JP2002353378A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002353378A
JP2002353378A JP2001151906A JP2001151906A JP2002353378A JP 2002353378 A JP2002353378 A JP 2002353378A JP 2001151906 A JP2001151906 A JP 2001151906A JP 2001151906 A JP2001151906 A JP 2001151906A JP 2002353378 A JP2002353378 A JP 2002353378A
Authority
JP
Japan
Prior art keywords
thickness
bonding material
die bonding
semiconductor element
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001151906A
Other languages
Japanese (ja)
Inventor
Shin Kiuchi
伸 木内
Hiroshi Tobisaka
浩志 鳶坂
Yoshinari Ikeda
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001151906A priority Critical patent/JP2002353378A/en
Publication of JP2002353378A publication Critical patent/JP2002353378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress thermal stress occurring in a semiconductor element and a die bonding material without adjusting the physical characteristic values of constituent members in a semiconductor device for joining the semiconductor element to a lead frame through the die bonding material and sealing it in a mold resin. SOLUTION: Thickness of the die bonding material 13 joining the lead frame 11 and the semiconductor element 12 is 40 μm or more, preferably 70 μm or more. In other words, the thickness of the semiconductor element 12 is 200 μm or less. The thickness of the die bonding material 13 is 40 μm or more, preferably 70 μm or more, and the thickness of the semiconductor element 12 is 200 μm or less. The thermal stress occurring in the semiconductor element 12 and the die bonding material 13 is suppressed by thickening the die bonding material 13 or by thinning the semiconductor element 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダイボンディング
材を介してリードフレームに半導体素子を接合し、それ
をモールド樹脂中に封入した半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a semiconductor element is joined to a lead frame via a die bonding material, and the semiconductor element is sealed in a molding resin.

【0002】[0002]

【従来の技術】モールド樹脂で封止された半導体装置で
は、初期的な内在応力、外部熱応力または発熱疲労等の
熱応力が発生する。内在応力は、樹脂モールド・キュア
後の冷却にともなう樹脂の硬化収縮により発生する。外
部熱応力は、使用環境温度変化による熱ストレスや、半
導体装置を配線基板に実装する際の温度変化による熱ス
トレスによって発生する。発熱疲労は、半導体素子のオ
ン/オフによる発熱の繰り返しによって発生する。この
ような熱応力は、ダイボンディング材の疲労による熱抵
抗特性の劣化、半導体素子表面のアルミ電極スライド
(外部環境、熱ストレスにより樹脂からシリコンチップ
状にストレスが印加されチップ上の配線材料であるアル
ミがスライド(移動)したりすること)、チップ保護膜
のクラック、またはチップクラック等の問題を引き起こ
す原因となる。そこで、これらの問題の発生を防止する
ため、従来は、モールド樹脂、リードフレーム、半導体
素子およびダイボンディング材等について、熱膨張係数
や弾性率等の物理特性値を適宜調整し、それによって熱
応力が小さくなるようにしている。
2. Description of the Related Art In a semiconductor device sealed with a mold resin, an initial intrinsic stress, an external thermal stress, or a thermal stress such as an exothermic fatigue is generated. Intrinsic stress is generated due to resin shrinkage due to cooling after resin molding and curing. The external thermal stress is generated due to a thermal stress due to a change in a use environment temperature or a thermal stress due to a temperature change when a semiconductor device is mounted on a wiring board. Heat generation fatigue is caused by repetition of heat generation due to ON / OFF of a semiconductor element. Such thermal stress is caused by deterioration of the thermal resistance characteristic due to fatigue of the die bonding material, aluminum electrode slide on the surface of the semiconductor element (a stress is applied from a resin to a silicon chip by a resin due to external environment and thermal stress, and is a wiring material on the chip. This causes problems such as sliding (moving) of aluminum), cracking of the chip protective film, or chip cracking. Therefore, in order to prevent the occurrence of these problems, conventionally, the physical properties of the molding resin, the lead frame, the semiconductor element, the die bonding material, etc., such as the coefficient of thermal expansion and the elastic modulus, are appropriately adjusted, and thereby the thermal stress is reduced. Is made smaller.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たようにモールド樹脂やリードフレームや半導体素子や
ダイボンディング材等の熱膨張係数や弾性率等の物理特
性値の調整をおこなうと、耐熱性や熱伝導率や機械強度
等の他の特性の低下を招来するという問題点がある。
However, as described above, when the physical properties such as the thermal expansion coefficient and the elastic modulus of the mold resin, the lead frame, the semiconductor element, the die bonding material, and the like are adjusted, the heat resistance and the heat resistance are reduced. There is a problem in that other characteristics such as conductivity and mechanical strength are reduced.

【0004】本発明は、上記問題点に鑑みてなされたも
のであって、ダイボンディング材を介してリードフレー
ムに半導体素子を接合し、それをモールド樹脂中に封入
した半導体装置において、その半導体装置を構成する部
材の物理特性値の調整をおこなうことなく、半導体素子
やダイボンディング材に発生する熱応力を抑制すること
が可能な構造を有する半導体装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of the above-described problems, and relates to a semiconductor device in which a semiconductor element is joined to a lead frame via a die bonding material and the semiconductor element is sealed in a mold resin. It is an object of the present invention to provide a semiconductor device having a structure capable of suppressing a thermal stress generated in a semiconductor element or a die bonding material without adjusting a physical property value of a member constituting the semiconductor device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる半導体装置は、リードフレームと半
導体素子とを接合するダイボンディング材の厚さを40
μm以上、好ましくは70μm以上とするか、または半
導体素子の厚さを200μm以下とするか、あるいはそ
れらを組み合わせることを特徴とする。
In order to achieve the above object, a semiconductor device according to the present invention has a die bonding material for joining a lead frame and a semiconductor element having a thickness of 40 mm.
μm or more, preferably 70 μm or more, or the thickness of the semiconductor element is 200 μm or less, or a combination thereof.

