前記それぞれのスイ
ッチ401の切り換え制御を開始して前記それぞれの分
岐配線200の分岐用零相変流器30を、順次、前記受
信回路400に接続させるスイッチ制御回路404と、
前記スイッチ制御回路404によるスイッチ401の切
り換え制御過程で前記受信回路400から警報信号が出
力されたとき、当該スイッチ401に接続された分岐用
零相変流器30の分岐配線200を識別可能に表示する
表示回路403とを設けた構成とするものである。
[0003] In FIG. 8, a conventional earth leakage circuit detecting device includes a main line 100 of an electric circuit and the main line 100.
A zero-phase current transformer 2 and a zero-phase current transformer 30 for branching, which are provided in each branch wiring 200 branched from the main line 100 and detect a leakage current of the main wiring 100 and the respective branch wirings 200; A receiving circuit 400 that outputs an alarm signal when a leakage current detection signal output from the current transformers 2 and 30 is input; and a receiving circuit 400 that is connected between the respective zero-phase current transformers 2 and the receiving circuit 400. A switch 401 for switching and connecting the respective zero-phase current transformers 2 and 30 to the receiving circuit 400, and a leakage current detection signal is output from the zero-phase current transformers 2 and 30 of the main line 100. When the alarm signal is output, the alarm signal is stored in the temporary storage circuit 402, and then the switching control of each of the switches 401 is started, and the switching of the respective branch wirings 200 is started. The use zero-phase current transformer 30, sequentially, a switch control circuit 404 to be connected to the receiving circuit 400,
When an alarm signal is output from the receiving circuit 400 during the switching control process of the switch 401 by the switch control circuit 404, the branch wiring 200 of the zero-phase current transformer 30 for branching connected to the switch 401 is identifiably displayed. And a display circuit 403 to be provided.

【0004】前記構成の漏電回路検出装置によれば、幹
線配線100の零相変流器2から漏洩電流検出信号が出
力され、受信回路400から警報信号が出力されたと
き、スイッチ制御回路404はその警報信号を一時記憶
した後それぞれのスイッチ切り換え制御を開始して前記
それぞれの分岐配線200の分岐用零相変流器30を、
順次、前記受信回路400に接続させる。そのスイッチ
制御回路404によるスイッチ401の切り換え制御過
程で、受信回路400から警報信号が出力されたとき、
当該スイッチ401に接続の分岐用零相変流器30が設
けられた分岐配線200に漏洩電流が流れているため表
示回路403はその分岐配線200が識別できるように
表示する。
According to the leakage circuit detection device having the above-described configuration, when a leakage current detection signal is output from the zero-phase current transformer 2 of the main line 100 and an alarm signal is output from the reception circuit 400, the switch control circuit 404 After the alarm signal is temporarily stored, each switch switching control is started, and the zero-phase current transformer 30 for branching of each branch wiring 200 is changed to
The connection is sequentially made to the reception circuit 400. When an alarm signal is output from the receiving circuit 400 during the switching control of the switch 401 by the switch control circuit 404,
Since a leakage current is flowing through the branch wiring 200 provided with the branch zero-phase current transformer 30 connected to the switch 401, the display circuit 403 displays the branch wiring 200 so that the branch wiring 200 can be identified.

【0005】また、前記図9において従来の他の漏電回
路検出装置は、幹線配線100に設けた主幹漏電ブレー
カ110と、各分岐ブレーカ210の配設位置に対応す
る分電盤表面に配設した通電・漏電表示灯501と、各
分岐配線200に配設した通電検出回路502と、各分
岐配線200に配設した漏電検出回路503と、各分岐
配線200に設けられかつその分岐配線200の前記通
電検出回路502の検出信号を受けて前記通電・漏電表
示灯501を漏電表示駆動すると共に第1のスイッチン
グ回路504をオフにする第2スイッチング回路505
と、前記通電・漏電表示灯501、前記通電検出回路5
02及び漏電検出回路に駆動電源を供給する電源回路5
06と、前記通電・漏電表示灯501の漏電点灯状態を
リセットする漏電点灯リセット手段507とを備えた分
電盤を有するものである。従って、多分岐配線200の
通電表示と漏電表示とに兼用される表示灯を分電表示面
に有し主幹漏電ブレーカのトリップ動作後も漏電分岐配
線200を容易に判別することができる。
[0005] In FIG. 9, another conventional earth leakage circuit detecting device is disposed on the surface of the distribution board corresponding to the position of the main earth leakage breaker 110 provided on the main line 100 and the branch breakers 210. An energization / leakage indicator light 501, an energization detection circuit 502 disposed on each branch wiring 200, a leakage detection circuit 503 disposed on each branch wiring 200, and The second switching circuit 505 that receives the detection signal of the conduction detection circuit 502, drives the conduction / leakage display lamp 501 to perform the leakage display, and turns off the first switching circuit 504.
And the power supply / leakage indicator lamp 501 and the power supply detection circuit 5
02 and a power supply circuit 5 for supplying drive power to the leakage detection circuit
06 and an electric leakage lighting resetting means 507 for resetting the electric leakage lighting state of the energization / electric leakage indicating lamp 501. Accordingly, an indicator light that is used for both the energization display and the earth leakage display of the multi-branch wiring 200 is provided on the power distribution display surface, so that the earth leakage branch wiring 200 can be easily determined even after the trip operation of the main earth leakage breaker.

【0006】[0006]

【発明が解決しようとする課題】従来の漏電回路検出装
置は以上のように構成されていたことから、図8に記載
の漏電回路検出装置にあっては二極回路に分岐ブレーカ
を配設した分電盤において各分岐回路を形成する対をな
す二極の電極に一括して零相変流器2及び30をクラン
プするものであることから、各分岐回路の零相電流を検
出するには全回路数の一般の負荷電流を検出する変流器
より高価な零相変流器が必要となるという課題を有して
いた。
Since the conventional earth leakage circuit detecting device is constructed as described above, in the earth leakage circuit detecting device shown in FIG. 8, a branch breaker is arranged in a two-pole circuit. Since the zero-phase current transformers 2 and 30 are collectively clamped on a pair of two-pole electrodes forming each branch circuit in the distribution board, it is necessary to detect the zero-phase current of each branch circuit. There is a problem that a zero-phase current transformer, which is more expensive than a current transformer for detecting a general load current of all circuits, is required.

