JP2002349801A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler

Info

Publication number
JP2002349801A
JP2002349801A JP2001157250A JP2001157250A JP2002349801A JP 2002349801 A JP2002349801 A JP 2002349801A JP 2001157250 A JP2001157250 A JP 2001157250A JP 2001157250 A JP2001157250 A JP 2001157250A JP 2002349801 A JP2002349801 A JP 2002349801A
Authority
JP
Japan
Prior art keywords
combustion
gas
heat recovery
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001157250A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawazoe
博 川添
Tomomasa Usui
奉賢 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001157250A priority Critical patent/JP2002349801A/en
Publication of JP2002349801A publication Critical patent/JP2002349801A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an efficiency and a responsiveness to a load variation of an exhaust heat recovery boiler without enlarging the exhaust heat recovery boiler. SOLUTION: A vapor generating heat exchanger of at least any of a re-heater 13, a super-heater 20 and an evaporator 27 is arranged in a passage of the combustion gas 4 of the exhaust heat recovery boiler 6. A re-heater 51 is provided which includes a catalyst combustion device having combustion catalysts 9, 16 and 23 in the front flow side of the heat exchanger and a gas-phase combustion device 27 disposed in the tail flow side thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒燃焼および気
相燃焼を行う排熱回収ボイラに関する。
The present invention relates to an exhaust heat recovery boiler for performing catalytic combustion and gas-phase combustion.

【0002】[0002]

【従来の技術】ガスタービン複合サイクル発電プラント
は、発電用のガスタービンからの燃焼排ガスを排熱回収
ボイラに導入して、該ボイラの熱交換器(伝熱管)を用
いて蒸気を発生させ、蒸気タービンに導き、発電に利用
する。
2. Description of the Related Art In a gas turbine combined cycle power plant, combustion exhaust gas from a gas turbine for power generation is introduced into an exhaust heat recovery boiler, and steam is generated using a heat exchanger (heat transfer tube) of the boiler. It is led to a steam turbine and used for power generation.

【0003】前記複合サイクル発電プラントにおいて、
排熱回収ボイラの高効率化並びに負荷変動応答性向上の
ためにガスタービンを出た燃焼排ガスを熱交換器(伝熱
管)の前流側で昇温させることが重要となっている。
In the combined cycle power plant,
It is important to raise the temperature of the flue gas discharged from the gas turbine on the upstream side of the heat exchanger (heat transfer tube) in order to increase the efficiency of the exhaust heat recovery boiler and improve the load fluctuation response.

【0004】排熱回収ボイラで燃焼排ガスを昇温させる
ために、排熱回収ボイラの入口ダクト付近に火炎燃焼を
行うダクトバーナを設け、燃焼排ガスを追い焚きして昇
温する例が知られている。
[0004] In order to raise the temperature of the combustion exhaust gas in the exhaust heat recovery boiler, there is known an example in which a duct burner for performing flame combustion is provided near the inlet duct of the exhaust heat recovery boiler, and the combustion exhaust gas is reheated to increase the temperature. .

【0005】また、ダクトバーナによる火炎燃焼を行わ
ずにガスタービンから排出された燃焼排ガスの昇温を行
うために、特開平11−132401号公報には、次の
ような例が記載されている。すなわち、排熱回収ボイラ
の再熱器及び過熱器のそれぞれの前流側に脱硝兼用の燃
焼触媒層を設け、該燃焼触媒層に燃料を供給して触媒燃
焼による追い焚きを行って燃焼排ガスを昇温させ、排熱
回収効率を高める方法である。
Japanese Patent Application Laid-Open No. H11-132401 discloses the following example in order to raise the temperature of combustion exhaust gas discharged from a gas turbine without performing flame combustion by a duct burner. That is, a combustion catalyst layer for both denitration is provided on the upstream side of each of the reheater and the superheater of the exhaust heat recovery boiler, and fuel is supplied to the combustion catalyst layer to perform reburning by catalytic combustion to reduce combustion exhaust gas. This is a method of raising the temperature to increase the exhaust heat recovery efficiency.

【0006】[0006]

【発明が解決しようとする課題】前記ダクトバーナ方式
による排熱回収ボイラによると、次のような問題点があ
る。 ダクトバーナで発生する火炎がボイラ伝熱管に接触し
ないようにボイラダクトを従来より長くするため、排熱
回収ボイラが大型化する。 ダクトバーナに付随する着火バーナ、火炎燃焼バー
ナ、フレームディテクタ等の設備が必要となり、装置が
複雑になる。 火炎発生に伴うNOxの発生量が多い。 燃焼触媒用燃料が高カロリー燃料に限定される。
The exhaust heat recovery boiler of the duct burner type has the following problems. Since the boiler duct is made longer than before so that the flame generated by the duct burner does not contact the boiler heat transfer tube, the exhaust heat recovery boiler becomes large. Equipment, such as an ignition burner, a flame combustion burner, and a flame detector, that accompany the duct burner is required, and the apparatus becomes complicated. The amount of NOx generated due to the generation of flame is large. Combustion catalyst fuel is limited to high calorie fuel.

【0007】また、前記触媒燃焼方式による排熱回収ボ
イラによると、次のような問題点がある。 触媒燃焼では、燃焼温度が800℃を超えると触媒の
劣化が著しくなるため、ダクトバーナ方式に比較してそ
の運用範囲に制限があり、排ガス温度をより高温にする
ことで、ボイラを高効率化すること及び負荷変動応答性
を高めることができない。 そのため、ボイラダクトのガス流れ断面方向の全体に
わたり、触媒燃焼を均一に行うことが難しく、不完全燃
焼ガスが燃焼触媒の後流側へ流出し、ボイラ外へ排出さ
れる可能性があった。
The exhaust heat recovery boiler using the catalytic combustion system has the following problems. In catalytic combustion, if the combustion temperature exceeds 800 ° C., the deterioration of the catalyst becomes remarkable. Therefore, the operation range is restricted as compared with the duct burner method, and the efficiency of the boiler is increased by increasing the exhaust gas temperature. And the load fluctuation response cannot be improved. Therefore, it is difficult to perform catalytic combustion uniformly over the entire cross-sectional direction of the gas flow of the boiler duct, and there is a possibility that incomplete combustion gas flows out of the downstream side of the combustion catalyst and is discharged outside the boiler.

【0008】本発明の課題は、前述した従来技術の問題
点を解決し、排熱回収ボイラを大型化することなく、排
熱回収ボイラの高効率化及び負荷変動応答性の向上を達
成することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and achieve high efficiency of the heat recovery steam generator and improvement of load fluctuation response without increasing the size of the heat recovery steam generator. It is in.

【0009】[0009]

【課題を解決するための手段】上記本発明の課題は、以
下の構成の排熱回収ボイラにより解決できる。 (1)燃焼排ガスの流路内に再熱器、過熱器及び蒸発器
の内、少なくともいづれかの蒸気発生用熱交換器を配置
した排熱回収ボイラにおいて、前記熱交換器より前流側
に燃焼触媒を有する触媒燃焼装置と前記触媒燃焼装置の
後流に設置される気相燃焼装置とからなる追い焚き装置
を設けた排熱回収ボイラ。前記排熱回収ボイラでは、前
流側に触媒燃焼装置と気相燃焼装置とからなる前記追い
焚き装置を設けた熱交換器の後流側に燃焼触媒を有する
触媒燃焼装置を設けた構成とすることができる。
The above objects of the present invention can be solved by an exhaust heat recovery boiler having the following configuration. (1) In an exhaust heat recovery boiler in which at least one of a reheater, a superheater, and an evaporator is arranged in a flow path of a combustion exhaust gas, a combustion is performed upstream of the heat exchanger. An exhaust heat recovery boiler provided with a reheating device comprising a catalytic combustion device having a catalyst and a gas phase combustion device installed downstream of the catalytic combustion device. The exhaust heat recovery boiler has a configuration in which a catalytic combustion device having a combustion catalyst is provided on a downstream side of a heat exchanger provided with the reheating device including a catalytic combustion device and a gas phase combustion device on the upstream side. be able to.

