JP2002348468A - Electroconductive polyamide composite and its manufacturing method - Google Patents
Electroconductive polyamide composite and its manufacturing methodInfo
- Publication number
- JP2002348468A JP2002348468A JP2001155381A JP2001155381A JP2002348468A JP 2002348468 A JP2002348468 A JP 2002348468A JP 2001155381 A JP2001155381 A JP 2001155381A JP 2001155381 A JP2001155381 A JP 2001155381A JP 2002348468 A JP2002348468 A JP 2002348468A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- solution phase
- polyamide composite
- glass
- conductive particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は導電性、耐熱性、寸
法安定性、並びに靭性に優れるポリアミド複合体、及び
その製造方法に関する。The present invention relates to a polyamide composite having excellent conductivity, heat resistance, dimensional stability, and toughness, and a method for producing the same.
【0002】[0002]
【従来の技術】ポリアミドは機械的特性、化学的特性に
優れるエンジニアリングプラスチックとして知られる。
ポリアミドは本来、導電性ではないが、これに導電性粒
子を配合せしめ、電磁波シールド材や帯電防止材料等と
して有用な導電性プラスチック材料とすることが、特開
昭60−108428号公報、特開昭61−26646
0号公報に記されている。しかしながらこの材料は、導
電性ではあるものの、使用するポリアミドが耐熱性に劣
るため、高温下での特性劣化や、加熱による寸法変化な
どの問題を有しており、この点での改良が望まれてい
た。また、フィルム等で使用する場合、導電性粒子とポ
リアミドとの界面接着が十分でないために界面剥離を生
じやすく、靭性が十分でない不具合も生じた。2. Description of the Related Art Polyamide is known as an engineering plastic having excellent mechanical and chemical properties.
Polyamides are not inherently conductive, but can be mixed with conductive particles to make conductive plastic materials useful as electromagnetic wave shielding materials and antistatic materials, as disclosed in JP-A-60-108428 and JP-A-60-108428. Sho 61-26646
No. 0 publication. However, although this material is electrically conductive, the polyamide used is inferior in heat resistance, and thus has problems such as deterioration of characteristics at high temperatures and dimensional change due to heating. Improvement in this respect is desired. I was In addition, when used in a film or the like, the interfacial adhesion between the conductive particles and the polyamide is not sufficient, so that interfacial peeling is likely to occur, and there is a problem that the toughness is not sufficient.
【0003】一方、本発明者らは既に、表面高度や線熱
膨脹特性等に優れる、微細なガラスが均一に複合してな
るポリアミド複合体を特開平10−176106号公報
に開示した。しかしここでは、ガラスと導電性粒子の共
存による優れた導電性に関し何も言及されていない。On the other hand, the present inventors have already disclosed in Japanese Patent Application Laid-Open No. Hei 10-176106 a polyamide composite which is excellent in surface altitude, linear thermal expansion characteristics and the like and which is obtained by uniformly compounding fine glass. However, nothing is mentioned here about excellent conductivity due to coexistence of glass and conductive particles.
【0004】[0004]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、耐熱性、寸法安定性、並びに靭性に優れ
た、導電性ポリアミド、及びその製造方法を提供するこ
とである。SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive polyamide having excellent heat resistance, dimensional stability and toughness, and a method for producing the same.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上述課題
を解決するために鋭意研究を重ねた結果、特定の製造方
法によって得られる導電性粒子とガラスとポリアミドか
らなる3元系の複合体が、上記課題を解決し、更に驚く
べきことに、導電性粒子とガラスとが共存することで、
従来技術よりも優れた導電性を示すことを見出し、本発
明を完成した。Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a ternary composite comprising conductive particles, glass and polyamide obtained by a specific manufacturing method. The body solves the above problems, and more surprisingly, by the coexistence of conductive particles and glass,
The present inventors have found that they exhibit better conductivity than the prior art, and have completed the present invention.
【0006】即ち、本発明は、水、水ガラス、及びジア
ミンを含む水溶液相(A)と、有機溶媒、及びジカルボ
ン酸ハライドを含む有機溶液相(B)とを、導電性粒子
(C)の存在下で接触させ、両溶液相の界面にて重縮合
反応を行う、導電性ポリアミド複合体の製造方法を提供
するものである。That is, the present invention provides an aqueous solution phase (A) containing water, water glass and diamine, and an organic solution phase (B) containing an organic solvent and dicarboxylic acid halide, by forming conductive particles (C). An object of the present invention is to provide a method for producing a conductive polyamide composite, wherein the conductive polyamide composite is brought into contact in the presence of the compound and a polycondensation reaction is carried out at an interface between both solution phases.
【0007】更に、本発明は、上記製造方法によって得
られた、導電性ポリアミド複合体を提供するものであ
る。Further, the present invention provides a conductive polyamide composite obtained by the above production method.
【0008】[0008]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、導電性粒子(C)の存在下、ジアミンを含
む水溶液相(A)と、ジカルボン酸ハライドを含む有機
溶液相(B)とを、界面下にて重縮合反応を行い、ポリ
アミドを得る。この場合、導電性粒子(C)は、水溶液
相(A)及び/又は有機溶液相(B)に分散する形で存
在して良い。中でも、水溶液相(A)中に導電性粒子
(C)を含み、導電性粒子と水ガラスとを共存させた状
態で界面重合反応を行うと、導電性粒子の表面に水ガラ
スの一部が吸着した状態で反応が行われ、ガラスと導電
性粒子が良好に密着した状態でポリアミド中に取り込ま
れる点で好ましい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, in the presence of the conductive particles (C), an aqueous solution phase (A) containing a diamine and an organic solution phase (B) containing a dicarboxylic acid halide are subjected to a polycondensation reaction under an interface to form a polyamide. obtain. In this case, the conductive particles (C) may be present in a form dispersed in the aqueous solution phase (A) and / or the organic solution phase (B). Above all, when the conductive particles (C) are contained in the aqueous solution phase (A) and the interfacial polymerization reaction is performed in a state where the conductive particles and water glass coexist, a part of the water glass is formed on the surface of the conductive particles. The reaction is performed in a state of being adsorbed, and the glass and the conductive particles are preferably taken into the polyamide in a state of being in good contact with the glass.
