JP2002348162A - Manufacturing method of powdery cement dispersant - Google Patents

Manufacturing method of powdery cement dispersant

Info

Publication number
JP2002348162A
JP2002348162A JP2001161996A JP2001161996A JP2002348162A JP 2002348162 A JP2002348162 A JP 2002348162A JP 2001161996 A JP2001161996 A JP 2001161996A JP 2001161996 A JP2001161996 A JP 2001161996A JP 2002348162 A JP2002348162 A JP 2002348162A
Authority
JP
Japan
Prior art keywords
cement dispersant
polycarboxylic acid
pulverized
based polymer
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001161996A
Other languages
Japanese (ja)
Other versions
JP4608132B2 (en
Inventor
Kazuhisa Tsukada
和久 塚田
Masaki Ishimori
正樹 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001161996A priority Critical patent/JP4608132B2/en
Publication of JP2002348162A publication Critical patent/JP2002348162A/en
Application granted granted Critical
Publication of JP4608132B2 publication Critical patent/JP4608132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of powdery cement dispersant, where in solidifying and pulverizing a dispersant comprising a liquid polycarboxylc acid-based polymer as a major component, pulverizing after drying can be easily done even in finely pulverizing stage with high pulverization efficiency and high manufacturing yield without any damage to its dispersing property. SOLUTION: In abtainig the dispersant, a liquid polycarboxylic acid-based polymer is dried and coarsely crushed mainly by cutting and/or shearing. The resulting product is pulverized to have a diameter of <=1 mm or made to have the crystallinity of polycarboxylic acid-based polymer in the dried product of >=35%, and then pulverized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリカルボン酸系
の粉末状セメント分散剤の製造方法に関する。
[0001] The present invention relates to a method for producing a polycarboxylic acid-based powdery cement dispersant.

【0002】[0002]

【従来技術】コンクリートやモルタル等のセメントを使
用した組成物では、硬化性や硬化後の機械的性状にとっ
て実用上有利であることから、セメントに対する配合水
量を低く抑えることが好まれる。その際、良好な流動性
及び作業性を確保するためにセメント分散剤が使用さ
れ、特に低水セメント比で極めて良好な流動性を付与で
きるポリカルボン酸系高分子化合物を主成分とする分散
剤の使用が増えている。このポリカルボン酸系分散剤は
液体として合成製造されるため、使用に際しては、セメ
ントとその他の配合物との調合時或いは固形成分調合後
の水配合時に加えられる。従って、プレミックス製品な
どに予め配合しておくことが不可能であり、また保管や
輸送にも制約が多く、更に現場での煩雑な調配合作業が
必要となる等の理由から、液状ではなく粉末状のものが
望まれている。ポリカルボン酸系に限らず粉末状の分散
剤を得るには、一般的には、液状の分散剤を乾燥し、乾
燥物を解砕・粉砕することで行われている。
2. Description of the Related Art A composition using cement such as concrete or mortar is practically advantageous for hardenability and mechanical properties after hardening. Therefore, it is preferable to reduce the amount of compounding water to cement. At that time, a cement dispersant is used to ensure good fluidity and workability, and a dispersant mainly composed of a polycarboxylic acid-based polymer compound capable of providing extremely good fluidity at a low water cement ratio. The use of is increasing. Since this polycarboxylic acid-based dispersant is synthesized and produced as a liquid, it is added at the time of mixing with cement and other components or at the time of mixing water with solid components. Therefore, it is impossible to pre-blend it into a premix product, etc., and there are many restrictions on storage and transportation, and furthermore, complicated preparation work on site is required. A powder form is desired. In order to obtain a powdery dispersant, not limited to a polycarboxylic acid type, generally, a liquid dispersant is dried, and the dried product is crushed and pulverized.

【0003】しかしながら、液状のポリカルボン酸系高
分子化合物を主成分とする分散剤は、乾燥過程で粘性が
著しく上昇し、凝集し易く、しかもこの凝集体は粘着性
を示すため、乾燥後の粉砕が容易でなく、また処理装置
内に大量の付着物が残存し易く、製造収率も低い。高粘
性化を抑制するため、高炉スラグ、シリカヒューム等の
大量の無機粉体を液状のポリカルボン酸系分散剤に配合
(特許第2669761)することも知られているが、
セメント分散剤としての性状が低下し易い。このような
無機粉体を用いずとも高粘性化物を、例えば均一且つ高
効率で乾燥処理できる動的乾燥装置を用い、十分に乾燥
させれば、付着力を低減させた乾燥物を得ることができ
る。
However, a dispersant containing a liquid polycarboxylic acid-based polymer as a main component has a remarkable increase in viscosity during the drying process, and is apt to aggregate. Pulverization is not easy, a large amount of deposits easily remain in the processing apparatus, and the production yield is low. It is also known to mix a large amount of inorganic powder such as blast furnace slag and silica fume with a liquid polycarboxylic acid-based dispersant to suppress the increase in viscosity (Japanese Patent No. 2669761).
The properties as a cement dispersant tend to decrease. Without using such an inorganic powder, a highly viscous material can be dried, for example, using a dynamic drying device that can uniformly and highly efficiently dry the material, and if it is sufficiently dried, a dried product with reduced adhesive force can be obtained. it can.

【0004】[0004]

【発明が解決しようとする課題】しかるに、付着力を低
減させてもポリカルボン酸系高分子材の乾燥物は概して
高い弾性性状を有すため、これが粉砕の緩衝作用となっ
て、粉砕の進展に伴い、特に微粉化粉砕段階になると、
緩衝作用として働くエネルギーも増大し、粉砕の進展が
鈍化して粉砕効率が急速に低下する。粉砕力を高めて粉
砕処理を続けると、粉砕発熱が増大し、その熱が蓄積さ
れ、粉砕物が高温となって熱変質する危険性がある。本
発明は、このような問題点の解決、即ち液状のポリカル
ボン酸系高分子化合物を主成分とする分散剤を固形粉末
化するにあたり、乾燥後の粉砕を微粉砕段階でも容易に
行うことができ、粉砕効率及び粉末の製造収率が共に高
く、しかもポリカルボン酸系のセメント分散剤としての
性状を何等損なうことのない粉末状分散剤の製造方法を
提供することを目的とする。
However, even if the adhesive force is reduced, the dried product of the polycarboxylic acid-based polymer material generally has a high elasticity property, and this serves as a buffering effect of the pulverization, and the pulverization progresses. Along with, especially in the pulverization and pulverization stage,
The energy acting as a buffering action also increases, and the progress of the grinding is slowed down, and the grinding efficiency is rapidly reduced. When the pulverizing power is increased and the pulverizing process is continued, the heat generated by the pulverization increases, and the heat is accumulated, and there is a risk that the pulverized material becomes high temperature and undergoes thermal deterioration. The present invention solves such a problem, that is, in forming a solid powder of a dispersant containing a liquid polycarboxylic acid-based polymer compound as a main component, it is possible to easily perform pulverization after drying even in a fine pulverization stage. It is an object of the present invention to provide a method for producing a powdery dispersant which can be performed with high grinding efficiency and high powder production yield and which does not impair the properties of a polycarboxylic acid-based cement dispersant at all.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記目的
達成のため種々の検討を行ったところ、一般に乾燥によ
って比較的強い凝集塊の形態となる液状のポリカルボン
酸系高分子化合物を主成分とする分散剤の乾燥物を、そ
の付着性や弾性による作用を抑えるため主に剪断や切断
作用で粉砕を行う装置で粗砕し、更に粗砕物を極力摩耗
や圧壊作用を及ぼさない粉砕機で微粉砕するか、或いは
乾燥物中のポリカルボン酸系高分子化合物の結晶化度を
高めることによって弾性性状をできるだけ喪失させる
と、所望の粒径まで容易に粉砕が進行でき、高い収率で
粉末が得られ、また得られた粉末も何等セメント分散剤
としての性状を損なうものでは無かったことから本発明
を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made various studies to achieve the above-mentioned object. As a result, the present inventors have found that a liquid polycarboxylic acid-based polymer compound which generally forms a relatively strong aggregate when dried is used. The dried product of the dispersant, which is the main component, is crushed by a device that grinds mainly by shearing or cutting in order to suppress the action due to its adhesiveness and elasticity, and further crushes the crushed material without exerting as much wear or crushing action as possible. If the elastic properties are reduced as much as possible by finely pulverizing with a machine or by increasing the crystallinity of the polycarboxylic acid-based polymer compound in the dried product, the pulverization can easily proceed to a desired particle size and a high yield. Thus, the present invention was completed because the obtained powder did not impair the properties of the cement dispersant at all.