【0010】(2)燃焼排ガスの流路内に再熱器、過熱
器、蒸発器及び節炭器の内、少なくとも過熱器、蒸発器
及び節炭器からなる蒸気発生用熱交換器を配置した排熱
回収ボイラにおいて、少なくとも過熱器の前流側に燃焼
触媒を有する触媒燃焼装置と前記触媒燃焼装置の後流に
設置される気相燃焼装置とからなる追い焚き装置を設
け、蒸発器の前流側に燃焼触媒を有する触媒燃焼装置を
設けたことを特徴とする排熱回収ボイラ。このとき、再
熱器の前流側にも燃焼触媒を有する触媒燃焼装置と前記
触媒燃焼装置の後流に設置される気相燃焼装置とからな
る追い焚き装置を設けても良い。
(2) A steam generating heat exchanger including at least a superheater, an evaporator, and a economizer among the reheater, the superheater, the evaporator, and the economizer is disposed in the flue gas flow passage. In the exhaust heat recovery boiler, a reburning device including a catalytic combustion device having a combustion catalyst at least upstream of the superheater and a gas phase combustion device installed downstream of the catalytic combustion device is provided, and a reheating device is provided in front of the evaporator. An exhaust heat recovery boiler provided with a catalytic combustion device having a combustion catalyst on a flow side. At this time, a reheating device including a catalytic combustion device having a combustion catalyst and a gas phase combustion device installed downstream of the catalytic combustion device may be provided on the upstream side of the reheater.

【0011】前記気相燃焼装置は、燃焼分散管と燃料ノ
ズルを含む燃料供給設備を有する構成とすることがで
き、前記気相燃焼装置は、前記触媒燃焼装置を通過した
燃焼排ガスに燃料を噴射し、該燃焼排ガスの残熱により
着火・燃焼させる構成とすることができる。
[0011] The gas phase combustion device may have a fuel supply facility including a combustion dispersion pipe and a fuel nozzle, and the gas phase combustion device injects fuel into combustion exhaust gas passing through the catalytic combustion device. However, it is possible to adopt a configuration in which ignition and combustion are performed by residual heat of the combustion exhaust gas.

【0012】[0012]

【作用】本発明によれば、燃料を気相燃焼させることに
より、触媒燃焼により低温に抑制されていた燃焼温度を
最高1300℃程度まで上昇させることが可能になる。
気相燃焼は、触媒燃焼により発生した残熱をもとに、こ
こに燃焼触媒用燃料を噴射することにより着火するもの
であり、着火バーナおよびパージエア設備等は不要であ
る。
According to the present invention, it is possible to raise the combustion temperature, which has been suppressed to a low temperature by catalytic combustion, to a maximum of about 1300 ° C. by causing gaseous combustion of fuel.
Gas-phase combustion ignites by injecting combustion catalyst fuel into the fuel based on residual heat generated by catalytic combustion, and does not require an ignition burner and purge air equipment.

【0013】また、燃焼触媒において触媒層の断面方向
全体にわたり均一燃焼ができず、未燃燃料が後流側へ流
出した場合でも気相燃焼を行うことにより、未燃燃料の
完全燃焼が達成され、排熱回収ボイラの後流側に未燃燃
料が流出することを回避でき、燃焼安定性の高い追い焚
き装置が実現できる。そのため追い焚き装置を前流側に
設けた熱交換器の後流側に触媒燃焼装置を配置しても良
い。
Further, even when the combustion catalyst cannot perform uniform combustion over the entire cross-sectional direction of the catalyst layer and the unburned fuel flows to the downstream side, complete combustion of the unburned fuel is achieved by performing gas phase combustion. In addition, it is possible to prevent the unburned fuel from flowing to the downstream side of the exhaust heat recovery boiler, and it is possible to realize a reheating apparatus having high combustion stability. Therefore, a catalytic combustion device may be arranged on the downstream side of the heat exchanger provided with the reheating device on the upstream side.

【0014】前記気相燃焼装置は、それより前流側に配
置される触媒燃焼装置を通過した燃焼排ガスに燃料を噴
射し、該燃焼排ガスの残熱により着火・燃焼させる構成
とすることで、容易に燃料の着火燃焼ができる。
The gas-phase combustion device is configured to inject fuel into the combustion exhaust gas passing through the catalytic combustion device disposed upstream of the combustion device, and to ignite and burn by the residual heat of the combustion exhaust gas. The fuel can be easily ignited and burned.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を以下図面を
用いて説明する。図1は、本発明の第一の実施の形態に
なる排熱回収ボイラの全体構成図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram of an exhaust heat recovery boiler according to a first embodiment of the present invention.

【0016】排熱回収ボイラ6は、入口ダクト5、追い
焚き装置51A、再熱器13、追い焚き装置51B、過
熱器20、追い焚き装置51C、蒸発器27、節炭器2
8、ドラム32、出口ダクト50より構成される。
The exhaust heat recovery boiler 6 includes an inlet duct 5, a reheating device 51A, a reheater 13, a reheating device 51B, a superheater 20, a reheating device 51C, an evaporator 27, and a economizer 2.
8, a drum 32, and an outlet duct 50.

【0017】追い焚き装置51A、51B、51Cはそ
れぞれ、燃焼触媒用燃料供給設備7、14、21と燃焼
触媒9、16、23と気相燃焼用燃料供給設備10、1
7、24を備えている。
The reheating units 51A, 51B, 51C are respectively provided with fuel supply facilities 7, 14, 21 for combustion catalysts, combustion catalysts 9, 16, 23, and fuel supply facilities 10, 1, for gas phase combustion.
7 and 24 are provided.

【0018】以下、本実施の形態を各系統ごとに説明す
る。ガスタービン1では、ガスタービン燃料供給設備2
よりLNG、LPG、プロパン等のガスタービン用燃料
の供給を受けて高温・高圧下にて前記燃料を燃焼するこ
とによって、これに直結した発電機3で電力を発生する
と同時に燃焼排ガス4(約550〜580℃)を排出す
る。この燃焼排ガス4は入口ダクト5より、排熱回収ボ
イラ6に導入され、以下、順次、前述の追い焚き装置5
1A、51B、51Cによる昇温と熱交換器(再熱器1
3、過熱器20、蒸発器27、節炭器28)における熱
交換とが行われ、最終的に出口ダクト50から煙突30
へ導出される。
Hereinafter, the present embodiment will be described for each system. In the gas turbine 1, gas turbine fuel supply equipment 2
By receiving a supply of gas turbine fuel such as LNG, LPG, propane, etc. and burning the fuel under high temperature and high pressure, power is generated by the generator 3 directly connected to the fuel and at the same time combustion exhaust gas 4 (about 550) is generated. ~ 580 ° C). The combustion exhaust gas 4 is introduced into an exhaust heat recovery boiler 6 through an inlet duct 5, and thereafter, the reheating unit 5
1A, 51B, 51C and the heat exchanger (reheater 1
3, heat exchange in the superheater 20, the evaporator 27, the economizer 28) is performed, and finally the chimney 30
Is derived.

【0019】排熱回収ボイラ6内に設置された再熱器1
3、過熱器20、蒸発器27のそれぞれの排ガス流れ前
流側には、追い焚き装置51A、51B、51Cが設け
られている。
Reheater 1 installed in waste heat recovery boiler 6
3, reheating units 51A, 51B and 51C are provided on the upstream side of the exhaust gas flow of the superheater 20 and the evaporator 27, respectively.