【0006】このように、ダイボンディング材を厚くす
るか、半導体素子を薄くすることによって、半導体素子
やダイボンディング材に発生する熱応力が小さくなる。
その理由について、図1に示すモデルを用いて説明す
る。このモデルは、第1の物質1(縦弾性定数:E1、
熱膨張係数:α1、長さ:L、厚さ:t1)と第2の物
質2(縦弾性定数:E2、熱膨張係数:α2、長さ:
L、厚さ:t2)とを接合材3(厚さ:h)により接合
したものである。このモデルについて、Gを横弾性定数
とすると、温度Tによる歪みγは一般的につぎの式
(1)で表される。
As described above, by increasing the thickness of the die bonding material or reducing the thickness of the semiconductor element, the thermal stress generated in the semiconductor element and the die bonding material is reduced.
The reason will be described using the model shown in FIG. This model is based on the first substance 1 (longitudinal elastic constant: E1,
Thermal expansion coefficient: α1, length: L, thickness: t1) and second substance 2 (longitudinal elastic constant: E2, thermal expansion coefficient: α2, length:
L, thickness: t2) with the joining material 3 (thickness: h). In this model, when G is a transverse elastic constant, the strain γ due to the temperature T is generally expressed by the following equation (1).

【0007】 γ=(L/2)×((α2−α1)ΔT/(√A×h))・・・(1) ただし、A=(G/h)×((1/(E2×t2))+
(1/(E1×t1)))
Γ = (L / 2) × ((α2-α1) ΔT / (√A × h)) (1) where A = (G / h) × ((1 / (E2 × t2) )) +
(1 / (E1 × t1)))

【0008】ここで、第1の物質1をリードフレーム、
第2の物質2を半導体素子、接合材3をダイボンディン
グ材とすると、上記式(1)より明らかなように、ダイ
ボンディング材の厚さ(h)を大きくするか、半導体素
子の厚さ(t2)を小さくするか、またはダイボンディ
ング材を厚くし、かつ半導体素子を薄くすれば、ダイボ
ンディング材によりリードフレームに半導体素子を接合
した物体の温度による歪み(γ)が小さくなる。したが
って、この物体に発生する熱応力が小さくなる。
[0008] Here, the first substance 1 is a lead frame,
Assuming that the second substance 2 is a semiconductor element and the bonding material 3 is a die bonding material, the thickness (h) of the die bonding material is increased or the thickness of the semiconductor element ( If t2) is made smaller, or the die bonding material is made thicker and the semiconductor element is made thinner, the distortion (γ) due to temperature of the object in which the semiconductor element is joined to the lead frame by the die bonding material becomes smaller. Therefore, thermal stress generated in the object is reduced.

【0009】この発明によれば、ダイボンディング材の
厚さが40μm以上、好ましくは70μm以上であるた
め、半導体素子やダイボンディング材に発生する熱歪み
や熱応力が小さくなる。また、半導体素子の厚さが20
0μm以下である場合も同様に、半導体素子やダイボン
ディング材に発生する熱歪みや熱応力が小さくなる。ダ
イボンディング材の厚さが40μm以上、好ましくは7
0μm以上であり、かつ半導体素子の厚さが200μm
以下であれば、より一層、半導体素子やダイボンディン
グ材に発生する熱歪みや熱応力が小さくなる。
According to the present invention, since the thickness of the die bonding material is 40 μm or more, preferably 70 μm or more, thermal distortion and thermal stress generated in the semiconductor element and the die bonding material are reduced. Further, when the thickness of the semiconductor element is 20
Similarly, when the thickness is 0 μm or less, thermal distortion and thermal stress generated in the semiconductor element and the die bonding material are reduced. The thickness of the die bonding material is 40 μm or more, preferably 7
0 μm or more and the thickness of the semiconductor element is 200 μm
If it is less than the above, thermal strain and thermal stress generated in the semiconductor element and the die bonding material are further reduced.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しつつ詳細に説明する。図2は、本発明
にかかる半導体装置の一例の概略を示す縦断面図であ
る。この半導体装置は、リードフレーム11に半導体素
子12をダイボンディング材13により接合し、それを
モールド樹脂14中に封入したものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 is a longitudinal sectional view schematically showing an example of the semiconductor device according to the present invention. In this semiconductor device, a semiconductor element 12 is joined to a lead frame 11 by a die bonding material 13, which is sealed in a mold resin 14.

【0011】半導体素子12の厚さt3は200μm以
下である。半導体素子12の厚さの下限値については、
特に限定する必要はないが、この半導体装置を実際に使
用する際に発生する応力により、半導体素子12が劈開
に至ってしまう応力に応じて決まる。つまり、半導体素
子12は、実際の使用時に発生する応力によって劈開し
てしまわない程度の厚さを少なくとも有していればよ
い。
The thickness t3 of the semiconductor element 12 is 200 μm or less. Regarding the lower limit of the thickness of the semiconductor element 12,
Although there is no particular limitation, the stress generated when the semiconductor device is actually used is determined according to the stress that causes the semiconductor element 12 to be cleaved. That is, the semiconductor element 12 only needs to have at least a thickness such that the semiconductor element 12 is not cleaved by stress generated during actual use.

