JP2002350488A - Direct current grounding point searching method - Google Patents

Direct current grounding point searching method

Info

Publication number
JP2002350488A
JP2002350488A JP2001160388A JP2001160388A JP2002350488A JP 2002350488 A JP2002350488 A JP 2002350488A JP 2001160388 A JP2001160388 A JP 2001160388A JP 2001160388 A JP2001160388 A JP 2001160388A JP 2002350488 A JP2002350488 A JP 2002350488A
Authority
JP
Japan
Prior art keywords
current
ground
flicker
circuit
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160388A
Other languages
Japanese (ja)
Inventor
Nobuhiko Hatano
伸彦 羽田野
Seiji Yashiki
静二 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI KEIKI KOGYO KK
Kansai Electric Power Co Inc
Original Assignee
KANSAI KEIKI KOGYO KK
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI KEIKI KOGYO KK, Kansai Electric Power Co Inc filed Critical KANSAI KEIKI KOGYO KK
Priority to JP2001160388A priority Critical patent/JP2002350488A/en
Publication of JP2002350488A publication Critical patent/JP2002350488A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To resolve problems in a conventional direct current grounding point searching method that noise is determined as a ground-fault line when it exists due to easy affection by noise, a current necessary for determination cannot be obtained since it takes time to charge or discharge and a rectangular wave pulsating current becomes small when earth capacitance of the whole direct current control circuit becomes large, and particularly, a ground point cannot be searched at an extra high voltage substation having noise or a 5000 kV substation with large earth capacitance. SOLUTION: In the direct current grounding point searching method, a ground-fault current is converted into a rectangular wave pulsating current by opening and closing a contact 4a of a flicker relay 4 connected to a grounded circuit of a ground detecting relay 3 of a direct current control circuit 2, and the ground-fault current is detected by an alternating current clamp CT 6. Low frequency noise is canceled out and converged by dividing the rectangular wave pulsating current into unit cycles and superimposing and adding it a multiplicity of times. The ground-fault current is detected by the alternating current clamp CT 6 by composing a flicker circuit facilitating charge and discharge of earth capacitance and increasing the rectangular wave pulsating current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直流回路に発生し
た直流接地故障検出方法のうち接地故障点を探索するに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a ground fault point in a method of detecting a DC ground fault generated in a DC circuit.

【0002】[0002]

【従来の技術】従来この種の直流電源回路に接続された
接地検出継電器が、故障を検出した場合の故障点探索方
法として、 直流接地検出継電器(64D)3が接地故障を検出して警
報を表示したとき、切り分けスイッチを介して順次回路
を切り分け停止して直流接地検出継電器(64D)3が復帰
するかどうかを確認して接地点を探索する方法。 直流制御回路2に接続した直流変流器を介して幹線
単位の接地点を自動検出し、前記 と同様に回路を停
止して探索する方法。 直流接地検出継電器(64D)3が検出動作したとき、1
0〜30Hz程度の低周波の交流電流を回路に注入し
て、これを検出する方法。 等の方法が用いられていた。
2. Description of the Related Art Conventionally, as a method of searching for a fault point when a ground detection relay connected to a DC power supply circuit of this type detects a fault, a DC ground detection relay (64D) 3 detects a ground fault and issues an alarm. When displayed, a method of searching for a grounding point by checking whether or not the DC grounding detection relay (64D) 3 is restored by separating and stopping the circuit sequentially through a separation switch. A method of automatically detecting a grounding point for each trunk line via a DC current transformer connected to the DC control circuit 2, and stopping and searching for the circuit in the same manner as described above. When the DC grounding detection relay (64D) 3 performs detection operation, 1
A method of injecting a low-frequency alternating current of about 0 to 30 Hz into a circuit and detecting this. And other methods have been used.

【0003】したがって、従来のこの種の直流地絡点探
索方法にあっては、回路を停止する瞬間から無制御、無
保護の状態となり、発、変電所の自動制御設備や生産設
備の機能が停止されるばかりでなく、復旧を必要とする
接地点まで突き止めるには数回の停止作業を必要とし、
また配線を外す手間を要し、停止時間が著しく長くかか
るという問題があった。また、低周波交流電流を回路に
注入する方法は、対地静電容量によっては検出が不可能
な場合があるという問題があった。
[0003] Therefore, in this type of conventional DC ground fault point searching method, there is no control and no protection from the moment when the circuit is stopped, and the functions of the automatic control equipment and the production equipment of the power generation and substations are reduced. Not only is it shut down, but it takes several stops to find the ground that needs recovery.
In addition, there is a problem that it takes time to remove the wiring, and the stop time is extremely long. In addition, the method of injecting a low-frequency AC current into a circuit has a problem that detection may not be possible depending on the ground capacitance.

【0004】また、その他の直流制御回路の故障点探索
方法として、本件出願人の出願にかかる特許第1829
635号「フリッカー型直流接地点探索器(FK-M1)」特
許公報において開示されているような、接地故障電流を
矩形波脈流電流に変換して、その変化を交流クランプC
Tで検出する方法があるが、これらの方法には、検出し
た電流を「アナログ的に大きさのみ計測して指示針を振
らせる方法(FK-M1)」と、「故障回線の抵抗分を流れる
電流を主体とした波形と、健全回線に流れる容量性の波
形の面積をデジタル的に演算して波形の形で比較判定す
る直流地絡点探索方法(FK-M3)」があって、どれもノイ
ズの影響を受け易く、ノイズが存在すると健全な直流回
路を測定した場合でも、接地故障回線と誤って判定する
ことが多くある。
As another method of searching for a fault point of a DC control circuit, Japanese Patent No. 1829 filed by the present applicant is disclosed.
No. 635, "Flicker-type DC grounding point searcher (FK-M1)", as disclosed in the patent publication, converts a ground fault current into a square wave pulsating current, and uses the change as an AC clamp C
There are methods to detect with T, but in these methods, the detected current is measured by analog measurement of only the magnitude and the indicator is shaken (FK-M1). There is a DC ground fault point search method (FK-M3), which digitally calculates the area of the waveform mainly composed of the flowing current and the area of the capacitive waveform flowing through the healthy line and makes a comparison in the form of a waveform. Is also susceptible to noise, and in the presence of noise, even when a healthy DC circuit is measured, it is often determined erroneously as a ground fault line.