【0020】以下、図3から図8を用い、図1における
燃焼触媒9、16、23の例として燃焼触媒44、図1
における気相燃焼用燃料供給設備10、17、24の先
端部に設けられる気相燃焼装置の例として気相燃焼装置
55、図1における追い焚き装置51A、51B、51
Cの例として追い焚き装置51をそれぞれ説明する。
Hereinafter, using FIGS. 3 to 8 as examples of the combustion catalysts 9, 16 and 23 in FIG.
A gas-phase combustion device 55 as an example of a gas-phase combustion device provided at the tip of the gas-phase combustion fuel supply equipment 10, 17, and 24 in FIG. 1, and the reheating devices 51A, 51B, and 51 in FIG.
The reheating unit 51 will be described as an example of C.

【0021】まず、排ガス系統の説明をする。図3は、
熱交換器57の排ガス流れ前流側に設けられた追い焚き
装置51の全体構成を説明する図である。追い焚き装置
51は、ダクトケーシング52内に燃焼排ガス4Aの流
れ方向に順に燃焼触媒用燃料ノズル41を有する触媒燃
焼用分散管40を備えた燃焼触媒用燃料供給設備56
と、燃焼触媒44、気相燃焼用燃料ノズル43を有する
気相燃焼用燃料分散管42を備えた気相燃焼装置55よ
り構成される。追い焚き装置51の後流側には熱交換器
57が設置される。
First, the exhaust gas system will be described. FIG.
It is a figure explaining the whole composition of the reheating apparatus 51 provided in the exhaust gas flow upstream of the heat exchanger 57. The reheating unit 51 includes a combustion catalyst fuel supply device 56 including a catalyst combustion dispersion pipe 40 having a combustion catalyst fuel nozzle 41 in the duct casing 52 in the flow direction of the combustion exhaust gas 4A.
And a gas-phase combustion device 55 having a gas-phase combustion fuel dispersion pipe 42 having a gas-phase combustion fuel nozzle 43. A heat exchanger 57 is provided downstream of the reheating unit 51.

【0022】図4は、燃焼触媒用燃料供給設備56のダ
クト断面内の構造例を示す。ダクトケーシング52内部
に燃焼触媒用燃料53を均一に供給するために、例えば
燃焼触媒用燃料ノズル41が格子状に配置された燃焼触
媒用燃料分散管40を設けている。なお、燃焼触媒用燃
料供給設備56のダクト断面内の構造は、ダクトケーシ
ング52内部に燃焼触媒用燃料53を均一に供給できる
ものであれば、その配置や形式を問わず、例えば燃焼触
媒用燃料ノズル41の配置は、千鳥状にしてもよい。
FIG. 4 shows an example of the structure of the combustion catalyst fuel supply system 56 in the cross section of the duct. In order to uniformly supply the combustion catalyst fuel 53 into the duct casing 52, for example, a combustion catalyst fuel distribution pipe 40 in which the combustion catalyst fuel nozzles 41 are arranged in a lattice pattern is provided. Regarding the structure of the combustion catalyst fuel supply equipment 56 in the duct cross section, as long as it can uniformly supply the combustion catalyst fuel 53 into the duct casing 52, regardless of its arrangement or form, for example, the combustion catalyst fuel may be used. The arrangement of the nozzles 41 may be staggered.

【0023】図5は、燃焼触媒用燃料供給設備56の断
面構造の例を示す。燃焼触媒用分散管40に設けられた
燃焼触媒用燃料ノズル41から燃焼触媒用燃料53を噴
射し、燃焼排ガス4Aと均一に混合させる。前記燃焼触
媒用燃料53を混合された燃焼排ガスは、燃焼触媒44
に流入し、無火炎で低NOxの触媒燃焼を行って排ガス
温度が上昇する。但し、この時の触媒燃焼温度は触媒が
破損しない温度(約800℃)までに抑えるように、燃
料53の供給量を制御する。
FIG. 5 shows an example of a sectional structure of the fuel supply equipment 56 for a combustion catalyst. The fuel 53 for combustion catalyst is injected from the fuel nozzle 41 for combustion catalyst provided in the dispersion pipe 40 for combustion catalyst, and is uniformly mixed with the combustion exhaust gas 4A. The combustion exhaust gas mixed with the combustion catalyst fuel 53 is supplied to the combustion catalyst 44.
And the catalytic combustion of low NOx with no flame increases the exhaust gas temperature. However, the supply amount of the fuel 53 is controlled so that the catalyst combustion temperature at this time is suppressed to a temperature at which the catalyst is not damaged (about 800 ° C.).

【0024】図6は燃焼触媒44のダクト断面内の構造
の例を示す。燃焼触媒44は、ダクトケーシング52内
に均一に分布するように配置されているのでダクト断面
の全面にわたって均一な触媒燃焼が行われる。燃焼触媒
44の後流では、気相燃焼装置55により気相燃焼を行
う。
FIG. 6 shows an example of the structure of the combustion catalyst 44 in the cross section of the duct. Since the combustion catalysts 44 are disposed so as to be uniformly distributed in the duct casing 52, uniform catalytic combustion is performed over the entire cross section of the duct. In the downstream of the combustion catalyst 44, the gas phase combustion device 55 performs gas phase combustion.

【0025】図7は、燃焼触媒44とその後流側に設け
られた気相燃焼装置55の構成を示し、図8は、気相燃
焼装置55のダクト断面内の構造例を示す。気相燃焼装
置55では、燃焼触媒44を通過した燃焼排ガス46に
燃料ノズル43より燃焼触媒用燃料54を噴射すると、
燃焼触媒44を通過した後の燃焼排ガスの残熱45によ
り気相燃焼用燃料54が着火し、燃焼する。ここでは、
燃料ノズル43の燃焼ガス噴射角度を図7のようにガス
流れに対して傾斜させて配置する例を示したが、実質的
に燃焼排ガス46に燃料54を均一に噴射できるもので
あれば、その燃料ノズル43の燃焼ガス噴射方向の配置
および形状はいかなるものでも良い。例えば図8に示し
たダクト断面内のノズル43の配置は千鳥状に変更して
もよい。
FIG. 7 shows the structure of the combustion catalyst 44 and the gas-phase combustion device 55 provided on the downstream side thereof. FIG. 8 shows an example of the structure of the gas-phase combustion device 55 in the cross section of the duct. In the gas-phase combustion device 55, when the combustion catalyst fuel 54 is injected from the fuel nozzle 43 into the combustion exhaust gas 46 that has passed through the combustion catalyst 44,
Gas phase combustion fuel 54 is ignited and burned by residual heat 45 of the combustion exhaust gas after passing through combustion catalyst 44. here,
Although the example in which the combustion gas injection angle of the fuel nozzle 43 is arranged so as to be inclined with respect to the gas flow as shown in FIG. 7, if it is possible to substantially uniformly inject the fuel 54 into the combustion exhaust gas 46, the The arrangement and shape of the fuel nozzle 43 in the combustion gas injection direction may be any. For example, the arrangement of the nozzles 43 in the duct cross section shown in FIG. 8 may be changed in a staggered manner.

【0026】気相燃焼装置55で気相燃焼を行うことに
より、触媒燃焼にて低温に抑制されていた燃焼温度を最
高1300℃程度まで上昇させることが可能になる。気
相燃焼は、触媒燃焼にて発生した残熱45により気相燃
焼用燃料54を着火させるものであり、着火バーナおよ
びパージエア設備等は不要である。
By performing gas-phase combustion in the gas-phase combustion device 55, it becomes possible to raise the combustion temperature, which has been suppressed to a low temperature by catalytic combustion, to a maximum of about 1300 ° C. In the gas phase combustion, the fuel for gas phase combustion is ignited by residual heat 45 generated by catalytic combustion, and an ignition burner and a purge air facility are not required.