【0006】即ち、本発明は、次の(1)〜(6)で表
す粉末状セメント分散剤の製造方法である。(1)液状
のポリカルボン酸系高分子化合物を主成分とするセメン
ト分散剤を乾燥し、乾燥物を主に切断及び/又は剪断に
より粗砕し、次いで粗砕物を1mm以下に粉砕すること
を特徴とする粉末状セメント分散剤の製造方法。(2)
粗砕物中のポリカルボン酸系高分子化合物の結晶化度を
20%以上にせしめ、1mm以下に粉砕する前記(1)
の粉末状セメント分散剤の製造方法。(3)粗砕物の温
度を10℃以下にして1mm以下に粉砕することを特徴
とする前記(1)又は(2)の粉末状セメント分散剤の
製造方法。(4)液状のポリカルボン酸系高分子化合物
を主成分とするセメント分散剤を乾燥し、乾燥物中のポ
リカルボン酸系高分子化合物の結晶化度を35%以上に
せしめ、粉砕することを特徴とする粉末状セメント分散
剤の製造方法。(5)乾燥物の温度を5℃以下にして1
mm以下に粉砕することを特徴とする前記(4)の粉末
状セメント分散剤の製造方法。(6)ポリカルボン酸系
高分子化合物が(メタ)アクリル酸系共重合体又はマレ
イン酸系共重合体である前記(1)〜(5)の何れかの
粉末状セメント分散剤の製造方法。
That is, the present invention is a method for producing a powdery cement dispersant represented by the following (1) to (6). (1) Drying a cement dispersant containing a liquid polycarboxylic acid polymer as a main component, crushing the dried product mainly by cutting and / or shearing, and then crushing the crushed product to 1 mm or less. A method for producing a powdery cement dispersant, which is characterized in that: (2)
The above (1), in which the degree of crystallinity of the polycarboxylic acid-based polymer compound in the crushed product is increased to 20% or more, and crushed to 1 mm or less.
Production method of powdery cement dispersant. (3) The method for producing a powdery cement dispersant according to the above (1) or (2), wherein the crushed material is crushed to 1 mm or less at a temperature of 10 ° C. or less. (4) Drying a cement dispersant containing a liquid polycarboxylic acid-based polymer as a main component, making the crystallinity of the polycarboxylic acid-based polymer in the dried product 35% or more, and pulverizing the same. A method for producing a powdery cement dispersant, which is characterized in that: (5) Keep the temperature of the dried product below 5 ° C
mm. (6) The method for producing a powdery cement dispersant according to any one of (1) to (5), wherein the polycarboxylic acid-based polymer compound is a (meth) acrylic acid-based copolymer or a maleic acid-based copolymer.

【0007】[0007]

【発明の実施の形態】本発明の製造方法で用いるポリカ
ルボン酸系高分子化合物を主成分とするセメント分散剤
は、通常セメント分散剤に使用される液状のポリカルボ
ン酸系高分子化合物を主成分とするものであれば特に限
定されず、例えば特開2000−26145で開示され
ている(メタ)アクリル酸系共重合体やマレイン酸系共
重合体(多価金属塩を除く)を挙げることができる。よ
り好ましくはポリアルキレングリコール鎖を有するポリ
カルボン酸系高分子化合物を主成分とするセメント分散
剤とする。
BEST MODE FOR CARRYING OUT THE INVENTION The cement dispersant containing a polycarboxylic acid polymer as a main component used in the production method of the present invention mainly comprises a liquid polycarboxylic acid polymer commonly used in cement dispersants. It is not particularly limited as long as it is a component, and examples thereof include (meth) acrylic acid-based copolymers and maleic acid-based copolymers (excluding polyvalent metal salts) disclosed in JP-A-2000-26145. Can be. More preferably, a cement dispersant containing a polycarboxylic acid-based polymer compound having a polyalkylene glycol chain as a main component is used.

【0008】(メタ)アクリル酸系共重合体としては、
−COOM基(Mは水素原子、アルカリ金属、アルカリ
土類金属、アンモニウム又は有機アミンの何れかを表
す)とポリアルキレングリコール鎖を有する(メタ)ア
クリル酸系共重合体を好適例として挙げることができ、
マレイン酸系共重合体としては、ポリアルキレングリコ
ールアルケニルエーテル−無水マレイン酸共重合体(多
価金属塩を除く)等が好適例として挙げられる。何れの
ポリアルキレングリコール鎖も、−O(CH2CH
(R)O)b−で表されるものが望ましい。(Rは水素
原子又はメチル基を表し、bは2〜300、好ましくは
5〜109とする。)好適な具体例としては、次の通り
である。
As the (meth) acrylic acid-based copolymer,
A preferred example is a (meth) acrylic acid-based copolymer having a -COOM group (M represents a hydrogen atom, an alkali metal, an alkaline earth metal, ammonium or an organic amine) and a polyalkylene glycol chain. Can,
Preferred examples of the maleic acid-based copolymer include a polyalkylene glycol alkenyl ether-maleic anhydride copolymer (excluding polyvalent metal salts). Any of the polyalkylene glycol chains has a structure of -O (CH 2 CH
Those represented by (R) O) b- are desirable. (R represents a hydrogen atom or a methyl group, b is 2 to 300, preferably 5 to 109.) Preferable specific examples are as follows.

【0009】メタクリル酸−メトキシポリエチレングリ
コールメタクリレート共重合体、メタクリル酸−メトキ
シポリエチレングリコールメタクリレート−メタリルス
ルホン酸ソーダ共重合体、メタクリル酸−メトキシポリ
エチレングリコールメタクリレート−メタルスルホン酸
ソーダ−アクリル酸エステル共重合体、マレイン酸−メ
トキシポリエチレングリコールアリルエーテル共重合
体、マレイン酸メトキシポリエチレングリコール−スチ
レン共重合体、メタクリル酸−メタクリル酸ヒドロキシ
プロピル共重合体、アクリル酸−アクリル酸ヒドロキシ
エチル共重合体。
Methacrylic acid-methoxy polyethylene glycol methacrylate copolymer, methacrylic acid-methoxy polyethylene glycol methacrylate-sodium methallylsulfonate copolymer, methacrylic acid-methoxy polyethylene glycol methacrylate-sodium metal sulfonate-acrylic acid ester copolymer A maleic acid-methoxypolyethylene glycol allyl ether copolymer, a maleic acid methoxypolyethylene glycol-styrene copolymer, a methacrylic acid-hydroxypropyl methacrylate copolymer, and an acrylic acid-hydroxyethyl acrylate copolymer.