【0012】特に限定しないが、たとえば半導体素子1
2は30μm程度〜200μmの厚さを有していればよ
い。この数値限定の具体的な根拠については後述する
が、半導体素子12がこのような厚さを有していること
により、半導体素子12またはダイボンディング材13
に発生する熱応力が従来よりも小さくなる。また、たと
えば半導体素子12が縦型構造のパワーデバイスで構成
されている場合には、従来の500μm厚を200μm
厚にすることによって、パワーデバイスのオン抵抗が従
来に比べて8%低減される。
Although not particularly limited, for example, the semiconductor device 1
2 only needs to have a thickness of about 30 μm to 200 μm. Although the specific grounds for this numerical limitation will be described later, since the semiconductor element 12 has such a thickness, the semiconductor element 12 or the die bonding material 13 may be used.
The thermal stress generated at the time is smaller than before. For example, when the semiconductor element 12 is formed of a power device having a vertical structure, the conventional thickness of 500 μm is reduced to 200 μm.
By increasing the thickness, the on-resistance of the power device is reduced by 8% as compared with the related art.

【0013】ダイボンディング材13の厚さt4は40
μm以上、好ましくは70μm以上である。この数値限
定の具体的な根拠については後述する。ダイボンディン
グ材13としては、たとえば熱膨張係数が20ppm/
℃以上、好ましくは20〜90ppm/℃のものが好適
である。特に限定しないが、一例として、熱膨張係数が
29.1ppm/℃のPb半田、熱膨張係数が26.6
ppm/℃のSn半田、熱膨張係数が28.7ppm/
℃の93.5Pb−5Sn−1.5Ag半田、熱膨張係
数が37ppm/℃のSn−Ag半田、熱膨張係数が8
5ppm/℃のAgペーストなどが挙げられる。
The thickness t4 of the die bonding material 13 is 40
μm or more, preferably 70 μm or more. The specific basis for this numerical limitation will be described later. The die bonding material 13 has, for example, a thermal expansion coefficient of 20 ppm /
C. or higher, preferably 20 to 90 ppm / ° C. Although not particularly limited, as an example, Pb solder having a thermal expansion coefficient of 29.1 ppm / ° C., and a thermal expansion coefficient of 26.6
ppm / ° C Sn solder with a coefficient of thermal expansion of 28.7 ppm /
93.5Pb-5Sn-1.5Ag solder at 37 ° C., Sn-Ag solder having a thermal expansion coefficient of 37 ppm / ° C., thermal expansion coefficient of 8
Ag paste at 5 ppm / ° C. may, for example, be mentioned.

【0014】半導体装置の製造プロセスにおいて、ダイ
ボンディング材13を上述した厚さに精度よく制御する
ため、たとえばダイボンディング材13の供給量を従来
よりも多くしたり、またダイボンディング材13の供給
を2回おこなうなどによってダイボンディング材13の
供給量を最適化するとともに、スクラブ方向や、半導体
素子12とリードフレーム11との間隔を最適化する。
In the manufacturing process of the semiconductor device, in order to precisely control the die bonding material 13 to the above-described thickness, for example, the supply amount of the die bonding material 13 is increased or the supply of the die bonding material 13 is increased. The supply amount of the die bonding material 13 is optimized by performing the process twice, and the scrub direction and the interval between the semiconductor element 12 and the lead frame 11 are optimized.

【0015】つぎに、半導体素子12の厚さおよびダイ
ボンディング材13の厚さの数値限定理由について説明
する。これらの厚さの有効な範囲を求めるにあたって、
本発明者らは以下のような検討をおこなった。まず、本
発明者らは、ドレイン・ソース電圧VDSSが30V以
上、ドレイン電流が1A以上の縦型のMOSFETより
なるスイッチ素子と制御用ICとを同一のSi半導体基
板上に集積した、いわゆるインテリジェント・パワー・
スイッチと呼ばれる3.4mm×2.5mmの大きさの
半導体素子を、厚さを変えて種々用意した。
Next, the reason for limiting the numerical values of the thickness of the semiconductor element 12 and the thickness of the die bonding material 13 will be described. In determining the effective range of these thicknesses,
The present inventors have conducted the following studies. First, the present inventors have proposed a so-called intelligent device in which a switch element composed of a vertical MOSFET having a drain-source voltage V DSS of 30 V or more and a drain current of 1 A or more and a control IC are integrated on the same Si semiconductor substrate. ·power·
Various types of semiconductor devices having a size of 3.4 mm × 2.5 mm called switches were prepared by changing the thickness.

【0016】インテリジェント・パワー・スイッチと
は、負荷短絡等の異常状態に対する検出・保護機能の制
御をICでおこなうものであり、その用途としては異常
状態に対する保護スイッチ素子のユニット側で対策する
ことが望まれる。たとえば、自動車の電装品である油圧
ソレノイドバルブの制御、ランプの制御等である。
An intelligent power switch is a device in which an IC detects and protects against an abnormal condition such as a load short circuit by using an IC. The application of the intelligent power switch is to take measures against the abnormal condition on the unit side of the protection switch element. desired. For example, control of a hydraulic solenoid valve, which is an electrical component of an automobile, control of a lamp, and the like are performed.