【0005】さらにまた、直流制御回路全体の対地静電
容量が大きくなると、対地静電容量の充電または放電に
時間がかかり、矩形波脈流に変換している一定周期(例
えば0.88sec)内では、放電が十分に行われない
ため対地電圧が回復できずに、故障電流も対地電圧に相
当する値しか流れない。このため矩形波脈流電流が、探
索器の検出感度以下のレベルとなってしまって探索不能
となる。以上のように従来の技術では、ノイズの存在す
る超高圧変電所や対地静電容量の大きな5000kV変
電所では接地点を探索できない現状である。
[0005] Furthermore, when the capacitance to ground of the entire DC control circuit becomes large, it takes time to charge or discharge the capacitance to ground, and within a certain period (for example, 0.88 sec) during which a rectangular wave pulsating current is converted. In this case, since the discharge is not sufficiently performed, the ground voltage cannot be recovered, and the fault current flows only at a value corresponding to the ground voltage. For this reason, the rectangular wave pulsating current becomes a level lower than the detection sensitivity of the searcher, and the search becomes impossible. As described above, in the conventional technology, it is impossible to search for a ground point in an ultra-high voltage substation where noise is present or in a 5000 kV substation having a large ground capacitance.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記した本
件出願人の出願にかかる特許第1829635号「フリ
ッカー型直流接地点探索器(FK-M1)」特許公報において
開示されている、接地故障電流を矩形波脈流電流に変換
して、その変化を交流クランプCT6で検出する直流制
御回路2の故障点探索方法の改良発明である。すなわ
ち、本第1発明は、変電所等の直流制御回路2に接地故
障が発生した場合、その故障点を探索する直流地絡点探
索器(FK-M3)において、本探索方法の測定原理である接
地故障電流が流れている接地検出継電器3の接地回路
を、一定周期で断続させて矩形波脈流電流に変換し、交
流クランプCT6で検出した接地故障を判定する入力波
形からノイズを除去する方法である。
SUMMARY OF THE INVENTION The present invention relates to a ground fault as disclosed in Japanese Patent No. 1829635 "Flicker-type DC ground point searcher (FK-M1)" filed by the present applicant. The present invention is an improved invention of a method for searching for a fault point of the DC control circuit 2 which converts a current into a rectangular pulsating current and detects the change with an AC clamp CT6. That is, in the first invention, when a ground fault occurs in the DC control circuit 2 of a substation or the like, a DC ground fault point searcher (FK-M3) that searches for the fault point uses the measurement principle of the present search method. The grounding circuit of the grounding detection relay 3 in which a certain grounding fault current flows is turned on and off at regular intervals to convert it into a rectangular wave pulsating current, and noise is removed from the input waveform that is detected by the AC clamp CT6 and determines the grounding fault. Is the way.

【0007】すなわち、本第1発明は、このような従来
の地絡点探索器による方法では、検出した入力波形にノ
イズが含まれている場合には、探索装置が誤った判定を
するという課題を解決するために、接地故障を判定する
入力波形から、高周波ノイズをアナログフィルターによ
り除去すると共に、低周波ノイズはフィルターとマイコ
ンを併用したデジタル演算によってノイズを除去し直流
制御回路2の地絡点を探索する既存の探索方法が悪影響
を受けるのを改善する方法(図2、図3、図15)を提
供しようとするものである。
That is, in the first invention, in the method using the conventional ground fault point searcher, when the detected input waveform includes noise, the search device makes an erroneous determination. In order to solve the problem, high-frequency noise is removed from an input waveform for determining a ground fault by an analog filter, and low-frequency noise is removed by digital operation using a filter and a microcomputer together. It is an object of the present invention to provide a method (FIGS. 2, 3 and 15) for improving the existing search method for searching for.

【0008】また、前記した従来の地絡点探索(FK-M3)
による方法が有していた課題である、フリッカ継電器4
の接点4aの開放時に接地回路が開路状態となり、静電
容量(コンデンサ)からの放電が十分行われないことに
対し、本第2発明は、接地回路を開放させずに放電でき
るように回路5を形成して静電容量(コンデンサ)の充
放電をスムーズに行わせることによって故障点の対地電
圧の回復を早め、直流地絡点探索器のフリッカ継電器4
の接点4aの開閉間隔以内において、故障電流の立ち上
がりを早期にかつ十分に行わせることにより、最終的に
フリッカ電流を増幅させることができるものである。
Further, the above-described conventional ground fault point search (FK-M3)
The flicker relay 4 is a problem which the method according to
When the contact 4a is opened, the ground circuit is opened and the discharge from the capacitance (capacitor) is not sufficiently performed. On the other hand, the second invention provides a circuit 5 that can discharge without opening the ground circuit. To speed up the recovery of the ground voltage at the fault point by smoothly charging and discharging the capacitance (capacitor), and the flicker relay 4 of the DC ground fault point searcher.
The flicker current can be finally amplified by causing the fault current to rise quickly and sufficiently within the switching interval of the contact 4a.

【0009】また、第2発明は、矩形波脈流電流の入力
波形が小さくて、本探索方法に使用する探索器の検出感
度レベルに至らない場合に、これを増幅して判定を可能
にするための方法で、直流制御回路2の対地静電容量が
大容量化したことによる、矩形波脈流電流の減少に対し
て有効な手段である。
In the second invention, when the input waveform of the square-wave pulsating current is small and does not reach the detection sensitivity level of the searcher used in the present search method, it is amplified to enable determination. This is an effective means for reducing the pulsating current of the rectangular wave due to the increase in the capacitance of the DC control circuit 2 to the ground.

【0010】[0010]

【課題を解決するための手段】第1発明は直流制御回路
2に重畳している高調波ノイズおよび超低周波ノイズを
アナログフィルターで除去する手段を講じるが、本探索
器の基本原理である矩形波脈流電流に変換する周期
(0.57Hz)と同じ範囲の低周波ノイズは、フィル
ターにより除去すると、矩形波脈流電流までもが除去さ
れることになるため、フィルターを使用することは出来
ない。このような場合に適用する本願「加算式ノイズ除
去方式」の「低周波領域のノイズ除去方法」は、矩形波
脈流電流を1周期単位に分割し、多数回加算することに
より行われる。矩形波脈流電流は同一周期であるため、
単純和で加算回数倍となるが、低周波ノイズには周期性
がないため多数回加算することにより相殺されて収束す
ることになる。
According to a first aspect of the present invention, means for removing harmonic noise and ultra-low frequency noise superimposed on the DC control circuit 2 by an analog filter is used. If the filter removes low-frequency noise in the same range as the period (0.57 Hz) to be converted into a pulsating current, even a rectangular pulsating current will be removed. Therefore, a filter cannot be used. Absent. The “noise removal method in the low frequency region” of the “additional noise removal method” applied to such a case is performed by dividing the rectangular wave pulsating current into one cycle unit and adding a large number of times. Since the square-wave pulsating currents have the same period,
The sum is multiplied by the number of additions, but since the low-frequency noise has no periodicity, it is canceled and converged by adding many times.