【0010】上記のようなポリカルボン酸系高分子化合
物を主成分とするセメント分散剤を乾燥する。乾燥方法
は概ね含水率が2%以下になるよう乾燥すれば良い。使
用する乾燥装置は特に限定されないが、装置内の乾燥物
付着がより少ない機構の装置が推奨される。具体的には
ヘンシェル型乾燥機、真空式ニーダー、ドラムドライ
ヤ、溝型攪拌乾燥装置等が例示される。また乾燥物の形
態も限定されないが、本発明方法では、乾燥と共に高粘
性化するポリカルボン酸系高分子化合物で、一般に起こ
り易い塊状の固化体乾燥物が形成される場合にも十分適
応できる。
The above-mentioned cement dispersant containing a polycarboxylic acid polymer as a main component is dried. The drying method may be such that the moisture content is about 2% or less. The drying device to be used is not particularly limited, but a device having a mechanism with less adhesion of dried matter in the device is recommended. Specifically, a Henschel type dryer, a vacuum kneader, a drum dryer, a groove type stirring and drying device, etc. are exemplified. Although the form of the dried product is not limited, the method of the present invention can be sufficiently applied to a case where a lump of a solidified solid product, which generally occurs easily, is formed of a polycarboxylic acid-based polymer compound which becomes highly viscous with drying.

【0011】乾燥物は、主に切断及び/又は剪断作用で
被粉砕物を粉砕する機構を備えた装置によって粗砕す
る。主に切断及び/又は剪断作用で被粉砕物を粉砕する
とは、公知の粉砕手段や装置においては他の作用要因を
完全に排除することが困難であるため、切断及び/又は
剪断作用が支配的要因となり、他の作用要因が実質的な
粉砕進行に対して殆ど影響を及ぼさないものであれば良
い。粗砕をこのような粉砕作用で行うのは、乾燥物が多
少なりとも付着性があることに加え、弾性性状を有する
ことによるもので、このような性状物には摩耗や衝撃、
圧縮といった作用による粉砕は粉砕効率が著しく低減す
るため適さない。切断及び/又は剪断作用による粉砕で
は被粉砕物の付着性や弾性に殆ど影響されず、容易に細
粒化が行え、粉砕効率の低下は殆ど起こらない。本発明
での粗砕は、望ましくは粒径約10mm以下の粉砕物に
なるまで行う。また該粗砕に適した粉砕装置は、例えば
粉砕式造粒機や破砕式造粒機が挙げられる。全粒子が粒
径10mm以下になると、それ以上粗砕処理を行っても
細粒化の進行が急速に鈍化する。従って、粉末状セメン
ト分散剤として望ましいとされている粒径約1mm以下
の粉末、より好ましくは粒径10〜600μmの粉末、
にするには、更に粗砕物を粉砕処理する必要がある。
The dried product is roughly crushed by a device having a mechanism for crushing the material to be crushed mainly by cutting and / or shearing. When the object to be ground is mainly crushed by cutting and / or shearing, it is difficult to completely eliminate other factors of action with known crushing means and devices, so that cutting and / or shearing is dominant. It is only necessary that other factors have little effect on the actual pulverization progress. The crushing is performed by such a crushing action because the dried product has an elastic property in addition to the adhesiveness of the dried product to some extent.
Grinding by action such as compression is not suitable because the grinding efficiency is significantly reduced. In the pulverization by the cutting and / or shearing action, the adhesion and elasticity of the object to be pulverized are hardly affected, and the pulverization can be easily performed, and the reduction in the pulverization efficiency hardly occurs. The crushing in the present invention is preferably performed until a crushed product having a particle size of about 10 mm or less is obtained. Examples of the pulverizing device suitable for the coarse pulverization include a pulverization type granulator and a pulverization type granulator. When all the particles have a particle size of 10 mm or less, the progress of the fine-graining rapidly slows down even if the crushing treatment is further performed. Accordingly, a powder having a particle size of about 1 mm or less, which is desirable as a powdery cement dispersant, more preferably a powder having a particle size of 10 to 600 μm,
In order to reduce the size, it is necessary to further grind the crushed material.

【0012】粗砕物の粉末化に対しては、本発明では次
の何れかの手順で行う。即ち、第1の方法としては、前
工程で得られた粗砕物をそのまま特定の粉砕機で微粉砕
する方法である。ここで使用する粉砕機は、粉砕中に粉
砕物を粉砕室外で連続補集可能なピンミルが好ましく、
より好ましくは回転式のピンミルとする。ピンミルは微
粉砕及び粉砕物の整粒化に適し、被粉砕物とピンとの衝
撃・反発の相互作用で粉砕が進むため、摩耗や圧縮とい
った作用は弱く、回転速度を高めれば遠心力によって付
着し難くまたピンとの衝撃力や衝突回数も増大し、付着
性や弾性性状を有する被粉砕物に対しても概ね滞り無く
微粉砕することができる。特に粉砕中に粉砕室外補集機
構を付帯させたピンミルを使用することにより、粉砕物
自体が粉砕緩衝材になることを十分避けることができ、
粉砕熱の発生や蓄積も抑制できるので熱変性や粘性再上
昇も殆ど起らない。よって、粗砕物をこのような粉砕機
を用いて1mm以下の粒径となるよう粉砕処理すれば、
粉末状のセメント分散剤を得ることができる。
In the present invention, the pulverization of the crushed product is performed by any of the following procedures. That is, the first method is a method in which the coarsely crushed material obtained in the previous step is finely pulverized by a specific crusher as it is. The crusher used here is preferably a pin mill capable of continuously collecting the crushed material outside the crushing chamber during crushing,
More preferably, it is a rotary pin mill. Pin mills are suitable for fine pulverization and sizing of the pulverized material.Since the pulverization proceeds by the interaction of the impact and repulsion between the pulverized material and the pin, the action such as abrasion and compression is weak. In addition, the impact force and the number of collisions with the pins are increased, and the material to be ground having adhesiveness or elasticity can be finely ground almost without delay. In particular, by using a pin mill with a collection mechanism outside the crushing chamber during crushing, it is possible to sufficiently prevent the crushed material itself from becoming a crush buffer,
Since generation and accumulation of heat of grinding can be suppressed, heat denaturation and viscosity re-rise hardly occur. Therefore, if the crushed material is crushed using such a crusher so as to have a particle size of 1 mm or less,
A powdery cement dispersant can be obtained.