【0017】そして、これらの半導体素子をダイボンデ
ィング材の厚さを種々変えてリードフレームに接合し、
それらを樹脂モールドしたSOP−8パッケージ(代表
的な表面実装パッケージである)をサンプルとして用意
した。リードフレームは銅にニッケルメッキをしたもの
であり、ボンディング部分の大きさは3.8mm×2.
6mm、厚さは0.15mmであった。ダイボンディン
グ材として93.5Pb−5Sn−1.5Ag半田(熱
膨張係数:28.7ppm/℃)を用いた。
Then, these semiconductor elements are bonded to a lead frame by changing the thickness of the die bonding material in various ways,
An SOP-8 package (a typical surface mount package) obtained by resin molding them was prepared as a sample. The lead frame is made of nickel plated copper, and the size of the bonding portion is 3.8 mm × 2.
The thickness was 6 mm and the thickness was 0.15 mm. 93.5 Pb-5Sn-1.5Ag solder (thermal expansion coefficient: 28.7 ppm / ° C.) was used as a die bonding material.

【0018】用意したサンプルに対して、△Tc=90
℃、オンおよびオフをそれぞれ60秒、1W印加の条件
でパワーサイクル試験を実施した。そして、パワーサイ
クル試験中の内部発熱の繰り返しによる、ダイボンディ
ング材の繰り返し塑性変形による発熱疲労を評価するた
め、パワーサイクル40000サイクル後の熱抵抗を測
定し、パワーサイクル試験の開始時(パワーサイクル0
サイクル)の熱抵抗と比較し、その変化率を求めた。な
お、MOSFETのスイッチング特性と熱応力の発生と
の間には関連性はない。
For the prepared sample, ΔTc = 90
A power cycle test was performed under the conditions of 1 ° C., ON and OFF for 60 seconds and 1 W applied. Then, in order to evaluate the heat generation fatigue due to the repetitive plastic deformation of the die bonding material due to the repetition of internal heat generation during the power cycle test, the thermal resistance after a power cycle of 40,000 cycles was measured, and at the start of the power cycle test (power cycle 0).
Cycle), and the rate of change was determined. Note that there is no relationship between the switching characteristics of the MOSFET and the occurrence of thermal stress.

【0019】はじめにダイボンディング材の厚さを40
μm以上とする根拠を説明する。半導体素子の厚さを2
00μmとし、ダイボンディング材の厚さが異なる複数
のサンプルについてパワーサイクル試験をおこなった結
果を図3に示す。図3は、パワーサイクル試験により得
られたダイボンディング材の厚さと、パワーサイクル4
0000サイクル後の熱抵抗変化率との関係を示す特性
図である。
First, the thickness of the die bonding material is set to 40.
The reason for setting the thickness to μm or more will be described. Semiconductor device thickness 2
FIG. 3 shows the results of power cycle tests performed on a plurality of samples having a thickness of 00 μm and different thicknesses of the die bonding material. FIG. 3 shows the thickness of the die bonding material obtained by the power cycle test and the power cycle 4
FIG. 10 is a characteristic diagram showing a relationship with a thermal resistance change rate after 0000 cycles.

【0020】ここで、パワーサイクル試験の不良判定基
準として、仮にパワーサイクル40000サイクル後に
熱抵抗が20%以上増加したら不良であるという判定基
準を設けるとすると、図3より明らかにダイボンディン
グ材の厚さが40μm以上であれば40000サイクル
のパワーサイクル耐量を達成できることがわかる。ま
た、ダイボンディング材がより厚くなれば、40000
サイクルを超えるパワーサイクル耐量を達成できること
がわかる。
Here, as a failure criterion for the power cycle test, if a criterion that the thermal resistance increases by 20% or more after a power cycle of 40000 cycles is determined to be defective, the thickness of the die bonding material is clearly shown in FIG. It can be seen that a power cycle tolerance of 40,000 cycles can be achieved if the thickness is 40 μm or more. In addition, if the die bonding material becomes thicker, 40,000
It can be seen that a power cycle capability exceeding the cycle can be achieved.

【0021】たとえば、図3より、ダイボンディング材
の厚さが70μm以上であればパワーサイクル4000
0サイクル後の熱抵抗の増加率はおおよそ11%以下で
ある。また、ダイボンディング材の厚さが90μm以上
であればパワーサイクル40000サイクル後の熱抵抗
の増加率はおおよそ8%以下である。また、ダイボンデ
ィング材の厚さが100μm以上であればパワーサイク
ル40000サイクル後の熱抵抗の増加率はおおよそ6
%以下である。これより、ダイボンディング材の厚さが
70μm以上あれば、40000サイクルのパワーサイ
クル耐量の保証が可能となることがわかる。
For example, as shown in FIG. 3, if the thickness of the die bonding material is 70 μm or more, power cycle 4000
The rate of increase in thermal resistance after 0 cycles is about 11% or less. When the thickness of the die bonding material is 90 μm or more, the rate of increase in thermal resistance after 40000 power cycles is about 8% or less. If the thickness of the die bonding material is 100 μm or more, the rate of increase in thermal resistance after 40000 power cycles is approximately 6
% Or less. From this, it is understood that if the thickness of the die bonding material is 70 μm or more, it is possible to guarantee a power cycle resistance of 40000 cycles.