【0007】また、図9に記載の漏電回路検出装置は、
分岐回路の対をなす二極の電極に分岐ブレーカが配設さ
れていることから、この二極の対をなす電流に零相変流
器2をクランプすることができるものの、前記図記載の
漏電回路検出装置と同様に分岐ブレーカを単極回路のみ
配設した複数の分岐回路においては、各々分岐回路の二
極を一括してクランプすることができず漏電回路を特定
できないという課題を有する。
[0007] The earth leakage circuit detecting device shown in FIG.
Since the branch breaker is disposed on the two-pole electrodes forming the pair of the branch circuits, the zero-phase current transformer 2 can be clamped to the current forming the two-pole pair. In a plurality of branch circuits in which only a single-pole circuit is provided with a branch breaker as in the circuit detection device, there is a problem in that the two poles of the branch circuit cannot be collectively clamped and a leakage circuit cannot be specified.

【0008】さらに、前記各従来の漏電回路検出装置
は、いずれも漏電の発生と復旧を繰り返す間欠漏電の場
合については複数の分岐回路中の漏電回路を正確に特定
することができず、現場での経験及び勘による対応で検
出作業を行うことから多大な労力と作業時間が必要とな
るという課題をしていた。
Further, each of the above-mentioned conventional earth leakage circuit detection devices cannot accurately specify the earth leakage circuit in a plurality of branch circuits in the case of intermittent earth leakage in which the occurrence and recovery of the earth leakage are repeated, and the Since the detection work is performed in response to the experience and intuition of the user, a large amount of labor and work time are required.

【0009】本発明は、前記課題を解消するためになさ
れたもので、単極にのみ分岐ブレーカが配設される複数
の分岐回路に間欠漏電が発生した場合に漏電回路を確実
且つ迅速に検出することができる漏電回路検出方法及び
その装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and when an intermittent leakage occurs in a plurality of branch circuits in which branch breakers are provided only in a single pole, the leakage circuit is detected reliably and quickly. It is an object of the present invention to provide an earth leakage circuit detection method and an earth leakage circuit device that can perform the method.

【0010】[0010]

【課題を解決するための手段】本発明に係る漏電回路検
出方法は、幹線に主幹漏電ブレーカが設置され、当該主
幹漏電ブレーカの後段で複数に分岐され、当該分岐され
た分岐線における各一極側の電線に分岐ブレーカが介装
され、前記各分岐された各他極側の電線と分岐ブレーカ
が介装された各一極側の電線とが負荷に接続される回路
の漏電を検出する漏電回路検出方法において、前記幹線
の零相電流を検出し、前記各一極側の電線の各負荷電流
を検出し、前記検出された零相電流と各負荷電流とを各
変化分電流のベクトル量について各々比較し、前記変化
分電流のベクトル量が一致する前記負荷電流を流す一極
側の電線を漏電回路として検出するものである。
According to the present invention, there is provided a method for detecting an earth leakage circuit, wherein a main earth leakage breaker is installed on a trunk line, the main earth leakage breaker is branched into a plurality of parts, and each pole on the branched branch line is provided. A branch breaker is interposed in the electric wire on the side, and each of the branched other wires and the unipolar wire in which the branch breaker is interposed are connected to a load. In the circuit detection method, a zero-phase current of the main line is detected, each load current of the single-pole-side electric wire is detected, and the detected zero-phase current and each load current are converted into a vector amount of each change current. Are compared with each other, and a single-pole-side electric wire through which the load current, in which the vector amount of the change current matches, is detected as an earth leakage circuit.

【0011】このように本発明においては、幹線に流れ
る零相電流及び分岐線の一極側電線に流れる負荷電流を
各々検出し、この零相電流と負荷電流との各変化分電流
のベクトル量を比較し、この比較結果に基づいて複数の
分岐回路中の漏電回路を検出するようにしているので、
漏電の発生と復旧を繰り返す間欠漏電状態をベクトル量
の変化量として検出できることとなり、複数の分岐回路
中から間欠漏電の漏電回路を確実且つ迅速に特定でき
る。
As described above, according to the present invention, the zero-phase current flowing through the main line and the load current flowing through the one-pole-side electric wire of the branch line are detected, and the vector amount of the current corresponding to the change between the zero-phase current and the load current is detected. Are compared, and based on the result of the comparison, a leakage circuit in a plurality of branch circuits is detected.
An intermittent leakage state in which the occurrence and recovery of the leakage are repeated can be detected as a change amount of the vector quantity, and the leakage circuit of the intermittent leakage can be reliably and quickly identified from the plurality of branch circuits.

【0012】また、本発明に係る漏電回路検出方法は必
要に応じて、検出する零相電流及び負荷電流が、各々1
サイクルを複数のサンプリングデータとして検出され、
前記検出された零相電流のサンプリングデータと前記各
負荷側電流のサンプリングデータとを1サイクル毎に比
較するものである。このように本発明においては、幹線
の零相電流及び分岐線の負荷電流を、所定のサンプリン
グで検出し、この各サンプリングデータに基づいて1サ
イクル毎に比較するようにしているので、各サンプリン
グデータの変化パターンで変化分電流のベクトル量の推
移を簡易に検出できることとなり、より迅速且つ正確に
間欠漏電の漏電回路を特定できる。
Further, according to the leakage circuit detection method of the present invention, if necessary, the zero-phase current and the load current to be detected are each 1
The cycle is detected as multiple sampling data,
The sampled data of the detected zero-phase current and the sampled data of each load-side current are compared every cycle. As described above, in the present invention, the zero-phase current of the main line and the load current of the branch line are detected by predetermined sampling, and are compared every cycle based on the respective sampled data. The change of the vector amount of the change current can be easily detected by the change pattern of (1), and the leakage circuit of the intermittent leakage can be specified more quickly and accurately.