【0009】本発明では、これら界面重縮合反応を行う
際に、水溶液相(A)に水ガラスを共存させることによ
り、ポリアミドとガラスとの微細で均一な複合体が生成
し、これに導電性粒子(C)が均一に取り込まれる。In the present invention, when the interfacial polycondensation reaction is carried out, water and glass coexist in the aqueous phase (A), whereby a fine and uniform composite of polyamide and glass is formed, The particles (C) are taken in uniformly.
【0010】水溶液相(A)は、水、水ガラス、及びジ
アミンを必須成分とする。ここでいう水ガラスとは、ア
ルカリ金属と珪素と酸素を主な構成元素とし、一般にM
2O・nSiO2の組成式を有する水溶性のガラスを指
す(Mとは、アルカリ金属を示す)。本発明においては
水分を含まないガラス成分自身を水ガラスと定義する。
前記組成式で、Mはナトリウムもしくはカリウムといっ
たアルカリ金属であることが好ましく、また水への溶解
性に優れる点でnの範囲が1.2≦n≦4であることが
好ましい。水ガラスを各種の酸による加水分解や、シリ
ル化といった前処理を一切必要とせずに、直接使用出来
ることも本発明の特長の一つである。The aqueous phase (A) contains water, water glass and diamine as essential components. The term “water glass” used herein means an alkali metal, silicon and oxygen as main constituent elements.
It refers to a water-soluble glass having a composition formula of 2O · nSiO 2 (M indicates an alkali metal). In the present invention, the glass component containing no water is defined as water glass.
In the above composition formula, M is preferably an alkali metal such as sodium or potassium, and the range of n is preferably 1.2 ≦ n ≦ 4 from the viewpoint of excellent solubility in water. One of the features of the present invention is that water glass can be directly used without any pretreatment such as hydrolysis with various acids or silylation.
【0011】水溶液相(A)中の水ガラスの濃度として
は4〜100g/L(L=リットル)の範囲が好まし
い。ガラスの濃度が4g/L未満であると、ポリアミド
への十分な量の複合化が行なわれず、また、100g/
Lを超えると溶液が高粘度化したり、あるいはガラスが
均一に分散出来なくなる。複合体中のガラスの含有率は
ガラスの濃度を調製することにより制御することが可能
である。The concentration of the water glass in the aqueous phase (A) is preferably in the range of 4 to 100 g / L (L = liter). If the glass concentration is less than 4 g / L, a sufficient amount of the composite to the polyamide will not be formed, and
If it exceeds L, the solution becomes highly viscous or the glass cannot be uniformly dispersed. The glass content in the composite can be controlled by adjusting the glass concentration.
【0012】ジアミンとしては、一般に界面重縮合に適
用可能なジアミンモノマーであれば特に限定されない
が、例えば、1,4−ジアミノブタン、1,6−ジアミ
ノヘキサン、p−フェニレンジアミン、m−フェニレン
ジアミン、m−キシリレンジアミンが挙げられる。The diamine is not particularly limited as long as it is a diamine monomer generally applicable to interfacial polycondensation. For example, 1,4-diaminobutane, 1,6-diaminohexane, p-phenylenediamine, m-phenylenediamine , M-xylylenediamine.
【0013】水溶液相(A)中のジアミンの濃度として
は、重縮合反応が十分に進行すれば特に制限されない
が、0.01〜5モル/Lの濃度範囲が好ましい。該範
囲以外の濃度条件だと、十分な収率が得られない問題を
生じやすい。水溶液相(A)は、水ガラス及びジアミン
を水に添加して得られ、添加の順序は特に制限されない
が、水ガラスの添加に際しては、予め水ガラスを水に溶
解せしめた水溶液を用いることも可能である。The concentration of the diamine in the aqueous phase (A) is not particularly limited as long as the polycondensation reaction proceeds sufficiently, but is preferably in the range of 0.01 to 5 mol / L. If the concentration condition is outside the above range, a problem that a sufficient yield cannot be obtained tends to occur. The aqueous solution phase (A) is obtained by adding water glass and a diamine to water, and the order of addition is not particularly limited. When adding the water glass, an aqueous solution in which the water glass is dissolved in water in advance may be used. It is possible.
【0014】例えば、日本工業規格(JIS K140
8−1950)に記載の水ガラス1号、2号、3号、4
号といった予め水に溶解せしめた水ガラス(M2O・n
SiO2の組成式においてMがナトリウムであり、1.
2≦n≦4である)を使用することは便利であり、好ま
しい。For example, Japanese Industrial Standards (JIS K140)
8-1950) water glass No. 1, No. 2, No. 3, No. 4,
Water glass (M 2 O · n)
In the composition formula of SiO 2 , M is sodium;
2 ≦ n ≦ 4) is convenient and preferred.
【0015】また、モノマーの重縮合反応を十分に促進
させる目的で、水酸化ナトリウム等の酸受容体及び/又
はラウリル硫酸ナトリウム等の界面活性剤が添加されて
もよい。酸受容体は反応により放出されるプロトンを中
和し、また界面活性剤はモノマー間の接触効率を上昇さ
せ反応を促進する。ただし、酸受容体、界面活性剤を用
いなくともポリアミドの生成は十分に行える場合が多
い。尚、水ガラス自身も塩基性であり、酸受容体として
の作用も有するためポリアミドの生成を促進する。An acid acceptor such as sodium hydroxide and / or a surfactant such as sodium lauryl sulfate may be added for the purpose of sufficiently promoting the polycondensation reaction of the monomer. Acid acceptors neutralize the protons released by the reaction, and surfactants increase the efficiency of contact between the monomers and promote the reaction. However, in many cases, polyamide can be sufficiently produced without using an acid acceptor or a surfactant. Incidentally, the water glass itself is also basic and also has an action as an acid acceptor, thereby promoting the formation of polyamide.