【0022】ダイボンディング材の厚さを40μm以上
とするもう一つの理由を説明する。図4〜図8は、ダイ
ボンディング材の厚さを20μm(図4)、従来と同じ
厚さの30μm(図5)、40μm(図6)、50μm
(図7)、70μm(図8)および100μm(図9)
として、半導体素子とダイボンディング材との界面にお
ける応力σyyの分布をシミュレーションした結果であ
る。この結果から、従来のダイボンディング材の厚さは
30μmであるが、この厚さのときの垂直応力が4.5
kgf/mm2であるのに対して、たとえばダイボンデ
ィング材の厚さを100μmとすれば、垂直応力は3.
9kgf/mm2となり、垂直応力が13%低減される
ことがわかる。これは、パワーサイクル耐量をさらに2
0000サイクル向上させる効果に相当する。
Another reason for setting the thickness of the die bonding material to 40 μm or more will be described. FIGS. 4 to 8 show that the thickness of the die bonding material is 20 μm (FIG. 4), and the thickness is 30 μm (FIG. 5), 40 μm (FIG. 6), and 50 μm which are the same as the conventional thickness.
(FIG. 7), 70 μm (FIG. 8) and 100 μm (FIG. 9)
Is a simulation result of the distribution of stress σyy at the interface between the semiconductor element and the die bonding material. From this result, the thickness of the conventional die bonding material is 30 μm, but the vertical stress at this thickness is 4.5 μm.
whereas a kgf / mm 2, for example, when the thickness of the die bonding material and 100 [mu] m, the normal stress 3.
9 kgf / mm 2 , indicating that the vertical stress is reduced by 13%. This increases the power cycle capability by two more.
This is equivalent to the effect of improving 0000 cycles.

【0023】また、実際に半導体装置を製造する際の工
程能力を考慮し、その6σを許容範囲とすれば、ダイボ
ンディング材の厚さの設計値を100μmとして製造を
おこなえば、ダイボンディング材の厚さがもっとも小さ
くなる方向にばらついたとしても40μmの厚さを確保
することができる。したがって、ダイボンディング材の
厚さの設計値を100μmとし、実際に製造して得られ
た半導体装置におけるダイボンディング材の厚さを40
μm以上とするのが妥当である。
In consideration of the process capability in actually manufacturing the semiconductor device, if 6 σ is set as an allowable range, if the design value of the thickness of the die bonding material is set to 100 μm, and if the die bonding material is manufactured, Even if the thickness varies in the direction in which the thickness becomes the smallest, a thickness of 40 μm can be secured. Therefore, the design value of the thickness of the die bonding material is set to 100 μm, and the thickness of the die bonding material in the semiconductor device actually manufactured is set to 40 μm.
It is appropriate that the thickness be at least μm.

【0024】半導体素子の厚さを200μm以下とする
根拠を説明する。ダイボンディング材の厚さを100μ
mとし、半導体素子の厚さが異なる複数のサンプルにつ
いてパワーサイクル試験をおこなった結果を図10に示
す。図10は、パワーサイクル試験により得られた半導
体素子の厚さと、パワーサイクル40000サイクル後
の熱抵抗変化率との関係を示す特性図である。図10よ
り明らかなように、半導体素子が薄くなるほど熱抵抗変
化率が小さくなり、パワーサイクル耐量が向上すること
がわかる。
The grounds for setting the thickness of the semiconductor element to 200 μm or less will be described. 100μm thickness of die bonding material
FIG. 10 shows the results of a power cycle test performed on a plurality of samples having different thicknesses of the semiconductor element, where m is a number. FIG. 10 is a characteristic diagram showing the relationship between the thickness of the semiconductor element obtained by the power cycle test and the rate of change in thermal resistance after 40000 power cycles. As is clear from FIG. 10, as the semiconductor element becomes thinner, the rate of change in thermal resistance becomes smaller, and the power cycle capability is improved.

【0025】また、図11〜図13は、半導体素子の厚
さを180μm(図11)、240μm(図12)およ
び従来と同じ厚さの280μm(図13)として、半導
体素子とダイボンディング材との界面における応力σy
yの分布をシミュレーションした結果である。この結果
から、従来の半導体素子の厚さは280μmであるが、
この厚さのときの垂直応力が4.4kgf/mm2であ
るのに対して、たとえば半導体素子の厚さを180μm
とすれば、垂直応力は4.1kgf/mm2となり、垂
直応力が6%低減されることがわかる。これは、パワー
サイクル耐量をさらに10000サイクル向上させる効
果に相当する。
FIGS. 11 to 13 show that the thickness of the semiconductor element is 180 μm (FIG. 11), 240 μm (FIG. 12) and 280 μm (FIG. 13) having the same thickness as that of the conventional semiconductor element. Σy at the interface of
It is a result of simulating the distribution of y. From this result, the thickness of the conventional semiconductor device is 280 μm,
While the vertical stress at this thickness is 4.4 kgf / mm 2 , for example, the thickness of the semiconductor element is 180 μm
Then, the vertical stress is 4.1 kgf / mm 2 , which indicates that the vertical stress is reduced by 6%. This is equivalent to the effect of further improving the power cycle capability by 10,000 cycles.