【0013】本発明に係る漏電回路検出装置は、幹線に
主幹漏電ブレーカが設置され、当該主幹漏電ブレーカの
後段で複数に分岐され、当該分岐された分岐線における
各一極側の電線に分岐ブレーカが介装され、前記各分岐
された各他極側の電線と分岐ブレーカが介装された各一
極側の電線とが負荷に接続される回路の漏電を検出する
漏電回路検出装置において、前記幹線の零相電流を検出
する零相電流検出手段と、前記各一極側の電線の各負荷
電流を検出する負荷電流検出手段と、前記検出された零
相電流と各負荷電流とを各変化分電流のベクトル量につ
いて各々比較するベクトル量比較手段と、前記変化分電
流のベクトル量が一致する前記負荷電流を流す一極側の
電線を漏電回路として選別する漏電回路選別手段とを備
えるである。
In the earth leakage circuit detecting apparatus according to the present invention, a main earth leakage breaker is installed in a trunk line, the main earth leakage breaker is branched into a plurality of stages, and a branch breaker is connected to each one-pole side electric wire in the branched branch line. In the earth leakage circuit detection device that detects the earth leakage of a circuit in which each of the branched electric wires on the other pole side and each of the unipolar electric wires on which the branch breaker is interposed are connected to a load. A zero-phase current detecting means for detecting a zero-phase current of the main line, a load current detecting means for detecting each load current of the one-pole electric wire, and changing each of the detected zero-phase current and each load current. Vector amount comparing means for comparing each of the vector amounts of the divided currents, and earth leakage circuit selecting means for selecting, as an earth leakage circuit, a single-pole-side electric wire through which the load current that matches the vector amount of the change current is matched. .

【0014】このように本発明においては、幹線に流れ
る零相電流及び分岐線の一極側電線に流れる負荷電流を
零相電流検出手段及び負荷電流検出手段で各々検出し、
この零相電流と負荷電流との各変化分電流のベクトル量
をベクトル量比較手段で比較し、この比較結果に基づい
て複数の分岐回路中の漏電回路を漏電回路選別手段で選
別するようにしているので、漏電の発生と復旧を繰り返
す間欠漏電状態をベクトル量の変化量として検出できる
こととなり、複数の分岐回路中から間欠漏電の漏電回路
を確実且つ迅速に特定できる。
As described above, according to the present invention, the zero-phase current flowing through the main line and the load current flowing through the one-side electric wire of the branch line are detected by the zero-phase current detecting means and the load current detecting means, respectively.
The vector amount of each change current between the zero-phase current and the load current is compared by vector amount comparing means, and the leakage circuits in the plurality of branch circuits are selected by the leakage circuit selection means based on the comparison result. Therefore, it is possible to detect an intermittent leakage state in which the occurrence and restoration of the leakage are repeated as a change amount of the vector amount, and it is possible to reliably and quickly specify the leakage circuit of the intermittent leakage from the plurality of branch circuits.

【0015】また、本発明に係る漏電回路検出装置は必
要に応じて、零相電流検出手段が零相電流を1サイクル
について複数のサンプリングデータとして検出し、前記
負荷電流検出手段が各負荷電流を1サイクルについて複
数のサンプリングデータとして検出し、前記ベクトル量
検出手段が検出された零相電流のサンプリングデータと
前記各負荷側電流のサンプリングデータとを1サイクル
毎に比較するものである。
Further, in the earth leakage circuit detection device according to the present invention, the zero-phase current detection means detects the zero-phase current as a plurality of sampling data for one cycle as necessary, and the load current detection means detects each load current. One cycle is detected as a plurality of sampling data, and the vector amount detecting means compares the detected sampling data of the zero-phase current with the sampling data of each load-side current for each cycle.

【0016】このように本発明においては、幹線の零相
電流及び分岐線の負荷電流を、零相電流検出手段及び負
荷電流検出手段が所定のサンプリングで検出し、この各
サンプリングデータに基づいて1サイクル毎にベクトル
量比較手段が比較するようにしているので、各サンプリ
ングデータの変化パターンで変化分電流のベクトル量の
推移を簡易に検出できることとなり、より迅速且つ正確
に間欠漏電の漏電回路を特定できる。
As described above, in the present invention, the zero-sequence current of the main line and the load current of the branch line are detected by the zero-sequence current detection means and the load current detection means at a predetermined sampling, and one-phase current is detected based on each sampling data. Since the vector amount comparison means performs comparison for each cycle, it is possible to easily detect the change in the vector amount of the change current in the change pattern of each sampling data, and more quickly and accurately specify the leakage circuit of the intermittent leakage. it can.

【0017】[0017]

【発明の実施の形態】(本発明の第1の実施形態)以
下、本発明の第1の実施形態に係る漏電回路検出装置を
その方法と共に図1ないし図3に基づいて説明する。こ
の図1は本実施形態に係る漏電回路検出装置の全体概略
構成図、図2は図1記載の漏電回路検出装置の動作説明
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment of the Present Invention) Hereinafter, an earth leakage circuit detecting apparatus according to a first embodiment of the present invention will be described together with a method thereof with reference to FIGS. FIG. 1 is an overall schematic configuration diagram of the leakage circuit detection device according to the present embodiment, and FIG. 2 is an operation explanatory diagram of the leakage circuit detection device shown in FIG.

【0018】前記各図において本実施形態に係る漏電回
路検出装置は、主幹漏電ブレーカ110が配設される幹
線配線100の零相電流Ioを検出する幹線用零相変流
器(以下、ZCT)2と、前記幹線配線100に配設さ
れる主幹漏電ブレーカ110の後段で複数に分岐される
二極の分岐配線200のうち、分岐ブレーカ210が配
設される課電側(非接地側)の分岐単線201に流れる
各負荷電流IL1、IL2、IL3、・・・を検出する分岐用
変流器3と、前記零相電流Io及び各負荷電流IL1、IL
2、IL3、・・・をベクトル量として比較するベクトル
比較手段11と、この比較結果に基づいて負荷電流IL1
(又はIL2、IL3、・・・)が流れる分岐単線201を
漏電回路として選別する漏電回路選別手段12とを備え
る構成である。このベクトル比較手段11及び漏電回路
選別手段12で装置本体1を構成している。
In each of the drawings, the earth leakage circuit detecting apparatus according to the present embodiment is a mains zero-phase current transformer (hereinafter, ZCT) for detecting a zero-phase current Io of the main wiring 100 in which the main earth leakage breaker 110 is disposed. 2 and, on the power application side (non-ground side) of the two-pole branch wiring 200 that is branched into a plurality of stages after the main earth leakage breaker 110 provided on the main wiring 100, the branch breaker 210 is provided. The branch current transformer 3 for detecting the load currents IL1, IL2, IL3,... Flowing through the branch single line 201, the zero-phase current Io and the load currents IL1, IL
., IL3,... As a vector quantity, and a load current IL1 based on the comparison result.
(Or IL2, IL3,...) Through which the single-line branch 201 flows is selected as a leakage circuit. The apparatus main body 1 is composed of the vector comparing means 11 and the earth leakage circuit selecting means 12.