【0013】粗砕物の粉砕の第2の方法は、粗砕処理で
得られた粗砕物を、粗砕物中のポリカルボン酸系高分子
化合物の結晶化度を20%以上にせしめ、これを1mm
以下に微粉砕する。この場合、使用する粉砕装置は一般
の微粉砕処理に使用されているものなら何れの粉砕装置
でも使用できる。その中でも前記第1の方法で使用した
回転式のピンミルは、特に高い粉砕処理効率が得られる
ので好適である。また、粗砕物中のポリカルボン酸系高
分子化合物の結晶化度を20%以上にする簡単な方法
は、粗砕物を冷却すれば良い。乾燥したポリカルボン酸
系高分子化合物の結晶化度は、低温になると急激に増加
し、また同一温度でも配合組成によって微妙に異なるも
のの、概ね10℃未満の状態になるよう冷却する。冷却
方法は特に制限されない。結晶化度を20%以上にする
と粗砕物の弾性状態が粉砕に適した程度まで喪失され、
塑性状態が進むため、とりわけ一般に多大なエネルギー
が必要とされる微粉砕も容易に進む。また、付着性も低
下し、粉砕装置内壁や粉砕媒体への付着蓄積もかなり少
なく、粉砕物同士の付着結合も起こり難い。結晶化度は
被粉砕物の温度上昇と共に低下するので、冷却後は速や
かに微粉砕処理することが望まれる。長時間の粉砕を要
し、粉砕熱の蓄積により被粉砕物が高温状態になる場合
は、粉砕機自体を冷却することでも対応できる。
In a second method of pulverizing the crushed material, the crushed material obtained by the crushing treatment is made to have a crystallinity of the polycarboxylic acid type polymer compound in the crushed material of 20% or more, and this is reduced to 1 mm.
Finely pulverize below. In this case, any pulverizing apparatus can be used as long as it is used in a general pulverizing process. Among them, the rotary type pin mill used in the first method is preferable because particularly high pulverization efficiency can be obtained. In addition, a simple method of setting the degree of crystallinity of the polycarboxylic acid-based polymer compound in the crushed product to 20% or more is to cool the crushed product. The crystallinity of the dried polycarboxylic acid-based polymer compound rapidly increases at a low temperature, and is slightly reduced depending on the composition even at the same temperature. The cooling method is not particularly limited. When the crystallinity is increased to 20% or more, the elastic state of the crushed material is lost to a degree suitable for crushing,
Since the plastic state advances, fine grinding, which generally requires a large amount of energy, also easily proceeds. In addition, the adhesion is also reduced, the adhesion and accumulation on the inner wall of the crushing device and the crushing medium are extremely small, and the adhesion and bonding of the crushed materials are hard to occur. Since the crystallinity decreases with an increase in the temperature of the material to be pulverized, it is desired to perform a fine pulverization treatment immediately after cooling. When a long time of pulverization is required and the object to be pulverized is in a high temperature state due to accumulation of the pulverization heat, it can be coped with by cooling the pulverizer itself.

【0014】粗砕化工程に至る前の乾燥物中のポリカル
ボン酸系高分子化合物の結晶化度を高めて、これを粗砕
することもできる。この場合、結晶化度を35%以上に
すると、好ましくは乾燥物の温度を概ね5℃以下にする
と、粗砕手段は制限されず、公知何れの粉砕方法でも適
用でき、また、粗砕と微粉工程に分けずに直接1回の粉
砕で1mm以下の微粉化まで進めることも可能である。
結晶化度を高めた乾燥物はかなり強固で、粉砕効率を上
げるには高い粉砕エネルギーを要し、粉砕時の発熱も高
くなるので、粉砕処理自体を冷却しながら行うのが望ま
しい。
It is also possible to increase the crystallinity of the polycarboxylic acid-based polymer compound in the dried product before the crushing step, and crush it. In this case, if the crystallinity is set to 35% or more, and preferably the temperature of the dried product is set to approximately 5 ° C. or less, the crushing means is not limited, and any known crushing method can be applied. It is also possible to proceed to pulverization of 1 mm or less directly by one pulverization without dividing into steps.
The dried product having a high degree of crystallinity is quite strong, requires high pulverization energy to increase the pulverization efficiency, and generates a large amount of heat at the time of pulverization.

【0015】以上何れかの粉砕処理を経て得た微粉は、
必要により公知の分級操作を行うことによって所望の粒
径・粒度範囲のポリカルボン酸系高分子化合物を主成分
とする粉末状のセメント分散剤を得ることができる。
The fine powder obtained through any of the above pulverization treatments is
If necessary, a known classifying operation can be performed to obtain a powdery cement dispersant containing a polycarboxylic acid-based polymer compound having a desired particle size and particle size range as a main component.

【0016】[0016]

【実施例】[実施例1] 次に表す水溶液〔A〕を用
い、以下に表す方法で粉末状のセメント分散剤を製造し
た。 〔A〕 メタクリル酸63モル%、メトキシポリ(n=
40)エチレングリコールメタクリルレート3モル%、
メトキシポリ(n=23)エチレングリコールメタクリ
ルレート18モル%、メタリルスルホン酸ナトリウム1
5モル%及びメチルアクリレート1モル%を共重合させ
た重量平均分子量44000の高分子化合物に、亜硫酸
ソーダ及びトリエタノールアミンを合計約1重量%加
え、更にpH調整剤として水酸化ナトリウムをpH8.
5となるよう加えたもので固形分濃度50.0重量%の
水溶液。
EXAMPLES Example 1 A powdery cement dispersant was produced by the following method using the following aqueous solution [A]. [A] Methacrylic acid 63 mol%, methoxy poly (n =
40) ethylene glycol methacrylate 3 mol%,
Methoxy poly (n = 23) 18 mol% ethylene glycol methacrylate, sodium methallylsulfonate 1
A total of about 1% by weight of sodium sulfite and triethanolamine are added to a polymer compound having a weight average molecular weight of 44000 obtained by copolymerizing 5% by mole and 1% by mole of methyl acrylate, and sodium hydroxide having a pH of 8.
An aqueous solution having a solid content of 50.0% by weight, which was added so as to be 5.

【0017】<液の乾燥> 〔A〕の水溶液各80リッ
トルを乾燥容器外周にスチーム加熱ジャケットを設けた
内容量100リットルの市販の真空捏和式乾燥装置(双
腕型捏和機、株式会社井上製作所製)に投入し、乾燥装
置は何れもジャケット温度を120℃に保ち、また容器
内を30Torrまで減圧し、攪拌回転速度60rpmで混
練しながら乾燥を行った。乾燥物の含水量が1.0重量
%以下となった時点で乾燥を停止した。乾燥物の含水量
は市販の水分測定器(ケット科学研究所社製、型式FD
−600)で測定した。得られた乾燥物は塊状に凝集し
ていた。また乾燥装置内は極薄い乾燥物の付着が見られ
た。この付着分を無理に取り除くことはせずに、それ以
外の乾燥物を装置から取り出した。
<Drying of the Liquid> A commercially available vacuum kneading type drier (double-arm type kneading machine, Co., Ltd.) having a capacity of 100 liters provided with a steam heating jacket on the outer periphery of the drying vessel was used for each 80 liters of the aqueous solution of [A]. The drying was performed while keeping the jacket temperature at 120 ° C., reducing the pressure in the vessel to 30 Torr, and kneading at a stirring rotation speed of 60 rpm. Drying was stopped when the water content of the dried product became 1.0% by weight or less. The moisture content of the dried product was measured using a commercially available moisture meter (model FD, manufactured by Kett Scientific Research Institute).
-600). The obtained dried product was aggregated in a lump. In addition, adhesion of extremely thin dried material was observed in the drying device. The remaining dry matter was taken out of the apparatus without forcibly removing the attached matter.

【0018】<乾燥物の粗砕> 取り出した乾燥物を2
0℃に保った後、スクリーン6mmパンチ穴の破砕式造
粒機(商品名:パワーミルP−3型、昭和技研株式会社
製)で100Kg/Hの処理速度で粉砕し、粒径6mm
以下の粗砕物を得た。
<Crushing of dried product>
After the temperature was kept at 0 ° C., it was pulverized at a processing speed of 100 kg / H with a crushing type granulator (trade name: Power Mill P-3 type, manufactured by Showa Giken Co., Ltd.) having a punch hole of 6 mm and a particle size of 6 mm.
The following crude product was obtained.