【0026】ところで、半導体素子およびダイボンディ
ング材のうちの一方のみが上述した厚さの範囲を満たし
ていてもよいし、両方とも上述した範囲内の厚さであっ
てもよい。ただし、ダイボンディング材の厚さが70μ
m以上の場合に、40000サイクル以上のパワーサイ
クル耐量を確保するためには、半導体素子の厚さは20
0μm以下である必要がある。
Incidentally, only one of the semiconductor element and the die bonding material may satisfy the above-described thickness range, or both may have a thickness within the above-described range. However, the thickness of the die bonding material is 70μ.
m or more, in order to ensure a power cycle capability of 40,000 cycles or more, the thickness of the semiconductor element must be 20 or more.
It needs to be 0 μm or less.

【0027】上述した実施の形態によれば、ダイボンデ
ィング材13の厚さが40μm以上、好ましくは70μ
m以上であるため、半導体素子12やダイボンディング
材13に発生する熱歪みや熱応力が小さくなる。また、
半導体素子12の厚さが200μm以下である場合に
も、半導体素子12やダイボンディング材13に発生す
る熱歪みや熱応力は小さくなる。ダイボンディング材1
3の厚さが40μm以上、好ましくは70μm以上であ
り、かつ半導体素子12の厚さが200μm以下であれ
ば、より一層、半導体素子12やダイボンディング材1
3に発生する熱歪みや熱応力が小さくなる。したがっ
て、ダイボンディング材13、リードフレーム11、半
導体素子12およびモールド樹脂14などの、半導体装
置を構成する部材の物理特性値を調整しなくても、半導
体素子12やダイボンディング材13に発生する熱応力
を抑制することができる。
According to the above-described embodiment, the thickness of the die bonding material 13 is 40 μm or more, preferably 70 μm.
m or more, thermal distortion and thermal stress generated in the semiconductor element 12 and the die bonding material 13 are reduced. Also,
Even when the thickness of the semiconductor element 12 is 200 μm or less, thermal distortion and thermal stress generated in the semiconductor element 12 and the die bonding material 13 are reduced. Die bonding material 1
3 is 40 μm or more, preferably 70 μm or more, and the thickness of the semiconductor element 12 is 200 μm or less.
3, the thermal strain and thermal stress generated in the substrate 3 are reduced. Therefore, the heat generated in the semiconductor element 12 and the die bonding material 13 can be adjusted without adjusting the physical property values of the members constituting the semiconductor device, such as the die bonding material 13, the lead frame 11, the semiconductor element 12, and the mold resin 14. Stress can be suppressed.

【0028】以上において本発明は、半導体装置はSO
P−8パッケージを用いた表面実装デバイスに限らず、
半導体素子12とリードフレーム11とをダイボンディ
ング材13により接合した構造の半導体装置に広く応用
可能である。また、実施の形態においては、発熱疲労を
例にして説明したが、本発明は発熱疲労だけでなく、内
在応力や外部熱応力の抑制にも有効である。また、半導
体素子はインテリジェント・パワー・スイッチだけでな
く、単体のMOSFETまたはバイポーラトランジスタ
等のスイッチング素子やダイオードにも有効である。
In the above, according to the present invention, the semiconductor device is an SO
Not limited to surface mount devices using P-8 package,
The present invention can be widely applied to a semiconductor device having a structure in which a semiconductor element 12 and a lead frame 11 are joined by a die bonding material 13. Further, in the embodiment, the description has been given of the example of the heat generation fatigue. However, the present invention is effective not only for the heat generation fatigue but also for suppressing the internal stress and the external heat stress. The semiconductor element is effective not only for an intelligent power switch but also for a switching element such as a single MOSFET or a bipolar transistor or a diode.

【0029】[0029]

【発明の効果】本発明によれば、ダイボンディング材の
厚さが40μm以上、好ましくは70μm以上である
か、または半導体素子の厚さが200μm以下であるた
め、半導体素子やダイボンディング材に発生する熱歪み
や熱応力が小さくなる。ダイボンディング材の厚さが4
0μm以上、好ましくは70μm以上であり、かつ半導
体素子の厚さが200μm以下であれば、より一層、半
導体素子やダイボンディング材に発生する熱歪みや熱応
力が小さくなる。したがって、ダイボンディング材、リ
ードフレーム、半導体素子およびモールド樹脂などの、
半導体装置を構成する部材の物理特性値を調整しなくて
も、半導体素子やダイボンディング材に発生する熱応力
を抑制することができる。
According to the present invention, since the thickness of the die bonding material is 40 μm or more, preferably 70 μm or more, or the thickness of the semiconductor element is 200 μm or less, the thickness of the semiconductor element or the die bonding material is reduced. Thermal strain and thermal stress are reduced. Die bonding material thickness is 4
When the thickness is 0 μm or more, preferably 70 μm or more, and the thickness of the semiconductor element is 200 μm or less, thermal distortion and thermal stress generated in the semiconductor element and the die bonding material are further reduced. Therefore, such as die bonding material, lead frame, semiconductor element and mold resin,
The thermal stress generated in the semiconductor element and the die bonding material can be suppressed without adjusting the physical property values of the members constituting the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2つの物質を接合材により接合した物体のモデ
ルを示す概略図である。
FIG. 1 is a schematic diagram showing a model of an object in which two substances are joined by a joining material.

【図2】本発明にかかる半導体装置の一例の概略を示す
縦断面図である。
FIG. 2 is a longitudinal sectional view schematically showing an example of a semiconductor device according to the present invention.