【0019】前記幹線配線100から分岐される分岐配
線200は、課電側の各分岐単線201に各々分岐ブレ
ーカ210が配設されると共に、接地側の各分岐単線2
02が銅バー203を介して共通接続される構成であ
る。この課電側の各分岐単線201と接地側の各分岐単
線202は、各々一対の2極線として負荷300に接続
される。前記ベクトル比較手段11は、地絡事故発生時
に生じる漏電電流Igが重畳された零相電流Io+Igと漏
電回路となった課電側の分岐単線201の負荷電流IL1
(又はIL2、IL3、・・・)+Igとを変化分電流のベ
クトル量として比較する構成である。
In the branch wiring 200 branched from the main wiring 100, a branch breaker 210 is provided for each branch single line 201 on the power receiving side, and each branch single line 2 on the ground side.
02 is commonly connected via a copper bar 203. Each branch single line 201 on the power application side and each branch single line 202 on the ground side are connected to the load 300 as a pair of two-pole lines. The vector comparing means 11 determines whether the load current IL1 of the branch single line 201 on the power-supply side is a zero-phase current Io + Ig on which the leakage current Ig generated when a ground fault occurs is superimposed.
(Or IL2, IL3,...) + Ig as a vector amount of a change current.

【0020】次に、前記構成に基づく本実施の形態に係
る漏電回路検出装置が漏電回路を検出する動作について
説明する。前提として複数の分岐配線200のうち課電
側の各分岐単線201に間欠的な地絡事故が発生したも
のとする。この地絡事故により生じる地絡電流Igが幹線
配線100に流れ、この地絡電流Igにより主幹漏電ブレ
ーカ110がトリップ動作して幹線配線100を遮断さ
せる。この地絡事故が間欠的であることから主幹漏電ブ
レーカ110を投入すると回路全体が一時的に復旧する
が、所定期間後に再度漏電電流Igが流れて再度主幹漏電
ブレーカ110が動作することとなる。このような間欠
的な地絡事故を発生した場合に、まず主幹漏電ブレーカ
110を投入して回路全体を復旧させて各分岐配線20
0を介して負荷300へ電流を供給する。この活線状態
の幹線配線100にZCT2をクランプすると共に、各
分岐配線200に分岐用変流器3を各々クランプする。
Next, the operation of the earth leakage circuit detecting apparatus according to the present embodiment based on the above configuration for detecting an earth leakage circuit will be described. As a premise, it is assumed that an intermittent ground fault has occurred in each of the branch single lines 201 on the power supply side among the plurality of branch wirings 200. The ground fault current Ig generated by the ground fault accident flows through the main line 100, and the main ground fault breaker 110 trips due to the ground fault current Ig to cut off the main line 100. Since the ground fault accident is intermittent, when the main earth leakage breaker 110 is turned on, the entire circuit is temporarily restored, but after a predetermined period, the earth leakage current Ig flows again, and the main earth leakage breaker 110 operates again. When such an intermittent ground fault occurs, first, the main earth leakage breaker 110 is turned on to restore the entire circuit, and each branch wiring 20
0 to supply current to the load 300. The ZCT 2 is clamped to the main line 100 in the live state, and the branch current transformer 3 is clamped to each branch line 200.

【0021】この各々クランプした状態でZCT2及び
分岐用変流器3の各出力をベクトル比較手段11がベク
トル量として比較を継続して実行する。この比較動作中
に前記間欠的な地絡事故が再発すると、ベクトル比較手
段11はZCT2及び分岐用変流器3の各出力に重畳さ
れる漏電電流Igの成分のみ一致を検出する。即ち、前記
ZCT2から出力される零相電流Io及び分岐用変流器
3から出力される各負荷電流IL1、IL2、IL3、が負荷
300により常時変動し、また幹線配線100及び分岐
配線200の分布定数としての漏電電流が定常的に存在
することから、地絡事故発生時のZCT2による検出電
流(Io+Ig)及び分岐用変流器3による検出電流(I
L1+Ig、又はIL2+Ig、IL3+Ig、・・・)のうち
漏電電流Igのみをベクトル量として検出しなければなら
ない。前記漏電電流Igの一致が検出された分岐配線20
0の課電側の各分岐単線201をベクトル比較手段11
は、地絡事故が発生した漏電回路として複数の課電側の
各分岐単線201の中から選択して特定する。
In this clamped state, the vector comparison means 11 continuously compares the outputs of the ZCT 2 and the branch current transformer 3 as vector quantities. If the intermittent ground fault reoccurs during this comparison operation, the vector comparison means 11 detects a coincidence only in the component of the leakage current Ig superimposed on each output of the ZCT 2 and the branch current transformer 3. That is, the zero-phase current Io output from the ZCT 2 and the load currents IL1, IL2, IL3 output from the branch current transformer 3 constantly fluctuate due to the load 300, and the distribution of the main wiring 100 and the branch wiring 200. Since the leakage current as a constant is constantly present, the detection current (Io + Ig) by the ZCT 2 and the detection current (I
L1 + Ig, or IL2 + Ig, IL3 + Ig,...) Must be detected as a vector amount only. The branch wiring 20 in which the coincidence of the leakage current Ig is detected
0 is connected to the vector comparing means 11
Is selected from the plurality of branch single lines 201 on the power receiving side and specified as a leakage circuit in which a ground fault has occurred.