【0019】<粗砕物の微粉化> 得られた粗砕物を2
0℃に保った後、室温(約20±1℃)下で高速回転式
のピンミル(商品名:コロプレックス160Z、ホソカ
ワミクロン株式会社製)を用いて粉砕(処理条件:回転
数18000rpm、ピン本数400本)した。該ピン
ミルは、粉砕物が粉砕中に粉砕室外に併設されている補
集器(チャンバー)に集まる構造となっており、粉砕粒
度はスクリーン等を設けることなく回転数及びピン使用
本数等によって調整できる機構である。チャンバーから
取り出した粉砕物は篩に通し、粒径600μm以下の粉
末を回収した。該ピンミルで10分間に粉砕できた被粉
砕物の処理量は7.5Kgであった。また、粗砕に供さ
れた乾燥物の重量:WDと上記各処理を経て回収された
粒径600μm以下の粉末重量:WPの値から、収率
(=100×WP/WD)を算出した結果、98%と高
い値であった。
<Pulverization of the crushed material>
After maintaining the temperature at 0 ° C., pulverizing was performed at room temperature (about 20 ± 1 ° C.) using a high-speed rotating pin mill (trade name: Coroplex 160Z, manufactured by Hosokawa Micron Corporation) (processing conditions: rotation speed 18000 rpm, number of pins 400). Book). The pin mill has a structure in which crushed materials are collected in a collector (chamber) provided outside the crushing chamber during crushing, and the crushing particle size can be adjusted by the number of rotations and the number of pins used without providing a screen or the like. Mechanism. The pulverized product taken out of the chamber was passed through a sieve to recover a powder having a particle size of 600 μm or less. The processing amount of the material to be pulverized by the pin mill for 10 minutes was 7.5 kg. Also, the result of calculating the yield (= 100 × WP / WD) from the value of the weight of the dried material subjected to the crushing: WD and the weight of the powder having a particle diameter of 600 μm or less recovered through the above-mentioned treatments: WP. , 98%.

【0020】<粉末の性状> 得られた粉末0.54
g、普通ポルトランドセメント900g、JIS標準砂
1350g及び水360gをホバートミキサーに一括投
入し、210秒間混練してモルタルを調整した。次いで
厚さ5mmのみがき板ガラスの上にモルタルフローコー
ンを置き、該コーンに調整したモルタルを充填した後、
フローコーンを引き上げ、板ガラス上のモルタルの広が
りが止まった段階で、広がりの直交2方向の直径を測定
し、その平均値をフロー値とし、該フロー値からセメン
ト分散剤としての性状を確認した。その結果、フロー値
は231mmとなった。比較参考のため、粉末化してい
ない〔A〕の固形分濃度50%水溶液1.08g、普通
ポルトランドセメント900g、JIS標準砂1350
g及び水360gを前記と同じ方法で調整したモルタル
のフロー値も同様の方法で測定した。この場合のフロー
値は230mmであったことから本粉末との間でセメン
ト分散剤としての性状面での有意差が生じるには至らな
い。
<Properties of Powder> Obtained Powder 0.54
g, 900 g of ordinary Portland cement, 1350 g of JIS standard sand, and 360 g of water were charged all at once into a Hobart mixer and kneaded for 210 seconds to prepare a mortar. Then, place a mortar flow cone on a glazing plate glass having a thickness of only 5 mm and fill the cone with the adjusted mortar,
The flow cone was pulled up, and when the spread of the mortar on the plate glass stopped, the diameters of the spread in two orthogonal directions were measured, and the average value was used as a flow value, and the properties as a cement dispersant were confirmed from the flow value. As a result, the flow value was 231 mm. For comparison, 1.08 g of a 50% solid content aqueous solution of non-pulverized [A], ordinary Portland cement 900 g, JIS standard sand 1350
g and 360 g of water were prepared in the same manner, and the mortar flow value was measured in the same manner. Since the flow value in this case was 230 mm, a significant difference in properties as a cement dispersant from this powder did not occur.

【0021】[実施例2] 乾燥に用いる水溶液を以下
に表す〔B〕にした以外は、前記実施例1と同様の方法
及び装置で、粒径600μm以下の粉末を製造した。 〔B〕 メタクリル酸74モル%、メトキシポリ(n=
23)エチレングリコールメタクリルレート26モル%
を共重合させた重量平均分子量55000の高分子化合
物に亜硫酸ソーダ及びトリエタノールアミンを合計約1
重量%加え、更にpH調整剤として水酸化ナトリウムを
pH8.5となるよう加えたもので固形分濃度50.0
重量%の水溶液。
Example 2 A powder having a particle size of 600 μm or less was produced by the same method and apparatus as in Example 1 except that the aqueous solution used for drying was changed to the following [B]. [B] 74% by mole of methacrylic acid, methoxy poly (n =
23) Ethylene glycol methacrylate 26 mol%
To a high molecular weight compound having a weight average molecular weight of 55,000, and sodium sulfite and triethanolamine in a total amount of about 1
Weight percent, and sodium hydroxide was added as a pH adjuster so as to have a pH of 8.5.
Wt% aqueous solution.

【0022】本実施例において、ピンミルで10分間に
粉砕できた被粉砕物の処理量は7.3Kgであった。ま
た、粗砕に供された乾燥物の重量:WDと回収できた粒
径600μm以下の粉末重量:WPの値から、収率(=
100×WP/WD)を算出した結果、99%と高い値
であった。
In this example, the processing amount of the material to be ground which could be ground in a pin mill for 10 minutes was 7.3 kg. From the value of the weight of the dried product subjected to the crushing: WD and the weight of the recovered powder having a particle size of 600 μm or less: WP, the yield (=
As a result of calculating (100 × WP / WD), the value was as high as 99%.

【0023】また、得られた粉末0.54g、普通ポル
トランドセメント900g、JIS標準砂1350g及
び水360gをホバートミキサーに一括投入し、210
秒間混練してモルタルを調整した。このモルタルのフロ
ー値を実施例1と同様の試験方法で測定した結果、フロ
ー値は251mmとなった。比較参考のため、粉末化し
ていない〔B〕の固形分濃度50%水溶液1.08g、
普通ポルトランドセメント900g、JIS標準砂13
50g及び水360gを前記と同じ方法で調整したモル
タルのフロー値も同様の方法で測定した。この場合のフ
ロー値は252mmであったことから、本粉末との間で
セメント分散剤としての性状面で有意差が生じるには至
らない。
Further, 0.54 g of the obtained powder, 900 g of ordinary Portland cement, 1350 g of JIS standard sand, and 360 g of water were put into a Hobart mixer at once, and the mixture was poured into 210 g.
The mortar was adjusted by kneading for 2 seconds. As a result of measuring the flow value of this mortar by the same test method as in Example 1, the flow value was 251 mm. For comparison, 1.08 g of a 50% solids aqueous solution of unpulverized [B],
Normal Portland cement 900g, JIS standard sand 13
The mortar flow value obtained by adjusting 50 g and 360 g of water in the same manner as described above was measured in the same manner. Since the flow value in this case was 252 mm, there was no significant difference in properties as a cement dispersant from the present powder.