【0011】すなわち、第1発明は、蓄電池1等からな
る直流電源2aを有する直流制御回路2に接続された接
地検出継電器3の接地回路に、フリッカ継電器4を接続
してその接点4aを一定周期で開閉させることによっ
て、接地故障電流を矩形波脈流電流に変換して、交流ク
ランプCT6で接地故障電流を検出する直流地絡点探索
方法において、前記交流クランプCT6で検出された矩
形波脈流電流を単位周期に分割し、多数回重畳して加算
することにより、低周波ノイズを相殺して収束させるこ
とを特徴とする直流地絡点探索方法である。
That is, in the first invention, a flicker relay 4 is connected to a grounding circuit of a grounding detection relay 3 connected to a DC control circuit 2 having a DC power supply 2a comprising a storage battery 1 and the like, and a contact 4a of the flickering relay 4 is fixed. In the DC ground fault point search method of converting the ground fault current into a square wave pulsating current by detecting the ground fault current with the AC clamp CT6, the square wave pulsating current detected by the AC clamp CT6 This is a DC ground fault point search method characterized in that a current is divided into unit periods, superimposed and added many times to cancel and converge low-frequency noise.

【0012】第2発明は、第1発明の直流地絡点探索方
法において、フリッカ継電器4の接点4aの開閉によっ
て、接地故障電流を矩形波脈流電流に変換するとき、接
点4aを開放時に接地回路を開放しないで放電できるよ
うバイパス回路5を形成することにより直流制御回路2
全体の対地静電容量の充放電をスムーズに行わせて、故
障点の端子電圧の回復を早めるとともに、直流地絡点探
索器のフリッカ間隔以内において、故障電流の立ち上が
りを早期にかつ十分に行わせることにより矩形波脈流電
流(フリッカ電流)を増幅してその判定を可能ならしめ
ることを特徴とする直流地絡点探索方法である。
According to a second aspect of the present invention, in the method of searching for a DC ground fault point according to the first aspect of the present invention, when the ground fault current is converted into a rectangular wave pulsating current by opening and closing the contact 4a of the flicker relay 4, the contact is grounded when the contact 4a is opened. The DC control circuit 2 is formed by forming the bypass circuit 5 so that the discharge can be performed without opening the circuit.
Smoothly charges and discharges the entire ground capacitance, speeds the recovery of the terminal voltage at the fault point, and quickly and sufficiently starts the fault current within the flicker interval of the DC ground fault point searcher. A DC ground fault point search method is characterized in that a rectangular wave pulsating current (flicker current) is amplified by making it possible to make the determination.

【0013】従って、本発明の直流地絡点探索方法は、
超高圧変電所の直流制御回路2に重畳するノイズの除去
と、直流制御回路2の対地静電容量が大容量化したこと
による、矩形波脈流電流の減少に対して有効な手段とす
ることができる。
Accordingly, the DC ground fault point search method of the present invention
Efficient means for removing noise superimposed on the DC control circuit 2 of the ultra-high voltage substation and reducing the pulsating current of the rectangular wave due to the increase in the ground capacitance of the DC control circuit 2 Can be.

【0014】[0014]

【発明の実施の形態】以下本発明の実施例を、図1乃至
図19に基づいて説明する。図1は、本探索器のフリッ
カ電流が含まれているノイズの波形を示す。(横軸は時
間(2秒毎)軸である。) 図2は、ノイズ波形を、フリッカ周期と同期をとって分
割した波形を重ねたところを示す。図3は、30回加算
処理して得られた、フリッカ電流波形を示す。(ノイズ
波形が消えている。) 図4は、従来の直流接地検出継電器(64D)3の回路の構
成を示す図である。図5は、図4の回路の接地故障電流
と充放電電流の関係を示す図である。(充放電電流の方
が大きい。) 図6は、本第1発明の直流接地検出継電器(64D)3の回
路の構成を示す図である。図7は、図6の回路の接地故
障電流と充放電電流の関係を示す図である。(充放電電
流が減少した。) 図8は、本第2発明の直流接地検出継電器(64D)3の回
路の構成を示す図である。(抵抗値を変えた。) 図9は、図8の回路の接地故障電流と充放電電流の関係
を示す図である。(接地故障電流のフリッカ値が大きく
なった。) 図10は、対地静電容量が小さい場合の接地故障電流の
過渡現象の波形を示す。(立ち上がりは2秒以内。) 図11は、回路に含まれる対地静電容量が大きい場合
の、接地故障電流の過渡現象の波形を示す。(立ち上が
りに10秒以上要す。) 図12は、対地静電容量が小さい場合のフリッカ電流
(2mA)の波形を示す。図13は、対地静電容量が大
きい場合のフリッカ電流波形が、0.6mAに減衰して
しまう態様を示す。図14は、低周波ノイズの「うね
り」がある場合のフリッカ電流の波形を示す。図15
は、「うねり」成分を除去して、フリッカ信号のみを取
り出すことができる回路を示す。図16は、入力波形を
示す。図17は、ハイカットフィルタをかけた出力側の
「うねり」の含まれたフリッカ信号の波形を示す。図1
8は、デジタル演算をした出力側の、「うねり」を除去
したフリッカ信号の波形を示す。図19は、本発明の実
施時に使用するFK−M3一式のフリッカユニット1
6、判定ユニット15、交流クランプCT6のそれぞれ
外観を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a waveform of a noise including a flicker current of the present searcher. (The horizontal axis is a time (every 2 seconds) axis.) FIG. 2 shows a superimposed waveform obtained by dividing a noise waveform in synchronization with a flicker cycle. FIG. 3 shows a flicker current waveform obtained by performing the addition process 30 times. (Noise waveform has disappeared.) FIG. 4 is a diagram showing a circuit configuration of a conventional DC ground detection relay (64D) 3. As shown in FIG. FIG. 5 is a diagram showing the relationship between the ground fault current and the charge / discharge current of the circuit of FIG. (The charge / discharge current is larger.) FIG. 6 is a diagram showing a circuit configuration of the DC ground detection relay (64D) 3 of the first invention. FIG. 7 is a diagram showing the relationship between the ground fault current and the charge / discharge current of the circuit of FIG. (The charge / discharge current is reduced.) FIG. 8 is a diagram showing a circuit configuration of the DC ground detection relay (64D) 3 of the second invention. (The resistance value was changed.) FIG. 9 is a diagram showing the relationship between the ground fault current and the charge / discharge current of the circuit of FIG. (The flicker value of the ground fault current has increased.) FIG. 10 shows a waveform of a transient phenomenon of the ground fault current when the capacitance to ground is small. (The rise is within 2 seconds.) FIG. 11 shows the waveform of the transient phenomenon of the ground fault current when the capacitance to ground included in the circuit is large. (It takes 10 seconds or more to rise.) FIG. 12 shows a waveform of the flicker current (2 mA) when the ground capacitance is small. FIG. 13 shows a mode in which the flicker current waveform when the ground capacitance is large is attenuated to 0.6 mA. FIG. 14 shows a waveform of a flicker current when there is a “swell” of low frequency noise. FIG.
Shows a circuit capable of removing the "undulation" component and extracting only the flicker signal. FIG. 16 shows an input waveform. FIG. 17 shows a waveform of a flicker signal including a “swell” on the output side subjected to a high cut filter. FIG.
8 shows a waveform of a flicker signal on the output side on which digital operation has been performed, from which "undulation" has been removed. FIG. 19 shows a flicker unit 1 of a set of FK-M3 used in carrying out the present invention.
6, the external appearance of the determination unit 15, and the appearance of the AC clamp CT6 are shown.