【図3】パワーサイクル試験により得られたダイボンデ
ィング材の厚さと熱抵抗変化率との関係を示す特性図で
ある。
FIG. 3 is a characteristic diagram showing a relationship between a thickness of a die bonding material obtained by a power cycle test and a rate of change in thermal resistance.

【図4】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを20μm)との界面における応力σy
yの分布をシミュレーションした結果を示す特性図であ
る。
FIG. 4 shows a stress σy at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 20 μm).
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of y.

【図5】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを30μm)との界面における応力σy
yの分布をシミュレーションした結果を示す特性図であ
る。
FIG. 5 shows a stress σy at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 30 μm).
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of y.

【図6】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを40μm)との界面における応力σy
yの分布をシミュレーションした結果を示す特性図であ
る。
FIG. 6 shows a stress σy at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 40 μm).
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of y.

【図7】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを50μm)との界面における応力σy
yの分布をシミュレーションした結果を示す特性図であ
る。
FIG. 7 shows a stress σy at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 50 μm).
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of y.

【図8】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを70μm)との界面における応力σy
yの分布をシミュレーションした結果を示す特性図であ
る。
FIG. 8 shows a stress σy at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 70 μm).
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of y.

【図9】半導体素子とダイボンディング材(ダイボンデ
ィング材の厚さを100μm)との界面における応力σ
yyの分布をシミュレーションした結果を示す特性図で
ある。
FIG. 9 shows a stress σ at an interface between a semiconductor element and a die bonding material (the thickness of the die bonding material is 100 μm).
It is a characteristic view showing the result of having simulated the distribution of yy.

【図10】パワーサイクル試験により得られた半導体素
子の厚さと熱抵抗変化率との関係を示す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between a thickness of a semiconductor element obtained by a power cycle test and a rate of change in thermal resistance.

【図11】半導体素子(半導体素子の厚さを180μ
m)とダイボンディング材との界面における応力σyy
の分布をシミュレーションした結果を示す特性図であ
る。
FIG. 11 shows a semiconductor element (the thickness of the semiconductor element is set to 180 μm).
m) and the stress σyy at the interface between the die bonding material
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of.

【図12】半導体素子(半導体素子の厚さを240μ
m)とダイボンディング材との界面における応力σyy
の分布をシミュレーションした結果を示す特性図であ
る。
FIG. 12 shows a semiconductor element (the thickness of the semiconductor element is 240 μm).
m) and the stress σyy at the interface between the die bonding material
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of.

【図13】半導体素子(半導体素子の厚さを280μ
m)とダイボンディング材との界面における応力σyy
の分布をシミュレーションした結果を示す特性図であ
る。
FIG. 13 shows a semiconductor element (the thickness of the semiconductor element is 280 μm).
m) and the stress σyy at the interface between the die bonding material
FIG. 9 is a characteristic diagram showing a result of simulating the distribution of.

【符号の説明】[Explanation of symbols]

11 リードフレーム 12 半導体素子 13 ダイボンディング材 14 モールド樹脂 DESCRIPTION OF SYMBOLS 11 Lead frame 12 Semiconductor element 13 Die bonding material 14 Mold resin

フロントページの続き (72)発明者 池田 良成 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4M109 AA01 BA01 CA21 DB14 DB17Continuation of the front page (72) Inventor Yoshinari Ikeda 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. 4M109 AA01 BA01 CA21 DB14 DB17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ダイボンディング材を介してリードフレ
ームに半導体素子を接合し、それをモールド樹脂中に封
入した半導体装置であって、 前記ダイボンディング材の厚さは40μm以上であるこ
とを特徴とする半導体装置。
1. A semiconductor device in which a semiconductor element is joined to a lead frame via a die bonding material and sealed in a mold resin, wherein the thickness of the die bonding material is 40 μm or more. Semiconductor device.
【請求項2】 ダイボンディング材を介してリードフレ
ームに半導体素子を接合し、それをモールド樹脂中に封
入した半導体装置であって、 前記半導体素子の厚さは200μm以下であることを特
徴とする半導体装置。
2. A semiconductor device in which a semiconductor element is bonded to a lead frame via a die bonding material, and the semiconductor element is sealed in a mold resin, wherein the thickness of the semiconductor element is 200 μm or less. Semiconductor device.
【請求項3】 ダイボンディング材を介してリードフレ
ームに半導体素子を接合し、それをモールド樹脂中に封
入した半導体装置であって、 前記ダイボンディング材の厚さは40μm以上であり、 前記半導体素子の厚さは200μm以下であることを特
徴とする半導体装置。
3. A semiconductor device in which a semiconductor element is joined to a lead frame via a die bonding material, and the semiconductor element is sealed in a mold resin, wherein the thickness of the die bonding material is 40 μm or more, A semiconductor device having a thickness of 200 μm or less.
JP2001151906A 2001-05-22 2001-05-22 Semiconductor device Pending JP2002353378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151906A JP2002353378A (en) 2001-05-22 2001-05-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151906A JP2002353378A (en) 2001-05-22 2001-05-22 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011268663A Division JP2012049575A (en) 2011-12-08 2011-12-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2002353378A true JP2002353378A (en) 2002-12-06