【0016】有機溶液相(B)は、有機溶媒、及びジカ
ルボン酸ハライドを必須成分とする。ここでいう有機溶
媒としては、一般的に界面重縮合に使用されるものを含
むが、代表例としてトルエン、キシレン、クロロホル
ム、ジクロロメタン、シクロヘキサン、テトラヒドロフ
ラン、1,3−ジオキソラン等を挙げることが出来る。
有機溶液相(A)中のジカルボン酸ハライドの濃度とし
ては、重縮合反応が十分に進行すれば特に制限されない
が、0.01〜5モル/Lの濃度範囲が好ましい。The organic solution phase (B) contains an organic solvent and a dicarboxylic acid halide as essential components. Examples of the organic solvent include those generally used for interfacial polycondensation, and typical examples include toluene, xylene, chloroform, dichloromethane, cyclohexane, tetrahydrofuran, 1,3-dioxolane, and the like.
The concentration of the dicarboxylic acid halide in the organic solution phase (A) is not particularly limited as long as the polycondensation reaction proceeds sufficiently, but is preferably in the range of 0.01 to 5 mol / L.
【0017】ジカルボン酸ハライドとしては、一般に、
界面重縮合に適用可能なモノマーであれば特に限定され
ないが、例えば、アジポイルクロリド、アゼラオイルク
ロリド、セバシルクロリド、イソフタロイルクロライ
ド、テレフタロイルクロライド及びこれらの芳香族環の
一個以上の水素をハロゲン、ニトロ基、アルキル基で置
換したジカルボン酸ハライドが挙げられる。As the dicarboxylic acid halide, generally,
The monomer is not particularly limited as long as it is a monomer applicable to interfacial polycondensation.For example, adipoyl chloride, azelaoil chloride, sebacyl chloride, isophthaloyl chloride, terephthaloyl chloride and one or more of these aromatic rings And dicarboxylic acid halides in which hydrogen is replaced by halogen, nitro group or alkyl group.
【0018】導電性粒子(C)としては、特に限定され
ないが、カーボン、グラファイトなどの炭素材料(カー
ボンブラック、カーボンナノチューブ、カーボンナノフ
ァイバーも含む)や、ステンレス、黄銅、鋼などの金属
材料のファイバー、ミルドファイバー、無定型、球状の
粒子等を挙げることができる。特に軽量性を活かしたい
場合は、炭素材料が有利である。導電性粒子(C)は、
上述の水溶液相(A)及び/又は有機溶液相(B)に分
散した形で用いられて良い。The conductive particles (C) are not particularly limited, but include carbon materials such as carbon and graphite (including carbon black, carbon nanotubes and carbon nanofibers) and fibers of metal materials such as stainless steel, brass and steel. , Milled fiber, amorphous, spherical particles and the like. In particular, when it is desired to take advantage of lightness, a carbon material is advantageous. The conductive particles (C)
It may be used in a form dispersed in the aqueous solution phase (A) and / or the organic solution phase (B) described above.
【0019】これらの導電性粒子は、複合体中に3〜6
0重量%、中でも20〜50重量%存在することが好ま
しい。3重量%未満では複合体の導電性が不足し、60
重量%を越えると、靭性が不足することが多い。These conductive particles are contained in the composite in an amount of 3 to 6%.
It is preferably present at 0% by weight, especially 20 to 50% by weight. If it is less than 3% by weight, the conductivity of the composite is insufficient, and
If the amount exceeds the weight percentage, the toughness is often insufficient.
【0020】上述の(A)及び(B)の溶液相の調製方
法は、特に限定されるものではないが、例えば常温で溶
媒中に上述の成分を添加、撹拌すれば良い。この際、各
成分は予め該溶媒に溶解し溶液状態とした形で添加して
も良い。導電性粒子(C)を添加しない状態において、
水溶液相と有機溶液相はともに均一であることが好まし
い。水溶液相(A)と有機溶液相(B)を接触させて反
応を行うが、水溶液相を有機溶液相に添加しても、逆
に、有機溶液相に水溶液相を添加しても良い。添加は一
度におこなっても、滴下によっても良い。The method for preparing the solution phases (A) and (B) is not particularly limited. For example, the above components may be added to a solvent and stirred at room temperature. At this time, each component may be dissolved in the solvent in advance and added in the form of a solution. In a state where the conductive particles (C) are not added,
It is preferable that both the aqueous solution phase and the organic solution phase are uniform. The reaction is carried out by bringing the aqueous solution phase (A) into contact with the organic solution phase (B). The aqueous solution phase may be added to the organic solution phase, or conversely, the aqueous solution phase may be added to the organic solution phase. The addition may be performed all at once or by dropping.
【0021】導電性粒子は、水溶液相(A)及び/又は
有機溶液相(B)に分散する形で添加され、両溶液相の
界面及びその近傍に導電性粒子が存在する状態で重合が
行われ、生成ポリアミド中に導電性粒子が均一に取り込
まれる。導電性粒子は、水溶液相(A)あるいは有機溶
液相(B)のどちらかの相に存在すればよく、その分散
状態にも特に制限はないが、水溶液相(A)に分散した
状態で重合するのが一般的である。導電性粒子(C)が
水溶性相に存在することで、その表面に水ガラスの一部
が吸着した状態で反応を行うこととなり、ガラスと導電
性粒子が良好に密着した状態でポリアミド中に取り込ま
れる点で好ましい。The conductive particles are added in a form dispersed in the aqueous solution phase (A) and / or the organic solution phase (B), and the polymerization is carried out in a state where the conductive particles are present at the interface between the two solution phases and in the vicinity thereof. Thus, the conductive particles are uniformly incorporated into the resulting polyamide. The conductive particles may be present in either the aqueous solution phase (A) or the organic solution phase (B), and the dispersion state is not particularly limited. It is common to do. By the presence of the conductive particles (C) in the water-soluble phase, the reaction is carried out in a state where a part of the water glass is adsorbed on the surface thereof, and the glass and the conductive particles are satisfactorily adhered to each other in the polyamide. It is preferable in that it is incorporated.