【0015】[0015]

【実施例】本願第1発明は、上記の通りの特長を持つも
のであるが、以下にその実施の形態について説明する。
「加算式ノイズ除去方法」は、本探索方法の判定回路で
扱う波形に、低周波ノイズが混入している場合にそれを
取り除く方法であり、次のような処理を行う。 加算処理の基準となる、フリッカ信号と同期がとれ
た基準タイミングを形成するため、フリッカユニット1
6の機能確認用のテスト信号を交流クランプCT6で取
り込み、このフリッカ信号の周期を判定ユニット15で
計測してその値と同じ周期の同期信号を同期信号発生器
8で発生させる。 加算処理の基準タイミングとなる「同期信号」を前
記同期信号発生器8で発生させたら、実回路に交流クラ
ンプCT6を取り付けフリッカ電流を入力する。 加算処理バッファを新たに設け、前記 で得られ
た同期信号により、入力波形を1周期毎に分割し、加算
回路10で設定された加算回数分だけ加算処理を行う。 加算回数は無限とする。 加算回数を重ねると、波形精度が閾値(探索器の判
定可能な周期性のある波形状態)以下になれば、判定回
路に対し出力する。 その後も加算を重ね前回の状態より、より良い波形
に浄化された場合には、前回データを置き換えるための
出力を行う。 10数回の加算処理で、閾値以下の波形が得られた
らインジケータで完了を表示する。 判定は取り込まれた1周期分の波形で行い、抵抗接
地による波形と静電容量による充放電電流の波形の違い
により、接地故障の発生している回線の波形は赤ランプ
(故障回線)を点灯させ、静電容量の充放電電流の波形
の場合は緑ランプ(健全回線)を点灯させる。この判定
作業は繰り返し行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first invention of the present application has the features as described above, and the embodiments thereof will be described below.
The “additional noise elimination method” is a method of removing low-frequency noise from the waveform handled by the determination circuit of the present search method when it is mixed, and performs the following processing. In order to form a reference timing synchronized with the flicker signal, which serves as a reference for the addition processing, the flicker unit 1
The test signal for checking the function of No. 6 is captured by the AC clamp CT6, the cycle of the flicker signal is measured by the determination unit 15, and the sync signal having the same cycle as the value is generated by the sync signal generator 8. After the synchronizing signal generator 8 generates a "synchronizing signal" serving as a reference timing for the addition processing, an AC clamp CT6 is attached to the actual circuit, and a flicker current is input. An addition processing buffer is newly provided, the input waveform is divided for each cycle by the synchronization signal obtained in the above, and the addition processing is performed by the number of additions set by the addition circuit 10. The number of additions is infinite. When the number of times of addition is repeated, if the waveform accuracy becomes equal to or less than a threshold value (a waveform state having periodicity that can be determined by the searcher), an output is made to the determination circuit. After that, when the addition is repeated and the waveform is purified to a better waveform than the previous state, an output for replacing the previous data is performed. When a waveform equal to or less than the threshold value is obtained by adding several times, completion is indicated by an indicator. Judgment is made with the captured waveform for one cycle, and the difference between the waveform due to resistance grounding and the waveform of charging / discharging current due to capacitance causes the red lamp (failed line) to be turned on for the waveform of the line where a ground fault has occurred. In the case of the charge / discharge current waveform of the capacitance, the green lamp (healthy line) is turned on. This determination operation is repeatedly performed.

【0016】そして、「フリッカ電流増幅方式」の直流
回路の対地静電容量(コンデンサ)が大きくなると、時
定数が大きくなり充放電に時間がかかるため、対地電位
の回復(上昇、下降)に時間がかかり、故障電流の立ち
上がりが遅くなる現象が発生し、直流地絡点探索器(FK-
M3)の矩形波脈流電流(フリッカ電流)が小さくなる。
この現象が進むと直流地絡点探索器(FK-M3)の検出感度
以上のレベルのフリッカ電流が得られず測定不能とな
る。
When the capacitance to the ground (capacitor) of the DC circuit of the "flicker current amplifying system" increases, the time constant increases and it takes time to charge and discharge. Occurs, causing the rise of the fault current to be delayed, causing the DC ground fault searcher (FK-
M3) rectangular wave pulsating current (flicker current) is reduced.
If this phenomenon progresses, a flicker current of a level higher than the detection sensitivity of the DC ground fault point detector (FK-M3) cannot be obtained, and measurement becomes impossible.

【0017】本第2発明の方法は、充放電回路を作り、
フリッカ電流を大きくしようとするものである。図4
は、従来方式の直流接地検出継電器(64D)3の回路図を
示す。接地回路にフリッカ継電器4(リレー)が接続さ
れているため、スイッチオフ時に接地回路がオープン状
態となり、コンデンサからの放電が不可能になる。R1
/R2/R3=20kΩ/20kΩ/10kΩ,フリッ
カ電流=0.42mAとなる。図5は、図4において接
地故障電流と充放電電流の関係を示す。
In the method of the second invention, a charge / discharge circuit is formed,
This is to increase the flicker current. FIG.
3 shows a circuit diagram of a conventional DC grounding detection relay (64D) 3. Since the flicker relay 4 (relay) is connected to the grounding circuit, the grounding circuit is opened when the switch is turned off, and discharge from the capacitor becomes impossible. R1
/ R2 / R3 = 20 kΩ / 20 kΩ / 10 kΩ, and flicker current = 0.42 mA. FIG. 5 shows the relationship between the ground fault current and the charge / discharge current in FIG.