【0022】(本発明の第2の実施形態)図3は本発明
の第2の実施形態に係る漏電回路検出装置の要部詳細ブ
ロック図、図4は図3に記載のサンプリング制御部にお
けるサンプリング動作説明図、図5は図3に記載のメモ
リ制御部における格納動作説明図、図6は図3に記載の
比較部における比較動作説明図、図7は図3に記載の比
較部におけるサンプリングデータ比較説明図を示す。
(Second Embodiment of the Present Invention) FIG. 3 is a detailed block diagram of a main part of an earth leakage circuit detecting apparatus according to a second embodiment of the present invention, and FIG. 4 is a block diagram of a sampling control unit shown in FIG. FIG. 5 is an explanatory diagram of a storage operation in the memory control unit shown in FIG. 3, FIG. 6 is an explanatory diagram of a comparison operation in the comparison unit shown in FIG. 3, and FIG. 7 is sampling data in the comparison unit shown in FIG. FIG.

【0023】前記各図において本実施形態に係る漏電回
路検出装置は、前記図1に記載の第1の実施形態と同様
にZCT2、分岐用変流器3、ベクトル比較手段11及
び漏電回路選別手段12を共通して備え、このベクトル
比較手段11の構成を異にし、この構成に加え、各種デ
ータを格納するメモリ4及び前記漏電回路選別手段12
による選別内容を表示する表示装置5を備える構成であ
る。
In each of the drawings, the earth leakage circuit detecting apparatus according to the present embodiment comprises a ZCT 2, a branch current transformer 3, a vector comparing means 11 and an earth leakage circuit selecting means as in the first embodiment shown in FIG. 12 in common, the configuration of the vector comparison means 11 is different, and in addition to this configuration, the memory 4 for storing various data and the earth leakage circuit selection means 12
And a display device 5 for displaying the contents of the selection by the display device.

【0024】前記ベクトル比較手段11は、前記ZCT
2及び分岐用変流器3で各々検出される零相電流Io及
び各負荷電流IL1、IL2、IL3、・・・を増幅するアン
プ11aとこの増幅された零相電流Io及び各負荷電流
IL1、IL2、IL3、・・・のアナログ値をディジタル値
に変換するA/Dコンバータ11bと、この変換された
ディジタル値の零相電流Io及び各負荷電流IL1、I
L2、IL3、・・・をサンプリングデータとして出力す
る制御を行うサンプリング制御部11cと、このサンプ
リングデータを前記メモリ4へ順次格納する制御を行う
メモリ制御部11dと、前記メモリ4に順次格納された
サンプリングデータを比較する比較部11eとを備える
構成である。この比較部11eは、順次メモリ4へ格納
される前後のサンプリングデータを比較して漏電電流I
gの成分を差分として抽出すると共に、この抽出された
漏電電流Igを零相電流Io及び各負荷電流IL1、IL2、I
L3、・・・の間で比較する構成である。
The vector comparison means 11 calculates the ZCT
, An amplifier 11a for amplifying the zero-phase current Io and the load currents IL1, IL2, IL3,... Detected by the current transformer 2 and the branch current transformer 3, respectively, and the amplified zero-phase current Io and each load current IL1, A / D converter 11b for converting analog values of IL2, IL3,... Into digital values, zero-phase current Io of the converted digital values and load currents IL1, I2
.. As sampling data, a memory control unit 11d for sequentially storing the sampling data in the memory 4, and a sampling control unit 11d for sequentially storing the sampling data in the memory 4. This is a configuration including a comparison unit 11e that compares sampling data. The comparing unit 11e compares the sampling data before and after sequentially stored in the memory 4 to compare the leakage current I
g is extracted as a difference, and the extracted leakage current Ig is used as the zero-phase current Io and each of the load currents IL1, IL2, I2.
L3,... Are compared.

【0025】次に、前記構成に基づく本実施形態に係る
漏電回路検出装置の漏電回路検出動作について説明す
る。前記第1の実施形態と同様にクランプされたZCT
2及び分岐用変流器3から継続して零相電流Io及び各
負荷電流IL1、IL2、IL3、・・・(地絡事故発生時に
は、零相電流Io+Ig、及びIL1+Ig、IL2+Ig、IL
3+Ig、・・・)が検出電流として出力され、これらの
各検出電流がアンプ11aで増幅され、さらにA/Dコ
ンバータ11bでディジタル値に変換される。
Next, a description will be given of an operation of detecting a leakage circuit of the leakage circuit detection apparatus according to the present embodiment based on the above configuration. ZCT clamped as in the first embodiment
2 and the load currents IL1, IL2, IL3,... (In the event of a ground fault, zero-phase currents Io + Ig and IL1 + Ig, IL1 + Ig, IL2 + Ig, IL
3 + Ig,...) Are output as detection currents, and each of these detection currents is amplified by the amplifier 11a and further converted to a digital value by the A / D converter 11b.

【0026】このA/Dコンバータ11bで生成される
各検出電流のサンプリングデータは、サンプリング制御
部11cのサンプリング値により標本化されてA/Dコ
ンバータ11bからメモリ4へサンプリングデータとし
て出力される。このサンプリング制御部11cは、サン
プリング値として交流電流の1周期を複数等分する間
隔、例えば1周期を64等分(図4に示す。)又は12
8等分する間隔とすることもできる。この検出電流の各
サンプリングデータは、図5に示すようにメモリ制御部
11d制御により、1サイクル分の各テーブルデータと
してバッファメモリ41に格納される。さらに、次の1
サイクル分がA/Dコンバータ11bで生成されるとバ
ッファメモリ42に格納された前の1サイクル分の各テ
ーブルデータをバッファメモリ41に複写して格納す
る。
The sampling data of each detected current generated by the A / D converter 11b is sampled by the sampling value of the sampling control section 11c and output from the A / D converter 11b to the memory 4 as sampling data. The sampling control unit 11c divides one cycle of the alternating current as a sampling value into a plurality of equal intervals, for example, divides one cycle into 64 equal parts (shown in FIG. 4) or 12.
The interval can be set to be equally divided into eight. Each sampling data of the detected current is stored in the buffer memory 41 as one cycle of table data under the control of the memory control unit 11d as shown in FIG. In addition,
When the cycle data is generated by the A / D converter 11b, each table data for one cycle before the data stored in the buffer memory 42 is copied and stored in the buffer memory 41.