【0022】反応温度としては、重縮合反応の速度が極
めて速いため、常温で行なうことが可能である。従っ
て、特に加熱設備を必要とせずに常温反応させることが
出来る。例えば、−5〜70℃の温度範囲で好ましく反
応できる。反応時間は、使用するモノマー種の反応速度
にもよるが、通常水溶液相と有機溶液相を接触させるこ
とにより瞬時に沈殿が生成し、例えば2〜30分で反応
操作を終了させることができる。As the reaction temperature, the rate of the polycondensation reaction is extremely high, so that the reaction can be carried out at normal temperature. Therefore, the reaction can be performed at room temperature without particularly requiring any heating equipment. For example, the reaction can be preferably performed in a temperature range of -5 to 70C. The reaction time depends on the reaction rate of the monomer species used, but usually a precipitate is instantaneously formed by bringing the aqueous solution phase and the organic solution phase into contact with each other, and the reaction operation can be completed in, for example, 2 to 30 minutes.
【0023】また、両溶液相を反応中に攪拌することは
(A)と(B)の接触効率を高め、好ましい。前述の通
り、水溶液相(A)に存在する水ガラスが、界面重縮合
反応にて生成するポリアミドに均一に取り込まれ、ガラ
スとポリアミドとの複合体が得られる。通常、撹はん条
件下では両溶液相(A)と(B)からなる混合溶液中は
生成物を含む懸濁液である。It is preferable to stir both solution phases during the reaction, because the contact efficiency between (A) and (B) is increased. As described above, the water glass present in the aqueous solution phase (A) is uniformly incorporated into the polyamide generated by the interfacial polycondensation reaction, and a composite of glass and polyamide is obtained. Usually, under stirring conditions, the mixed solution comprising both solution phases (A) and (B) is a suspension containing the product.
【0024】本発明の特長のひとつは、水ガラスのポリ
アミドへの複合化に伴い、下記一般式(1)および一般
式(2)に示すような、水ガラスの加水分解及び脱水縮
合が進行し、アルカリ金属成分の極めて少ないシリカ型
のガラスとしてポリアミド中に極めて微細(ガラスの径
=8−300nm)に取り込ませることが可能なことで
ある。One of the features of the present invention is that the hydrolysis and dehydration-condensation of water glass progress as shown in the following general formulas (1) and (2) with the compounding of water glass into polyamide. In addition, it is possible to incorporate very finely (glass diameter = 8-300 nm) into polyamide as a silica-type glass having an extremely small alkali metal component.
【0025】 [0025]
【0026】 [0026]
【0027】このとき生成したガラス表面のシラノール
基が、導電性粒子の表面と好適に結合して、強い密着性
が得られ、強靱性の発現に有効である。また、導電性粒
子とガラス成分とが共存することで、導電性粒子とガラ
ス成分が密着し、より優れた導電性を示す。The silanol groups on the surface of the glass formed at this time are preferably bonded to the surface of the conductive particles, and a strong adhesion is obtained, which is effective for the development of toughness. In addition, when the conductive particles and the glass component coexist, the conductive particles and the glass component adhere to each other, and exhibit more excellent conductivity.
【0028】かくして得られた複合体は、反応後の混合
液から複合体以外の成分を除去して分離することが可能
である。分離の代表的方法としては、反応後の混合液を
濾別する方法が挙げられる。濾別の後に、未反応モノマ
ーや副生成物を完全に除去する目的で有機溶媒や水で洗
浄する工程を導入しても良い。例えば、先ずアセトンや
メタノールといった溶剤で洗浄し、次いで水洗後、濾別
することができる。特にポリアミドを脂肪族型とした場
合、パルプ様の微繊維(繊維長=30〜2000μmを
例示できる)として得易いことから、抄紙性にも優れ、
導電性抄紙物としての適用に好適である。The complex thus obtained can be separated by removing components other than the complex from the mixed solution after the reaction. As a typical method of the separation, a method of filtering a mixed solution after the reaction is mentioned. After the filtration, a step of washing with an organic solvent or water may be introduced in order to completely remove unreacted monomers and by-products. For example, first, it can be washed with a solvent such as acetone or methanol, then washed with water, and then filtered. In particular, when the polyamide is of an aliphatic type, it is easy to obtain as pulp-like fine fibers (fiber length = 30 to 2000 μm can be exemplified), so that it is excellent in papermaking properties.
It is suitable for application as a conductive paper product.
【0029】濾別の後は室温以上の温度で乾燥すること
が好ましい。乾燥は減圧もしくは真空下でおこなわれて
も良い。かかる濾別の際に、抄紙機を用いて複合体を導
電性の抄紙物として得ることが出来る。複合体は、特に
ポリアミドを脂肪族型とした場合、パルプ様の微繊維と
して得易いことから、抄紙性にも優れ、導電性抄紙物と
しての適用に好適である。After filtration, it is preferable to dry at a temperature higher than room temperature. Drying may be performed under reduced pressure or vacuum. At the time of such filtration, the composite can be obtained as a conductive paper product using a paper machine. Since the composite is easily obtained as pulp-like fine fibers, particularly when the polyamide is of an aliphatic type, the composite has excellent papermaking properties and is suitable for application as a conductive papermaking product.