【0018】図6は、本発明の直流接地検出継電器(64
D)3の回路図を示す。接地回路の抵抗をバイパスする回
路を設け、ここにフリッカ継電器4(リレー)を設けた
図である。R1/R2/R3=20kΩ/20kΩ/1
0kΩ,フリッカ電流=0.35mAとなる。このスイ
ッチをオンオフしても、直流接地検出継電器(64D)3の
接地回路はオープン状態にはならないため、コンデンサ
からの放電が行われやすくなり、充放電電流の値が小さ
くなる。図7は、図6において接地故障電流と充放電電
流の関係を示す。
FIG. 6 shows a DC ground detection relay (64) according to the present invention.
D) The circuit diagram of 3 is shown. FIG. 3 is a diagram in which a circuit that bypasses a resistance of a ground circuit is provided, and a flicker relay 4 (relay) is provided here. R1 / R2 / R3 = 20kΩ / 20kΩ / 1
0 kΩ and flicker current = 0.35 mA. Even if this switch is turned on and off, the ground circuit of the DC ground detection relay (64D) 3 does not enter an open state, so that the capacitor is easily discharged and the value of the charge / discharge current is reduced. FIG. 7 shows the relationship between the ground fault current and the charge / discharge current in FIG.

【0019】図8は、本発明の直流接地検出継電器(64
D)3の回路図を示す。接地回路の抵抗をバイパスする回
路を設け、ここにフリッカ継電器4(リレー)を設けた
図である。このままでは故障電流は大きくなるものの、
フリッカ電流は変化しないため、直流接地検出継電器(6
4D)3の回路構成素子の抵抗値を図8のように変更する
ことにより、フリッカ電流は、0.35mA(図7)か
ら1.11mA(図9)に増加する。このとき抵抗値
は、R1/R2/R3=10kΩ/10kΩ/50k
Ω,また、フリッカ電流=1.11mAとなる。図9
は、図8に示す回路において、接地故障電流と充放電電
流の関係を示す。このスイッチ回路は、直流地絡点探索
器(FK-M3)のフリッカユニット16の直流接地検出継電
器接地回路で構成する。
FIG. 8 shows a DC ground detection relay (64) according to the present invention.
D) The circuit diagram of 3 is shown. FIG. 3 is a diagram in which a circuit that bypasses a resistance of a ground circuit is provided, and a flicker relay 4 (relay) is provided here. Although the fault current increases in this state,
Since the flicker current does not change, the DC ground detection relay (6
4D) By changing the resistance value of the circuit element 3 as shown in FIG. 8, the flicker current increases from 0.35 mA (FIG. 7) to 1.11 mA (FIG. 9). At this time, the resistance value is R1 / R2 / R3 = 10 kΩ / 10 kΩ / 50 k
Ω, and flicker current = 1.11 mA. FIG.
Shows the relationship between the ground fault current and the charge / discharge current in the circuit shown in FIG. This switch circuit is configured by a DC ground detection relay ground circuit of the flicker unit 16 of the DC ground fault point searcher (FK-M3).

【0020】図10は、回路の対地静電容量が小さい場
合の接地故障電流の過渡現象の波形を示す。接地故障電
流は比較的短時間に100%の値に達している。(縦軸
は電流mA、横軸は2sec/目盛りの時間を表す。)
図11は、回路に含まれる対地静電容量が大きい場合
の、接地故障電流の過渡現象の波形を示す。接地故障電
流は対地静電容量の充放電に時間がかかるために、立ち
上がり、立ち下がり波形が鈍るので、直流地絡点探索器
(FK-M3)が判定に使用するフリッカ電流を作る上で大き
な支障になる。また、絶縁抵抗の低下により常時漏洩電
流が存在すると、図に見られるとおり、3.6mAある
接地故障電流が全てフリッカ電流とならずに、常時漏洩
電流を差し引いた2.4mAに減衰してしまう。すなわ
ち、図12に示す対地静電容量が小さい場合のフリッカ
電流(2mA)の波形が、図13に示す対地静電容量が
大きい場合のフリッカ電流波形のように、0.6mAに
減衰してしまう。
FIG. 10 shows the waveform of the transient phenomenon of the ground fault current when the capacitance of the circuit to ground is small. The ground fault current reaches 100% in a relatively short time. (The vertical axis represents the current mA, and the horizontal axis represents 2 sec / scale time.)
FIG. 11 shows a waveform of a transient phenomenon of the ground fault current when the capacitance to ground included in the circuit is large. The ground fault current takes a long time to charge and discharge the capacitance to the ground, so the rising and falling waveforms become dull.
(FK-M3) is a major obstacle in generating flicker current used for determination. Also, if a leakage current always exists due to a decrease in insulation resistance, as shown in the figure, the ground fault current of 3.6 mA does not become a flicker current but attenuates to 2.4 mA obtained by subtracting the constant leakage current. . That is, the waveform of the flicker current (2 mA) when the ground capacitance shown in FIG. 12 is small is attenuated to 0.6 mA like the flicker current waveform when the ground capacitance shown in FIG. 13 is large. .

【0021】図14は、低周波ノイズの「うねり」があ
る場合のフリッカ電流の波形を示す。このように、「う
ねり」に埋もれたフリッカ電流を取り出すには、図15
に示す低周波除去回路9において、急峻なハイカットフ
ィルタ11をかけて、フリッカ信号(0.57Hz)
と、60Hzと高周波成分をカットして、「うねり」
(極低周波ノイズ)成分のみを取り出す。さらに、存在
する高調波に対応した多段のバンドカットフィルタ12
を構成してかけて、高調波のみを除去して、フリッカ信
号が埋もれている低周波成分を取り出す。また、デジタ
ル演算回路13では、前記のフィルタ11,12をかけ
た信号をデジタル演算回路13の高精度A/Dコンバー
タによって同時サンプリングして、メモリ上で「うね
り」の位相を合わせて前記両フィルタ回路11,12の
出力波形の演算をマイコンで処理する。このようにし
て、「うねり」成分を除去して、フリッカ信号のみを取
り出すことができる。すなわち、同期信号発生器8の出
力と交流クランプCT6の出力を加算回路10に入力
し、その出力をハイカットフィルタ11とそれと並列接
続したバンドカットフイルタ12を通して、前者によっ
て「うねり」を取り出し、後者によってフリッカ信号と
「うねり」を取り出して両者の出力をデジタル演算回路
13へ入力して、その出力信号を(フリッカ信号+「う
ねり」−「うねり」=フリッカ信号)のように演算し
て、フリッカ信号として取り出す。
FIG. 14 shows a waveform of a flicker current when there is a "swell" of low frequency noise. As described above, to extract the flicker current buried in the “undulation”, FIG.
In the low frequency elimination circuit 9 shown in (1), a steep high cut filter 11 is applied to generate a flicker signal (0.57 Hz).
And cut the 60Hz and high frequency components, "undulation"
Extract only (extremely low frequency noise) components. Furthermore, a multi-stage band cut filter 12 corresponding to the existing harmonics
To remove only the higher harmonics and extract the low frequency component in which the flicker signal is buried. Further, in the digital operation circuit 13, the signals subjected to the filters 11 and 12 are simultaneously sampled by the high-precision A / D converter of the digital operation circuit 13, and the phases of the “undulation” are matched on the memory to thereby obtain the two filters. The calculation of the output waveforms of the circuits 11 and 12 is processed by a microcomputer. In this way, the "undulation" component can be removed and only the flicker signal can be extracted. That is, the output of the synchronizing signal generator 8 and the output of the AC clamp CT6 are input to the addition circuit 10, and the output is passed through a high-cut filter 11 and a band-cut filter 12 connected in parallel with the output to extract "undulation" by the former. The flicker signal and the “undulation” are extracted, the outputs of both are input to the digital arithmetic circuit 13, and the output signal is calculated as (flicker signal + “undulation” − “undulation” = flicker signal) to obtain the flicker signal. Take out as.