【0027】前記バッファメモリ41、42に各々格納
された各テーブルデータ毎に1サイクル毎の前後で比較
部11eが比較を行い、1サイクル中の各角度毎に変化
量の一致が判別され、図6に示すようにベクトル量とし
ての比較が可能となる。この図6において課電側の各分
岐単線201のうち一つに間欠的な漏電事故が発生する
と、この漏電事故発生以降は漏電電流Igが生じる(図
6(A)を参照)。この漏電電流Igが零相電流Io及
び負荷電流IL1(又はIL2、IL3、・・・)に重畳され
(図6(B)〜(E)を参照)、ZCT2及び分岐用変
流器3で検出電流が零相電流+漏電電流(Io+Ig)
及び負荷電流+漏電電流(IL1+Ig)として検出電流
として検出される。
The comparison unit 11e compares the table data stored in the buffer memories 41 and 42 before and after each cycle, and determines the coincidence of the variation for each angle during one cycle. As shown in FIG. 6, comparison as a vector amount is possible. In FIG. 6, when an intermittent leakage fault occurs in one of the branch single lines 201 on the power receiving side, a leakage current Ig occurs after the occurrence of the leakage fault (see FIG. 6A). This leakage current Ig is superimposed on the zero-phase current Io and the load current IL1 (or IL2, IL3,...) (See FIGS. 6B to 6E) and detected by the ZCT 2 and the branch current transformer 3. Current is zero-phase current + leakage current (Io + Ig)
And a load current + leakage current (IL1 + Ig) is detected as a detection current.

【0028】このように各検出電流に含まれる漏電電流
Igを1サイクル毎の前後で比較部11eが比較を行っ
て変化が検出されると、この変化分を漏電電流Igの成
分として抽出できることとなる。さらに、図7において
ZCTのNとN−1との差分テーブルが抽出されたIg
であり、同じく図7のCT1〜CT3の差分テーブルと
各々比較し、全く同じデータとなっているものが漏電回
路として判別される。この一致が判別された場合には、
前記第1の実施形態の場合と同様に漏電回路選別手段1
2が前記比較結果に基づいて複数の分岐配線200中か
ら漏電回路を判別する。
As described above, when the comparator 11e compares the leakage current Ig included in each detected current before and after each cycle and detects a change, the change can be extracted as a component of the leakage current Ig. Become. Further, in FIG. 7, a difference table between N and N−1 of ZCT is extracted.
Similarly, each is compared with the difference tables of CT1 to CT3 in FIG. 7, and those having exactly the same data are determined as the leakage circuit. If this match is determined,
As in the case of the first embodiment, the earth leakage circuit selecting means 1
2 determines a leakage circuit from among the plurality of branch wirings 200 based on the comparison result.

【0029】[0029]

【発明の効果】本発明においては、幹線に流れる零相電
流及び分岐線の一極側電線に流れる負荷電流を各々検出
し、この零相電流と負荷電流との各変化分電流のベクト
ル量を比較し、この比較結果に基づいて複数の分岐回路
中の漏電回路を検出するようにしているので、漏電の発
生と復旧を繰り返す間欠漏電状態をベクトル量の変化量
として検出できることとなり、複数の分岐回路中から間
欠漏電の漏電回路を確実且つ迅速に特定できるという効
果を奏する。また、比較的高価な零相変流器を分岐回路
毎に使用せず、安価な変流器が使用できる。
According to the present invention, the zero-phase current flowing through the main line and the load current flowing through the one-sided electric wire of the branch line are detected, and the vector amount of the current corresponding to the change between the zero-phase current and the load current is detected. Since the comparison is made and the leakage circuit in the plurality of branch circuits is detected based on the comparison result, an intermittent leakage state in which the occurrence and restoration of the leakage are repeated can be detected as a change amount of the vector amount, and the plurality of branch circuits can be detected. There is an effect that the leakage circuit of the intermittent leakage can be reliably and quickly identified from the circuit. In addition, a relatively expensive zero-phase current transformer is not used for each branch circuit, and an inexpensive current transformer can be used.

【0030】また、本発明においては、幹線の零相電流
及び分岐線の負荷電流を、所定のサンプリングで検出
し、この各サンプリングデータに基づいて1サイクル毎
に比較するようにしているので、各サンプリングデータ
の変化パターンで変化分電流のベクトル量の推移を簡易
に検出できることとなり、より迅速且つ正確に間欠漏電
の漏電回路を特定できるという効果を有する。
In the present invention, the zero-phase current of the main line and the load current of the branch line are detected by predetermined sampling, and are compared every cycle based on the respective sampling data. The change of the vector amount of the change current can be easily detected based on the change pattern of the sampling data, and there is an effect that the leakage circuit of the intermittent leakage can be more quickly and accurately specified.

【0031】本発明においては、幹線に流れる零相電流
及び分岐線の一極側電線に流れる負荷電流を零相電流検
出手段及び負荷電流検出手段で各々検出し、この零相電
流と負荷電流との各変化分電流のベクトル量をベクトル
量比較手段で比較し、この比較結果に基づいて複数の分
岐回路中の漏電回路を漏電回路選別手段で選別するよう
にしているので、漏電の発生と復旧を繰り返す間欠漏電
状態をベクトル量の変化量として検出できることとな
り、複数の分岐回路中から間欠漏電の漏電回路を確実且
つ迅速に特定できるという効果を有する。
In the present invention, the zero-phase current flowing through the main line and the load current flowing through the one-pole side of the branch line are detected by the zero-phase current detecting means and the load current detecting means, respectively. The vector amount of each change current is compared by the vector amount comparison means, and the leakage circuits in the plurality of branch circuits are selected by the leakage circuit selection means based on the comparison result. Can be detected as the amount of change in the vector amount, and the leakage circuit of the intermittent leakage can be reliably and quickly specified from among a plurality of branch circuits.