【0030】複合体中のガラス分率(重量%)は合成時
の水溶液相(A)中の水ガラス濃度等の条件を設定する
ことにより好適に制御できる。一般に、高い水ガラス濃
度は高い灰分を与え、例えば、水溶液相(A)中の水ガ
ラス濃度を8g/L、15g/L、40g/Lとするこ
とにより複合体中のガラス分率を各々20重量%以上、
40重量%以上、60重量%以上とすることが可能とな
る。ガラス成分は8nm〜300nmの超微粒子としてナイ
ロンのマトリックスならびに導電性粒子の表面に微分散
させることが可能である。The glass fraction (% by weight) in the composite can be suitably controlled by setting conditions such as the concentration of water glass in the aqueous solution phase (A) during synthesis. In general, a high water glass concentration gives a high ash content. For example, by setting the water glass concentration in the aqueous solution phase (A) to 8 g / L, 15 g / L, and 40 g / L, the glass fraction in the composite is 20 g / L, respectively. Weight% or more,
It becomes possible to make it 40% by weight or more and 60% by weight or more. The glass component can be finely dispersed on the surface of the nylon matrix and the conductive particles as ultrafine particles of 8 nm to 300 nm.
【0031】本発明の導電性ポリアミド複合体は、上記
の微分散ガラスの優れた補強効果により、熱膨脹も少な
く、マトリックスポリアミドの融点以上の温度、例えば
融点を越えた温度でも溶融することなく、その形状を維
持することが出来る。弾性率などの特性値の高温での変
化も少なく、ポリアミドのガラス転移温度以上で問題と
なる熱時の特性劣化も抑制される。また、ガラスが導電
性粒子の表面と好適に結合して、強い密着性が得られる
ため、強靱性、導電性に優れる。本発明で得た導電性ポ
リアミド複合体は、表面硬度にも優れる長所を有する。
本発明の導電性ポリアミド複合体を含有した導電性プラ
スチック材料は、電磁波シールド材、帯電防止材、導電
性濾材、面状発熱体等として有用である。The conductive polyamide composite of the present invention has a small thermal expansion due to the excellent reinforcing effect of the finely dispersed glass and does not melt even at a temperature higher than the melting point of the matrix polyamide, for example, at a temperature exceeding the melting point. The shape can be maintained. Changes in characteristic values such as elastic modulus at high temperatures are small, and characteristic degradation during heating, which is a problem at a temperature higher than the glass transition temperature of polyamide, is suppressed. In addition, since glass is suitably bonded to the surface of the conductive particles and strong adhesion is obtained, it is excellent in toughness and conductivity. The conductive polyamide composite obtained by the present invention has an advantage that the surface hardness is also excellent.
The conductive plastic material containing the conductive polyamide composite of the present invention is useful as an electromagnetic wave shielding material, an antistatic material, a conductive filter material, a sheet heating element and the like.
【0032】[0032]
【実施例】以下、本発明を実施例により更に具体的に説
明するが、実施例は本発明の代表的態様を例示するもの
であり、本発明の範囲を限定するものではない。実施例
における評価法は以下の通りである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the Examples illustrate typical embodiments of the present invention and do not limit the scope of the present invention. The evaluation method in the examples is as follows.
【0033】(1) 導電性 サンワ電子製マルチテスタCP7Dを用い25℃でのフ
ィルムの導電性を求めた。 (2)引っ張り試験 3mm幅のフィルムの短冊を試験片とし、島津製作所製
の万能試験機オートグラフ2000を用い、初期ゲージ
間隔10mm、引張り速度1mm/分で25℃にて引っ
張り試験を行い、引っ張り弾性率、強度、破断伸び値を
それぞれ4つの測定の平均値として求めた。(1) Conductivity The conductivity of the film at 25 ° C. was determined using a multi-tester CP7D manufactured by Sanwa Electronics. (2) Tensile test Using a 3 mm-wide film strip as a test piece, a tensile test was conducted at 25 ° C. at an initial gauge interval of 10 mm and a pulling speed of 1 mm / min using a universal testing machine Autograph 2000 manufactured by Shimadzu Corporation. The modulus of elasticity, strength, and elongation at break were each determined as an average of four measurements.
【0034】(3)貯蔵弾性率 動的固体粘弾性特性評価装置(セイコー電子工業製、D
MS200)を用い、2℃/分の昇温速度、ゲージ長1
5mm、1Hzの引張りモード、窒素雰囲気下、20℃
〜200℃の温度範囲で抄紙物の貯蔵弾性率を決定し
た。(3) Storage elastic modulus Dynamic solid viscoelastic property evaluation device (manufactured by Seiko Denshi Kogyo, D
MS200), 2 ° C./min heating rate, gauge length 1
5mm, 1Hz tensile mode, 20 ℃ under nitrogen atmosphere
The storage modulus of the paper was determined in the temperature range of 〜200 ° C.
【0035】(4)硬度 ダイナミック超微小硬度計(島津製作所製 DUH−2
00)を用いて、25℃での試験荷重10gfにおける
平板のダイナミック硬度値を求めた。 (5)線熱膨張係数 熱機械特性測定機(セイコー電子工業製 TMA/SS
120C)を用い、空気中で2℃/分の昇温速度にて、
−30〜30℃の平均熱膨張率を測定した。尚、該係数
の計算は、ASTM、D696に記載の式によった。 (6)透過型電子顕微鏡観察 マイクロトームを用い、観察用試料を厚み55nmの超
薄切片とした。得られた超薄切片を顕微鏡(日本電子製
JEM−200CX)にて100000倍の倍率で観
察した。(4) Hardness Dynamic ultra-micro hardness tester (DUH-2 manufactured by Shimadzu Corporation)
00), the dynamic hardness value of the flat plate at a test load of 10 gf at 25 ° C. was determined. (5) Linear thermal expansion coefficient Thermo-mechanical property measurement device (TMA / SS manufactured by Seiko Denshi Kogyo)
120C) in air at a heating rate of 2 ° C./min.