【0024】[実施例3] 乾燥に用いる水溶液を以下
に表す〔C〕にした以外は、前記実施例1と同様の方法
及び装置で、粒径600μm以下の粉末を製造した。 〔C〕 無水マレイン酸50モル%、メトキシポリ(n
=40)エチレングリコールアリルエーテル50モル%
を共重合させた重量平均分子量43000の高分子化合
物に亜硫酸ソーダ及びトリエタノールアミンを合計約1
重量%加え、更にpH調整剤として水酸化ナトリウムを
pH8.5となるよう加えたもので固形分濃度50.0
重量%の水溶液。
Example 3 A powder having a particle diameter of 600 μm or less was produced by the same method and apparatus as in Example 1 except that the aqueous solution used for drying was changed to the following [C]. [C] 50 mol% of maleic anhydride, methoxy poly (n
= 40) Ethylene glycol allyl ether 50 mol%
To a polymer compound having a weight average molecular weight of 43,000 and sodium sulfite and triethanolamine in a total amount of about 1
Weight percent, and sodium hydroxide was added as a pH adjuster so as to have a pH of 8.5.
Wt% aqueous solution.

【0025】本実施例において、ピンミルで10分間に
粉砕できた被粉砕物の処理量は7.5Kgであった。ま
た、粗砕に供された乾燥物の重量:WDと回収できた粒
径600μm以下の粉末重量:WPの値から、収率(=
100×WP/WD)を算出した結果、99%と高い値
であった。
In this example, the processing amount of the material to be pulverized in a pin mill for 10 minutes was 7.5 kg. From the value of the weight of the dried product subjected to the crushing: WD and the weight of the recovered powder having a particle size of 600 μm or less: WP, the yield (=
As a result of calculating (100 × WP / WD), the value was as high as 99%.

【0026】また、得られた粉末0.54g、普通ポル
トランドセメント900g、JIS標準砂1350g及
び水360gをホバートミキサーに一括投入し、210
秒間混練してモルタルを調整した。このモルタルのフロ
ー値を実施例1と同様の試験方法で測定した結果、フロ
ー値は225mmとなった。比較参考のため粉末化して
いない〔C〕の固形分濃度50%水溶液1.08g、普
通ポルトランドセメント900g、JIS標準砂135
0g及び水360gを前記と同じ方法で調整したモルタ
ルのフロー値も同様の方法で測定した。この場合のフロ
ー値は223mmであったことから、本粉末との間でセ
メント分散剤としての性状面で有意差が生じるには至ら
ない。
Also, 0.54 g of the obtained powder, 900 g of ordinary Portland cement, 1350 g of JIS standard sand and 360 g of water were put into a Hobart mixer at once, and the mixture was added to
The mortar was adjusted by kneading for 2 seconds. As a result of measuring the flow value of this mortar by the same test method as in Example 1, the flow value was 225 mm. For comparison, 1.08 g of a 50% solids aqueous solution of [C] which has not been powdered, 900 g of ordinary Portland cement, JIS standard sand 135
The flow value of a mortar prepared by adjusting 0 g and 360 g of water in the same manner as described above was measured in the same manner. Since the flow value in this case was 223 mm, there was no significant difference in properties as a cement dispersant between the powder and the present powder.

【0027】[実施例4] 実施例1と同様の水溶液
〔A〕を用い、実施例1と同様の方法・条件で乾燥を行
い、乾燥装置から取り出した乾燥物から以下に表す方法
で粉末状のセメント分散剤を製造した。
Example 4 Using the same aqueous solution [A] as in Example 1, drying was carried out in the same manner and under the same conditions as in Example 1, and the dried product taken out from the drying apparatus was powdered by the method described below. Was manufactured.

【0028】<乾燥物の粗砕> 乾燥物を20℃に保っ
た後、スクリーン6mmパンチ穴の破砕式造粒機(商品
名:パワーミルP−3型、昭和技研株式会社製)で10
0Kg/Hの処理速度で粉砕し、6mm以下の粗砕物を
得た。
<Crushing of Dried Product> The dried product was kept at 20 ° C., and then crushed by a crushing granulator (trade name: Power Mill P-3, manufactured by Showa Giken Co., Ltd.) having a screen with 6 mm punch holes.
It was pulverized at a processing speed of 0 kg / H to obtain a crushed product of 6 mm or less.

【0029】<粗砕物の冷却> 破砕式造粒機から前記
粗砕物を取り出し、これを恒温室で3℃に冷却し、この
状態を約24時間保った。
<Cooling of the crushed material> The crushed material was taken out of the crushing granulator, and cooled to 3 ° C in a constant temperature room, and this state was maintained for about 24 hours.

【0030】<冷却物の微粉化> 冷却された粗砕物を
室温下で振動ミル(商品名:FV−30型振動ミル、中
央加工機株式会社製)によって約10分間微粉砕した。
粉砕物は篩を通し、粒径600μm以下の粉末を回収し
た。本実施例において、振動ミルで10分間に粉砕でき
た被粉砕物の処理量は35Kgであった。また、粗砕に
供された乾燥物の重量:WDと回収できた粒径600μ
m以下の粉末重量:WPの値から、収率(=100×W
P/WD)を算出した結果、97%と高い値であった。
<Pulverization of Cooled Material> The cooled crushed material was pulverized at room temperature by a vibration mill (trade name: FV-30 type vibration mill, manufactured by Chuo Koki Co., Ltd.) for about 10 minutes.
The pulverized product was passed through a sieve to recover a powder having a particle size of 600 μm or less. In this example, the processing amount of the object to be pulverized in a vibration mill for 10 minutes was 35 kg. The weight of the dried product subjected to the crushing: WD and the collected particle size of 600 μm
m or less: From the value of WP, the yield (= 100 × W
As a result of calculating (P / WD), the value was as high as 97%.

【0031】<粉末の性状> 得られた粉末0.54
g、普通ポルトランドセメント900g、JIS標準砂
1350g及び水360gをホバートミキサーに一括投
入し、210秒間混練してモルタルを調整した。このモ
ルタルのフロー値を実施例1と同様の試験方法で測定し
た結果、フロー値は228mmとなった。比較参考のた
め粉末化していない〔A〕の固形分濃度50%水溶液
1.08g、普通ポルトランドセメント900g、JI
S標準砂1350g及び水360gを前記と同じ方法で
調整したモルタルのフロー値も同様の方法で測定した。
この場合のフロー値は230mmであったことから本粉
末との間でセメント分散剤としての性状面で有意差が生
じるには至らない。
<Properties of Powder> Obtained Powder 0.54
g, 900 g of ordinary Portland cement, 1350 g of JIS standard sand, and 360 g of water were charged all at once into a Hobart mixer and kneaded for 210 seconds to prepare a mortar. As a result of measuring the flow value of this mortar by the same test method as in Example 1, the flow value was 228 mm. For comparison, 1.08 g of a 50% solids aqueous solution of non-pulverized [A], 900 g of ordinary Portland cement, JI
The mortar flow value obtained by preparing 1350 g of S standard sand and 360 g of water in the same manner as described above was measured in the same manner.
Since the flow value in this case was 230 mm, there was no significant difference in properties as a cement dispersant from the present powder.

【0032】[実施例5] 実施例1と同様の水溶液
〔A〕を用い、実施例1と同様の方法及び装置で乾燥を
行い、乾燥装置から取り出した乾燥物を実施例4と同様
の方法及び装置で粗砕及び粗砕物の冷却を行った後、冷
却物を実施例1と同じ高速回転式のピンミルを使用し、
実施例1と同様の粉砕処理を行い、チャンバーから取り
出した粉砕物を篩に通し、粒径600μm以下の粉末を
回収した。
[Example 5] Using the same aqueous solution [A] as in Example 1, drying was performed by the same method and apparatus as in Example 1, and the dried product taken out from the drying device was subjected to the same method as in Example 4. And after performing the crushing and cooling of the crushed material with the device, the cooled material is used using the same high-speed rotation type pin mill as in Example 1,
The same pulverization treatment as in Example 1 was performed, and the pulverized material taken out of the chamber was passed through a sieve to collect powder having a particle size of 600 μm or less.