【0027】また、燃焼触媒44において、触媒層の断
面方向全体にわたり均一燃焼ができず未燃燃料が後流側
へ流出した場合でも、気相燃焼を行うことにより未燃燃
料の完全燃焼が達成され、排熱回収ボイラ6の後流側に
未燃燃料が流出することを回避でき、燃焼安定性の高い
追い焚き装置が実現できる。
Further, in the combustion catalyst 44, even if unburned fuel flows out to the downstream side because uniform combustion cannot be performed over the entire cross-sectional direction of the catalyst layer, complete combustion of unburned fuel is achieved by performing gas phase combustion. Thus, it is possible to prevent the unburned fuel from flowing out to the downstream side of the exhaust heat recovery boiler 6, and to realize a reheating apparatus having high combustion stability.

【0028】さらに、従来のダクトバーナによる火炎燃
焼方式に比較して、触媒燃焼装置では火炎の発生しない
均一無火炎燃焼を行うため、後流側に気相燃焼装置55
を設置しても追い焚き装置51全体としては低NOx燃
焼性能が達成される。
Further, as compared with the conventional flame combustion method using a duct burner, the catalytic combustion device performs uniform non-flame combustion without generating a flame.
Is installed, low NOx combustion performance is achieved as a whole for the reheating device 51.

【0029】燃焼触媒44では、触媒表面上で燃焼触媒
用燃料53とガスタービン排ガス中の残存O(通常1
3〜14vol%濃度)が反応する。
In the combustion catalyst 44, the fuel 53 for the combustion catalyst and the residual O 2 (usually 1
(3-14 vol% concentration).

【0030】火炎燃焼方式の場合と比較して触媒燃焼方
式においては、その燃焼反応の活性化エネルギーが低減
できるため、火炎燃焼方式では安定した燃焼が難しかっ
た低カロリー燃料についても燃焼触媒用燃料53として
充分に安定して使用することが可能になる。
Since the activation energy of the combustion reaction can be reduced in the catalytic combustion system as compared with the case of the flame combustion system, even the low calorie fuel which is difficult to stably burn in the flame combustion system can be used as the fuel 53 for the combustion catalyst. And it can be used stably.

【0031】ここで燃焼触媒44に供給する低カロリー
の燃焼触媒用燃料の中の未燃分が後流側へ流出する可能
性があるが、本実施の形態では、気相燃焼装置55にお
いて高カロリーの気相燃焼用燃料を噴射して燃焼させる
ことにより、低カロリーの未燃燃料も同時に燃焼させる
ことができる。したがって追い焚き装置51の後流側へ
未燃燃料が流出することを防止することができる。気相
燃焼装置55における気相燃焼により温度が上昇した排
ガスは、熱交換器57にて熱交換を行う。
Here, there is a possibility that unburned fuel in the low-calorie combustion catalyst fuel supplied to the combustion catalyst 44 may flow to the downstream side. By injecting and burning the caloric gas-phase combustion fuel, low-calorie unburned fuel can also be burned at the same time. Therefore, it is possible to prevent the unburned fuel from flowing to the downstream side of the reheating device 51. The exhaust gas whose temperature has been increased by the gas phase combustion in the gas phase combustion device 55 is subjected to heat exchange in the heat exchanger 57.

【0032】図1に示す本実施の形態になる排熱回収ボ
イラ6では、以上の追い焚き装置51による追い焚きと
熱交換器57における熱交換を燃焼排ガス流れ前流側よ
り順に再熱器13、過熱器20及び蒸発器27にて繰り
返し行い、蒸発器27を出た燃焼排ガスは節炭器28に
て排ガス側と給水側で熱交換され、温度が低下した後、
出口ダクト50及び煙突30を通過して、大気中に放出
される。
In the exhaust heat recovery boiler 6 according to this embodiment shown in FIG. 1, the reheating by the reheating device 13 and the heat exchange in the heat exchanger 57 are performed in order from the upstream side of the flue gas flow. The combustion exhaust gas, which has been repeatedly performed in the superheater 20 and the evaporator 27, is subjected to heat exchange between the exhaust gas side and the water supply side in the economizer 28, and the temperature is reduced.
After passing through the outlet duct 50 and the chimney 30, it is discharged into the atmosphere.

【0033】以上は排ガス系統の説明であるが、次に水
・蒸気系統を説明する。ボイラ給水ポンプにより加圧さ
れた給水31は節炭器28にて排ガスと熱交換がされ、
給水加熱される。この後、ボイラドラム32に流入し、
降水管32aを経て蒸発器27に流入して熱交換を行っ
た後、上昇管32bを通り、再びボイラドラム32に戻
る。ボイラドラム32で発生した飽和蒸気38は、過熱
器20で過熱された後、過熱蒸気36として需要側へ送
気される。一方、高圧タービン排気33は、再熱器13
で熱交換されて再熱蒸気34として需要側へ送気され
る。
The above is the description of the exhaust gas system. Next, the water / steam system will be described. The feed water 31 pressurized by the boiler feed pump is subjected to heat exchange with exhaust gas in the economizer 28,
The water supply is heated. After that, it flows into the boiler drum 32,
After flowing into the evaporator 27 through the downcomer 32a and performing heat exchange, it returns to the boiler drum 32 through the riser 32b. The saturated steam 38 generated in the boiler drum 32 is superheated by the superheater 20 and then sent to the demand side as superheated steam 36. On the other hand, the high-pressure turbine exhaust 33 is
And heat is sent to the demand side as reheat steam 34.

【0034】図2には、本実施の形態における排ガス−
蒸気温度線図を示す。ガスタービン出口の排ガス温度A
は、再熱器13の前流の燃焼触媒9にて昇温されて温度
Bとなり、さらに気相燃焼装置10により温度Cまで昇
温される。再熱器13では、熱交換に伴い温度Cから温
度Dに排ガス温度が低下すると同時に、再熱蒸気温度は
温度Qから温度Rまで上昇する。次に過熱器20の前流
側の燃焼触媒16にて排ガス温度は温度Dから温度Eま
で昇温し、その後、さらに気相燃焼装置17によって温
度Eから温度Fまで昇温される。過熱器20では、熱交
換に伴い排ガス温度は温度Fから温度Gまで低下すると
同時に、蒸気温度はドラム飽和温度Oから温度Pまで過
熱される。次に排ガス温度は、蒸発器前流燃焼触媒23
にて温度Gから温度Hまで昇温された後、さらに気相燃
焼装置24によって温度Hから温度Iまで昇温される。
蒸発器27では、排ガス温度が温度Iから温度Jまで低
下し、蒸気側は飽和温度Nにて一定となる。節炭器28
では、排ガス温度が温度Jから温度Kまで低下するのに
伴って、給水温度が温度Lから温度Mまで上昇する。
FIG. 2 shows the exhaust gas in this embodiment.
The vapor temperature diagram is shown. Exhaust gas temperature A at the gas turbine outlet
Is raised by the combustion catalyst 9 upstream of the reheater 13 to a temperature B, and further raised to a temperature C by the gas-phase combustion device 10. In the reheater 13, the exhaust gas temperature decreases from the temperature C to the temperature D due to the heat exchange, and at the same time, the reheat steam temperature increases from the temperature Q to the temperature R. Next, the temperature of the exhaust gas is raised from the temperature D to the temperature E by the combustion catalyst 16 on the upstream side of the superheater 20, and then further raised from the temperature E to the temperature F by the gas-phase combustion device 17. In the superheater 20, the exhaust gas temperature is reduced from the temperature F to the temperature G with the heat exchange, and at the same time, the steam temperature is superheated from the drum saturation temperature O to the temperature P. Next, the temperature of the exhaust gas is measured by the evaporator upstream combustion catalyst 23.
After the temperature is increased from the temperature G to the temperature H in the above, the temperature is further increased from the temperature H to the temperature I by the gas-phase combustion device 24.
In the evaporator 27, the exhaust gas temperature decreases from the temperature I to the temperature J, and the steam side becomes constant at the saturation temperature N. Economizer 28
Then, as the exhaust gas temperature decreases from the temperature J to the temperature K, the feedwater temperature increases from the temperature L to the temperature M.