The average coefficient of thermal expansion at -30 to 30 ° C was measured. The calculation of the coefficient was based on the equation described in ASTM, D696. (6) Transmission Electron Microscope Observation Using a microtome, the observation sample was made into an ultra-thin section having a thickness of 55 nm. The obtained ultrathin section was observed with a microscope (JEM-200CX, manufactured by JEOL) at a magnification of 100,000 times.
【0036】(実施例1)水ガラスの水溶液(キシダ化
学株式会社製、ケイ酸ナトリウム溶液(3号)組成式、
Na2O・3.1SiO2、水分=60重量%)3.6
gと、1,6−ジアミノヘキサン4.64gとに、室温
で蒸留水を加えながら攪拌して得た均一透明な300m
Lの水溶液に、電気化学工業製カーボンブラック(電化
ブラック)2.0gを分散させ水溶液相とした。また、
アジポイルジクロライド7.32gに室温でトルエンを
加えて攪拌し、均一透明な200mLの有機溶液相を得
た。(Example 1) Aqueous solution of water glass (Sodium silicate solution (No. 3) manufactured by Kishida Chemical Co., Ltd.)
Na 2 O · 3.1 SiO 2 , moisture = 60% by weight) 3.6
g, 4.64 g of 1,6-diaminohexane, and a uniform transparent 300 m obtained by stirring while adding distilled water at room temperature.
2.0 g of carbon black (Electric Black) manufactured by Denki Kagaku Kogyo was dispersed in the aqueous solution of L to obtain an aqueous solution phase. Also,
Toluene was added to 7.32 g of adipoyl dichloride at room temperature and stirred to obtain a uniform and transparent 200 mL organic solution phase.
【0037】1Lの容量のブレンダー瓶(Osterizer
製)に水溶液相を入れ、付属の攪拌羽根を毎分9000
回転で攪拌しながら、30℃にて有機溶液相を一度に加
えた。混合溶液から直ちに黒色の複合体が析出し、懸濁
状態のまま2分間攪拌を続けた。得られた複合体を濾別
したのち、沸騰アセトン、次いで蒸留水で洗浄し、引き
続き、水に分散した液を、150μmの目開きを有する
抄紙装置に通じ、真空中80℃で乾燥して黒色の、カー
ボンブラックとガラスとポリアミドの複合体を抄紙物と
して得た。A 1 L capacity blender bottle (Osterizer)
Solution phase), and the attached stirring blade is set to 9000 / min.
The organic solution phase was added all at once at 30 ° C. while rotating and stirring. A black complex was immediately precipitated from the mixed solution, and stirring was continued for 2 minutes in a suspended state. After filtering the obtained complex, it is washed with boiling acetone and then with distilled water, and then the liquid dispersed in water is passed through a papermaking apparatus having a 150 μm opening, and dried at 80 ° C. in vacuum to obtain a black color. A composite of carbon black, glass and polyamide was obtained as a papermaking product.
【0038】この抄紙物を、290℃、20MPaで圧
縮成形して、厚み120μmのフィルムとした。フィル
ムの透過型電子顕微鏡観察からは、ガラス成分が直径約
100nmの球状のガラス微粒子としてナイロン66に
存在し、この複合体マトリックスに、40μm径のカー
ボンブラックが均一に分散することが確認された。ま
た、上記フィルムを17枚積層し、290℃、20MP
aで成形し、厚み2mmの複合体の平板を得た。上述の
抄紙物、フィルム、平板の性状と特性の結果を表1、表
2、及び3に示す。This paper product was compression molded at 290 ° C. and 20 MPa to form a 120 μm thick film. The transmission electron microscope observation of the film confirmed that the glass component was present in nylon 66 as spherical glass fine particles having a diameter of about 100 nm, and that carbon black having a diameter of 40 μm was uniformly dispersed in the composite matrix. In addition, 17 sheets of the above film are laminated, and 290 ° C., 20MP
a) to obtain a composite flat plate having a thickness of 2 mm. Tables 1, 2 and 3 show the results of the properties and properties of the above-mentioned paper, film, and flat plate.
【0039】(実施例2)実施例1において水ガラスの
水溶液3.76gを30gに代え、カーボンブラック
2.0gを4.5gに代えた以外は実施例1と全く同様
の操作を行い、黒色の均一なカーボンブラックとガラス
とポリアミドの複合体を抄紙物として得た。次いでこの
ものを、油圧プレス機にて320℃、800MPaの条
件で圧縮成形し、厚み2mmの複合体の平板を得た。得
られた抄紙物、フィルム、平板の性状と特性の結果を表
1、表2、及び表3に示す。Example 2 The procedure of Example 1 was repeated, except that 3.76 g of the aqueous solution of water glass was replaced with 30 g, and 2.0 g of carbon black was replaced with 4.5 g. Of carbon black, glass and polyamide was obtained as a papermaking product. Next, this was compression-molded with a hydraulic press machine at 320 ° C. and 800 MPa to obtain a composite flat plate having a thickness of 2 mm. Tables 1, 2, and 3 show the results of the properties and properties of the obtained paper, film, and flat plate.
【0040】(比較例1)実施例1において水ガラスを
省いた以外は実施例1と全く同様の操作を行い、黒色の
カーボンブラックとポリアミドのみからなる複合体を抄
紙物として得た。次いでこのものを、油圧プレス機にて
320℃、800MPaの条件で圧縮成形し、厚み2m
mの複合体の平板を得た。得られた抄紙物、フィルム、
平板の性状と特性の結果を表1、表2、及び表3に示
す。(Comparative Example 1) The same operation as in Example 1 was carried out except that the water glass was omitted in Example 1, to obtain a composite comprising only black carbon black and polyamide as a papermaking product. Next, this was compression-molded at 320 ° C. and 800 MPa using a hydraulic press machine, and the thickness was 2 m.
m of the composite plate was obtained. The resulting paper, film,
Tables 1, 2, and 3 show the results of the properties and characteristics of the flat plate.