Family

ID=18996658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151906A Pending JP2002353378A (en) 2001-05-22 2001-05-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2002353378A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149378A (en) * 1987-12-04 1989-06-12 Shinko Electric Ind Co Ltd Lead mounting mechanism for ceramic base substance
JPH0344040A (en) * 1989-07-12 1991-02-25 Hitachi Ltd Semiconductor device and its manufacture
JPH03116842A (en) * 1989-09-29 1991-05-17 Hitachi Ltd Bonding and device therefor
JPH04225575A (en) * 1990-12-27 1992-08-14 Matsushita Electric Ind Co Ltd Photovoltaic power device
JPH04270092A (en) * 1991-01-21 1992-09-25 Mitsubishi Electric Corp Solder material and joining method
JPH06104575A (en) * 1992-09-22 1994-04-15 Sumitomo Kinzoku Ceramics:Kk Ceramic circuit board provided with resistor
JPH06120283A (en) * 1992-09-30 1994-04-28 Nec Kansai Ltd Semiconductor pellet and mounting method thereof
JPH06125157A (en) * 1992-10-12 1994-05-06 Hokuriku Electric Ind Co Ltd Printed-circuit board
JPH0831871A (en) * 1994-07-11 1996-02-02 Ibiden Co Ltd Interface sealing film used for surface mount electronic device and surface mount structure
JPH08116007A (en) * 1994-10-13 1996-05-07 Nec Corp Semiconductor device
JPH08222585A (en) * 1995-02-14 1996-08-30 Nec Corp Semiconductor device
WO1998041354A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Method of solid-phase welding members
JPH11150135A (en) * 1997-11-17 1999-06-02 Nec Corp Conductive paste of superior thermal conductivity and electronic device
JP2000294519A (en) * 1999-04-09 2000-10-20 Oki Electric Ind Co Ltd Semiconductor device, manufacture of the semiconductor device and mounting method of the semiconductor device
WO2001024261A1 (en) * 1999-09-28 2001-04-05 Microchip Technology Incorporated Method for reducing die cracking in integrated circuits

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149378A (en) * 1987-12-04 1989-06-12 Shinko Electric Ind Co Ltd Lead mounting mechanism for ceramic base substance
JPH0344040A (en) * 1989-07-12 1991-02-25 Hitachi Ltd Semiconductor device and its manufacture
JPH03116842A (en) * 1989-09-29 1991-05-17 Hitachi Ltd Bonding and device therefor
JPH04225575A (en) * 1990-12-27 1992-08-14 Matsushita Electric Ind Co Ltd Photovoltaic power device
JPH04270092A (en) * 1991-01-21 1992-09-25 Mitsubishi Electric Corp Solder material and joining method
JPH06104575A (en) * 1992-09-22 1994-04-15 Sumitomo Kinzoku Ceramics:Kk Ceramic circuit board provided with resistor
JPH06120283A (en) * 1992-09-30 1994-04-28 Nec Kansai Ltd Semiconductor pellet and mounting method thereof
JPH06125157A (en) * 1992-10-12 1994-05-06 Hokuriku Electric Ind Co Ltd Printed-circuit board
JPH0831871A (en) * 1994-07-11 1996-02-02 Ibiden Co Ltd Interface sealing film used for surface mount electronic device and surface mount structure
JPH08116007A (en) * 1994-10-13 1996-05-07 Nec Corp Semiconductor device
JPH08222585A (en) * 1995-02-14 1996-08-30 Nec Corp Semiconductor device
WO1998041354A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Method of solid-phase welding members
JPH11150135A (en) * 1997-11-17 1999-06-02 Nec Corp Conductive paste of superior thermal conductivity and electronic device
JP2000294519A (en) * 1999-04-09 2000-10-20 Oki Electric Ind Co Ltd Semiconductor device, manufacture of the semiconductor device and mounting method of the semiconductor device
WO2001024261A1 (en) * 1999-09-28 2001-04-05 Microchip Technology Incorporated Method for reducing die cracking in integrated circuits

Similar Documents

Publication Publication Date Title
TWI384622B (en) Structure and method for self protection of power device
KR100811581B1 (en) Semiconductor device using bumps, method for fabricating same, and method for forming bumps
KR100264022B1 (en) Semiconductor device
US6873049B2 (en) Near hermetic power chip on board device and manufacturing method therefor
JPWO2012144070A1 (en) Semiconductor device
JP2008041752A (en) Semiconductor module, and radiation board for it
JP2003110064A (en) Semiconductor device
US10403559B2 (en) Power semiconductor device
DE112016005409T5 (en) POWER SEMICONDUCTOR DEVICE
US20170154835A1 (en) Electronic module and method of manufacturing the same
US20190371686A1 (en) Semiconductor device and method for manufacturing same
JP2000058589A (en) Semiconductor device and manufacture thereof
She et al. Thermal analysis and improvement of cascode GaN HEMT in stack-die structure
JP2021068783A (en) Semiconductor device
JP2000077603A (en) Semiconductor device and its manufacture
Sokolov et al. Reliability assessment of SiC power module stack based on thermo-structural analysis
JP2002353378A (en) Semiconductor device
US4984063A (en) Semiconductor device
Otto et al. Reliability investigation on sic bjt power module
JPH08115928A (en) Semiconductor device, and its manufacture
US9397053B2 (en) Molded device with anti-delamination structure providing multi-layered compression forces
US11043465B2 (en) Semiconductor device
JP2012049575A (en) Semiconductor device
Sankari et al. Degradation Mode Analysis of Different Bonding Technologies of SiC Power Semiconductors Stressed by Active Power Cycling
CN100466209C (en) Packaging system for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101209

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208