【0032】また、本発明においては、幹線の零相電流
及び分岐線の負荷電流を、零相電流検出手段及び負荷電
流検出手段が所定のサンプリングで検出し、この各サン
プリングデータに基づいて1サイクル毎にベクトル量比
較手段が比較するようにしているので、各サンプリング
データの変化パターンで変化分電流のベクトル量の推移
を簡易に検出できることとなり、より迅速且つ正確に間
欠漏電の漏電回路を特定できるという効果を有する。
In the present invention, the zero-phase current of the main line and the load current of the branch line are detected by the zero-phase current detecting means and the load current detecting means by predetermined sampling, and one cycle is performed based on each sampling data. Since the vector amount comparison means makes a comparison every time, it is possible to easily detect the transition of the vector amount of the change current in the change pattern of each sampling data, and it is possible to more quickly and accurately specify the leakage circuit of the intermittent leakage. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る漏電回路検出装
置の全体概略構成図である。
FIG. 1 is an overall schematic configuration diagram of an earth leakage circuit detection device according to a first embodiment of the present invention.

【図2】図1記載の漏電回路検出装置の動作説明図であ
る。
FIG. 2 is a diagram illustrating the operation of the earth leakage circuit detection device shown in FIG.

【図3】本発明の第2の実施形態に係る漏電回路検出装
置の要部詳細ブロック図である。
FIG. 3 is a detailed block diagram of a main part of an earth leakage circuit detection device according to a second embodiment of the present invention.

【図4】図3に記載のサンプリング制御部におけるサン
プリング動作説明図である。
FIG. 4 is an explanatory diagram of a sampling operation in a sampling control unit shown in FIG. 3;

【図5】図3に記載のメモリ制御部における格納動作説
明図である。
FIG. 5 is an explanatory diagram of a storage operation in the memory control unit shown in FIG. 3;

【図6】図3に記載の比較部における比較動作説明図で
ある。
FIG. 6 is an explanatory diagram illustrating a comparison operation in the comparison unit illustrated in FIG. 3;

【図7】図3に記載の比較部におけるサンプリングデー
タ比較説明図である。
FIG. 7 is an explanatory diagram of comparison of sampling data in the comparison unit shown in FIG. 3;

【図8】従来の漏電回路検出装置を単線結線図によって
表現した全体回路図である。
FIG. 8 is an overall circuit diagram expressing a conventional earth leakage circuit detection device by a single-line diagram.

【図9】従来の他の漏電回路検出装置の全体回路図であ
る。
FIG. 9 is an overall circuit diagram of another conventional leakage circuit detection device.

【符号の説明】[Explanation of symbols]

1 装置本体 2 零相変流器(ZCT)2 3 分岐用変流器 4 メモリ 5 表示装置 11 ベクトル比較手段 11a アンプ 11b A/Dコンバータ 11c サンプリング制御部 11d メモリ制御部 11e 比較部 12 漏電回路選別手段 30 分岐用零相変流器 41、42 バッファメモリ 100 幹線配線 110 主幹漏電ブレーカ 200 分岐配線 201 課電側の各分岐単線 202 接地側の各分岐単線 203 銅バー 210 分岐ブレーカ 300 負荷 400 受信回路 401 スイッチ 402 記憶回路 403 表示回路 404 スイッチ制御回路 501 通電・漏電表示灯 502 通電検出回路 503 漏電検出回路 504 第1のスイッチング回路 505 第2スイッチング回路 506 電源回路 507 漏電点灯リセット手段 DESCRIPTION OF SYMBOLS 1 Device main body 2 Zero-phase current transformer (ZCT) 2 3 Branching current transformer 4 Memory 5 Display device 11 Vector comparison means 11a Amplifier 11b A / D converter 11c Sampling control unit 11d Memory control unit 11e Comparison unit 12 Earth leakage circuit selection Means 30 Zero-phase current transformer for branching 41, 42 Buffer memory 100 Main line 110 Main earth leakage breaker 200 Branch line 201 Each branch single line on the power application side 202 Each branch single line on the ground side 203 Copper bar 210 Branch breaker 300 Load 400 Receiving circuit 401 switch 402 storage circuit 403 display circuit 404 switch control circuit 501 energization / leakage indicator 502 energization detection circuit 503 leakage detection circuit 504 first switching circuit 505 second switching circuit 506 power supply circuit 507 leakage leakage lighting reset means

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月4日(2002.4.4)[Submission date] April 4, 2002 (2002.4.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

【手続補正6】[Procedure amendment 6]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図9[Correction target item name] Fig. 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図9】 FIG. 9