【0033】本実施例において、ピンミルで10分間に
粉砕できた被粉砕物の処理量は11.7Kgであり、極
めて高い粉砕効率を示した。また、粗砕に供された乾燥
物の重量:WDと上記処理を経て回収された粒径600
μm以下の粉末重量:WPの値から、収率(=100×
WP/WD)を算出した結果、99%と高い値であっ
た。
In this example, the processing amount of the material to be pulverized by the pin mill for 10 minutes was 11.7 Kg, and showed extremely high pulverization efficiency. The weight of the dried material subjected to the crushing: WD and the particle diameter 600 collected through the above-mentioned treatment
Powder weight of μm or less: From the value of WP, the yield (= 100 ×
As a result of calculating (WP / WD), the value was as high as 99%.

【0034】また、得られた粉末0.54g、普通ポル
トランドセメント900g、JIS標準砂1350g及
び水360gをホバートミキサーに一括投入し、210
秒間混練してモルタルを調整した。このモルタルのフロ
ー値を実施例1と同様の試験方法で測定した結果、フロ
ー値は232mmとなった。比較参考のため粉末化して
いない〔A〕の固形分濃度50%水溶液1.08g、普
通ポルトランドセメント900g、JIS標準砂135
0g及び水360gを前記と同じ方法で調整したモルタ
ルのフロー値も同様の方法で測定した。この場合のフロ
ー値は230mmであったことから本粉末との間でセメ
ント分散剤としての性状面で有意差が生じるには至らな
い。
Further, 0.54 g of the obtained powder, 900 g of ordinary Portland cement, 1350 g of JIS standard sand and 360 g of water were put into a Hobart mixer at once, and the mixture was added to
The mortar was adjusted by kneading for 2 seconds. As a result of measuring the flow value of this mortar by the same test method as in Example 1, the flow value was 232 mm. For comparison, 1.08 g of a 50% solids aqueous solution of [A] which is not powdered, 900 g of ordinary Portland cement, JIS standard sand 135
The flow value of a mortar prepared by adjusting 0 g and 360 g of water in the same manner as described above was measured in the same manner. Since the flow value in this case was 230 mm, there was no significant difference in properties as a cement dispersant from the present powder.

【0035】[比較例1] 実施例1と同様の水溶液
〔A〕を用い、実施例1と同様の方法・条件で乾燥を行
い、乾燥装置から取り出した乾燥物を20℃に保った
後、スクリーン0.6mmパンチ穴の破砕式造粒機(商
品名:パワーミルP−3型、昭和技研株式会社製)で1
00Kg/Hの処理速度で粉砕した。粉砕直後の粉末温
度は200℃を超えていた。粉砕物は振動篩いを用いて
分級し、粒径600μm以下の粉末を回収した。
[Comparative Example 1] Using the same aqueous solution [A] as in Example 1, drying was performed under the same method and conditions as in Example 1, and the dried product taken out of the drying apparatus was kept at 20 ° C. 1 with a crushing type granulator (trade name: Power Mill P-3 type, manufactured by Showa Giken Co., Ltd.)
Grinding was performed at a processing speed of 00 Kg / H. The powder temperature immediately after milling exceeded 200 ° C. The pulverized product was classified using a vibration sieve, and a powder having a particle size of 600 μm or less was recovered.

【0036】得られた粉末0.54g、普通ポルトラン
ドセメント900g、JIS標準砂1350g及び水3
60gをホバートミキサーに一括投入し、210秒間混
練してモルタルを調整した。このモルタルのフロー値を
実施例1と同様の試験方法で測定した結果、フロー値は
101mmとなった。比較参考のため粉末化していない
〔A〕の固形分濃度50%水溶液1.08g、普通ポル
トランドセメント900g、JIS標準砂1350g及
び水360gを前記と同じ方法で調整したモルタルのフ
ロー値も同様の方法で測定した。この場合のフロー値は
230mmであったことから本粉末ではポリマー成分の
熱変質が顕著で、その結果セメント分散作用が著しく低
下したものと判断される。
0.54 g of the obtained powder, 900 g of ordinary Portland cement, 1350 g of JIS standard sand and water 3
60 g was put into a Hobart mixer all at once and kneaded for 210 seconds to prepare a mortar. As a result of measuring the flow value of this mortar by the same test method as in Example 1, the flow value was 101 mm. For comparison, 1.08 g of a 50% solid content aqueous solution of [A] which is not powdered, 900 g of ordinary Portland cement, 1350 g of JIS standard sand and 360 g of water were prepared in the same manner as described above, and the flow value of the mortar was the same. Was measured. In this case, since the flow value was 230 mm, it was judged that the thermal deterioration of the polymer component was remarkable in this powder, and as a result, the cement dispersing action was significantly reduced.

【0037】[比較例2] 実施例1と同様の水溶液
〔A〕を用い、実施例1と同様の方法・条件で乾燥を行
い、乾燥装置から取り出した乾燥物を20℃に保ち、こ
の状態を約24時間保った。次いで、この乾燥物を室温
(約20±1℃)下で実施例1と同じ高速回転式のピン
ミルを使用し、実施例1と同様の粉砕処理を行い、チャ
ンバーから取り出した粉砕物を篩に通し、粒径600μ
m以下の粉末を回収した。粉砕に供された乾燥物の重
量:WDと回収された粒径600μm以下の粉末重量:
WPの値から、収率(=100×WP/WD)を算出し
た結果、69%となった。また、本例において、ピンミ
ルで10分間に粉砕できた被粉砕物の処理量は3.0K
gであり、低い粉砕効率となった。
Comparative Example 2 Using the same aqueous solution [A] as in Example 1, drying was performed in the same manner and under the same conditions as in Example 1, and the dried product taken out of the drying apparatus was kept at 20 ° C. For about 24 hours. Next, the dried product is subjected to the same pulverization treatment as in Example 1 at room temperature (about 20 ± 1 ° C.) using the same high-speed rotary pin mill as in Example 1, and the pulverized product taken out of the chamber is sieved. Through, particle size 600μ
m or less powder was recovered. Weight of dry matter subjected to grinding: WD and weight of recovered powder having a particle size of 600 μm or less:
The yield (= 100 × WP / WD) was calculated from the value of WP to be 69%. In this example, the processing amount of the object to be pulverized in a pin mill for 10 minutes was 3.0K.
g, resulting in low grinding efficiency.