【0035】上記構成の排熱回収ボイラの運用方法につ
いて説明する。排熱回収ボイラ6から発生する再熱蒸気
35の要求量が増加した場合、ガスタービン1の燃焼排
ガス4の保有熱量を増加させるため、追い焚き装置51
Aによる追い焚きを開始する。
An operation method of the exhaust heat recovery boiler having the above configuration will be described. When the required amount of the reheat steam 35 generated from the exhaust heat recovery boiler 6 increases, in order to increase the amount of heat retained in the combustion exhaust gas 4 of the gas turbine 1, the reheating unit 51
Start reheating by A.

【0036】具体的には、再熱蒸気要求量35が増加し
た場合、再熱器前流燃焼触媒用燃料8の供給が開始さ
れ、再熱器前流燃焼触媒9にて追い焚きを開始する。こ
れに伴って、ガスタービン1からの燃焼排ガスの温度が
上昇する。燃焼触媒用燃料8の供給量の増加に伴って、
燃焼による反応熱が発生し、触媒内部での燃焼温度が増
加する。従って、触媒劣化および活性低下の発生しない
一定の温度上限値(800℃程度)までに抑制するよう
に、燃料8の供給量を制御する。
Specifically, when the required reheat steam amount 35 increases, supply of the fuel 8 for the reheater upstream combustion catalyst is started, and reheating is started in the reheater upstream combustion catalyst 9. . Along with this, the temperature of the combustion exhaust gas from the gas turbine 1 rises. With an increase in the supply amount of the combustion catalyst fuel 8,
Reaction heat is generated by the combustion, and the combustion temperature inside the catalyst increases. Therefore, the supply amount of the fuel 8 is controlled so as to suppress the temperature to a certain upper limit value (about 800 ° C.) at which the catalyst deterioration and the activity decrease do not occur.

【0037】再熱蒸気35の要求に応じ、この温度域
(800℃程度)を超えて、さらに排ガス温度12を増
加させる場合には燃焼触媒9の後流において、気相燃焼
用燃料11を気相燃焼装置10に供給することにより、
気相燃焼を開始し、気相燃焼用燃料11の供給量を制御
して、必要な排ガス温度にまで昇温する。
When the temperature of the exhaust gas 12 exceeds this temperature range (about 800 ° C.) and the exhaust gas temperature 12 is further increased in response to the request of the reheat steam 35, the gaseous phase combustion fuel 11 is vaporized downstream of the combustion catalyst 9. By supplying to the phase combustion device 10,
The gas phase combustion is started, and the supply amount of the gas phase combustion fuel 11 is controlled to increase the temperature to a required exhaust gas temperature.

【0038】なお、触媒燃焼において未燃燃料の発生が
多い場合には触媒劣化および活性低下の発生しない一定
の温度上限値(800℃程度)以下であっても前述のよ
うに気相燃焼装置10による気相燃焼を開始して、未燃
燃料を気相燃焼装置10で燃焼させ、必要な排ガス温度
にまで昇温する。
When the amount of unburned fuel generated in catalytic combustion is large, even if the temperature is below a certain temperature upper limit (about 800 ° C.) at which catalyst deterioration and activity decrease do not occur, as described above, the gas-phase combustion system 10 , The unburned fuel is burned by the gas-phase combustion device 10 and the temperature is increased to a required exhaust gas temperature.

【0039】同様に、過熱蒸気要求量37が増加した場
合も上記と同様に、過熱器前流燃焼触媒用燃料15の供
給を開始して触媒燃焼を開始し、さらに排ガス温度19
を増加させる必要がある場合には、過熱器前流気相燃焼
用燃料18の供給を開始して、気相燃焼を行い、必要な
排ガス温度にまで昇温する。
Similarly, when the required amount of superheated steam 37 increases, the supply of the fuel 15 for the superheater upstream combustion catalyst is started to start catalytic combustion, and the exhaust gas temperature 19 is increased.
If it is necessary to increase the temperature of the exhaust gas, the supply of the fuel for upstream-side gas-phase combustion 18 is started to perform gas-phase combustion, and the temperature is increased to a required exhaust gas temperature.

【0040】本発明では、蒸発器27の前流側にも追い
焚き装置51Cが設置されているので飽和蒸気要求量3
9が増大したときにも上記と同様に、蒸発器前流燃焼触
媒用燃料22の供給を開始して触媒燃焼を開始し、さら
に排ガス温度26を増加させる必要がある場合には、蒸
発器前流気相燃焼用燃料25の供給を開始して、気相燃
焼を行い、必要な排ガス温度にまで昇温する。
In the present invention, since the reheating device 51C is also installed on the upstream side of the evaporator 27, the required saturated steam amount is 3
Similarly, when the fuel gas for the evaporator 9 is increased, the supply of the fuel 22 for the upstream combustion catalyst of the evaporator is started to start the catalytic combustion, and when it is necessary to further increase the exhaust gas temperature 26, the evaporator upstream The gas-phase combustion fuel 25 is started to be supplied, gas-phase combustion is performed, and the temperature is increased to a required exhaust gas temperature.

【0041】なお、本実施の形態では再熱器13、過熱
器20及び蒸発器27の排ガス流れ前流側にそれぞれに
追い焚き装置51A、51B及び51Cの計3基を設け
た例を示したが、一部の熱交換器用の追い焚き装置を省
略してもよく、その場合、どの熱交換器に追い焚き装置
を設置するかは、プラント毎に想定される運転条件など
に応じて適宜選択してもよい。
In this embodiment, an example is shown in which three reheating units 51A, 51B and 51C are provided on the upstream side of the exhaust gas flow of the reheater 13, superheater 20 and evaporator 27, respectively. However, the reheating device for some heat exchangers may be omitted, in which case, the heat exchanger to which the reheating device is to be installed is appropriately selected according to the operating conditions assumed for each plant. May be.

【0042】図9は、本発明の第2の実施の形態になる
排熱回収ボイラの全体構成図を示す。なお、前記第1の
実施の形態と共通する構成、作用については説明を省略
する。
FIG. 9 shows an overall configuration diagram of an exhaust heat recovery boiler according to a second embodiment of the present invention. The description of the configuration and operation common to the first embodiment is omitted.

【0043】排熱回収ボイラ6Aは、第1の実施形態に
おける再熱器13とその排ガス流れ前流側の追い焚き装
置51Aが省略された例である。
The exhaust heat recovery boiler 6A is an example in which the reheater 13 and the reheating device 51A on the upstream side of the exhaust gas flow in the first embodiment are omitted.

【0044】過熱器20と蒸発器27の排ガス流れ前流
側にそれぞれに追い焚き装置51Bと51Cを設けてい
る。なお、プラント毎に想定される運転条件などに応じ
て追い焚き装置51Bと51Cのうち一方を省略しても
よい。
On the upstream side of the exhaust gas flow of the superheater 20 and the evaporator 27, reheating devices 51B and 51C are provided, respectively. Note that one of the reheating devices 51B and 51C may be omitted according to the operating conditions and the like assumed for each plant.