【0022】図16は入力波形、図17はハイカットフ
ィルタをかけた出力側の、「うねり」の含まれたフリッ
カ信号の波形、図18はデジタル演算をした出力側の、
「うねり」を除去したフリッカ信号の波形をそれぞれ示
す。図19は、本発明の実施時に使用するFK−M3一
式のフリッカユニット16、判定ユニット15、交流ク
ランプCT6のそれぞれ外観を示す。
FIG. 16 shows an input waveform, FIG. 17 shows a waveform of a flicker signal including "undulation" on the output side subjected to a high cut filter, and FIG.
The waveforms of the flicker signal from which "undulation" has been removed are shown. FIG. 19 shows the external appearance of the flicker unit 16, the judging unit 15, and the AC clamp CT6 of the FK-M3 set used when implementing the present invention.

【0023】このように、変電所等の直流制御回路2に
接地故障が発生した場合、直流地絡点探索器(FK-M3)に
よりその故障点を探索するのに、接地故障を判定する入
力波形からノイズを除去すると共に、低い入力波形レベ
ルを増幅して、接地故障電流が流れている接地検出継電
器3の接地回路を、一定周期で断続させて矩形波脈流電
流に変換し、交流クランプCT6で検出する構成によっ
て、検出した入力波形にノイズが含まれている場合に、
本探索器が誤った判定をするのを回避するためにノイズ
を除去し、またこの矩形波脈流電流が本探索器の検出感
度レベルに至らない場合に、これを増幅して判定を可能
にして、超高圧変電所の直流制御回路2に重畳するノイ
ズの除去と直流制御回路2の対地静電容量が大容量化し
たことによる、矩形波脈流電流の減少に対する有効な効
果をも併せて期待することが出来るに至ったのである。
As described above, when a ground fault occurs in the DC control circuit 2 of a substation or the like, an input for judging a ground fault is required for searching for the fault point by the DC ground fault point searcher (FK-M3). In addition to removing noise from the waveform, amplifying a low input waveform level, the ground circuit of the ground detection relay 3 in which the ground fault current is flowing is intermittently switched at regular intervals and converted into a rectangular wave pulsating current, and the AC clamp is performed. When the detected input waveform contains noise due to the configuration of detecting with CT6,
In order to prevent the searcher from making erroneous determinations, noise is removed, and if this rectangular wave pulsating current does not reach the detection sensitivity level of the searcher, it is amplified to enable determination. In addition, the present invention has an effect of removing noise superimposed on the DC control circuit 2 of the ultra-high-voltage substation and having an effective effect on the reduction of the rectangular wave pulsating current due to the increase in the capacitance to the ground of the DC control circuit 2. It was possible to expect.

【0024】以上本発明の代表的と思われる実施例につ
いて説明したが、本発明は必ずしもこれらの実施例構造
のみに限定されるものではなく、本発明にいう前記の構
成要件を備え、かつ、本発明にいう目的を達成し、以下
にいう効果を有する範囲内において適宜改変して実施す
ることができるものである。
Although the embodiments which are considered to be representative of the present invention have been described above, the present invention is not necessarily limited to only the structures of the embodiments, but has the above-mentioned constitutional requirements according to the present invention, and The present invention achieves the object of the present invention and can be appropriately modified and implemented within the range having the following effects.

【0025】[0025]

【発明の効果】以上詳しく説明したとおり、この請求項
1及び請求項2の発明により、ノイズの重畳している直
流回路および対地静電容量の大きな直流回路でも、接地
故障点の探索が高い精度で可能となった。これにより電
圧階級および対地静電容量の異なる広範な変電所で直流
接地点探索が、本携帯型探索器により短時間、取扱容
易、判定確実に実施できる。また、対地静電容量が将来
更に増加した場合にでも対応することができるという従
来のものには期待することが出来ない顕著な効果を有す
るに至ったのである。
As described above in detail, according to the first and second aspects of the present invention, even in a DC circuit on which noise is superimposed and a DC circuit with a large capacitance to the ground, the search for the ground fault point is performed with high accuracy. Made possible. As a result, a DC ground point search can be performed in a wide range of substations having different voltage classes and ground capacitances in a short time, easily handled, and reliably determined by the portable search device. Further, the present invention has a remarkable effect that can be expected even if the ground capacitance further increases in the future, which cannot be expected from the conventional one.

【0026】そして、 接地点を突き止めるまで回路
を停止することがないから、無制御、無保護の状態とな
らず、自動制御設備や生産設備を停止させずに、復旧の
ための停止作業も少しで済み、配線を外す手間を必要と
しないから、停止時間が短縮できる。また、 直流制
御回路全体の対地静電容量が大きくなっても、対地静電
容量の充電または放電に時間がかからないから、放電が
十分に行われて対地電圧が直ちに回復して、故障電流も
支障無い値で流れる。このため 矩形波脈流電流が、
探索器の検出感度以下のレベルとなることはなく、探索
不能となることはない。したがって、 ノイズの存在
する超高圧変電所や対地静電容量の大きな5000kV
変電所でも容易に接地点を探索できるという効果があ
る。
Since the circuit is not stopped until the grounding point is located, the circuit is not in an uncontrolled and unprotected state, the automatic control equipment and the production equipment are not stopped, and the stop work for restoration is slightly reduced. And the time required for removing the wiring is not required, so that the stop time can be reduced. Also, even if the ground capacitance of the entire DC control circuit becomes large, it takes no time to charge or discharge the ground capacitance, so that the discharge is sufficiently performed and the ground voltage is immediately recovered, and the fault current is also hindered. It flows with no value. Therefore, the square wave pulsating current becomes
The level is not lower than the detection sensitivity of the searcher, and the search is not disabled. Therefore, the ultra-high voltage substation where noise exists and the 5000 kV
There is an effect that a ground point can be easily searched even in a substation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フリッカ電流が含まれているノイズ電流の波形
を示す。(縦軸は電流(mA)、横軸は時間(2秒毎)
を示す。)
FIG. 1 shows a waveform of a noise current including a flicker current. (Vertical axis is current (mA), horizontal axis is time (every 2 seconds)
Is shown. )

【図2】ノイズ波形を、フリッカ周期と同期をとって時
間軸方向に引き伸ばして分割した波形を示す。(縦軸は
電流(mA)、横軸は時間(0.88秒×2)を表
す。)
FIG. 2 shows a waveform obtained by extending a noise waveform in a time axis direction in synchronization with a flicker cycle and dividing the noise waveform. (The vertical axis represents current (mA), and the horizontal axis represents time (0.88 seconds × 2).)