【0038】[0038]

【発明の効果】本発明の製造方法によれば、特別な乾燥
手法を経ずとも、高い収率で、短時間に効率良く、液状
のものに勝るとも劣らない性能の粉末状ポリカルボン酸
系セメント分散剤を得ることができる。
According to the production method of the present invention, a powdery polycarboxylic acid system having a high yield, a high efficiency in a short time, and a performance not inferior to that of a liquid can be obtained without a special drying method. A cement dispersant can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C04B 103:32 C04B 103:32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C04B 103: 32 C04B 103: 32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液状のポリカルボン酸系高分子化合物を
主成分とするセメント分散剤を乾燥し、乾燥物を主に切
断及び/又は剪断により粗砕し、次いで粗砕物を1mm
以下に粉砕することを特徴とする粉末状セメント分散剤
の製造方法。
1. A cement dispersant containing a liquid polycarboxylic acid polymer as a main component is dried, and the dried product is crushed mainly by cutting and / or shearing.
A method for producing a powdery cement dispersant, characterized by pulverizing below.
【請求項2】 粗砕物中のポリカルボン酸系高分子化合
物の結晶化度を20%以上にせしめ、1mm以下に粉砕
する請求項1記載の粉末状セメント分散剤の製造方法。
2. The method for producing a powdery cement dispersant according to claim 1, wherein the degree of crystallinity of the polycarboxylic acid-based polymer compound in the crushed material is adjusted to 20% or more, and crushed to 1 mm or less.
【請求項3】 粗砕物の温度を10℃以下にして1mm
以下に粉砕することを特徴とする請求項1又は2に記載
の粉末状セメント分散剤の製造方法。
3. The temperature of the crushed product is set to 10 ° C. or less and 1 mm
The method for producing a powdery cement dispersant according to claim 1 or 2, wherein the method is pulverized below.
【請求項4】 液状のポリカルボン酸系高分子化合物を
主成分とするセメント分散剤を乾燥し、乾燥物中のポリ
カルボン酸系高分子化合物の結晶化度を35%以上にせ
しめ、1mm以下に粉砕することを特徴とする粉末状セ
メント分散剤の製造方法。
4. A cement dispersant containing a liquid polycarboxylic acid-based polymer compound as a main component is dried, and the crystallinity of the polycarboxylic acid-based polymer compound in the dried product is set to 35% or more, and 1 mm or less. A method for producing a powdery cement dispersant, comprising:
【請求項5】 乾燥物の温度を5℃以下にして1mm以
下に粉砕することを特徴とする請求項4記載の粉末状セ
メント分散剤の製造方法。
5. The method for producing a powdery cement dispersant according to claim 4, wherein the temperature of the dried product is reduced to 5 ° C. or less and pulverized to 1 mm or less.
【請求項6】 ポリカルボン酸系高分子化合物が(メ
タ)アクリル酸系共重合体又はマレイン酸系共重合体で
ある請求項1〜5の何れか記載の粉末状セメント分散剤
の製造方法。
6. The method for producing a powdery cement dispersant according to claim 1, wherein the polycarboxylic acid-based polymer compound is a (meth) acrylic acid-based copolymer or a maleic acid-based copolymer.
JP2001161996A 2001-05-30 2001-05-30 Method for producing powdered cement dispersant Expired - Lifetime JP4608132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161996A JP4608132B2 (en) 2001-05-30 2001-05-30 Method for producing powdered cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161996A JP4608132B2 (en) 2001-05-30 2001-05-30 Method for producing powdered cement dispersant

Publications (2)

Publication Number Publication Date
JP2002348162A true JP2002348162A (en) 2002-12-04
JP4608132B2 JP4608132B2 (en) 2011-01-05

Family

ID=19005191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161996A Expired - Lifetime JP4608132B2 (en) 2001-05-30 2001-05-30 Method for producing powdered cement dispersant

Country Status (1)

Country Link
JP (1) JP4608132B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692700A (en) * 2015-02-11 2015-06-10 四川恒泽建材有限公司 Slow-release slump-retaining type polycarboxylic acid high-performance water reducing agent and preparation method thereof
CN104692701A (en) * 2015-03-04 2015-06-10 河南新汉材料科技有限公司 Room-temperature synthetic type polycarboxylic high performance water-reducing agent and preparation method thereof
JP2016145135A (en) * 2015-02-09 2016-08-12 株式会社日本触媒 Functional hydraulic inorganic particle and hydraulic particle containing the same
JP6469912B1 (en) * 2018-02-27 2019-02-13 株式会社メタルドゥ Titanium cobble manufacturing method and manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545717A (en) * 1978-09-27 1980-03-31 Nippon Kayaku Co Ltd Pulverized sodium polyacrylate and its preparation
JPH0641313A (en) * 1992-07-23 1994-02-15 Nippon Shokubai Co Ltd Method for drying @(3754/24)meth)acrylic acid @(3754/24)salt)-based polymer, powder of the polymer and its production
JP2000026145A (en) * 1998-07-07 2000-01-25 Taiheiyo Cement Corp Powdery cement dispersant and its production
JP2000034159A (en) * 1998-07-21 2000-02-02 Taiheiyo Cement Corp Ultra-rapid-hardening cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545717A (en) * 1978-09-27 1980-03-31 Nippon Kayaku Co Ltd Pulverized sodium polyacrylate and its preparation
JPH0641313A (en) * 1992-07-23 1994-02-15 Nippon Shokubai Co Ltd Method for drying @(3754/24)meth)acrylic acid @(3754/24)salt)-based polymer, powder of the polymer and its production
JP2000026145A (en) * 1998-07-07 2000-01-25 Taiheiyo Cement Corp Powdery cement dispersant and its production
JP2000034159A (en) * 1998-07-21 2000-02-02 Taiheiyo Cement Corp Ultra-rapid-hardening cement composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145135A (en) * 2015-02-09 2016-08-12 株式会社日本触媒 Functional hydraulic inorganic particle and hydraulic particle containing the same
CN104692700A (en) * 2015-02-11 2015-06-10 四川恒泽建材有限公司 Slow-release slump-retaining type polycarboxylic acid high-performance water reducing agent and preparation method thereof
CN104692701A (en) * 2015-03-04 2015-06-10 河南新汉材料科技有限公司 Room-temperature synthetic type polycarboxylic high performance water-reducing agent and preparation method thereof
JP6469912B1 (en) * 2018-02-27 2019-02-13 株式会社メタルドゥ Titanium cobble manufacturing method and manufacturing apparatus
JP2019147108A (en) * 2018-02-27 2019-09-05 株式会社メタルドゥ Titanium cobble manufacturing method and manufacturing apparatus
US10967386B2 (en) 2018-02-27 2021-04-06 Metaldo Co., Ltd. Method and machine for producing titanium cobbles

Also Published As

Publication number Publication date
JP4608132B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5069237B2 (en) Process for producing cellulose ether products having increased viscosity and fineness
KR100745890B1 (en) Process for improving grinding of cement clinker in mills employing rollers
CN102898086A (en) Preparation method of high-performance recycled aggregate concrete
JP2002348162A (en) Manufacturing method of powdery cement dispersant
JP2003306368A (en) Grout and injection method using it
JP5548045B2 (en) Recycled cement raw material and recycled cement composition using the same
JP6414873B2 (en) Method for producing cement composition
JP2548558B2 (en) Method for producing hydraulic fine powder
JP5100934B2 (en) Method for producing powdered cement dispersant
JP2012006811A (en) Recycled fine powder, method for recovering the same, concrete composition using the same, and classifier
JP7120988B2 (en) Powder dispersant composition for hydraulic composition
WO2021132317A1 (en) Method for producing powder dispersant composition for hydraulic composition
JP7286609B2 (en) Method for producing powder dispersant composition for hydraulic composition
JP2002136886A (en) Pulverization treatment process of cement formed product waste material and method for recycling the waste material
JPH1099704A (en) Crushing medium and production of spherical fine particles using the same
JP2002273258A (en) Superfine pulverizing method for waste material
JPH02235901A (en) Preparation of highly-viscous cellulose ether
JP2004299956A (en) Method for producing powdery cement dispersant
CA2859857A1 (en) Efficiency increase in devices for separating solid particles according to size
JP2002321952A (en) Cement admixture
JP4878695B2 (en) Granulated product of naphthol derivative and its production method
JPS61270240A (en) Manufacture of hydraulic material
JP5658159B2 (en) Feedstock storage and distribution
JP2013001597A (en) Cement-containing composition, slurry for ground improvement and ground improving method
JP2007269974A (en) Grout material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term