【0041】[0041]
【表1】導電性ポリアミド複合体の内容 [Table 1] Contents of conductive polyamide composite
【0042】[0042]
【表2】薄膜の引っ張り特性 [Table 2] Tensile properties of thin films
【0043】[0043]
【表3】平板、抄紙物の物性 [Table 3] Physical properties of flat and paper products
【0044】[0044]
【発明の効果】本発明により、導電性、耐熱性、寸法安
定性、並びに靭性に優れる導電性ポリアミドが得られ
る。According to the present invention, a conductive polyamide having excellent conductivity, heat resistance, dimensional stability and toughness can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 道也 千葉県習志野市谷津6−18−13 (72)発明者 高橋 勝治 千葉県佐倉市染井野5−21−2 Fターム(参考) 4J002 CL031 DA027 DA037 DJ006 FA047 FD117 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Michiya Nakajima, 6-18-13 Yatsu, Narashino-shi, Chiba (72) Katsuharu Takahashi 5-21-2, Someino, Sakura-shi, Chiba F-term (reference) 4J002 CL031 DA027 DA037 DJ006 FA047 FD117
Claims (8)
液相(A)と、有機溶媒、及びジカルボン酸ハライドを
含む有機溶液相(B)とを、導電性粒子(C)の存在下
で接触させ、両溶液相の界面にて重縮合反応を行う、導
電性ポリアミド複合体の製造方法。1. An aqueous solution phase (A) containing water, water glass and diamine and an organic solution phase (B) containing an organic solvent and a dicarboxylic acid halide are contacted in the presence of conductive particles (C). And conducting a polycondensation reaction at the interface between the two solution phases.
含み、導電性粒子と水ガラスとを共存させた状態で界面
重合反応を行う、請求項1に記載の導電性ポリアミド複
合体の製造方法。2. The conductive polyamide composite according to claim 1, wherein the aqueous phase (A) contains the conductive particles (C), and the interfacial polymerization reaction is performed in a state where the conductive particles and water glass coexist. How to make the body.
式で表わされ、ここで、Mがアルカリ金属であり、か
つ、1.2≦n≦4であることを特徴とする請求項1ま
たは2に記載の導電性ポリアミド複合体の製造方法。3. The water glass is represented by a composition formula of M 2 O · nSiO 2 , wherein M is an alkali metal and 1.2 ≦ n ≦ 4. 3. The method for producing a conductive polyamide composite according to 1 or 2.
〜100g/L、ジアミンの濃度が0.01〜5モル/
Lであり、有機溶液相(B)中のジカルボン酸ハライド
の濃度が0.01〜5モル/Lであり、−5℃〜70℃
の温度で反応を行うことを特徴とする請求項1〜3のい
ずれか一つに記載の導電性ポリアミド複合体の製造方
法。4. The concentration of water glass in the aqueous solution phase (A) is 4
-100 g / L, the concentration of diamine is 0.01-5 mol / L
L, the concentration of the dicarboxylic acid halide in the organic solution phase (B) is 0.01 to 5 mol / L, and -5 ° C to 70 ° C.
The method for producing a conductive polyamide composite according to any one of claims 1 to 3, wherein the reaction is performed at a temperature of:
ンを、ジカルボン酸ハライドとしてアジポイルジクロラ
イドを用いることを特徴とする、請求項1〜4のいずれ
か一つに記載の導電性ポリアミド複合体の製造方法。5. The conductive polyamide composite according to claim 1, wherein 1,6-diaminohexane is used as a diamine and adipoyl dichloride is used as a dicarboxylic acid halide. Production method.
製造方法により得られた導電性ポリアミド複合体。6. A conductive polyamide composite obtained by the production method according to claim 1.
有する、請求項6に記載の導電性ポリアミド複合体。7. The conductive polyamide composite according to claim 6, comprising 3 to 60% by weight of the conductive particles (C).
カーボンブラック、カーボンナノチューブ、又はカーボ
ンナノファイバーである、請求項6又は7に記載の導電
性ポリアミド複合体。8. The conductive particles (C) are graphite,
The conductive polyamide composite according to claim 6, which is a carbon black, a carbon nanotube, or a carbon nanofiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155381A JP4834918B2 (en) | 2001-05-24 | 2001-05-24 | Conductive polyamide composite and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155381A JP4834918B2 (en) | 2001-05-24 | 2001-05-24 | Conductive polyamide composite and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002348468A true JP2002348468A (en) | 2002-12-04 |
JP4834918B2 JP4834918B2 (en) | 2011-12-14 |
Family
ID=18999589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001155381A Expired - Fee Related JP4834918B2 (en) | 2001-05-24 | 2001-05-24 | Conductive polyamide composite and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4834918B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003082097A (en) * | 2001-09-11 | 2003-03-19 | Dainippon Ink & Chem Inc | Method for producing pulp and particles comprising composite of polyamide and glass |
JP2006117759A (en) * | 2004-10-20 | 2006-05-11 | Teijin Ltd | Method for manufacturing polyamide composite material |
JP2008535648A (en) * | 2005-03-09 | 2008-09-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanocomposite membranes and methods of making and using the same |
KR20180036563A (en) * | 2016-09-30 | 2018-04-09 | 신에츠 폴리머 가부시키가이샤 | Method of producing amine adduct of conductive composite, method of producing amine adduct liquid of conductive composite, and method of producing conductive film |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108428A (en) * | 1983-11-17 | 1985-06-13 | Agency Of Ind Science & Technol | Production of electrically conductive polyamide composition |
JPS61266460A (en) * | 1985-05-20 | 1986-11-26 | Agency Of Ind Science & Technol | Electrically conductive polyamide composition |
JPH10176106A (en) * | 1996-12-20 | 1998-06-30 | Dainippon Ink & Chem Inc | Composite material of glass and polyamide and its preparation |
JPH1180541A (en) * | 1997-09-10 | 1999-03-26 | Dainippon Ink & Chem Inc | Production of composite material of glass and polyamide |
JPH11236455A (en) * | 1998-02-20 | 1999-08-31 | Dainippon Ink & Chem Inc | Production of epoxy resin composite material |
JP2000226516A (en) * | 1999-02-03 | 2000-08-15 | Dainippon Ink & Chem Inc | Production of complex of silica and polyamide |