【図3】多数回加算処理して得られた、フリッカ電流波
形を示す。(縦軸は電流(mA)、横軸は時間(0.8
8秒×2))(ノイズ波形が消えている。)
FIG. 3 shows a flicker current waveform obtained by performing addition processing many times. (The vertical axis is current (mA), and the horizontal axis is time (0.8
8 seconds x 2)) (Noise waveform disappeared.)

【図4】従来の直流接地検出継電器(64D)の回路の構成
を示す図である。
FIG. 4 is a diagram showing a circuit configuration of a conventional DC ground detection relay (64D).

【図5】図4の従来の直流接地検出継電器(64D)の回路
の接地故障電流と充放電電流の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a ground fault current and a charge / discharge current of the circuit of the conventional DC ground detection relay (64D) of FIG.

【図6】本第1発明の直流接地検出継電器(64D)の回路
の構成を示す図である。
FIG. 6 is a diagram showing a circuit configuration of a DC ground detection relay (64D) of the first invention.

【図7】図6の直流接地検出継電器(64D)の回路の接地
故障電流と充放電電流の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a ground fault current and a charge / discharge current of the circuit of the DC ground detection relay (64D) of FIG.

【図8】本第2発明の直流接地検出継電器(64D)の回路
の構成を示す図である。
FIG. 8 is a diagram showing a circuit configuration of a DC ground detection relay (64D) of the second invention.

【図9】図8の直流接地検出継電器(64D)の回路の接地
故障電流と充放電電流の関係を示す図である。
9 is a diagram showing a relationship between a ground fault current and a charge / discharge current of the circuit of the DC ground detection relay (64D) of FIG.

【図10】回路の対地静電容量が小さい場合の接地故障
電流の過渡現象の波形を示す。
FIG. 10 shows a waveform of a transient phenomenon of a ground fault current when the capacitance to ground of the circuit is small.

【図11】回路に含まれる対地静電容量が大きい場合
の、接地故障電流の過渡現象の波形を示す。
FIG. 11 shows a waveform of a transient phenomenon of a ground fault current when the capacitance to ground included in the circuit is large.

【図12】回路に含まれる対地静電容量が小さい場合の
フリッカ電流(2mA)の波形を示す。
FIG. 12 shows a waveform of a flicker current (2 mA) when the capacitance to ground included in the circuit is small.

【図13】回路に含まれる対地静電容量が大きい場合の
フリッカ電流波形を示す。
FIG. 13 shows a flicker current waveform when the capacitance to ground included in the circuit is large.

【図14】低周波ノイズの「うねり」がある場合のフリ
ッカ電流の波形を示す。
FIG. 14 shows a waveform of a flicker current when there is “undulation” of low-frequency noise.

【図15】デジタル演算回路により「うねり」成分を除
去して、フリッカ信号のみを取り出す低周波除去回路の
構成を示す。
FIG. 15 shows a configuration of a low-frequency removing circuit that removes only a flicker signal by removing a “undulation” component by a digital arithmetic circuit.

【図16】フリッカ信号の入力波形を示す。FIG. 16 shows an input waveform of a flicker signal.

【図17】ハイカットフィルタをかけた出力側の「うね
り」の含まれたフリッカ信号の波形を示す。
FIG. 17 shows a waveform of a flicker signal including a “swell” on the output side subjected to a high-cut filter.

【図18】デジタル演算をした出力側の「うねり」を除
去したフリッカ信号の波形を示す。
FIG. 18 shows a waveform of a flicker signal from which “swell” on the output side subjected to digital operation has been removed.

【図19】本発明を実施時に使用するFK−M3一式の
フリッカユニット、判定ユニット、交流クランプCTの
外観を示す。
FIG. 19 shows the appearance of a flicker unit, a determination unit, and an AC clamp CT of the FK-M3 set used when the present invention is implemented.

【符号の説明】[Explanation of symbols]

1 蓄電池 2 直流制御回路 2a 直流電源 3 直流接地検出継電器 4 フリッカ継電器 4a 接点 5 (バイパス)回路 6 交流クランプCT 8 同期信号発生器 9 低周波除去回路 10 加算回路 11 ハイカットフィルタ 12 バンドカットフィルタ 13 デジタル演算回路 15 判定ユニット 16 フリッカユニット DESCRIPTION OF SYMBOLS 1 Storage battery 2 DC control circuit 2a DC power supply 3 DC ground detection relay 4 Flicker relay 4a Contact 5 (Bypass) circuit 6 AC clamp CT 8 Synchronous signal generator 9 Low frequency removal circuit 10 Addition circuit 11 High cut filter 12 Band cut filter 13 Digital Arithmetic circuit 15 Judgment unit 16 Flicker unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 屋敷 静二 大阪市北区大淀北1丁目6番110号 関西 計器工業株式会社内 Fターム(参考) 2G014 AA04 AB28 AC18 2G033 AA01 AB01 AC02 AD21 AG09 5G004 AA04 AB02 BA01 CA05 DA01 DB03 DB04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shizuji Yashiki 1-6-1110 Oyodo-kita, Kita-ku, Osaka Kansai Keiki Kogyo Co., Ltd. F-term (reference) 2G014 AA04 AB28 AC18 2G033 AA01 AB01 AC02 AD21 AG09 5G004 AA04 AB02 BA01 CA05 DA01 DB03 DB04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池(1)等からなる直流電源(2a)を有
する直流制御回路(2)に接続された接地検出継電器(3)の
接地回路に、フリッカ継電器(4)を接続してその接点(4
a)を一定周期で開閉させることによって、接地故障電流
を矩形波脈流電流に変換して、交流クランプCT(6)で
接地故障電流を検出する直流地絡点探索方法において、
前記交流クランプCT(6)で検出した矩形波脈流電流を
単位周期に分割し、多数回重畳して加算することによ
り、低周波ノイズを相殺して収束させて、接地故障電流
を検出することを特徴とする直流地絡点探索方法。
A flicker relay (4) is connected to a grounding circuit of a grounding detection relay (3) connected to a DC control circuit (2) having a DC power supply (2a) composed of a storage battery (1) and the like. Contact (4
In the DC ground fault point search method of converting the ground fault current to a rectangular wave pulsating current by opening and closing a) at a constant cycle, and detecting the ground fault current with the AC clamp CT (6),
The square-wave pulsating current detected by the AC clamp CT (6) is divided into unit periods, superimposed and added many times, thereby canceling and converging low-frequency noise and detecting a ground fault current. DC ground fault point search method characterized by the above-mentioned.
【請求項2】 請求項1に記載の直流地絡点探索方法に
おいて、フリッカ継電器(4)の接点(4a)の開閉によっ
て、接地故障電流を矩形波脈流電流に変換するとき、接
点(4a)を開放時に接地回路を開放しないで放電できるよ
うにバイパス回路(5)を形成することにより直流制御回
路(2)全体の対地静電容量の充放電をスムーズに行わせ
て、故障点の端子電圧の回復を早めるとともに、直流地
絡点探索器のフリッカ継電器(4)のフリッカ間隔以内に
おいて、接地故障電流の立ち上がりを早期に、かつ十分
に行わせることにより矩形波脈流電流(フリッカ電流)
を増幅してその判定を可能ならしめることを特徴とする
直流地絡点探索方法。
2. The method according to claim 1, wherein when the ground fault current is converted into a rectangular wave pulsating current by opening and closing the contact of the flicker relay. ) Is opened, the bypass circuit (5) is formed so that it can be discharged without opening the grounding circuit. In addition to hastening the voltage recovery, the rectangular wave pulsating current (flicker current) can be achieved quickly and sufficiently within the flicker interval of the flicker relay (4) of the DC ground fault point searcher.
A DC ground fault point search method characterized by amplifying a signal to make the determination possible.
JP2001160388A 2001-05-29 2001-05-29 Direct current grounding point searching method Pending JP2002350488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160388A JP2002350488A (en) 2001-05-29 2001-05-29 Direct current grounding point searching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160388A JP2002350488A (en) 2001-05-29 2001-05-29 Direct current grounding point searching method