【0045】図10は、図9に示す実施形の態の排ガス
−蒸気温度線図を示す。ガスタービン1の出口の排ガス
温度A’は、過熱器前流の燃焼触媒16にて昇温されて
温度B’となり、さらに気相燃焼装置17により温度
C’まで昇温される。
FIG. 10 shows an exhaust gas-steam temperature diagram of the embodiment shown in FIG. The exhaust gas temperature A 'at the outlet of the gas turbine 1 is raised to the temperature B' by the combustion catalyst 16 upstream of the superheater, and further raised to the temperature C 'by the gas-phase combustion device 17.

【0046】過熱器20では、熱交換に伴い排ガス温度
が温度C’から温度D’に低下すると同時に、主蒸気温
度は温度L’から温度M’まで上昇する。次に蒸発器前
流燃焼触媒23にて温度D’から温度E’まで昇温後、
さらに気相燃焼24によって温度E’から温度F’まで
昇温される。蒸発器27では、排ガス温度が温度F’か
ら温度G’まで低下した分、蒸気側は飽和温度L’で一
定となる。節炭器28では、排ガス温度が温度G’から
温度H’まで低下するのに伴って、給水温度が温度J’
から温度K’まで上昇する。
In the superheater 20, the temperature of the exhaust gas decreases from the temperature C 'to the temperature D' due to the heat exchange, and at the same time, the main steam temperature increases from the temperature L 'to the temperature M'. Next, after the temperature is increased from the temperature D 'to the temperature E' by the evaporator upstream combustion catalyst 23,
Further, the temperature is raised from the temperature E ′ to the temperature F ′ by the gas phase combustion 24. In the evaporator 27, the steam side becomes constant at the saturation temperature L 'to the extent that the exhaust gas temperature has decreased from the temperature F' to the temperature G '. In the economizer 28, as the exhaust gas temperature decreases from the temperature G ′ to the temperature H ′, the feedwater temperature increases to the temperature J ′.
To K ′.

【0047】なお、排熱回収ボイラ6、6Aで再熱器1
3を設置するか、しないかはガスタービン1の仕様等に
依存する。実績的には、ガスタービン1の燃焼温度が1
300℃程度、排ガス量約1500t/h以上のガスタ
ービン1については、排熱回収ボイラ6、6Aに再熱器
13を設置して、高圧蒸気タービンから排気された高圧
排気を再度過熱して、低圧蒸気タービンに送気し、ガス
タービン複合サイクル全体での発電効率を向上させてい
る。
The reheater 1 is connected to the waste heat recovery boilers 6 and 6A.
Whether or not to install the gas turbine 3 depends on the specifications of the gas turbine 1 and the like. Actually, the combustion temperature of the gas turbine 1 is 1
For the gas turbine 1 having a temperature of about 300 ° C. and an exhaust gas amount of about 1500 t / h or more, the reheater 13 is installed in the exhaust heat recovery boilers 6 and 6A, and the high-pressure exhaust exhausted from the high-pressure steam turbine is superheated again. The gas is sent to the low-pressure steam turbine to improve the power generation efficiency of the entire gas turbine combined cycle.

【0048】図11に本発明の第3の実施形態になる排
熱回収ボイラの全体構成の例を示す。なお、前述の実施
の形態と共通する構成及び作用については説明を省略す
る。
FIG. 11 shows an example of the overall configuration of an exhaust heat recovery boiler according to a third embodiment of the present invention. The description of the configuration and operation common to the above-described embodiment will be omitted.

【0049】排熱回収ボイラ6Bは、再熱器13と過熱
器20の排ガス流れの前流側にそれぞれ、第1の実施形
態における追い焚き装置51に例示されているのと同じ
追い焚き装置51Aと追い焚き装置51Bとを設け、蒸
発器27の前流側には燃焼触媒用燃料供給設備21と燃
焼触媒23を有する触媒燃焼装置61を設置した例であ
る。
The exhaust heat recovery boiler 6B is provided on the upstream side of the exhaust gas flow of the reheater 13 and the superheater 20, respectively, with the same reheating unit 51A as exemplified in the reheating unit 51 in the first embodiment. And a reheating device 51B, and a catalytic combustion device 61 having a combustion catalyst fuel supply device 21 and a combustion catalyst 23 installed upstream of the evaporator 27.

【0050】再熱蒸気要求量35と過熱蒸気要求量37
の増大に対しては、第1の実施の形態と同様に、それぞ
れ追い焚き装置51A、51Bにより、それぞれ燃焼排
ガス12、19を昇温し、飽和蒸気要求量39の増大に
対しては、触媒燃焼装置61において、燃焼触媒用燃料
供給設備21から燃焼触媒用燃料22を燃焼触媒23に
供給して触媒燃焼させることにより燃焼排ガス26を昇
温する。
Reheat steam demand 35 and superheat steam demand 37
In the same manner as in the first embodiment, the reheaters 51A and 51B respectively raise the temperatures of the combustion exhaust gases 12 and 19, and the catalysts increase the saturated steam demand 39 as in the first embodiment. In the combustion device 61, the combustion exhaust gas 26 is heated by supplying the combustion catalyst fuel 22 from the combustion catalyst fuel supply equipment 21 to the combustion catalyst 23 to perform catalytic combustion.

【0051】本実施の形態によれば、追い焚き装置51
Aと51Bの後流側に触媒燃焼装置61が設置されるの
で、触媒燃焼装置61より後流側の排ガス中のNOx濃
度を低く抑制できる。
According to the present embodiment, the reheating unit 51
Since the catalytic combustion device 61 is installed on the downstream side of A and 51B, the NOx concentration in the exhaust gas downstream of the catalytic combustion device 61 can be suppressed to be low.

【0052】なお、追い焚き装置を設置する熱交換器と
触媒燃焼装置61を設置する熱交換器は、上述の例に限
定されず、追い焚き装置51A、51Bの一部を省略し
ても触媒燃焼装置と入れ替えても良く、少なくとも1基
の熱交換器に追い焚き装置が設置され、少なくとも1基
の別の熱交換器に触媒燃焼装置61が設置されていれば
よい。
The heat exchanger in which the reheating device is installed and the heat exchanger in which the catalytic combustion device 61 is installed are not limited to the above-described example. Even if a part of the reheating devices 51A and 51B is omitted, the catalyst may be omitted. The combustion device may be replaced with a reburning device installed in at least one heat exchanger, and the catalytic combustion device 61 installed in at least one other heat exchanger.

【0053】図12に本発明の第4の実施の形態になる
排熱回収ボイラの全体構成図を示す。なお、前述の実施
の形態と共通する構成及び作用については説明を省略す
る。
FIG. 12 shows an overall configuration diagram of an exhaust heat recovery boiler according to a fourth embodiment of the present invention. The description of the configuration and operation common to the above-described embodiment will be omitted.

【0054】本実施の形態の排熱回収ボイラ6Cは、過
熱器20の排ガス流れ前流側に、第1の実施形態におけ
る追い焚き装置51Aと同じ追い焚き装置51Bを設
け、蒸発器27の前流側には燃焼触媒用燃料供給設備2
1と燃焼触媒23を有する触媒燃焼装置61を設置す
る。
The exhaust heat recovery boiler 6C of the present embodiment is provided with a reheating device 51B, which is the same as the reheating device 51A of the first embodiment, on the upstream side of the exhaust gas flow of the superheater 20. On the downstream side, a fuel supply system for combustion catalyst 2
1 and a catalytic combustion device 61 having a combustion catalyst 23 are installed.