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 幹線に主幹漏電ブレーカが設置され、当
該主幹漏電ブレーカの後段で複数に分岐され、当該分岐
された分岐線における各一極側の電線に分岐ブレーカが
介装され、前記各分岐された各他極側の電線と分岐ブレ
ーカが介装された各一極側の電線とが負荷に接続される
回路の漏電を検出する漏電回路検出方法において、 前記幹線の零相電流を検出し、 前記各一極側の電線の各負荷電流を検出し、 前記検出された零相電流と各負荷電流とを各変化分電流
のベクトル量について各々比較し、 前記変化分電流のベクトル量が一致する前記負荷電流を
流す一極側の電線を漏電回路として検出することを特徴
とする漏電回路検出方法。
1. A main earth leakage breaker is installed on a main line, a plurality of branches are provided at a stage subsequent to the main earth leakage breaker, and a branch breaker is interposed in each one-pole-side electric wire in the branched branch line. In the earth leakage circuit detection method for detecting the earth leakage of a circuit in which each of the other-pole-side electric wires and each of the uni-pole-side electric wires having the branch breaker interposed are connected to a load, the zero-phase current of the main line is detected. Detecting each load current of the one-pole electric wire, comparing the detected zero-phase current and each load current with respect to the vector amount of each change current, the vector amounts of the change currents match. And detecting the one-sided electric wire through which the load current flows as a leakage circuit.
【請求項2】 前記請求項1に記載の漏電回路検出方法
において、 前記検出する零相電流及び負荷電流が、各々1サイクル
を複数のサンプリングデータとして検出され、 前記検出された零相電流のサンプリングデータと前記各
負荷側電流のサンプリングデータとを1サイクル毎に比
較することを特徴とする漏電回路検出方法。
2. The leakage circuit detection method according to claim 1, wherein the detected zero-phase current and load current are each detected as a plurality of sampling data in one cycle, and the detected zero-phase current is sampled. A method of detecting an earth leakage circuit, wherein data is compared with sampling data of each load side current every cycle.
【請求項3】 幹線に主幹漏電ブレーカが設置され、当
該主幹漏電ブレーカの後段で複数に分岐され、当該分岐
された分岐線における各一極側の電線に分岐ブレーカが
介装され、前記各分岐された各他極側の電線と分岐ブレ
ーカが介装された各一極側の電線とが負荷に接続される
回路の漏電を検出する漏電回路検出装置において、 前記幹線の零相電流を検出する零相電流検出手段と、 前記各一極側の電線の各負荷電流を検出する負荷電流検
出手段と、 前記検出された零相電流と各負荷電流とを各変化分電流
のベクトル量について各々比較するベクトル量比較手段
と、 前記変化分電流のベクトル量が一致する前記負荷電流を
流す一極側の電線を漏電回路として選別する漏電回路選
別手段とを備えることを特徴とする漏電回路検出装置。
3. A main earth leakage breaker is installed on a main line, the main earth leakage breaker is branched into a plurality of parts at a subsequent stage, and a branch breaker is interposed in each one-pole-side electric wire in the branched branch line. In the earth leakage circuit detection device that detects the earth leakage of a circuit in which each of the other pole-side electric wires and each of the unipolar-side electric wires having the branch breaker interposed are connected to a load, the zero-phase current of the main line is detected. Zero-phase current detection means, load current detection means for detecting each load current of the one-pole-side electric wire, and comparing the detected zero-phase current and each load current with respect to a vector amount of each change current. A leakage circuit detection device, comprising: a vector amount comparison unit that performs the load current matching the vector amount of the change current; and a leakage circuit selection unit that selects a single-pole-side electric wire through which the load current flows as a leakage circuit.
【請求項4】 前記請求項3に記載の漏電回路検出装置
において、 前記零相電流検出手段が零相電流を1サイクルについて
複数のサンプリングデータとして検出し、 前記負荷電流検出手段が各負荷電流を1サイクルについ
て複数のサンプリングデータとして検出し、 前記ベクトル量検出手段が検出された零相電流のサンプ
リングデータと前記各負荷側電流のサンプリングデータ
とを1サイクル毎に比較することを特徴とする漏電回路
検出装置。
4. The leakage circuit detection device according to claim 3, wherein the zero-phase current detection means detects the zero-phase current as a plurality of sampling data for one cycle, and the load current detection means detects each load current. An earth leakage circuit which detects a plurality of sampling data for one cycle, and wherein the vector amount detecting means compares the detected sampling data of the zero-phase current and the sampling data of each load-side current for each cycle. Detection device.
JP2001159593A 2001-05-28 2001-05-28 Leakage circuit detection method and apparatus Expired - Lifetime JP3636308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159593A JP3636308B2 (en) 2001-05-28 2001-05-28 Leakage circuit detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159593A JP3636308B2 (en) 2001-05-28 2001-05-28 Leakage circuit detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2002354656A true JP2002354656A (en) 2002-12-06
JP3636308B2 JP3636308B2 (en) 2005-04-06

Family

ID=19003138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159593A Expired - Lifetime JP3636308B2 (en) 2001-05-28 2001-05-28 Leakage circuit detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3636308B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674202B1 (en) 2005-06-01 2007-01-24 (주)제일피앤피 Distributing, cabinet panel
JP2015154501A (en) * 2014-02-10 2015-08-24 東京電力株式会社 Self power feeding type current measurement device
JP2015161666A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Leakage detector, leakage detection method, and program
JP2020046276A (en) * 2018-09-19 2020-03-26 日置電機株式会社 Assisting device, inspection system, and program for assist process
KR102124554B1 (en) * 2019-01-25 2020-06-18 한국전기안전공사 Real-time remote three-phase electrical equipment live-wire leakage monitoring apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674202B1 (en) 2005-06-01 2007-01-24 (주)제일피앤피 Distributing, cabinet panel
JP2015154501A (en) * 2014-02-10 2015-08-24 東京電力株式会社 Self power feeding type current measurement device
JP2015161666A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Leakage detector, leakage detection method, and program
JP2020046276A (en) * 2018-09-19 2020-03-26 日置電機株式会社 Assisting device, inspection system, and program for assist process
JP7184575B2 (en) 2018-09-19 2022-12-06 日置電機株式会社 Support equipment, inspection systems and programs for support processing
KR102124554B1 (en) * 2019-01-25 2020-06-18 한국전기안전공사 Real-time remote three-phase electrical equipment live-wire leakage monitoring apparatus and method

Also Published As

Publication number Publication date
JP3636308B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
AU2016200263B2 (en) Methods and apparatus for sensing ground leakage and automated self testing thereof
KR102050255B1 (en) Method and test device for testing wiring of transducers
US7103486B2 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
US20070159738A1 (en) Receptacle providing sustained excessive voltage protection
US20090085403A1 (en) Apparatus and method for reducing neutral line current using load switching method
CN106526429B (en) A kind of ground fault line selecting method with error correction
JP3636308B2 (en) Leakage circuit detection method and apparatus
US3982181A (en) Apparatus and method for tracing energized AC circuits
CN115097251B (en) Test system and method, control module and readable storage medium
EP1610431A2 (en) Method and system for identifying faulted phase
JP2010008269A (en) Electronic indicating instrument
KR100915243B1 (en) Test terminal board for watt-hour meter
JP2003270282A (en) Apparatus and method for testing main circuit phase detection
JP2020118544A (en) Ground fault direction determining device, ground fault direction determining system, ground fault direction determining method, and program
RU57018U1 (en) DEVICE FOR DETERMINING THE LOCATION OF DAMAGE TO THE ELECTRICAL VOLTAGE NETWORK OF 6 (10) -35 KV WITH ISOLATED OR COMPENSATED NEUTRAL
JP3121363B2 (en) Power distribution system
CN112731201B (en) Single-phase earth fault studying and judging method and system in transient zero sequence power direction
JP2002247748A (en) Short-circuit detector
JP2010151488A (en) Device and system for detecting ground fault
JP2006184090A (en) Method and device for measuring and circuit breaker
JP3732864B2 (en) System protection device test equipment
JP3286083B2 (en) Phase detection method
JPH043510B2 (en)
CN117590212A (en) User demarcation load switch testing method and device
CN106932663B (en) Measuring instrument of frequency conversion system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Ref document number: 3636308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term