Publications (1)

Publication Number Publication Date
JP2002350488A true JP2002350488A (en) 2002-12-04

Family

ID=19003812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160388A Pending JP2002350488A (en) 2001-05-29 2001-05-29 Direct current grounding point searching method

Country Status (1)

Country Link
JP (1) JP2002350488A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005739A (en) * 2010-08-27 2011-04-06 昆明理工大学 Method for identifying extra-high voltage direct current transmission line area inside and outside fault wavelet energy
KR101157189B1 (en) 2009-10-19 2012-06-20 한전케이피에스 주식회사 Portable Direct Current Ground Detecting Apparatus and Detecting Method using the same
CN103091606A (en) * 2013-02-28 2013-05-08 绥化电业局 Grounding fault detecting method for direct current system with high anti-interference capacity
CN103207316A (en) * 2012-01-16 2013-07-17 中国科学技术大学 High-accuracy direct current extra-high voltage measurement method based on miniature electron accelerator and energy spectrum measurement technology
CN105445613A (en) * 2015-09-29 2016-03-30 昆明理工大学 Line fault identification method based on epipolar voltage machine learning discrimination mechanism
CN110221176A (en) * 2019-06-28 2019-09-10 昆明理工大学 A kind of micro-capacitance sensor fault detection method based on juxtaposition differential transformation
CN114152824A (en) * 2021-11-15 2022-03-08 国网重庆市电力公司电力科学研究院 Real-time monitoring and optimal control method for environmental noise of transformer substation
US11498442B2 (en) * 2019-09-17 2022-11-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Systems and methods for noise cancellation in protective earth resistance check of vehicle onboard battery charger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157189B1 (en) 2009-10-19 2012-06-20 한전케이피에스 주식회사 Portable Direct Current Ground Detecting Apparatus and Detecting Method using the same
CN102005739A (en) * 2010-08-27 2011-04-06 昆明理工大学 Method for identifying extra-high voltage direct current transmission line area inside and outside fault wavelet energy
CN103207316A (en) * 2012-01-16 2013-07-17 中国科学技术大学 High-accuracy direct current extra-high voltage measurement method based on miniature electron accelerator and energy spectrum measurement technology
CN103091606A (en) * 2013-02-28 2013-05-08 绥化电业局 Grounding fault detecting method for direct current system with high anti-interference capacity
CN105445613A (en) * 2015-09-29 2016-03-30 昆明理工大学 Line fault identification method based on epipolar voltage machine learning discrimination mechanism
CN105445613B (en) * 2015-09-29 2018-05-25 昆明理工大学 A kind of line fault recognition methods that mechanism is differentiated based on line voltage machine learning
CN110221176A (en) * 2019-06-28 2019-09-10 昆明理工大学 A kind of micro-capacitance sensor fault detection method based on juxtaposition differential transformation
US11498442B2 (en) * 2019-09-17 2022-11-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Systems and methods for noise cancellation in protective earth resistance check of vehicle onboard battery charger
CN114152824A (en) * 2021-11-15 2022-03-08 国网重庆市电力公司电力科学研究院 Real-time monitoring and optimal control method for environmental noise of transformer substation

Similar Documents

Publication Publication Date Title
KR100206027B1 (en) Field ground fault detector and field ground fault relay for detecting ground fault corresponding to dc component extracted from ground fault current
KR101250716B1 (en) Detection apparatus and method for superconducting coil quench
KR101929543B1 (en) Relay protection method and device against lc parallel circuit detuning faults
JP2004193120A (en) Arc detection device and its method
KR102210973B1 (en) Improved noise propagation immunity of a multi-string arc fault detection device
JP2002350488A (en) Direct current grounding point searching method
WO2005060062A3 (en) High level arc fault detector
JP2003194871A (en) Electric leakage detecting device
JPH07262903A (en) Earth leakage breaker
JPH1078461A (en) Measuring method for insulation resistance
JP2003164055A (en) Grounding fault detection device of non-grounding system line, and grounding protection relay and grounding fault detection method using the same
JP2003232826A (en) Leak detection device
CN110161361B (en) Power system grounding protection line selection method and line selection system
RU2097893C1 (en) Single-phase selective ground fault protective gear for ac power mains and its operation
JP3324387B2 (en) Ground fault detecting circuit and circuit breaker provided with ground fault detecting circuit
JP2002350489A (en) Fault point position plotting method and device for high voltage distribution line
EP2390980B1 (en) Method and device for detecting an intermittent earth fault in a multiple feeder system
Yongduan et al. Earth fault protection using transient signals in non-solid earthed network
JPH11355955A (en) Earth fault detector for multi-branched line
CN112217216B (en) Circuit and method for eliminating switching interference of adjacent load
JPH01170865A (en) Detecting device for grounding failure point of electric distribution line
JP2002078190A (en) Ground fault current direction deciding method and ground fault current directional relay
JP2000023470A (en) Transformerless inverter protection apparatus
JPH05281285A (en) Noise elimination circuit
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928