【0055】本実施の形態は、第1の実施形態における
再熱器13を省略した排熱回収ボイラ6Cにおいて、過
熱蒸気要求量37の増大に対しては、第1から第3の実
施の形態と同様に追い焚き装置51Bにより、燃焼排ガ
ス19を昇温し、飽和蒸気要求量39の増大に対して
は、第3に実施の形態と同様に触媒燃焼装置61によ
り、燃焼排ガス26を昇温する。
In the present embodiment, in the exhaust heat recovery boiler 6C in which the reheater 13 is omitted in the first embodiment, the first to third embodiments are provided for the increase in the required amount of superheated steam 37. The combustion exhaust gas 19 is heated by the reheating device 51B in the same manner as described above, and the combustion exhaust gas 26 is heated by the catalytic combustion device 61 similarly to the third embodiment in response to the increase in the required amount of saturated steam 39. I do.

【0056】本実施の形態によれば、追い焚き装置51
Aと51Bの後流側の排ガス流路に触媒燃焼装置61が
設置されるので、触媒燃焼装置61側の後流の排ガス中
のNOx濃度を低く抑制できる。
According to this embodiment, the reheating unit 51
Since the catalytic combustion device 61 is installed in the exhaust gas flow path on the downstream side of A and 51B, the NOx concentration in the exhaust gas on the downstream side of the catalytic combustion device 61 can be suppressed to a low level.

【0057】以上に述べた本発明になる排熱回収ボイラ
の各熱交換器の排熱回収ボイラ内における配置、排ガス
流れに対する配置順序は、上記のものに限定されず、熱
交換器を複数に分割し、その一部あるいは全部に追い焚
き装置を設けてもよい。
The arrangement of each heat exchanger of the exhaust heat recovery boiler according to the present invention described above in the exhaust heat recovery boiler and the arrangement order with respect to the exhaust gas flow are not limited to those described above, and a plurality of heat exchangers may be used. It may be divided and a reheating device may be provided on a part or the whole thereof.

【0058】[0058]

【発明の効果】本発明によれば、排熱回収ボイラにおい
て、設備のコンパクト化、低NOx燃焼、低カロリー燃
料による追い焚きが可能となり、不完全燃焼ガスが流出
することなく、排熱回収ボイラの高効率化並びに負荷変
動応答性の向上を達成する効果を奏する。
According to the present invention, in the exhaust heat recovery boiler, the equipment can be made compact, low NOx combustion, and reheating with low calorie fuel can be performed, and the exhaust heat recovery boiler does not flow out of incomplete combustion gas. This has the effect of achieving higher efficiency and improved load fluctuation responsiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第一の実施形態になる排熱回収ボイ
ラの全体構成図を示す。
FIG. 1 is an overall configuration diagram of an exhaust heat recovery boiler according to a first embodiment of the present invention.

【図2】 図1の排熱回収ボイラにおける排ガス及び蒸
気の温度線図を示す。
FIG. 2 shows a temperature diagram of exhaust gas and steam in the heat recovery steam generator of FIG.

【図3】 図1の追い焚き装置の構成図を示す。FIG. 3 shows a configuration diagram of the reheating apparatus of FIG. 1;

【図4】 図1の燃焼触媒用燃料供給設備の構造例(ダ
クト断面)を示す。
FIG. 4 shows a structural example (duct cross section) of the combustion catalyst fuel supply equipment of FIG.

【図5】 本発明の燃焼触媒用燃料供給設備の構造例
(ガス流れ方向の断面)を示す。
FIG. 5 shows a structural example (cross section in the gas flow direction) of the fuel supply equipment for a combustion catalyst of the present invention.

【図6】 図1の燃焼触媒の構造例(ダクト断面)を示
す。
FIG. 6 shows a structural example (duct section) of the combustion catalyst of FIG.

【図7】 図1の燃焼触媒および気相燃焼用燃料供給設
備の構造例(ガス流れ方向の断面)を示す。
7 shows a structural example (a cross section in the gas flow direction) of the combustion catalyst and the fuel supply equipment for gas phase combustion shown in FIG.

【図8】 図1の気相燃焼用燃料供給設備の構造例(ダ
クト断面)を示す。
8 shows a structural example (duct cross section) of the gas-phase combustion fuel supply equipment of FIG.

【図9】 本発明の第2の実施形態になる排熱回収ボイ
ラの全体構成を示す。
FIG. 9 shows an overall configuration of an exhaust heat recovery boiler according to a second embodiment of the present invention.

【図10】 図9の排熱回収ボイラにおける排ガス及び
蒸気の温度線図を示す。
FIG. 10 shows a temperature diagram of exhaust gas and steam in the exhaust heat recovery boiler of FIG.

【図11】 本発明の第3の実施形態になる排熱回収ボ
イラの全体構成を示す。
FIG. 11 shows an overall configuration of an exhaust heat recovery boiler according to a third embodiment of the present invention.

【図12】 本発明の第4の実施形態になる排熱回収ボ
イラの全体構成を示す。
FIG. 12 shows an overall configuration of an exhaust heat recovery boiler according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 ガスタービ
ン燃料供給設備 3 発電機 4、4A ガス
タービン燃焼排ガス 5 入口ダクト 6、6A、6B、6C 排熱回収ボイラ 7、14、21、56 燃焼触媒用燃料供給設備 8、15、18、22、25、53 燃焼触媒用燃料 9、16、23、44 燃焼触媒 10、17、24 気相燃焼用燃料供給設備 11、18、25、54 気相燃焼用燃料 12、19、26、29 燃焼排ガス 13 再熱器 20 過熱器 27 蒸発器 28 節炭器 30 煙突 31 ボイラ給
水 32 ボイラドラム 32a 降水管 32b 上昇管 33 高圧ター
ビン排気 34 再熱蒸気 35 再熱蒸気
要求量 36 過熱蒸気 37 過熱蒸気
要求量 38 飽和蒸気 39 飽和蒸気
要求量 40 燃焼触媒用燃料分散管 41 燃焼触媒
用燃料ノズル 42 気相燃焼用燃料分散管 43 気相燃焼
用燃料ノズル 45 燃焼排ガスの残熱 46 燃焼触媒
通過後の燃焼排ガス 50 出口ダクト 51、51A、51B、51C 追い焚き装置 52 ダクトケーシング 55 気相燃焼
装置 57 熱交換器 61 触媒燃焼
装置
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Gas turbine fuel supply equipment 3 Generator 4, 4A Gas turbine combustion exhaust gas 5 Inlet duct 6, 6A, 6B, 6C Exhaust heat recovery boiler 7, 14, 21, 56 Fuel supply equipment for combustion catalyst 8, 15, 18, 22, 25, 53 Fuel for combustion catalyst 9, 16, 23, 44 Combustion catalyst 10, 17, 24 Fuel supply equipment for gas phase combustion 11, 18, 25, 54 Fuel for gas phase combustion 12, 19, 26, 29 flue gas 13 reheater 20 superheater 27 evaporator 28 economizer 30 chimney 31 boiler feed water 32 boiler drum 32a downcomer 32b riser 33 high-pressure turbine exhaust 34 reheat steam 35 reheat steam demand 36 superheat steam 37 superheat Required amount of steam 38 Saturated steam 39 Required amount of saturated steam 40 Fuel dispersion pipe for combustion catalyst 41 Fuel nozzle for combustion catalyst 42 Fuel for gas phase combustion Discharge tube 43 Gas-phase combustion fuel nozzle 45 Residual heat of combustion exhaust gas 46 Combustion exhaust gas after passing through combustion catalyst 50 Outlet duct 51, 51A, 51B, 51C Reheating device 52 Duct casing 55 Gas-phase combustion device 57 Heat exchanger 61 Catalyst Combustion equipment

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガスの流路内に再熱器、過熱器及
び蒸発器の内、少なくともいづれかの蒸気発生用熱交換
器を配置した排熱回収ボイラにおいて、 前記熱交換器より前流側に燃焼触媒を有する触媒燃焼装
置と前記触媒燃焼装置の後流に設置される気相燃焼装置
とからなる追い焚き装置を設けたことを特徴とする排熱
回収ボイラ。
An exhaust heat recovery boiler in which at least one of a reheater, a superheater, and an evaporator is disposed in a flow path of a combustion exhaust gas, wherein the heat exchanger for generating steam is located upstream of the heat exchanger. An exhaust heat recovery boiler further comprising a reburning device comprising a catalytic combustion device having a combustion catalyst and a gas phase combustion device installed downstream of the catalytic combustion device.
【請求項2】 前記再熱器、過熱器及び蒸発器の少なく
ともいづれかの熱交換器の前流側に前記追い焚き装置を
設け、さらに該熱交換器の後流側に燃焼触媒を有する触
媒燃焼装置を設けたことを特徴とする請求項1記載の排
熱回収ボイラ。
2. A catalytic combustion system comprising: a reheating device provided upstream of at least one of the reheater, superheater, and evaporator; and a combustion catalyst downstream of the heat exchanger. The heat recovery steam generator according to claim 1, further comprising an apparatus.
【請求項3】 前記気相燃焼装置は、燃焼分散管と燃料
ノズルを含む燃料供給設備を有することを特徴とする請
求項1記載の排熱回収ボイラ。
3. The exhaust heat recovery boiler according to claim 1, wherein the gas phase combustion device has a fuel supply facility including a combustion dispersion pipe and a fuel nozzle.
【請求項4】 前記気相燃焼装置は、前記触媒燃焼装置
を通過した燃焼排ガスに燃料を噴射し、該燃焼排ガスの
残熱により着火・燃焼させる構成とすることを特徴とす
る請求項1に記載の排熱回収ボイラ。
4. The gas-phase combustion device according to claim 1, wherein the fuel is injected into combustion exhaust gas passing through the catalytic combustion device, and is ignited and burned by residual heat of the combustion exhaust gas. Exhaust heat recovery boiler as described.
【請求項5】 燃焼排ガスの流路内に再熱器、過熱器、
蒸発器及び節炭器の内、少なくとも過熱器、蒸発器及び
節炭器からなる蒸気発生用熱交換器を配置した排熱回収
ボイラにおいて、 少なくとも過熱器の前流側に燃焼触媒を有する触媒燃焼
装置と前記触媒燃焼装置の後流に設置される気相燃焼装
置とからなる追い焚き装置を設け、蒸発器の前流側に燃
焼触媒を有する触媒燃焼装置を設けたことを特徴とする
排熱回収ボイラ。
5. A reheater, superheater,
In an exhaust heat recovery boiler in which a steam generating heat exchanger including at least a superheater, an evaporator, and a economizer is disposed, a catalytic combustion having a combustion catalyst at least upstream of the superheater. Exhaust heat characterized by providing a reburning device consisting of an apparatus and a gas phase combustion device installed downstream of the catalytic combustion device, and providing a catalytic combustion device having a combustion catalyst upstream of the evaporator; Recovery boiler.
【請求項6】 前記再熱器の前流側にも燃焼触媒を有す
る触媒燃焼装置と前記触媒燃焼装置の後流に設置される
気相燃焼装置とからなる追い焚き装置を設けたことを特
徴とする請求項5記載の排熱回収ボイラ。
6. A reheating device comprising a catalytic combustion device having a combustion catalyst also on the upstream side of the reheater and a gas-phase combustion device installed downstream of the catalytic combustion device. The heat recovery steam generator according to claim 5, wherein
【請求項7】 前記気相燃焼装置は、燃焼分散管と燃料
ノズルを含む燃料供給設備を有することを特徴とする請
求項5記載の排熱回収ボイラ。
7. The exhaust heat recovery boiler according to claim 5, wherein the gas phase combustion device has a fuel supply facility including a combustion dispersion pipe and a fuel nozzle.
【請求項8】 前記気相燃焼装置は、前記触媒燃焼装置
を通過した燃焼排ガスに燃料を噴射し、該燃焼排ガスの
残熱により着火・燃焼させる構成とすることを特徴とす
る請求項5記載の排熱回収ボイラ。
8. The gas-phase combustion device according to claim 5, wherein fuel is injected into combustion exhaust gas passing through the catalytic combustion device, and the fuel is ignited and burned by residual heat of the combustion exhaust gas. Waste heat recovery boiler.
JP2001157250A 2001-05-25 2001-05-25 Exhaust heat recovery boiler Withdrawn JP2002349801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157250A JP2002349801A (en) 2001-05-25 2001-05-25 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157250A JP2002349801A (en) 2001-05-25 2001-05-25 Exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2002349801A true JP2002349801A (en) 2002-12-04

Family

ID=19001143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157250A Withdrawn JP2002349801A (en) 2001-05-25 2001-05-25 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2002349801A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025835A (en) * 1996-07-10 1998-01-27 Natl House Ind Co Ltd Bearing wall structure
JP2015031214A (en) * 2013-08-02 2015-02-16 一般財団法人電力中央研究所 Co2 recovery type closed cycle gasification power generation system
WO2016125300A1 (en) * 2015-02-06 2016-08-11 三菱重工業株式会社 Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
CN113503527A (en) * 2021-05-25 2021-10-15 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Full-load denitration device and method for gas-steam combined cycle waste heat boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025835A (en) * 1996-07-10 1998-01-27 Natl House Ind Co Ltd Bearing wall structure
JP2015031214A (en) * 2013-08-02 2015-02-16 一般財団法人電力中央研究所 Co2 recovery type closed cycle gasification power generation system
WO2016125300A1 (en) * 2015-02-06 2016-08-11 三菱重工業株式会社 Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
CN107208499A (en) * 2015-02-06 2017-09-26 三菱重工业株式会社 Steam turbine plant, possess the combined cycle equipment of the steam turbine plant and the method for operation of steam turbine plant
CN107208499B (en) * 2015-02-06 2019-06-18 三菱重工业株式会社 Steam turbine plant has the combined cycle equipment of the steam turbine plant and the method for operation of steam turbine plant
CN113503527A (en) * 2021-05-25 2021-10-15 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Full-load denitration device and method for gas-steam combined cycle waste heat boiler

Similar Documents

Publication Publication Date Title
EP0899505B1 (en) Combined power generation plant
US7516620B2 (en) Module-based oxy-fuel boiler
US5943865A (en) Reheating flue gas for selective catalytic systems
JP5346258B2 (en) Low BTU fuel flow ratio duct burner for heating and heat recovery system
JPH0429923B2 (en)
US4811555A (en) Low NOX cogeneration process
TW200427898A (en) System for producing energy at a pulp mill
US6021743A (en) Steam generator
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JP3266626B2 (en) Cogeneration or combined power generation system with exhaust heat recovery device
JP2001107743A (en) Gas turbine system, and combined plant equipped with the system
JP2002349801A (en) Exhaust heat recovery boiler
US20180128479A1 (en) Method and Apparatus for Firetube Boiler and Ultra Low NOx Burner
EA010344B1 (en) Device and method for boiler superheat temperature control
JPH0323807B2 (en)
Campbell et al. Sourcebook, NOx Control Technology Data
WO2024038724A1 (en) Combined cycle power generator
JPH0472984B2 (en)
US20170138634A1 (en) Method and Apparatus for Firetube Boiler and Ultra Low NOx Burner
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
Ganapathy Understand boiler performance characteristics
JPS59109712A (en) Poor calorie gas burner
JP2004108150A (en) Cogeneration system
JP2001116208A (en) Waste heat recovery boiler with duct burner
JP2889271B2 (en) Waste heat recovery boiler device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060522