JP2001139683A (en) * | 1999-11-17 | 2001-05-22 | Dainippon Ink & Chem Inc | Method of continuously producing polyamide composite |
-
2001
- 2001-05-24 JP JP2001155381A patent/JP4834918B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108428A (en) * | 1983-11-17 | 1985-06-13 | Agency Of Ind Science & Technol | Production of electrically conductive polyamide composition |
JPS61266460A (en) * | 1985-05-20 | 1986-11-26 | Agency Of Ind Science & Technol | Electrically conductive polyamide composition |
JPH10176106A (en) * | 1996-12-20 | 1998-06-30 | Dainippon Ink & Chem Inc | Composite material of glass and polyamide and its preparation |
JPH1180541A (en) * | 1997-09-10 | 1999-03-26 | Dainippon Ink & Chem Inc | Production of composite material of glass and polyamide |
JPH11236455A (en) * | 1998-02-20 | 1999-08-31 | Dainippon Ink & Chem Inc | Production of epoxy resin composite material |
JP2000226516A (en) * | 1999-02-03 | 2000-08-15 | Dainippon Ink & Chem Inc | Production of complex of silica and polyamide |
JP2001139683A (en) * | 1999-11-17 | 2001-05-22 | Dainippon Ink & Chem Inc | Method of continuously producing polyamide composite |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003082097A (en) * | 2001-09-11 | 2003-03-19 | Dainippon Ink & Chem Inc | Method for producing pulp and particles comprising composite of polyamide and glass |
JP2006117759A (en) * | 2004-10-20 | 2006-05-11 | Teijin Ltd | Method for manufacturing polyamide composite material |
JP2008535648A (en) * | 2005-03-09 | 2008-09-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanocomposite membranes and methods of making and using the same |
US10618013B2 (en) | 2005-03-09 | 2020-04-14 | The Regents Of The University Of California | Nanocomposite membranes and methods of making and using same |
KR20180036563A (en) * | 2016-09-30 | 2018-04-09 | 신에츠 폴리머 가부시키가이샤 | Method of producing amine adduct of conductive composite, method of producing amine adduct liquid of conductive composite, and method of producing conductive film |
KR101972776B1 (en) * | 2016-09-30 | 2019-04-26 | 신에츠 폴리머 가부시키가이샤 | Method of producing amine adduct of conductive composite, method of producing amine adduct liquid of conductive composite, and method of producing conductive film |
US10640627B2 (en) | 2016-09-30 | 2020-05-05 | Shin-Etsu Polymer Co., Ltd. | Method of producing amine adduct of conductive composite, method of producing amine adduct liquid of conductive composite, and method of producing conductive film |
Also Published As
Publication number | Publication date |
---|---|
JP4834918B2 (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI597237B (en) | Dispersion of composition containing carbon nanotube, conductive molding and method for manufacturing thereof | |
Zhang et al. | Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding | |
US7906043B2 (en) | Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof | |
JP2020186513A (en) | Reactant fiber and method for producing fine cellulose fiber dispersion | |
Cao et al. | High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose) | |
Shen et al. | Ultrasonication-assisted direct functionalization of graphene with macromolecules | |
Zhang et al. | Mussel inspired modification of carbon nanotubes using RAFT derived stimuli-responsive polymers | |
WO1999023162A1 (en) | Polyester resin compositions and processes for the preparation thereof | |
JP2013221153A (en) | Method for preparing reinforced fluoropolymer composite comprising surface functionalized nanocrystalline cellulose | |
JP2007145677A (en) | Boron nitride nanotube coated with aromatic polyamide | |
Tsou et al. | High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol | |
Chen et al. | Enhanced mechanical properties of novel chitosan nanocomposite fibers | |
JP2002348468A (en) | Electroconductive polyamide composite and its manufacturing method | |
JP2001298791A (en) | Speaker and its manufacturing method | |
Wang et al. | Regulating surface molecular structure of cellulose nanocrystals to optimize mechanical reinforcement effect on hydrophobic bio-based polyesters | |
Fan et al. | Enhancing multiwalled carbon nanotubes/poly (amide-imide) interfacial strength through grafting polar conjugated polymer on multiwalled carbon nanotubes | |
Cheng et al. | Modification of multiwall carbon nanotubes via soap‐free emulsion polymerization of acrylonitrile | |
Wang et al. | Functionalization of multiwalled carbon nanotubes by amidation and Michael addition reactions and the effect of the functional chains on the properties of waterborne polyurethane composites | |
Cheng et al. | Surface-modified halloysite nanotubes as fillers applied in reinforcing the performance of polytetrafluoroethylene | |
Mallakpour et al. | Effect of amino acid-functionalized multi-walled carbon nanotubes on the properties of dopamine-based poly (amide-imide) composites: An experimental study | |
JP2009161657A (en) | Dope for forming | |
JP3858320B2 (en) | Composite of glass and polyamide and process for producing the same | |
JP4224884B2 (en) | Composite pulp-like particles, composite paper, and methods for producing them | |
Chang et al. | Obvious improvement of dispersion of multiwall carbon nanotubes in polymer matrix through careful interface design | |
KR100728642B1 (en) | A method for producing a composite formed from nylo 610 and carbon nano-tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050811 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |